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Summary. We derive a posteriori error estimators for convection-diffusion
equations with dominant convection. The estimators yield global upper and
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number. The estimators are either based on the evaluation of local residuals
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1. Introduction

We consider the convection-diffusion equation

−ε∆u+ a · ∇u+ bu = f in Ω
u = 0 on ΓD(1.1)

ε
∂u

∂n
= g on ΓN

whereΩ ⊂ R
n, n ≥ 2, is a bounded polygonal domain with Lipschitz

boundaryΓ = ΓD∪ΓN andΓD∩ΓN = ∅. We are interested in the convection
dominated case and assume that:

(A1) 0 < ε << 1,
(A2) a ∈ W 1,∞(Ω)n, b ∈ L∞(Ω), ‖a‖L∞ + ‖b‖L∞ = O(1),
(A3) −1

2∇ · a+ b ≥ 1,
(A4) Γ− := {x ∈ Γ : a(x) · n(x) < 0} ⊂ ΓD.
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Our aim is the construction of robust a posteriori error estimators for
finite element discretizations (standard Galerkin or SUPG) of this problem.
Here, robust means that the error estimators yield global upper and local
lower bounds on the error measured in the energy norm

|||u||| :=
{
ε‖∇u‖2

0 + ‖u‖2
0

}1/2
(1.2)

which differ by multiplicative constants which depend at most on the local
mesh-Peclet number. (As usual,‖.‖0 refers to the norm ofL2(Ω).)

This problem is not as imple as it might seem at first sight. Standard
approaches as presented in, e.g. [11, 12], for the caseε = 1, a = 0, b = 0
yield upper and lower bounds which differ by a factorε−1. More careful
estimates within the same approach reduce this gap to the factorε−1/2. In
what follows we will present estimators such that the upper and lower bounds
differ by a factorc+ ε−1/2‖a‖L∞ min{hε−1/2, 1}. Here,c is independent
of ε and of any meshsize, andh is the local meshsize. Thus, the estimates
are optimal if the local mesh-Peclet number is sufficiently small. This will
in particular hold in the critical regions near an interior or a boundary layer.

The main tools in achieving the result are an appropriate trace theorem
in deriving upper bounds and a judicious modification of the local cut-
off functions of [11, 12] and a sharp estimate for the convection term in
establishing lower bounds. The estimators are either based on residuals with
weights depending onε and the local meshsize or on the solution of local
discrete Dirichlet or Neumann problems.

Our results should be compared with those of Angermann [2]. He con-
structs a posteriori error estimators for problem (1.1) which yield upper and
lower bounds on the error such that their ratio is bounded independently of
h andε. The error, however, is measured in a norm which is only implicitely
defined by an infinite dimensional variational problem. Hence, it can hardly
be computed in practice. Moreover, the condition number of this norm with
respect to the energy norm (1.2) or to the standardH1-semi-norm behaves
likeO(ε−1/2). Our results, on the other hand, hold for the energy norm (1.2)
which is much more natural and easy to compute in practice.

The paper is organized as follows. In Sect. 2 we present the variational
formulation of (1.1) and its finite element discretization. In Sect. 3 we collect
some auxiliary results which are needed for deriving the upper and lower
bounds. In Sects. 4 and 5 we present the error estimators and prove their
robustness. In Sect. 6 we shortly show how our results extend to slightly
nonlinear problems and thus complement the results of [9]. Finally, we
present in Sect. 7 two sets of numerical examples which give an impression
of the global and local effectivity indices which can be expected from the
residual eror estimator of Sect. 4.
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In what follows we always use the followingconvention:

a � b ⇐⇒ a ≤ cb

a ' b ⇐⇒ a � b and b � a.

Here, the constantc must be independent of any meshsize and ofε.

2. Finite element discretization

For any bounded open subsetω ofΩ with polygonal boundaryγ, we denote
by Hk(ω), k ∈ N, L2(ω) = H0(ω), andL2(γ) the usual Sobolev and
Lebesgue spaces equipped with the standard norms‖.‖k;ω := ‖.‖Hk(ω) and
‖.‖0;γ := ‖.‖L2(γ) (cf. [1]). Similarly, (., .)ω and(., .)γ denote the scalar
products ofL2(ω) andL2(γ), respectively. Ifω = Ω we will omit the index
Ω. On the other hand,|||.|||ω denotes the canonical restriction of the energy
norm (1.2) onH1(ω).

Set

H1
D(Ω) := {ϕ ∈ H1(Ω) : ϕ = 0 on ΓD}.

Then the standard variational formulation of problem (1.1) is to findu ∈
H1

D(Ω) such that

B(u, v) = (f, v) + (g, v)ΓN ∀v ∈ H1
D(Ω)(2.1)

where

B(u, v) := ε(∇u,∇v) + (a · ∇u, v) + (bu, v).(2.2)

Problem (2.1) admits a unique solution. Moreover, assumptions (A1) – (A4)
and integration by parts imply that

B(v, v) ≥ |||v|||2 ∀v ∈ H1
D(Ω)(2.3)

and

B(v, w) ≤ |||v||||||w|||{1 + ‖b‖L∞} + |||v|||‖w‖0ε
−1/2‖a‖L∞

∀v, w ∈ H1
D(Ω).(2.4)

We denote byTh, h > 0, a family of partitions ofΩ into n-simplices
which satisfies the following two properties:

(1) admissibility:any two elements are either disjoint or share a complete
k-face,0 ≤ k ≤ n− 1,

(2) shape regularity:sup
h>0

sup
T∈Th

hT /ρT � 1.
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Here,hT andρT denote the diameter ofT and the diameter of the largest
ball insribed intoT . Note, that the shape regularity allows the use of locally
refined meshes and that, in two dimensions, it is equivalent to a minimal
angle condition.

For k ∈ N we denote byPk the set of polynomials of degree at mostk
and set

Sk,−1
h := {ϕ : Ω → R : ϕ|T ∈ Pk ∀T ∈ Th},
Sk,0

h := Sk,−1
h ∩ C(Ω), k ≥ 1,(2.5)

Sk,0
h,D := {ϕ ∈ Sk,0

h : ϕ = 0 on ΓD}, k ≥ 1.

We then consider the following discretization of problem (1.1): Finduh ∈
Sk,0

h,D such that

Bδ(uh, vh) = lδ(uh) ∀vh ∈ Sk,0
h,D(2.6)

where

Bδ(uh, vh) := B(uh, vh)

+
∑

T∈Th

δT (−ε∆uh + a · ∇uh + buh, a · ∇vh)T ,

lδ(vh) := (f, vh) + (g, vh)ΓN +
∑

T∈Th

δT (f, a · ∇vh)T .(2.7)

Problem (2.6) is the standard Galerkin approximation, ifδT = 0 ∀T ∈ Th,
and the SUPG discretization of [8], ifδT > 0 ∀T ∈ Th. From assumptions
(A1) – (A4) and a local inverse estimate it follows that problem (2.6) admits
a unique solution ifδT � h2

T ε
−1 (cf. [8]). In what follows we will always

assume that
δT ≤ hT ∀T ∈ Th.(2.8)

Finally, we introduce some useful notations.Eh denotes the set of all
(n−1)-faces inTh. It can be split in the formEh = Eh,Ω ∪Eh,N∪Eh,D where
Eh,Ω, Eh,N, andEh,D refer to interior faces, faces on the Neumann boundary
ΓN, and faces on the Dirichlet boundaryΓD, respectively. ForE ∈ Eh,
hE is the diameter ofE. The shape regularity implies thathT ' hE and
hT ' hT ′ , wheneverE ⊂ ∂T andT∩T ′ 6= ∅. For any piecewise continuous
functionϕ and anyE ∈ Eh,Ω, we denote by[ϕ]E the jump ofϕ acrossE
in an arbitrary but fixed directionnE orthogonal toE. The jump[ϕ]E of
course depends on the orientation ofnE , but expressions like[nE · ∇ϕ]E
are independent of the orientation ofnE . For anyT ∈ Th andE ∈ Eh we
finally set

ωT :=
⋃

∅6=T∩T ′∈Eh

T ′, ω̃T :=
⋃

T∩T ′ 6=∅
T ′, ωE :=

⋃
E⊂∂T ′

T ′.
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3. Auxiliary results

Denote byei ∈ R
n, 1 ≤ i ≤ n, thei-th unit vector and seten+1 := 0 ∈ R

n.
Let T̂ be the standardn-simplex with verticese1, ..., en+1 and faces

Êi := T̂ ∩ {xi = 0} , 1 ≤ i ≤ n,

Ên+1 := T̂ ∩ {|x|1 = 1}.
Here,|.|1 denotes the standardl1-norm inR

n.

3.1 Lemma The following trace inequality holds for allT ∈ Th, E ⊂ ∂T ,
andv ∈ H1(T )

‖v‖0;E � h
−1/2
T ‖v‖0;T + ‖v‖1/2

0;T ‖∇v‖1/2
0;T .

Proof. Enumerate the vertices ofT such that the vertices ofE numbered
first and denote byλ1, ..., λn+1 the barycentric co-ordinates ofT . Since
λ1 + ...+ λn = 1 onE we have

‖v‖0;E ≤
n∑

i=1

‖λiv‖0;E .

For 1 ≤ i ≤ n denote byFi : T̂ → T the affine mapping which mapŝEi

ontoE and set
v̂ := (λiv) ◦ Fi.

From Lemma 3.2 in [13] we then know that

‖v̂‖0;Êi
≤

√
2‖v̂‖1/2

0;T̂
‖∇v̂‖1/2

0;T̂
.

This estimate and standard scaling arguments yield

‖λiv‖0;E � h
(n−1)/2
E ‖v̂‖0;Êi

≤ h
(n−1)/2
E

√
2‖v̂‖1/2

0;T̂
‖∇v̂‖1/2

0;T̂

� ‖λiv‖1/2
0;T ‖∇(λiv)‖1/2

0;T

� ‖v‖1/2
0;T ‖∇v‖1/2

0;T + h
−1/2
T ‖v‖0;T .

Since1 ≤ i ≤ n was arbitrary, this proves the desired result.ut
Denote byIh : L2(Ω) → S1,0

h,D the quasi-interpolation operator of
Clément (cf. [7] and Exercise 3.2.3 in [6]).
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3.2 Lemma The following error estimates hold for allT ∈ Th, E ⊂ ∂T ,
andv ∈ H1(ω̃T )

‖v − Ihv‖0;T � min{hT ε
−1/2, 1}|||v|||ω̃T

,

‖v − Ihv‖0;E � ε−1/4 min{hT ε
−1/2, 1}1/2|||v|||ω̃T

,

|||Ihv|||T � |||v|||ω̃T
.

Proof. The Lemma follows from the error estimate

‖∇l(v − Ihv)‖0;T � hk−l
T ‖∇kv‖0;ω̃T

∀0 ≤ l ≤ k ≤ 1, T ∈ Th, v ∈ Hk(ω̃T )

(cf. [7] and Exercise 3.2.3 in [6]), definition (1.2) of|||.|||, Lemma 3.1, and
the obvious estimate

h
−1/2
T min{hT ε

−1/2, 1} + ε−1/4 min{hT ε
−1/2, 1}1/2

≤ 2ε−1/4 min{hT ε
−1/2, 1}1/2.(3.1)

ut
Denote bŷλi, 1 ≤ i ≤ n+ 1, thei-th barycentric co-ordinate of̂T , i.e.,

the linear function that takes the value 1 at the vertexei and that vanishes
identically on the facêEi. Set

ψ̂ := (n+ 1)n+1
n+1∏
i=1

λ̂i.

Given any numberθ ∈ (0, 1] denote byΦθ : R
n → R

n the transformation
which maps(x1, ..., xn) onto(x1, ..., xn−1, θxn). Let

T̂θ := Φθ(T̂ )

and denote bŷλ1,θ, ..., λ̂n+1,θ its barycentric co-ordinates. Set

ψ̂θ :=



nnλ̂n+1,θ

n−1∏
i=1

λ̂i,θ on T̂θ,

0 on T̂\T̂θ.

For an arbitrary simplexT ∈ Th denote byFT an affine transformation
which mapsT̂ ontoT and set

ψT :=
{
ψ̂ ◦ F−1

T onT,
0 onΩ\T.(3.2)
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Let E ∈ Eh,Ω and denote byT1, T2 the two simplices which haveE in
common. Denote byFE,i, i = 1, 2, the orientation preserving affine trans-
formation which mapŝT ontoTi andÊn ontoE. Set

ψE,θ :=
{
ψ̂θ ◦ F−1

E;i onTi, i = 1, 2,
0 onΩ\ωE .

(3.3)

If E ∈ Eh,D ∪ Eh,N the functionψE,θ is defined in the same way with the
obvious modifications.
Finally, we define a continuation operatorPE : L∞(E) → L∞(ωE), E ∈
Eh, which maps polynomials onto piecewise polynomials of the same degree.
To this end, definêPE : L∞(Ên) → L∞(T̂ ) by

P̂E σ̂(x1, ..., xn−1, xn) := σ̂(x1, ..., xn−1, 0)

and set

PEσ|Ti := [P̂E(σ ◦ FE,i)] ◦ F−1
E,i , i = 1, 2

with the obvious modifications for faces on the boundaryΓ .

3.3 Lemma The following estimates hold for allv ∈ Pk andT ∈ Th

‖v‖2
0;T � (v, ψT v)T ,

‖vψT ‖0;T ≤ ‖v‖0;T ,

|||vψT |||T � min{hT ε
−1/2, 1}−1‖v‖0;T .

For E ∈ Eh, set

θE := min{ε1/2h−1
E , 1}.

Then the following estimates hold for allE ∈ Eh andσ ∈ Pk|E .

‖σ‖2
0;E � (σ, ψE,θE

PEσ)E ,

‖ψE,θE
PEσ‖0;ωE � ε1/4 min{1, hEε

−1/2}1/2‖σ‖0;E ,

|||ψE,θE
PEσ|||ωE

� ε1/4 min{1, hEε
−1/2}−1/2‖σ‖0;E .

Proof. The estimates concerningv follow from standard scaling arguments,
the equivalence of norms on finite dimensional spaces (cf. Lemma 4.1 in
[11]), and the obvious estimate

1 + ε1/2h−1
T ≤ 2 max{1, ε1/2h−1

T } = 2 min{1, hT ε
−1/2}−1.
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From Lemma 3.4 in [13] we know that the estimates

‖σ̂‖2
0;Ên

� (σ̂, ψ̂θP̂E σ̂)Ên
,

‖ψ̂θP̂E σ̂‖0;T̂ � θ1/2‖σ̂‖0;Ên
,

‖ ∂

∂xi
(ψ̂θP̂E σ̂)‖0;T̂ � θ1/2‖σ̂‖0;Ên

, 1 ≤ i ≤ n− 1,

‖ ∂

∂xn
(ψ̂θP̂E σ̂)‖0;T̂ � θ−1/2‖σ̂‖0;En

hold for all θ ∈ (0, 1] and all σ̂ ∈ Pk|Ên
. Now, the results concerningσ

follow from these estimates, standard scaling arguments, and the obvious
inequalities

h
1/2
E θ

1/2
E = ε1/4 min{1, hEε

−1/2}1/2,

ε1/2h
−1/2
E θ

−1/2
E = ε1/4 min{1, hEε

−1/2}−1/2.

ut

4. A residual error estimator

Recall thatu anduh denote the unique solutions of problems (2.1) and (2.6),
respectively. From (2.3) we conclude that

|||u− uh||| ≤ sup
v∈H1

D(Ω)\{0}

B(u− uh, v)
|||v||| .(4.1)

Consider an arbitraryv ∈ H1
D(Ω) with |||v||| = 1. Obviously, we have

B(u− uh, v) = B(u− uh, v − Ihv) +B(u− uh, Ihv).(4.2)

Integration by parts elementwise yields for allw ∈ H1
D(Ω)

B(u− uh, w) =
∑

T∈Th

(f + ε∆uh − a · ∇uh − buh, w)T

+
∑

E∈Eh,Ω

(−[ε∂nEuh]E , w)E

+
∑

E∈Eh,N

(g − ε∂nuh, w)E(4.3)

=
∑

T∈Th

(RT (uh), w)T +
∑

E∈Eh

(RE(uh), w)E
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where

RT (uh) := f + ε∆uh − a · ∇uh − buh,

RE(uh) :=




−[ε∂nEuh]E if E ∈ Eh,Ω,
g − ε∂nuh if E ∈ Eh,N,
0 if E ∈ Eh,D.

(4.4)

Insertingw = v − Ihv im (4.3), invoking Lemma 3.2, and using Cauchy-
Schwarz’s inequality we obtain

B(u− uh, v − Ihv) �
{ ∑

T∈Th

min{hT ε
−1/2, 1}2‖RT (uh)‖2

0;T

+
∑

E∈Eh

ε−1/2 min{hT ε
−1/2, 1}‖RE(uh)‖0;E

}1/2
.(4.5)

From (2.1), (2.2), (2.6), and (2.7) we conclude that

B(u− uh, wh) = −
∑

T∈Th

δT (RT (uh), a · ∇wh)T(4.6)

holds for allwh ∈ Sk,0
h,D. A simple scaling argument shows for allwh ∈ Sk,0

h,D
that

‖a · ∇wh‖0;T � ‖a‖L∞(T )h
−1
T min{hT ε

−1/2, 1}|||wh|||T .(4.7)

Equation (4.6), estimate (4.7), Lemma 3.2, assumption (2.8), and Cauchy-
Schwarz’s inequality yield

B(u− uh, Ihv) �
{ ∑

T∈Th

min{hT ε
−1/2, 1}2‖RT (uh)‖2

0;T

}1/2
.(4.8)

From (4.1), (4.2), (4.5), and (4.8) we obtain an upper bound for the energy
norm of the error:

|||u− uh||| �
{ ∑

T∈Th

min{hT ε
−1/2, 1}2‖RT (uh)‖2

0;T

+
∑

E∈Eh

ε−1/2 min{hEε
−1/2, 1}‖RE(uh)‖2

0;E

}1/2
.(4.9)

In order to derive lower bounds for the error, denote byfh andgh arbitrary
approximations off andg by piecewise polynomials of degree at mostk
with respect toTh and with respect to the partition ofΓ induced byTh,
respectively. First, consider an arbitraryT ∈ Th and set

wT := ψT [fh + ε∆uh − a · ∇uh − buh].(4.10)



650 R. Verf̈urth

InsertingwT in (4.3), we obtain

(fh + ε∆uh − a · ∇uh − buh, wT )T

= B(u− uh, wT ) + (fh − f, wT )T .(4.11)

Estimate (2.4) and Lemma 3.3 imply that

B(u− uh, wT )

≤ |||u− uh|||T
{

(1 + ‖b‖L∞(T ))|||wT |||T + ε−1/2‖a‖L∞(T )‖wT ‖0;T

}
� |||u− uh|||T

{
(1 + ‖b‖L∞(T )) min{hT ε

−1/2, 1}−1

+ ε−1/2‖a‖L∞(T )

}
‖fh + ε∆uh − a · ∇uh − buh‖0;T .(4.12)

From (4.10) – (4.12) and Lemma 3.3 we immediately get the lower bound

min{hT ε
−1/2, 1}‖fh + ε∆uh − a · ∇uh − buh‖0;T

� |||u− uh|||T
{

1 + ‖b‖L∞(T ) + ε−1/2‖a‖L∞(T ) min{hT ε
−1/2, 1}

}
+ min{hT ε

−1/2, 1}‖f − fh‖0;T .(4.13)

Next, consider an arbitraryE ∈ Eh,Ω and set

wE := ψE,θE
PE(−[ε∂nEuh]E)(4.14)

where
θE = min{ε1/2h−1

E , 1}.
InsertingwE in (4.3), we obtain

(−[ε∂nEuh]E , wE)E

= B(u− uh, wE) −
∑

T⊂ωE

(fh + ε∆uh − a · ∇uh − buh, wE)T

−
∑

T⊂ωE

(f − fh, wE)T .(4.15)

Estimate (2.4) and Lemma 3.3 now imply that

B(u− uh, wE)
≤ |||u− uh|||ωE

{(1 + ‖b‖L∞(ωE))|||wE |||ωE

+ ε−1/2‖a‖L∞(ωE)‖wE‖0;ωE

}
� |||u− uh|||ωE

{
(1 + ‖b‖L∞(ωE))ε

1/4 min{hEε
−1/2, 1}−1/2

+ ε−1/2‖a‖L∞(ωE)ε
1/4 min{hEε

−1/2, 1}1/2
}

·‖ − [ε∂nEuh]E‖0;E .(4.16)
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Moreover, Lemma 3.3 and estimate (4.13) yield∑
T⊂ωE

(fh + ε∆uh − a · ∇uh − buh, wE)T

�
{

|||u− uh|||ωE
{1 + ‖b‖L∞(ωE) + ε−1/2‖a‖L∞(ωE) min{hEε

−1/2, 1}}
· ε1/4 min{hEε

−1/2, 1}−1/2

+‖f − fh‖0;ωEε
1/4 min{hEε

−1/2, 1}1/2
}

‖ − [ε∂nEuh]E‖0;E .

(4.17)

From (4.15) – (4.17) and Lemma 3.3 we immediately get the lower bound

ε−1/4 min{hEε
−1/2, 1}1/2‖ − [ε∂nEuh]E‖0;E

� |||u− uh|||ωE

{
1 + ‖b‖L∞(ωE) + ε−1/2‖a‖L∞(ωE) min{hEε

−1/2, 1}
}

+ min{hEε
−1/2, 1}‖f − fh‖0;ωE .

(4.18)

With the same arguments we obtain the lower bound

ε−1/4 min{hEε
−1/2, 1}1/2‖gh − ε∂nuh‖0;E

� |||u− uh|||T
{

1 + ‖b‖L∞(T ) + ε−1/2‖a‖L∞(T ) min{hEε
−1/2, 1}

}
+ min{hEε

−1/2, 1}‖f − fh‖0;T

+ε−1/4 min{hEε
−1/2, 1}1/2‖g − gh‖0;E .(4.19)

for all E ∈ Eh,N, whereT = ωE . Thus, we have established the following
a posteriori error estimate.

4.1 Proposition Denote byu anduh the unique solutions of problems (2.1)
and (2.6), respectively. Letfh andgh be arbitrary approximations off and
g by piecewise polynomials of degree atmostk with respect toTh and with
respect to the partition ofΓ induced byTh, respectively. Set

αS := min{hSε
−1/2, 1}, S ∈ Th ∪ Eh

and

η2
R,T := α2

T ‖fh + ε∆uh − a · ∇uh − buh‖2
0;T

+
1
2

∑
E⊂∂T∩Ω

ε−1/2αE‖[ε∂nEuh]E‖2
0;E

+
∑

E⊂∂T∩ΓN

ε−1/2αE‖gh − ε∂nEuh‖2
0;E .
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Then the following a posteriori error estimates are valid

|||u− uh|||
�

{ ∑
T∈Th

η2
R,T

}1/2

+
{ ∑

T∈Th

α2
T ‖f − fh‖2

0;T +
∑

E∈Eh,N

ε−1/2αE‖g − gh‖2
0;E

}1/2
,

ηR,T

�
{

1 + ‖b‖L∞(ωT ) + ε−1/2‖a‖L∞(ωT )αT

}
|||u− uh|||ωT

+αT ‖f − fh‖0;ωT +
{ ∑

E⊂∂T∩ΓN

ε−1/2αE‖g − gh‖2
0;E

}1/2
,

{∑
T∈T

η2
R,T

}1/2

�
{

1 + ‖b‖L∞(Ω) + max
T∈Th

{ε−1/2‖a‖L∞(ωT )αT }
}

|||u− uh|||

+
{ ∑

T∈Th

α2
T ‖f − fh‖2

0;T +
∑

E⊂Eh,N

ε−1/2αE‖g − gh‖2
0;E

}1/2
.

4.2 RemarkIn the upper bounds for|||u− uh||| one may replacefh andgh

by f andg respectively. The second term on the right-hand side of the first
estimate of Proposition 4.1 then of course vanishes.

5. Error estimators based on the solution of auxiliary local problems

We begin with an error estimator which is based on the solution of lo-
cal Dirichlet problems and which is similar to the estimator of Babuška-
Rheinboldt [3] for the Laplace equation. GivenT ∈ Th, we set

VT := span{ψT ′v, ψE,θE
PEσ :

T ′ ⊂ ωT , E ⊂ ∂T\ΓD, v ∈ Pk, σ ∈ Pk|E}
where the functionsψT ′ andψE,θE

are as in equations (3.2) and (3.3) and
whereθE := min{ε1/2h−1

E , 1}. Denote byvT ∈ VT the unique solution of

ε(∇vT ,∇w)ωT + (a · ∇vT , w)ωT + (bvT , w)ωT

= (f, w)ωT + (g, w)∂T∩ΓN − ε(∇uh,∇w)ωT

−(a · ∇uh, w)ωT − (buh, w)ωT ∀w ∈ VT(5.1)
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and set
ηD,T := |||vT |||ωT

.(5.2)

For practical computations, one will replacef andg by finite element ap-
proximationsfh andgh as in the previous section. The functionuh + vT is
a finite element approximation to the solutionuT of the local convection-
diffusion problem

−ε∆uT + a · ∇uT + buT = f in ωT

uT = uh on ∂ωT \(ΓN ∩ ∂T )
ε∂nuT = g on ∂T ∩ ΓN.

Since the right-hand side of equation (5.1) equals

ε(∇(u− uh),∇w)ωT + (a · ∇(u− uh), w)ωT + (b(u− uh), w)ωT ,

we obtain from inequality (2.4) the estimate

|||vT |||2ωT
≤ {1 + ‖b‖L∞(ωT )}|||u− uh|||ωT

|||vT |||ωT

+ε−1/2‖a‖L∞(ωT )|||u− uh|||ωT
‖vT ‖0;ωT

≤ {1 + ‖b‖L∞(ωT ) + ε−1/2‖a‖L∞(ωT )}|||u− uh|||ωT
|||vT |||ωT

and hence

ηD,T ≤ {1 + ‖b‖L∞(ωT ) + ε−1/2‖a‖L∞(ωT )}|||u− uh|||ωT
.

This estimate is not satisfactory. In order to improve it, we observe that

‖w‖0;T ′ � hT ′‖∇w‖0;T ′(5.3)

holds for allT ′ ⊂ ωT andw ∈ VT since the functions inVT vanish at the
vertices ofT . Hence, we have

‖vT ‖0;ωT � min{hT ε
−1/2, 1}|||vT |||ωT

.(5.4)

This yields the improved lower bound

ηD,T � {1+‖b‖L∞(ωT )+ε
−1/2 min{hT ε

−1/2, 1}‖a‖L∞(ωT )}|||u−uh|||ωT
.

This estimate is of the same quality as the corresponding bound forηR,T of
Proposition 4.1. In order to show thatηD,T also yields upper bounds for the
error, we compare it with the residual estimatorηR,T . Integration by parts
elementwise of the right-hand side of equation (5.1) yields

ε(∇vT ,∇w)ωT + (a · ∇vT , w)ωT + (bvT , w)ωT

=
∑

T ′⊂ωT

(f + ε∆uh − a · ∇uh − buh, w)T ′

+
∑

E⊂∂T∩Ω

(−ε[∂nEuh]E , w)E +
∑

E⊂∂T∩ΓN

(g − ε∂nuh, w)E .(5.5)



654 R. Verf̈urth

Moreover, inequality (5.3), Lemma 3.1, and estimate (3.1) imply that

‖w‖0;E � ε−1/4 min{hEε
−1/2, 1}1/2|||w|||ωE

∀E ⊂ ∂T\ΓD, w ∈ VT .(5.6)

Equation (5.5), estimates (5.4) and (5.6), and Cauchy-Schwarz’s inequality
immediately yield the estimate

ηD,T �
{ ∑

T ′⊂ωT

η2
R,T +

∑
T ′⊂ωT

min{hT ′ε−1/2, 1}2‖f − fh‖2
0;T ′

+
∑

E⊂∂T∩ΓN

ε−1/2 min{hEε
−1/2, 1}‖g − gh‖2

0;E

}1/2
,

whereηR,T , fh, andgh are as in Proposition 4.1. On the other hand, the
functionswT andwE of equations (4.10) and (4.14) are contained inVT .
Hence, the proofs of estimates (4.13) and (4.18) yield the converse estimate

ηR,T � ηD,T +
{ ∑

T ′⊂ωT

min{hT ′ε−1/2, 1}2‖f − fh‖2
0;T ′

+
∑

E⊂∂T∩ΓN

ε−1/2 min{hEε
−1/2, 1}‖g − gh‖2

0;E

}1/2
.

Thus, we have established the following result.

5.1 Proposition Denote byu unduh the unique solutions of problems (2.1)
and (2.6), respectively. LetηR,T , fh, andgh be as in Proposition 4.1 and
ηD,T be given by equation (5.2). Then the following estimates hold

ηR,T � ηD,T +
{ ∑

T ′⊂ωT

α2
T ′‖f − fh‖2

0;T ′

+
∑

E⊂∂T∩ΓN

ε−1/2αE‖g − gh‖2
0;E

}1/2
,

ηD,T �
{ ∑

T ′⊂ωT

η2
R,T

}1/2
+

{ ∑
T ′⊂ωT

α2
T ′‖f − fh‖2

0;T ′

+
∑

E⊂∂T∩ΓN

ε−1/2αE‖g − gh‖2
0;E

}1/2
,

|||u− uh||| �
{ ∑

T∈Th

η2
D,T +

∑
T∈Th

α2
T ‖f − fh‖2

0;T

+
∑

E∈Eh,N

ε−1/2αE‖g − gh‖2
0;E

}1/2
,
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ηD,T � {1 + ‖b‖L∞(ωT ) + ε−1/2αT ‖a‖L∞(ωT )}|||u− uh|||ωT
,{ ∑

T∈Th

η2
D,T

}1/2 � max
T∈Th

{1 + ‖b‖L∞(ωT ) + ε−1/2αT ‖a‖L∞(ωT )}

·|||u− uh|||,
where

αS := min{hSε
−1/2, 1}, S ∈ Th ∪ Eh.

5.2 RemarkThe second terms on the right-hand sides of the first and second
estimate can be omitted if in equation (5.1)f andg are replaced byfh andgh,
respectively. Proposition 5.1 also holds if the convection term(a·∇vT , w)ωT

is omitted on the left-hand side of equation (5.1). Similarly, a stabilization
term ∑

T ′⊂ωT

δT ′(f + ε∆vT − a · ∇vT − bvT , a · ∇w)T ,

with δT ′ ≤ min{hT ′ε−1/2, 1} may be added on the left-hand side of equa-
tion (5.1) if { ∑

T ′⊂ωT

δ2T ′‖a · ∇vT ‖2
0;T ′

}1/2

is added on the right-hand side of equation (5.2). Note, that the functions
ψE,θE

introduce an extra scaling factor in Problem (5.1).

For completeness we also consider an error estimator which is based on
the solution of local Neumann problems and which is similar to the estimator
of Bank-Weiser [4] for the Laplace equation. ForT ∈ Th, let

ṼT := span{ψT v, ψE,θE
PEσ : E ⊂ ∂T\ΓD, v ∈ Pk, σ ∈ Pk|E},

denote bỹvT ∈ ṼT the unique solution of

ε(∇ṽT ,∇w)T + (a · ∇ṽT , w)T + (bṽT , w)T

= (RT (uh), w)T +
∑

E⊂∂T

(RE(uh), w)E ∀w ∈ ṼT(5.7)

and set
ηN,T := |||ṽT |||T .(5.8)

Recall, thatRT (uh) andRE(uh) are given by equation (4.4). The func-
tion ṽT is a finite element approximation to the solutionũT of the local
convection-diffusion equation

−ε∆ũT + a · ∇ũT + bũT = RT (uh) in T
ε∂nT ũT = RE(uh) on ∂T\ΓD

ũT = 0 on ∂T ∩ ΓD.
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Here,nT is the unit exterior normal ofT . The analysis ofηD,T immediately
carries over toηN,T and yields:

5.3 Proposition Denote byu unduh the unique solutions of problems (2.1)
and (2.6), respectively. LetηR,T , fh, andgh be as in Proposition 4.1 and
ηN,T be given by equation (5.8). Then the following estimates hold

ηR,T � ηN,T +
{ ∑

T ′⊂ωT

α2
T ′‖f − fh‖2

0;T ′

+
∑

E⊂∂T∩ΓN

ε−1/2αE‖g − gh‖2
0;E

}1/2
,

ηN,T � ηR,T +
{ ∑

T ′⊂ωT

α2
T ′‖f − fh‖2

0;T ′

+
∑

E⊂∂T∩ΓN

ε−1/2αE‖g − gh‖2
0;E

}1/2
,

|||u− uh||| �
{ ∑

T∈Th

η2
N,T +

∑
T∈Th

α2
T ‖f − fh‖2

0;T

+
∑

E∈Eh,N

ε−1/2αE‖g − gh‖2
0;E

}1/2
,

ηN,T � {1 + ‖b‖L∞(ωT ) + ε−1/2αT ‖a‖L∞(ωT )}|||u− uh|||T ,{ ∑
T∈Th

η2
N,T

}1/2 � max
T∈Th

{1 + ‖b‖L∞(ωT ) + ε−1/2αT ‖a‖L∞(ωT )}

·|||u− uh|||,
where

αS := min{hSε
−1/2, 1}, S ∈ Th ∪ Eh.

With the obvious modifications, Remark 5.2 applies toηN,T , too.

6. Semilinear convection diffusion equations

In this section we consider the following semilinear analogue of equation
(1.1)

−ε∆u+ a · ∇u+ bu = F (x, u) in Ω,
u = 0 on ΓD,

ε∂u
∂n = g on ΓN.

(6.1)

We retain the assumptions of Sect. 1 concerningΩ,ΓD, ΓN, ε, a, andb. In
addition, we assume thatF is continuously differentiable with respect tou
and satisfies the following assumptions:
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(A5) There is a constantβ with 0 ≤ β < 1 and

max
{ ∂

∂s
F (x, s), 0

}
≤ β ∀x ∈ Ω, s ∈ R.

(A6) There is a constantγ > 0 with∣∣∣ ∂
∂s
F (x, s)

∣∣∣ ≤ γ(1 + s2) ∀x ∈ Ω, s ∈ R.

These conditions are satisfied if, e.g.,F is given byF (x, s) = f(x) − s3

with f ∈ L2(Ω). This is precisely the example which is considered in [9].
The weak formulation of problem (6.1) is obtained by replacing in equa-

tion (2.1)f byF (., u). Similarly, the finite element discretization of problem
(6.1) is given by replacing in equation (2.7)f by F (., uh).

Let u anduh be solutions of the weak formulation of problem (6.1) and
of its finite element discretization. We then have for allv ∈ H1

D(Ω)

B(u− uh, v) = (F (., u), v) −B(uh, v)
= (F (., u) − F (., uh), v) −B(uh, v) + (F (., uh), v)

=
∫ 1

0

(∂F
∂s

(., uh + t(u− uh))(u− uh), v
)
dt

−B(uh, v) + (F (., uh), v).(6.2)

The results of Sect. 4 withf replaced byF (., uh) provide us with robust
and computable residual a posteriori error estimates for the residualr(uh)
which is implicitely defined by

< r(uh), v >:= −B(uh, v) + (F (., uh), v) ∀v ∈ H1
D(Ω).

Here,< ., . > denotes the duality pairing ofH1
D(Ω) with its dual space.

In order to obtain similar a posteriori error estimates for the non-linear
problem (6.1) we must therefore balance the first term on the right-hand
side of equation (6.2) which is a measure for the non-linearity.

Insertingv := u − uh in equation (6.2), recalling inequality (2.3), and
invoking assumption (A5), we obtain

|||u− uh|||2
≤ B(u− uh, u− uh)

≤ sup
x∈Ω,s∈R

max
{∂F
∂s

(x, s), 0
}

‖u− uh‖2
0

+|||u− uh||| sup
v∈H1

D(Ω)\{0}

−B(uh, v) + (F (., uh), v)
|||v|||

≤ β|||u− uh|||2 + |||u− uh||| sup
v∈H1

D(Ω)\{0}

−B(uh, v) + (F (., uh), v)
|||v||| .
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Hence, Proposition 4.1 yields the upper bound

|||u− uh||| �
{ ∑

T∈Th

η2
R,T

}1/2

whereηR,T is defined as in Proposition 4.1 withf replaced byF (., uh).
In order to obtain lower bounds on the error we observe that assumption

(A6) and Ḧolder’s inequality imply for allv ∈ H1
D(Ω) the estimate∣∣∣∫ 1

0

(∂F
∂s

(., uh + t(u− uh))(u− uh), v
)
dt

∣∣∣
≤

∫
Ω

∫ 1

0
γ
{

1 + [(1 − t)uh + tu]2
}

|u− uh||v|dtdx

≤ 1
2

∫
Ω
γ{2 + |uh|2 + |u|2}|u− uh||v|dx

� ‖u− uh‖0‖v‖0

+
{

‖uh‖2
L4(Ω) + ‖u‖2

L4(Ω)

}
‖u− uh‖L4(Ω)‖v‖L4(Ω).(6.3)

On the other hand we know from Chapter III Lemma 3.3 and Lemma 3.5 in
[10] that

‖v‖L4(Ω) ≤ 2
d−1
4 ‖v‖

1
2d−2
0 ‖∇v‖

2d−3
2d−2
0 ≤ 2

d−1
4 ε

− 2d−3
2(2d−2) |||v|||(6.4)

holds ford ∈ {2, 3} andv ∈ H1
D(Ω). Let ṽ be any of the functionswT

andwE of equations (4.10), (4.14) withfh replaced by some approximation
Fh(., uh) ofF (., uh). Inequalities (6.3), (6.4) and a standard inverse estimate
for ‖∇ṽ‖0 then imply that∣∣∣∫ 1

0

(∂F
∂s

(., uh + t(u− uh))(u− uh), ṽ
)
dt

∣∣∣
� |||u− uh|||supp(ṽ)‖ṽ‖0;supp(ṽ)

+{|||u|||2 + |||uh|||2}|||u− uh|||supp(ṽ)‖ṽ‖0;supp(ṽ)(ε
3/2hT )− 2d−3

2d−2 .

This estimate, Lemma 3.3 and Proposition 4.1 yield the lower bound

ηR,T

�
{

1 + ‖b‖L∞(ωT ) + ε−1/2‖a‖L∞(ωT ) min{hT ε
−1/2, 1}

+(ε3/2hT )− 2d−3
2d−2 [|||u|||2 + |||uh|||2] min{hT ε

−1/2, 1}
}

|||u− uh|||ωT

+
{ ∑

T ′⊂ωT

min{hT ′ε−1/2, 1}2‖F (., uh) − Fh(uh)‖2
0;T ′

+
∑

E⊂∂T∩ΓN

ε−1/2 min{hEε
−1/2, 1}‖g − gh‖2

0;E

}1/2
.



A posteriori error estimators for convection-diffusion equations 659

Here,ηR,T is as in Proposition 4.1 withfh replaced by some finite element
approximationFh(., uh) of F (., uh); gh is as in Proposition 4.1. If in partic-
ularF (x, s) = f(x)−s3 as in [9], we may chooseFh(x, uh) = fh(x)−u3

h
with fh as before. Thus our results complement those of [9], where the de-
pendence of the constants onε is not made explicit and where error estimates
are only given for ”sufficiently smallh” without quantifying this notion.

7. Numerical examples

In order to get an impression of the local and global effectivity indices which
can be expected from the residual error estimatorηR,T we consider two sets
of examples. Both have the following data in common

Ω = (0, 1)2, a = (2, 1), b = 1, f = 0, ε ∈ {1, 10−2, 10−4, 10−10}.
The first set of examples, to which we will refer asProblemN , has ho-
mogeneous Dirichlet boundary conditions on the left vertical edge ofΩ,
constant Dirichlet boundary conditions 1 on the lower horizontal edge ofΩ,
and homogeneous Neumann boundary conditions on the remaining edges
of Ω. The solutions exhibit an interior layer along the linex = 2y and a
corner singularity at the origin due to incompatible boundary conditions.
The influence of this singularity will diminish with decreasingε.
The second set of examples, to which we will refer asProblemD, has
homogeneous Dirichlet boundary conditions on the left vertical and upper
horizontal edges ofΩ and constant Dirichlet boundary conditions 1 on
the lower horizontal and right vertical edges ofΩ. The solutions exhibit an
interior layer along the linex = 2y, a boundary layer at the right vertical edge
ofΩ, and two corner singularities at the origin and the top right corner ofΩ
due to incompatible bondary conditions. The influence of these singularities
will again diminish with decreasingε. The boundary layer will be stronger
than the interior layer.

The discrete problem is given by equations (2.6) and (2.7) with

δT =
hT

2|a|
{

coth(
|a|hT

2ε
) − 2ε

|a|hT

}
(cf. [5]; |.| denotes the Euclidean norm inR

2). All triangulations are created
from the same initial triangulationT0 which consists of eight right-angled,
isosceles triangles with short sides of length1

2 and long sides parallel to
the linex = y. For the computation of errors and effectivity indices the
exact solutionu of problem (1.1) is always approximated by the solution
of problem (2.6) corresponding to the triangulationT (u)

9 which is obtained
by 9 steps of a uniform refinement ofT0. This triangulation consists of
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Table 1. Global and local effectivity indices
for ProblemN

ε NT E Emin Emax

1 4132 16.4 0.6 8.8
10−2 1620 6.5 1.8 26.7
10−4 1608 24.8 0.9 7.1
10−10 1615 27.8 0.6 7.7

right-angled, isosceles triangles with short sides of length2−10. The discrete
solutionuh is always computed by solving problem (2.6) on a locally refined
triangulationT (l)

5 which is obtained as follows:

(1) SetT (l)
0 := T0.

(2) GivenT (l)
k solve problem (2.6) onT (l)

k and computeηR,T , T ∈ T (l)
k ,

andηk := max
T∈T (l)

k

ηR,T .

(3) If T ∈ T (l)
k satisfiesηT,R ≥ 0.5ηk it is cut into four new triangles by

joining the midpoints of its edges (red refinement). Hanging nodes
are eliminated by adding additional green and blue refinements as
described in Sect. 4.1 of [12]. This givesT (l)

k+1.

Givenu anduh we can define global and local effectivity indicesE andET ,
T ∈ T (l)

5 , by

E :=
{ ∑

T∈T (l)
5

η2
R,T

}1/2
/|||u− uh||| , ET := ηR,T /|||u− uh|||T .

Set
Emin := min

T∈T (l)
5

ET , Emax := max
T∈T (l)

5

ET .

Figure 1 shows the triangulationsT (l)
5 for ProblemN . Table 1 gives the

quantitiesNT,E,Emin, andEmax for this set of examples. Here,NT is the
number of triangles inT (l)

5 . For all parametersε we observed that

(1) ET is maximal close to the origin,
(2) ET ∼ 0.5Emax in the vicinity of the interior layer,
(3) ET ∼ 1 away from the origin and the interior layer.

Figure 2 and Table 2 show the corresponding results for ProblemD. For
all parametersε we observed that

(1) ET is maximal close to the origin and the top right corner ofΩ,
(2) ET ∼ 0.9Emax close to the boundary layer,
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Fig. 1. TriangulationsT (l)
5 for ProblemN (top left: ε = 1; top right:ε = 10−2; bottom

left: ε = 10−4; bottom right:ε = 10−10)

Table 2. Global and local effectivity indices
for ProblemD

ε NT E Emin Emax

1 1464 42.8 1.1 16.9
10−2 901 12.9 1.1 16.6
10−4 956 128.6 1.0 15.8
10−10 956 134.0 1.0 16.4

(3) ET ∼ 0.3Emax close to the interior layer,
(4) ET ∼ 1 away from the singularities.

Consequently the triangulations are mostly refined at the boundary layer
and at the two critical corners. The influence of the interior layer is not yet
strong enough to enforce a considerable refinement there.
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Fig. 2. TriangulationsT (l)
5 for ProblemD (top left: ε = 1; top right:ε = 10−2; bottom

left: ε = 10−4; bottom right:ε = 10−10)

Both sets of examples show that the estimator tends to over-estimate the
error and that it is rather insensitive to variations ofε.
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computations.
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