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Summary. We derive a posteriori error estimators for convection-diffusion
equations with dominant convection. The estimators yield global upper and
local lower bounds on the error measured in the energy norm such that the
ratio of the upper and lower bounds only depends on the local mesh-Peclet
number. The estimators are either based on the evaluation of local residuals
or on the solution of discrete local Dirichlet or Neumann problems.
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1. Introduction
We consider the convection-diffusion equation

—eAu+a-Vu+bu=f in {2

(1.2) u=0 onlp
0
ea—Z:g on I'y

where? C R™ n > 2, is a bounded polygonal domain with Lipschitz
boundaryl” = I'bUI'yandI NN = (. We are interested in the convection
dominated case and assume that:

(Al) 0<e<< 1,

(A2) @ € Wh(2)", b € L=(2), [|allz + ]|~ = O(1),
(A3) —3V-a+b>1,

(Ad) I'_:={z el :a(x) n(x) <0} CIp.
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Our aim is the construction of robust a posteriori error estimators for
finite element discretizations (standard Galerkin or SUPG) of this problem.
Here, robust means that the error estimators yield global upper and local
lower bounds on the error measured in the energy norm

1/2
(1.2) Ml += {ell Vel + Jlull3}

which differ by multiplicative constants which depend at most on the local
mesh-Peclet number. (As usuill|o refers to the norm of.2(2).)

This problem is not as imple as it might seem at first sight. Standard
approaches as presented in, e.g. [11, 12], for thecasd,a = 0,b =0
yield upper and lower bounds which differ by a factor'. More careful
estimates within the same approach reduce this gap to the facGr. In
what follows we will present estimators such that the upper and lower bounds
differ by a factorc + e~ 1/2||a|| .~ min{he /2 1}. Here,c is independent
of € and of any meshsize, artdis the local meshsize. Thus, the estimates
are optimal if the local mesh-Peclet number is sufficiently small. This will
in particular hold in the critical regions near an interior or a boundary layer.

The main tools in achieving the result are an appropriate trace theorem
in deriving upper bounds and a judicious modification of the local cut-
off functions of [11, 12] and a sharp estimate for the convection term in
establishing lower bounds. The estimators are either based on residuals with
weights depending on and the local meshsize or on the solution of local
discrete Dirichlet or Neumann problems.

Our results should be compared with those of Angermann [2]. He con-
structs a posteriori error estimators for problem (1.1) which yield upper and
lower bounds on the error such that their ratio is bounded independently of
h ande. The error, however, is measured in a norm which is only implicitely
defined by an infinite dimensional variational problem. Hence, it can hardly
be computed in practice. Moreover, the condition number of this norm with
respect to the energy norm (1.2) or to the standatdsemi-norm behaves
like 0(5—1/2). Our results, on the other hand, hold for the energy norm (1.2)
which is much more natural and easy to compute in practice.

The paper is organized as follows. In Sect. 2 we present the variational
formulation of (1.1) and its finite element discretization. In Sect. 3 we collect
some auxiliary results which are needed for deriving the upper and lower
bounds. In Sects. 4 and 5 we present the error estimators and prove their
robustness. In Sect. 6 we shortly show how our results extend to slightly
nonlinear problems and thus complement the results of [9]. Finally, we
present in Sect. 7 two sets of numerical examples which give an impression
of the global and local effectivity indices which can be expected from the
residual eror estimator of Sect. 4.
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In what follows we always use the followirgpnvention

a=b<= a<ch
a~b < a=<b and b=<a.

Here, the constantmust be independent of any meshsize and of

2. Finite element discretization

For any bounded open subsetf {2 with polygonal boundary, we denote
by H*(w),k € N,L*(w) = H°w), and L?(v) the usual Sobolev and
Lebesgue spaces equipped with the standard npins, := ||.[| x(.) and
[0y == [Illz2¢y) (cf. [1]). Similarly, (.,.)., and(.,.), denote the scalar
products of.?(w) andL?(v), respectively. Ifo = 2 we will omit the index
(2. On the other hand).||| , denotes the canonical restriction of the energy
norm (1.2) onH ! (w).

Set

HL(2):={pec H'(2): ¢ =00nIp}.

Then the standard variational formulation of problem (1.1) is to find
HJ (£2) such that

(2.1) B(u,v) = (f,0) + (9,0)ry Vv € Hp(R2)
where
(2.2) B(u,v) :=&(Vu, Vv) + (a- Vu,v) + (bu,v).

Problem (2.1) admits a unique solution. Moreover, assumptions (A1) — (A4)
and integration by parts imply that

(2.3) B(v,v) > [[vl® Vv e Hb(R2)
and

B(v,w) < [[ollllwl{1 + 1Bl } + [lolll[lw]los™"?||al
(2.4) Yo, w € HE(0).

We denote by7,, h > 0, a family of partitions off2 into n-simplices
which satisfies the following two properties:

(1) admissibility:any two elements are either disjoint or share acomplete
k-face,0 <k <n—1,

(2) shape regularitysup sup hr/pr < 1.
h>0 TET;,
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Here,hr and pr denote the diameter @f and the diameter of the largest
ball insribed intdl". Note, that the shape regularity allows the use of locally
refined meshes and that, in two dimensions, it is equivalent to a minimal
angle condition.

For k € N we denote by, the set of polynomials of degree at maést
and set

S]’z’—l = {@:Q%R:(pkpeﬂ”k VTG'];LL
(2.5) S0 — skl no@), k>1,
Sih={peSy i p=00onIp}, k>1.

We then consider the following discretization of problem (1.1): Ripde
Sy’ such that

(2.6) Bs(un, vn) = ls(un)  Von € Si)

where

Bs(up,vp) = B(up,vp)

+ Z Or(—eAup + a - Vuy, + bup,a - Vop)7,
TET,

27)  Is(vn) = (fon) + (g:on)r + Y, 7(f,a- Vou)r.
TeT,

Problem (2.6) is the standard Galerkin approximatiofyi= 0 VI € Ty,

and the SUPG discretization of [8],df > 0 VT € T;,. From assumptions
(Al) — (A4) and a local inverse estimate it follows that problem (2.6) admits
a unique solution iy < h2.e~! (cf. [8]). In what follows we will always
assume that

(28) or < hr vT € Tp.

Finally, we introduce some useful notatioids. denotes the set of all
(n—1)-faces inT},. It can be splitin the fornd}, = &, o UE, NUEL p Where
En0, En N, andEy, p refer to interior faces, faces on the Neumann boundary
Iy, and faces on the Dirichlet boundafy,, respectively. FotE € &,
hg is the diameter of£. The shape regularity implies that ~ hg and
hr ~ hp,whenevelz C 9T andT'NT’ # (). For any piecewise continuous
function and anyE' € &, o, we denote byy| the jump ofy acrosst
in an arbitrary but fixed direction orthogonal toE. The jump[y]g of
course depends on the orientationgf, but expressions likevg - V| g
are independent of the orientationiof. For anyT” € 7, andE € &, we
finally set

wr = U T, Op:= U T, wg:= U T

OATAT'EE TOT £ ECoT’
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3. Auxiliary results

Denpte by, € R™", 1 < i < n, thei-th unit vector and set, ., := 0 € R"™.
Let 7" be the standard-simplex with vertices;, ..., e, +1 and faces
Ei:=Tn{z;=0} ,1<i<n,
Epop =T {|z); =1}
Here,|.|; denotes the standatg-norm inR™.

3.1 Lemma The following trace inequality holds for dll € 7,,, E C 9T,
andv € HY(T)

1/2

— 1/2 1 2
ollo;e = B (lollo;r + lollgF I Vollglr

[v

Proof. Enumerate the vertices @f such that the vertices df numbered
first and denote by, ..., A\, 1 the barycentric co-ordinates @f. Since
M+..+\,=10nE We have

n
olloz < Ao
i=1

Forl < i < n denote byF, : T' — T the affine mapping which mags;
onto £ and set
0= (A\v) o Fj

From Lemma 3.2 in [13] we then know that
1/2 1 2
ooz, < V209021Vl
This estimate and standard scaling arguments yield

n—1)/2 ~
IAvllos = by~ |19l 5,

< h =V V2)l 21V el

1/2 1/2
< Al PV (A )H/

1 2 1 2 —1 2
=< lolly/ 7Vl Pollosr.

Sincel < i < n was arbitrary, this proves the desired resultl

Denote byl, : L?(2) — S p the quasi-interpolation operator of
Cléement (cf. [7] and Exercise 3. 2 3 in [6]).
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3.2 Lemma The following error estimates hold for dll € 7, E C 9T,

andv € H(w7)

lv = Iyllo;r = min{hre™ /2, 1}v]ll5,
lv — Invlo;e = g~ 1/4 min{hT€_1/27 1}1/2!HUH\

Hrlll = Mol

wor?

Proof. The Lemma follows from the error estimate

IV (v = Ino)llosr = R [VF0 oz
VO<I<k<1,TeT,veH @)
(cf. [7] and Exercise 3.2.3 in [6]), definition (1.2) gf |||, Lemma 3.1, and
the obvious estimate
h;1/2 min{hre /%, 1} + e Y4 min{hpe /2, 1}1/2
(3.1) <2 Y4min{hpe /2 1}1/2
X O
Denote by);, 1 < ¢ < n + 1, thei-th barycentric co-ordinate &f, i.e.,

the linear function tha} takes the value 1 at the vedeand that vanishes
identically on the facdy;. Set

n+1

o= (n+ )" ] A
=1

Given any numbef € (0, 1] denote bydy : R” — R” the transformation
which mapyz1, ..., z,) onto(z1, ..., xn_1, 0zy,). Let

Ty := p(T)

and denote b)}\l,g, .., Ant1,0 Its barycentric co-ordinates. Set

n—1
o 1= n"Ant1,0 H Aip onTy,
T i=1

0 onT\Ty.

For an arbitrary simpleX’ € 7, denote byFr an affine transformation
which mapsl’ onto7T" and set

(o F:! onT,
(3.2) vr '_{0 ! on 2\T.



A posteriori error estimators for convection-diffusion equations 647

Let £ € &, and denote byl', 7> the two simplices which havé' in
common. Denote by ;,7 = 1,2, the orientation preserving affine trans-

formation which map§’ onto7; andE,, onto E. Set

Pgo Fpl onTyi=1,2,
3.3 = B
(3:3) VEs {O on 2\wg.

If £ € &,pU &L the functiony g ¢ is defined in the same way with the
obvious modifications.

Finally, we define a continuation operatBg, : L>°(F) — L®(wg), E €

&n, which maps polynomials onto piecewise polynomials of the same degree.
To this end, defind®s : L®(E,) — L>(T) by

PE&(xl, ey Tp—1, Tp) = 0(T1, ey Tp—1,0)
and set
Pgolr, = [Pe(o o Fgy)lo Fgt ,i=1,2
with the obvious modifications for faces on the bound&ry
3.3 Lemma The following estimates hold for alle P, andT < 7T},
[vllg.r = (v, ¥ro)r,

[orllosr < l[ollosr,

llogorlly < min{hre™2, 13 ollo;r-

For & € &, set
Op := min{sl/th,l, 1}.

Then the following estimates hold for &l € &, ando € Py .

||O.H%,E = (07 ¢E,0EPEU)E7
198,65 Prollows =< €/*min{1, hge /212|005,

l¢5.0 Peolll,, =&/ min{l, hge 2} 2|0l

Proof. The estimates concernimngollow from standard scaling arguments,
the equivalence of norms on finite dimensional spaces (cf. Lemma 4.1 in
[11]), and the obvious estimate

1+ 51/2h51 < Qmax{l,el/zh;l} = 2min{1, hye 2} 71,



648 R. Verfirth

From Lemma 3.4 in [13] we know that the estimates
H&H§7En j (&71/}9PE&)EA‘H7
HwGPE&H().f = 91/2”&H0;En7

a )
(d’@PEU H()T 01/2”0“0;@" 1<t <n—1,

H%(%PE&)HO;T <0725 0;,

hold for all§ € (0,1] and all6 € Py 5,- Now, the results concerning

follow from these estimates, standard scaling arguments, and the obvious
inequalities

hy*0% = e/ min{1, hpe /)12,

eV2n ;1 20,1 = Y min{1, hpe V212,

4. A residual error estimator

Recall that: andu;, denote the unique solutions of problems (2.1) and (2.6),
respectively. From (2.3) we conclude that

@) -l < sup Bl tn)
veri@\goy 1l

Consider an arbitrary € H{(£2) with [|v]|| = 1. Obviously, we have
(4.2) B(u—up,v) = B(u—up,v— Ipv) + B(u — up, Ipv).

Integration by parts elementwise yields foralle H}((2)

B(u — up,w) = Z (f +eAup, — a- Vup, — bup, w)r

TETh
+ > ([ednpunlp,w)p
EEgh 0
(4.3) + > (9 Onup, w)g
EEghN

:Z(RTuh T+ZREUh

TET, Ec&y,
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where
Ry(up) == f + eAup —a- Vup, — bup,
—[58nEuh]E if £ ¢ gh,g,
(4.4) RE(Uh) =< g—clhu, IFTEE€E 8h,N7
0 if £ e gh,D‘

Insertingw = v — Iv im (4.3), invoking Lemma 3.2, and using Cauchy-
Schwarz’s inequality we obtain

B(u—upv— L) < { 3 min{hre™ 2 117 R (un) [ 7

TET;,
1/2
(4.5) + 3 e P minfhre V2 1} Re(un) los |-
Ee&y
From (2.1), (2.2), (2.6), and (2.7) we conclude that
(4.6) B(u — up,wp) = — Z or(Rr(up),a - Vwy)r

TeT,

holds for alkwy, € S,'f’%. A simple scaling argument shows foraill € S,'j’%
that ’ ’

@47)  lla- Vwpllor =X lall oo (ryhy! min{hre™"2, 1} [[wp]1-

Equation (4.6), estimate (4.7), Lemma 3.2, assumption (2.8), and Cauchy-
Schwarz’s inequality yield

1/2
(4.8)  Blu—up, ) = { D minfhre™2 12| Rr(un) 3}
TeTh

From (4.1), (4.2), (4.5), and (4.8) we obtain an upper bound for the energy
norm of the error:

= wnll = { 3 mintore 2,112 B ()
T€Th

1/2
(4.9) + 3 eV min{hpe V2 1 Re(ua) 3}
Ec&;,

In order to derive lower bounds for the error, denotgbgndg,, arbitrary
approximations off andg by piecewise polynomials of degree at mést
with respect td7, and with respect to the partition df induced by7y,
respectively. First, consider an arbitrafye 7; and set

(4.10) wr = Yr[fn + eAup — a - Vuy, — buy).
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Insertingw in (4.3), we obtain
(fn +elup — a- Vup — bup, wr)r

(4.11) = B(u — up,wr) + (fo — f,wr)7-
Estimate (2.4) and Lemma 3.3 imply that

B(u — up, wr)

< llu— UhHlT{(l + (1Bl oo @) lwrllly + & llall ooy HUJTHO;T}

= Yl = wnlllp (U4 ] e y) mimps 172, 13
(4.12) + 571/2“Q‘|L°°(T)}Hfh +eAup, — a - Vuy, — buglo.r-
From (4.10) — (4.12) and Lemma 3.3 we immediately get the lower bound
min{hre™"? 1} fn + eAup, — a - Vuy, — bup o

<l — uhmT{l + [1b]| oo () + &7 [lal] oo () min{hpe /2, 1}}

(4.13) 4 min{hre 21} f — ful
Next, consider an arbitrari < &,  and set
(4.14) wg =Yg, PE(—[€0h,unE)

where

0;T-

O = min{51/2h;31, 1}.

Insertingwg in (4.3), we obtain

(—[e0npunlp, wE)E
= B(u—up,wg) — Y (fo+elAup — a- Vuy — bup, wg)r
TCwg
(4.15) = > (f = farwp)r.
TCwg
Estimate (2.4) and Lemma 3.3 now imply that
B(U — Uh, U)E)
< llw = wnlll,, {0+ 110l oo i) l[wlll,

+e71/2

|0;wE }

<l =l { (14 [0l ey ) min{Rpe /2, 1312

lall Lo () llwe

&2 |al ey min{hpe 2, 112
(4.16) | - [5anEuh}EH0;E-



A posteriori error estimators for convection-diffusion equations 651

Moreover, Lemma 3.3 and estimate (4.13) yield

> (fu+edup —a- Vuy — bup, wg)r

TCwg

= {IHu — tpllly, {1+ 1Bl Lo () + €2 ll@l] oo (o) min{ope™ /2, 13}

el/4 min{hEe_l/Q, 1}—1/2
£ = fullowse* minfhpe" /2, 112 | — [0, punl sl

(4.17)
From (4.15) — (4.17) and Lemma 3.3 we immediately get the lower bound
e minfhpe "2, 112|| — [e0npunl pllo

=l = tnll {1+ 18l e oy + &2l oo o) min{hse ™2, 1} }

+min{hge V2 1} f — fal
(4.18)

Owg

With the same arguments we obtain the lower bound
e Y min{hpe 2 1312\ gy, — edpupllose
= Ml = unll {1+ 16l zy + £~ 2llall o oy minghpe ™2, 1}
+min{hpe Y21} f — fullor
(4.19) +e* min{hge="/2, 12| — gnllo.2-
forall E € &, N, whereT' = wg. Thus, we have established the following
a posteriori error estimate.

4.1 Proposition Denote by anduy, the unique solutions of problems (2.1)
and (2.6), respectively. L}, and g, be arbitrary approximations of and

g by piecewise polynomials of degree atmiostith respect to/;, and with
respect to the partition of induced by7;,, respectively. Set

ag :=min{hge Y21}, SeT,U&,
and

Mo = ol fa + eduy, — a- Vuy — bug||§.r

1 _
+5 Z e 2ap|[edn,unlells

ECoTN$?

+ Y e Paglgn — Onpunlp.
ECOTNIN
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Then the following a posteriori error estimates are valid

e = wn
1/2
= { Z 77P2{,T}
TET,
2 2 —1/2 2 /2
H{> G~ hlkr+ > e aslg—anlde}
T€7—h EEgh,N
R, T

<14 1Bl + &2l e opyaer e = unll,

3 1/2
tarllf = fillowr +{ D e aslg—amlis)

ECOTNIN
1/2
2
{ E WR,T}

TeT

—-1/2
< {1 Bl + (™ llall o oyr) e — |

_ 1/2
H{ S Al - fuldr+ Y P aslg—anlds)

TET, ECé’th

4.2 Remarkin the upper bounds fdffu — ||| one may replacg, andgy,
by f andg respectively. The second term on the right-hand side of the first
estimate of Proposition 4.1 then of course vanishes.

5. Error estimators based on the solution of auxiliary local problems

We begin with an error estimator which is based on the solution of lo-
cal Dirichlet problems and which is similar to the estimator of Bidau
Rheinboldt [3] for the Laplace equation. Givéhe T;,, we set

Vr = span{yv, Vg 9, Pro :
T C wr, B C aT\FD,U € Py,0 € ]Pk|E}

where the functiong)» andvyg ¢, are as in equations (3.2) and (3.3) and
wherefp := min{e!/2h ', 1}. Denote byvr € Vi the unique solution of

e(Vor, Vw)y, + (a - Vor, w)y, + (bur, w)w,

= (fa w)wT + (gv w)BTmFN - S(VUh, vw)wT
(5.1 —(a- Vup, w)y, — (bup, w)w, Yw e Vr
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and set

(5.2) o, = [[lvrll,,.-

For practical computations, one will replageandg by finite element ap-
proximationsf, andg;, as in the previous section. The functiop + vp is
a finite element approximation to the solutien of the local convection-
diffusion problem

—cAur+a-Vur+bur=f inwr
up = up on dwyp\(InNIT)
edpur =9 ondT NIN.

Since the right-hand side of equation (5.1) equals
e(V(u—up), Vw)ur + (@ V(u = up), w)wr + (b(u — up), w)wr,
we obtain from inequality (2.4) the estimate
llorllZ, < {14 118l 2o (o Hllw = wnlll oy o[,
+e7 12 al| oo o [l = oy 07 oy
<L+ 1[0l oo uory + &2l oo oy Hille =l ozl
and hence
. < {1+ (bl 2 (wr) + &2 llall oo ) Ml — unlll,.

This estimate is not satisfactory. In order to improve it, we observe that
(5.3) [wllo;r = ha|[Vwlogr

holds for allT’ c wr andw € Vr since the functions i vanish at the
vertices ofT". Hence, we have

(5.4) lorllowr < minfhre /2, o,
This yields the improved lower bound
o, = AL+l oo )+ P min{hre ™2, 1 al| oo o Ml —unlll, -

This estimate is of the same quality as the corresponding boung feiof
Proposition 4.1. In order to show that r also yields upper bounds for the
error, we compare it with the residual estimatgrr. Integration by parts
elementwise of the right-hand side of equation (5.1) yields

€(VUT, V’LU)MT + (Q . VUT, w)wT —+ (b’[}T7 w)wT
= Y (f +eduy - a- Vuy, — bup,w)p

T'Cwr

55)  + > (—enpunlew)et+ Y (g — cOnup,w)p.

EcCoTng? ECoTNIN
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Moreover, inequality (5.3), Lemma 3.1, and estimate (3.1) imply that

lwllo;z < e/ * min{hge™ /2, 1312 |w]],,,
(5.6) VE C OT\Ip,w € V.

Equation (5.5), estimates (5.4) and (5.6), and Cauchy-Schwarz’s inequality
immediately yield the estimate

nD,Tj{ Z M + Z min{hpe™ 2,132 f = full5.

T Cwyp T'Cwr
—1/2 . -1/2 2 12
+ Z € min{hpe A9 — gn ‘O;E} )
ECOTNIN

whereng r, fn, andg;, are as in Proposition 4.1. On the other hand, the
functionswr andwg of equations (4.10) and (4.14) are contained/jn
Hence, the proofs of estimates (4.13) and (4.18) yield the converse estimate

e <ot {3 min{hpe 2020 F = Sl
T'Cwr

_ . _ 1/2
+ Y e Pminghpe 2 1 g - anlide )
ECoTNnIw

Thus, we have established the following result.

5.1 Proposition Denote by unduy, the unique solutions of problems (2.1)
and (2.6), respectively. Lef 7, fr, and g, be as in Proposition 4.1 and
np,r be given by equation (5.2). Then the following estimates hold

MR, = ND,T + { Z Ogr'Hf - th(Q);T’

T'Cwr
1/2
+ > aplg-alie)
ECOTNIy
2 1/2 2 2
a2 {3 wket +{ Y ol - Al
T' Cwr T'Cwr
1/2
+ > aplg-alie)
ECOTNIN
o= wnll = { " mbr+ D adIf = fulldr
TeT TeTh

3 1/2
+ > M aplg - gnlie)

EEgh,N
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“2ag|all g Hilw — ualll,,,

E 772 v = max{1 + [|b]| g 1/2 7@l foo }
D, T Loo(wy) T T || Q]| Lo (wr)
TeTh
TeET

o, 2 A1+ [|bll o (wy) +€

Nl = unll],

where
og = min{hge_l/Z, 1}, SeT,Ué&p.

5.2 RemarKThe second terms on the right-hand sides of the first and second
estimate can be omitted if in equation (5f1gndg are replaced by, andgy,,
respectively. Proposition 5.1 also holds if the convection terW vz, w).,,.
is omitted on the left-hand side of equation (5.1). Similarly, a stabilization
term

Z o (f +eAvp —a - Vop — bvp,a - Vw)r,

T'Cwr

with 67+ < min{hpe~1/2,1} may be added on the left-hand side of equa-

tion (5.1) if
1/2
{3 ohla- Vorlq }

T'Cwp
is added on the right-hand side of equation (5.2). Note, that the functions
V£ 9, iNtroduce an extra scaling factor in Problem (5.1).

For completeness we also consider an error estimator which is based on
the solution of local Neumann problems and which is similar to the estimator
of Bank-Weiser [4] for the Laplace equation. Fbre 7y, let

Vi = span{y7v,Yg g, Pro : E C OT\Ip,v € Py, 0 € Pyp},
denote by € V- the unique solution of

e(Vop, Vw)r + (a - Vor,w)r + (bop, w)r

(5.7) = (Rr(uwy), w)r + > (Re(up),w)p Yw e Vp
EcoT

and set

(5.8) N = (ol 7

Recall, thatRy(uy) and Rg(uy,) are given by equation (4.4). The func-
tion o is a finite element approximation to the solutién of the local
convection-diffusion equation

—eAur +a-Var + buy = RT(uh) T

SanT’ELT = RE(uh) on 8T\FD
up =0 on 0T N Ip.
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Here,ny is the unit exterior normal ¢f'. The analysis ofip  immediately
carries over to)y 7 and yields:

5.3 Proposition Denote by unduy, the unique solutions of problems (2.1)
and (2.6), respectively. Lef 7, fr, and g, be as in Proposition 4.1 and
nn,7 be given by equation (5.8). Then the following estimates hold

MR, 2 IN,T + { Z af||f - th%;T’

T Cwr
3 1/2
+ Z € 1/2aE||g_gh||(2);E} )
ECOTNIN
IN,T = NR,T +{ Z af|| f — fh”%;T’
T' Cwr
B 1/2
+ Y aplg-ailds)
ECOTNIN
o= wnll = { 3 ki + Y aFIS = fulliir
TE Ty, TETh
3 1/2
+ Y e Paplg-ailde)
EES}LN

N S AL+ bl oo () + &0zl poo o) Ml = unlll

2 1/2<max{1+||b\| so(wr) + € 2 ||al| poo (o
IN,T > Lo (wr) T Q|| Lo (wr)
TeT),
TeT,

[lu = unplll,
where
og = min{hge_l/z, 1}, SeT,Ué&.

With the obvious modifications, Remark 5.2 appliegitor, too.

6. Semilinear convection diffusion equations

In this section we consider the following semilinear analogue of equation
(1.1)
—cAu+a-Vu+bu=F(x,u) inf2,

(61) u=0 on FD7
5% =g on I'N.

We retain the assumptions of Sect. 1 concerfihdp, I'n, ¢, a, andb. In
addition, we assume that is continuously differentiable with respectio
and satisfies the following assumptions:
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(A5) There is a constant with 0 < g < 1 and
0
— < )
max{asF(ac,s),O} <pB VeeseR
(AB) There is a constant > 0 with
’;F(az,s)’ <y(1+s*) VrefscR.
S

These conditions are satisfied if, e.§.js given by F'(z,s) = f(z) — s
with f € L2(£2). This is precisely the example which is considered in [9].
The weak formulation of problem (6.1) is obtained by replacing in equa-
tion (2.1)f by F'(., u). Similarly, the finite element discretization of problem
(6.1) is given by replacing in equation (2.7py F'(., up).
Letu anduy, be solutions of the weak formulation of problem (6.1) and
of its finite element discretization. We then have fora#t HJ(£2)

B(u —up,v) = (F(.,u),v) — B(up,v)
= (F(.,u) — F(.,,up),v) — B(up,v) + (F(.,up),v)

1
= /0 (g—i(.,uh +t(u —up))(u— uh),v)dt
(6.2) —B(un,v) + (F(.,un),v).

The results of Sect. 4 witlf replaced byF'(., u;) provide us with robust
and computable residual a posteriori error estimates for the resitual
which is implicitely defined by

< r(up),v >= —Blup,v) + (F(.,up),v) Vv H(£).

Here,< .,. > denotes the duality pairing dfi{,(2) with its dual space.
In order to obtain similar a posteriori error estimates for the non-linear
problem (6.1) we must therefore balance the first term on the right-hand
side of equation (6.2) which is a measure for the non-linearity.

Insertingv := u — uy, in equation (6.2), recalling inequality (2.3), and
invoking assumption (A5), we obtain

2
1w — |

< B(u — up,u — up)

oF
< sup max{ S (2,9),0 Hllu— up3
zef2,seR Os

—B(up,v) + (F(.,up),v)

‘HHU_UhH\ sup
veHA (2)\{0} [l
—-B Up,V + F L UR),V
< Blllw = wnll* + Il = unll|  sup (un, v) + (F(, un), v)

veHL (2)\{0} o]l
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Hence, Proposition 4.1 yields the upper bound
1/2
o= wnll = { > i}
TET,

whereng 7 is defined as in Proposition 4.1 withreplaced byF'(., uy).
In order to obtain lower bounds on the error we observe that assumption
(A6) and Hblder’s inequality imply for alb € H () the estimate

‘/;(%Z(.,uh—i-t(u—uh))(u—uh )dt‘

1
g// {1 10— tyun + 1o — o]t
2J0
1

5 [ 2 funl? 4 ul?Hu = ol
9

[lu = unllollv]lo
(6.3) ‘|‘{||Uh||%4(9) + ||UH%4(9)}||U = unll a2 vl

On the other hand we know from Chapter Il Lemma 3.3 and Lemma 3.5 in
[10] that

IN

A

(6.4) lvllza(y <27 oll] - Vol 55 <9t athe 253 o]

holds ford € {2,3} andv € HL (). Let o be any of the functions
andwg of equations (4.10), (4.14) with, replaced by some approximation
Fy(.,up) of F(.,up). Inequalities (6.3), (6.4) and a standard inverse estimate
for || Vo||o then imply that

L oF .
’/0 (%(.,uh—I—t(u—uh))(u—uh),v>dt’
= e = wnlllsupp(a) 191lo:supp(a)

2d-3
H{llll® + llen 1 Hllw = wnlllgupp() 19 (5) (/2 hr) 202,

This estimate, Lemma 3.3 and Proposition 4.1 yield the lower bound

R, T
<14 Bl ooy + €72l o oy min{hre ™2, 1}

_2d=3 . —
2 h)HE |+ o) min =2, 13 Y = e,

+{ X minfhre AR w) = Fu(un) 3
T'Cwr

1/2
+ Z 2 min{hpe™ UQJ}HQ‘Qh”%;E} :
ECoTnIw
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Here,nr 1 is as in Proposition 4.1 witlfi, replaced by some finite element
approximationf}, (., uy) of F(., up); gn is as in Proposition 4.1. If in partic-
ular F(z, s) = f(x) — s asin [9], we may choosE}, (z, us) = fr(x) —u3

with f;, as before. Thus our results complement those of [9], where the de-
pendence of the constants©is not made explicitand where error estimates
are only given for "sufficiently smal” without quantifying this notion.

7. Numerical examples

In order to get an impression of the local and global effectivity indices which
can be expected from the residual error estimagor we consider two sets
of examples. Both have the following data in common

2=0,12%a=(21),b=1,f=0eec{1,1072,107%,10719}.

The first set of examples, to which we will refer Bsoblem N, has ho-
mogeneous Dirichlet boundary conditions on the left vertical edg®,of
constant Dirichlet boundary conditions 1 on the lower horizontal edg& of
and homogeneous Neumann boundary conditions on the remaining edges
of 2. The solutions exhibit an interior layer along the line= 2y and a
corner singularity at the origin due to incompatible boundary conditions.
The influence of this singularity will diminish with decreasing
The second set of examples, to which we will referPasblem D, has
homogeneous Dirichlet boundary conditions on the left vertical and upper
horizontal edges of? and constant Dirichlet boundary conditions 1 on
the lower horizontal and right vertical edges(@f The solutions exhibit an
interior layer alongthe line = 2y, aboundary layer atthe right vertical edge
of 2, and two corner singularities at the origin and the top right cornér of
due to incompatible bondary conditions. The influence of these singularities
will again diminish with decreasing The boundary layer will be stronger
than the interior layer.

The discrete problem is given by equations (2.6) and (2.7) with

hT ’QV‘LT 2e
or = 27 Lot -
T 2|g]{00h( 2 ) yg\hT}

(cf. [5]; |.| denotes the Euclidean normii?). All triangulations are created
from the same initial triangulatiofiy which consists of eight right-angled,
isosceles triangles with short sides of lengttand long sides parallel to
the linexz = y. For the computation of errors and effectivity indices the
exact solution: of problem (1.1) is always approximated by the solution

of problem (2.6) corresponding to the triangulatllji‘) which is obtained
by 9 steps of a uniform refinement §f. This triangulation consists of
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Table 1. Global and local effectivity indices

for ProblemN
€ NT E Emin Emax
1 4132 16.4 0.6 8.8

1072 1620 6.5 1.8 26.7
1074 1608 24.8 0.9 7.1
107 1615 27.8 0.6 7.7

right-angled, isosceles triangles with short sides of ledgth. The discrete
solutionuy, is always computed by solving problem (2.6) on a locally refined

triangulationﬁ,(l) which is obtained as follows:

@) set7V =T

2) Given77€(l) solve problem (2.6) oﬁ;m and computer 7,71 € 7;(1),
andny, := max 7R

Te7

() T e 7;(” satisfies)r r > 0.57 itis cutinto four new triangles by
joining the midpoints of its edges (red refinement). Hanging nodes
are eliminated by adding additional green and blue refinements as
described in Sect. 4.1 of [12]. This giv&a", .

Givenu anduy, we can define global and local effectivity indicBand E,
T e 7'5(”, by

1/2
E={ > o} lu—wll . Er=mr/lle— sl
TeT®
Set
FEnin:= min Ep |, FEh.:= max Ep.
TeT TeT)

Figure 1 shows the triangulatioﬂg(l) for ProblemN. Table 1 gives the
quantitiesNT, E, Enin, andEy, ., for this set of examples. Her&T is the

number of triangles iﬂg(l). For all parameters we observed that
(1) Er is maximal close to the origin,

(2) Er ~ 0.5FEha in the vicinity of the interior layer,
(3) Er ~ 1 away from the origin and the interior layer.

Figure 2 and Table 2 show the corresponding results for ProbleRor
all parameters we observed that

(1) E7 is maximal close to the origin and the top right cornefhf
(2) Ep ~ 0.9E,.« close to the boundary layer,
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Fig. 1. Triangulations7:" for ProblemN (top left: ¢ = 1; top right:e = 10~2; bottom
left: ¢ = 10~%; bottom right:e = 10719)

Table 2. Global and local effectivity indices
for ProblemD

€ NT E Frmin  Emax
1 1464 428 1.1 16.9
1072 901 129 11 16.6
107* 956 128.6 1.0 15.8
1071 956 134.0 1.0 16.4

(3) Ep ~ 0.3Enhax Close to the interior layer,
(4) Er ~ 1 away from the singularities.

Consequently the triangulations are mostly refined at the boundary layer
and at the two critical corners. The influence of the interior layer is not yet
strong enough to enforce a considerable refinement there.
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s ;

Fig. 2. Triangulationsﬁf” for ProblemD (top left: e = 1; top right:e = 10~2; bottom
left: ¢ = 10~*; bottom right:e = 10719)

Both sets of examples show that the estimator tends to over-estimate the
error and that it is rather insensitive to variationg of

AcknowledgementQOur sincere thanks are due to Miss A. Papastavrou for performing the
computations.
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