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Summary. We present an adaptive finite element method for solving el-
liptic problems in exterior domains, that is for problems in the exterior of
a bounded closed domain inRd, d ∈ {2, 3}. We describe a procedure to
generate a sequence of bounded computational domainsΩk

h, k = 1, 2, ...,
more precisely, a sequence of successively finer and larger grids, until the
desired accuracy of the solutionuh is reached. To this end we prove an a
posteriori error estimate for the error on the unbounded domain in the en-
ergy norm by means of a residual based error estimator. Furthermore we
prove convergence of the adaptive algorithm. Numerical examples show the
optimal order of convergence.

Mathematics Subject Classification (1991):65N15, 65N30, 65N50

0. Introduction

We consider the numerical treatment of elliptic partial differential equations
in exterior domainsof R

d for d ∈ {2, 3}, that is, the (open) complement of
a bounded (simply connected) domainω.

Besides the differential equation, we also have to impose boundary con-
ditions. Here we want to prescribe the function values on the finite boundary
and a homogeneous condition at infinity which we will formally write as
lim|x|→∞ u(x) = 0. Note that the well-posedness of such a boundary con-
dition at infinity is not a trivial task [MS] for general elliptic operators. In
this work we will analyse Laplace’s equation and the correct boundary con-
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dition is part of the variational formulation (for example, we have that some
Lp-norm (p ∈ [1,∞)) of the solution will exist).

One possibility to solve such a problem areboundary element methods
[Ha]. Here one arrives at an integral equation on a function space on the finite
boundary∂ω and the solution can be computed pointwise by evaluating an
integral over the surface. Numerically, the advantage of such an algorithm is
that it works on a finite computational domain which is of lower dimension
than the original problem. The drawback, however, is that one has to know
the correct integral kernel, the arising matrices are dense, and the evaluation
of the solution outside the boundary is costly.

Another approach is to combine a usual finite element discretisation with
infinite elements(FEM/IEM) outside a given ballB containingω. These
infinite elements are given as a product of a shape function on∂B times a
radial function.h-p finite–infinite elements for the Helmholtz equation in
R

3 have been considered for example in [DI, GD].
The most natural idea, however, is to work on a finite approximation of

the exterior domain, since one can use standard finite element techniques.
This makes sense because due to some decay properties of the solution, the
corresponding error will tend to zero if the computational domain increases.
The main problem is to precisely estimate the error introduced by cutting
the domain. This will be the major point of this article.

In [Ba] the equation−∆u + u = f in R
d (subject to homogeneous

Dirichlet conditions) is considered. It is shown that on a uniformly discre-
tised (bounded) computational domain with (small enough) grid sizeh and
diameterR(h) = h−s (for arbitrarys > 0) the error in the energy norm
decreases at a rate almost like in the case of a bounded domain.

Since solutions of these boundary value problems have certain decay
properties (which is reflected by a priori estimates in weighted Sobolev
spaces), one would expect that a grid with radially increasing step size
would allow to compute an approximate solution of a given accuracy with
much less unknowns than in the uniform approach. This situation has been
analysed in [SC] for a class of elliptic operators including−∆. It has been
proved that on a correctly spaced grid the error outside a given ball decreases
at the optimal rate with respect to the number of unknowns.

However, what is still lacking is an adaptive procedure that constructs a
large enough and a fine enough discretised computational domain to obtain
a discrete solution of prescribed accuracy (in some norm). Such a procedure
should only use a posteriori error estimates and a priori information on data.

In this work we present an adaptive algorithm for Laplace’s equation that
meets these requirements. We first discretise the domainB\ω (B some ball
containingω). After computing a discrete solution subject to homogeneous
boundary conditions at the outer boundary, we estimate the error on the
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whole exterior domain (in the energy norm) by means of an a posteriori
error estimate (that is, in terms of computable quantities such as the discrete
solution and data). Using this estimate as a local error indicator, we will
enrich the discrete space both by refining the current grid and expanding
the computational domain. By expanding we mean that we add elements
(subject to a regular structure) at the outer boundary. From layer to layer the
size of these new elements will increase by a certain factorκ, sayκ = 2, so
that their diameter are of comparable size to their distance fromω.

Our paper is organised as follows: in Sect. 1 we formulate the main
assumptions on data and state Hardy’s inequality which is the counterpart to
Poincaŕe’s inequality on bounded domains. In Sect. 2 we formulate the model
problem (Laplace’s equation), and prove existence, uniqueness, regularity
as well as decay properties. The discretisation of the problem is described
in Sect. 3. Here, we also prove a priori estimates and convergence. In Sect. 4
we derive a posteriori error estimates in the energy norm. A description of
the discretisation and the adaptive procedure is subject of Sect. 5. Numerical
examples in two and three dimensions are presented in Sect. 6.

1. Notations and preliminaries

For Ω ⊆ R
d, m ∈ IN0, andp ∈ [1,∞] let Hm,p(Ω) (H0,p(Ω) := Lp(Ω))

denote the Sobolev spaces [Ad] with the usual norms. TheLp–norm onΩ
will be denoted by||u||p;Ω. Let C∞

0 (Ω) be the space of infinitely differen-
tiable functions with compact support inΩ.

ForG ⊂ R
d letdG := diam(G) denote thediameterof G and dist(x, G)

:= inf{|x − y| : y ∈ G} thedistanceof x from G. Br(x) denotes the ball
with radiusr and centerx.

Assumptions

We callΩ ⊂ R
d anexterior domain, if there is a bounded domainω ⊂ R

d

such thatΩ = R
d\ω. In the following, we will make the additional assump-

tions thatω is simply connected withC∞–boundary and that (without loss
of generality)0 ∈ ω.
Concerning data functionsf , q (used in the model problem below) we will
make the following general assumptions. Fix somek ≥ 1 (later this will be
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the order of our finite element space) and assume

Case I: d ∈ {2, 3}, f ∈ Hk+1,2(Ω) with compact support,

q ≥ q0 > 0, andq is of the formq = q∗ − q̃

for some constantq∗ ≥ q0 > 0

andq̃ ∈ Hk+1,2(Ω) with compact support

Case II: d = 3, for νf , νq ≥ 0 andl ∈ {0, . . . , k}
|x|l+1+νf ∇lf ∈ L2(Ω),

q ≥ 0, |x|l+1+νq∇lq ∈ L∞(Ω),

if νq = 0 : lim
R→∞

|| |x|3∇q||∞;Ω\BR(0) = 0.

Note that forp ∈ [1,∞] and0 ≤ µ ≤ ν: |x|νφ ∈ Lp(Ω) implies |x|µφ ∈
Lp(Ω).

Remark 1. i) If, in Case II,f andq are given byf(x) = |x|α1 , q(x) = |x|α2 ,
this impliesα1 < −2.5 andα2 < −2 (for νf = νq = 0).
ii ) Not all our assertions onf andq will need all the requirements stated in
the assumptions above, but this will be apparent from the respective proofs.

The counterpart toPoincaŕe’s inequalityon bounded domains (that is,
||v||2;Ω ≤ CP||∇v||2;Ω for all v ∈ C∞

0 (Ω)) will be the following inequality
on unbounded domains.

Lemma 1. (Hardy’s inequality) LetΩ ⊂ R
3, 0 6∈ Ω, an exterior domain.

Then for anyv ∈ C∞
0 (Ω) andµ ∈ (−1

2 , 1
2)∫

Ω
|x|2µ−2 |v|2 ≤ 4

1 − 4µ2

∫
Ω

|x|2µ |∇v|2.

Proof. The proof is a slight modification of the arguments in [BGH] that
lead to the same inequality, but with|x| replaced by

√
1 + |x|2. 2

2. The model problem

As a model problem, we consider the boundary value problem

−∆u + qu = f in Ω,

u = uD on∂Ω,

lim
|x|→∞

u(x) = 0,
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whereuD ∈ Hk+2,2(Ω) has compact support. Introducingu−uD as a new
dependent variable, we end up with a problem with homogeneous bound-
ary conditions and modified right hand side (again satisfying the previous
assumptions).

We now want to formulate our problem in a variational setting to which
end we introduce the following spaces and norms (depending on the space
dimension considered)

S := C∞
0 (Ω)

|| . ||S where

Case I : ||u||2S := ||∇u||22 + ||√qu||22,
Case II: ||u||2S := ||∇u||22.

Here and in the following we let|| . ||p ≡ || . ||p;Ω.

Theweak formulationof our problem reads as follows:

(P) find u ∈ S such that
∫

Ω
∇u ·∇φ+quφ =

∫
Ω

fφ ∀φ ∈ S.

Theorem 1. (Existence and uniqueness) LetΩ ⊂ R
d (d ∈ {2, 3}) be an

exterior domain andf , q as in the assumptions in Sect.1. Then problem(P)
admits a unique solutionu ∈ S satisfying the bounds

Case I : ||u||S ≤ || f√
q ||2,

Case II: ||u||S ≤ 2 || |x|f ||2.

Proof.Consider Case I. Since

|
∫

Ω
quφ | ≤ ||u||S ||φ||S , |

∫
Ω

fφ | ≤ || f√
q
||2 ||φ||S ,

all integrals in (P) are well defined and the right hand side is a linear func-
tional onS. In Case II, we obtain using Hardy’s inequality (cf. Lemma 1 for
µ = 0)

|
∫

Ω
quφ | ≤ || |x|2q||∞ || u

|x| ||2 || φ
|x| ||2 ≤ 4 || |x|2q||∞ ||u||S ||φ||S ,

|
∫

Ω
fφ | ≤ || |x|f ||2 || φ

|x| ||2 ≤ 2 || |x|f ||2 ||φ||S .

This shows the same result as above and since in both cases∫
Ω

∇u · ∇u + quu ≥ ||u||2S ,
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we can conclude the existence of a unique solution by the Lax–Milgram
theorem [GT; Ch. 5]. The bound foru follows easily using the test function
φ = u. 2

Remark 2. i) Note that it is crucial to defineS by the closure ofC∞
0 (Ω)

(with respect to|| . ||S) and not by {v ∈ H1,2
loc (Ω) : ||v||S < ∞}. The

second choice would lead to non–uniqueness in Case II: forΩ = R
3\B1(0)

bothu1 := 0 andu2 := 1 − 1/|x| solve the homogeneous boundary value
problem. However, with the first definition we haveu2 6∈ S [SS; pp. 12].
ii ) It is possible to treat alsod = 2 within Case II. One has to work in
weighted Sobolev spaces using an estimate cited in [SS; p. 95] (which re-
places Hardy’s inequality).
iii ) Instead of using|| |x|f ||2 in Case II, we may refer to the embedding
S ↪→ L6(Ω) (that is||v||6 ≤ C∗ ||v||S for all v ∈ S [BF; 4-7]) and obtain
(using Ḧolder’s inequality)

|
∫

Ω
quφ| ≤ ||q|| 3

2
||u||6 ||φ||6 ≤ C2∗ ||q|| 3

2
||u||S ||φ||S ,

|
∫

Ω
fφ| ≤ ||f || 6

5
||φ||6 ≤ C∗ ||f || 6

5
||φ||S .

Obviously, in this situation we have to impose the conditions:q ∈ L
3
2 (Ω)

andf ∈ L
6
5 (Ω). Generalisations of these inequalities to weighted Sobolev

spaces can be found in [BGH].

Theorem 2. (Regularity and decay properties) Let dataf , q, Ω, andu

as in Theorem1. Thenu ∈ Hk+1,2
loc (Ω) and forl ∈ {0, . . . , k + 1}

Case I : |∇lu(x)| = O(e−q0|x|) for |x| → ∞,

Case II: || |x|l−1+ν∇lu||2;Ω is bounded forν ∈ [0,min {νf , 1
2}).

Proof. To prove the asymptotic behaviour, we start with Case I. Inserting
q = q∗ − q̃ we see thatu satisfies an equation with constant coefficients and
compactly supported right hand side, namely,

−∆u + q∗u = q̃u + f in Ω, u = 0 on∂Ω.

From [DL; p. 636] we obtain thatu = O(e−q0|x|) for |x| → ∞.
Differentiating the differential equation we obtain thatw := ∇u solves

the boundary value problem

−∆w + q∗w = q̃w + ∇q̃ u + ∇f in Ω, w = ∇u on∂Ω.

Since∇u is bounded on∂Ω (note that∇u ∈ Hk+1
loc (Ω) ⊂ H2

loc(Ω) ⊂
L∞

loc(Ω) (for d ∈ {2, 3} andk ≥ 1) by elliptic estimates) and the right
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hand side is compactly supported, we again conclude thatw, hence|∇u|, is
exponentially decaying. Further differentiating gives the assertion for|∇lu|,
l = 2, . . . , k + 1.

Now we consider Case II. It is shown in [BGH; p. 1023] that the vari-
ational problem (P) admits a unique solution for which|| |x|µ∇u||2 is
bounded by|| |x|1+µf ||2 for µ ∈ [0, 1

2). This shows the assertion forl = 1.
The casel = 0 then follows immediately from Lemma 1 and the cases
l = 2, . . . , k + 1 will follow from an iterative argument as before.

To prove forl = 2, we refer to a result of [MO1, MO2], where it has
been proved that∆ is an isomorphism

∆ : M2
2,−1+µ(Ω) −→ M2

0,1+µ(Ω)

for µ ∈ (−1
2 , 1

2), whereM2
s,δ(Ω) is defined as the completion of{v ∈

C∞(Ω) : v|
∂Ω

= 0, supp(v) ⊂⊂ R
3} under the norm

||v||M2
s,δ(Ω) :=

∑
m≤s

|| |x|m+δ∇mv||2

(we could derive this result also from the casel = 1, but we prefer to show
one iteration for the strong form of the differential equation). Fixρ > dω.
Let φ ∈ C∞(Ω) with 0 ≤ φ ≤ 1, φ(x) = 0 for x ∈ Bρ(0) andφ(x) = 1
for x ∈ Ω\B2ρ(0). Sincew := φu solves the differential equation:

−∆w = φ(f − qu) − u∆φ − 2∇u · ∇φ =: f̃ in Ω, w = 0 on∂Ω,

we have
|| |x|1+ν∇2w||2 ≤ C0 || |x|1+ν f̃ ||2.

|| |x|1+ν f̃ ||2 can be shown to be bounded (depending on dataν and ρ;
observe that|| |x|1+νqu||2 ≤ || |x|2q||∞ || |x|−1+νu||2 and that∇φ, ∆φ
have compact support). Now takeW := |x|∇w. Again

|| |x|1+ν∇2W ||2 ≤ C0 || |x|1+ν∆W ||2.
Observing that

|| |x|2+ν∇3u||2;Ω\Ω2ρ
≤ || |x|2+ν∇3w||2
≤ || |x|1+ν∇2W ||2

+2 || |x|1+ν∇2w||2 + || |x|ν∇w||2,
we obtain the assertion by computing

|| |x|1+ν∆W ||2 ≤ 2 || |x|1+ν∇2w||2 + || |x|ν∇w||2 + || |x|2∇f̃ ||2
and using the assumptions on data and previous results.2
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3. Discretisation

The idea of our approach is to construct abounded computational domain
Ωh such that the corresponding finite element solutionuh is close to the
continuous solutionu up to a given tolerance. This is expected to be possible
sinceu decays towards infinity at some rate (cf. Theorem 2). Thus we will
needΩh both discretised fine enough and large enough.

To simplify our presentation (that will focus on the disretisation of the
unbounded domain), we assume that we useexact finite elementsof La-
grangian type at the finite part of the boundary of∂Ω. These arecurved
finite elementsthat exactly represent the boundary. For a detailed analysis
see [Be]. For error estimates including the approximation of the boundary
see [BK] (a priori) and [DR] (a posteriori).

Let Ωh ⊂ Ω be composed of generalised simplices (curved or straight)
in the usual way [Be, Ci (Ch. 2)]. In fact, every simplex having fewer than
two vertices on∂ω will be straight. ByTh we denote this set of simplices.
For eachT ∈ Th we fix a mappingFT (of classC∞) that maps the unit
simplexT̂ ontoT (cf. [Be]). A finite element space of orderk onΩh is given
by

Sk
h := {vh ∈ C0(Ω) : ∀T ∈ Th vh ◦ F−1

T |T ∈ IPk,

vh = 0 on∂Ωh and inΩ\Ωh} ⊂ S.

We assume that dataq, f are approximated byqh, fh respectively, where
qh, fh are set to zero outsideΩh. Then thediscrete weak formulationreads
as follows

(Ph)
find uh ∈ Sk

h such that
∫

Ω
∇uh · ∇φh + qhuhφh

=
∫

Ω
fhφh ∀φh ∈ Sk

h.

Since the left hand side of(Ph) defines a strictly positive definite bilinear
form, a discrete solutionuh of this problem exists.

Lemma 2. (A priori error estimate) Letu, uh be the solutions of problems
(P), (Ph), respectively. Then

Case I : ||u − uh||S ≤ inf
φh∈Sk

h

||u − φh||S + ||f−fh√
q ||2;Ωh

+|| q−qh
q ||∞;Ωh

|| fh√
q ||2;Ωh

,



Adaptive finite elements for exterior domain problems 505

Case II: ||u − uh||S ≤
(
1 + 4 || |x|2q||∞

)
inf

φh∈Sk
h

||u − φh||S
+2

(
|| |x|(f − fh)||2;Ωh

+4 || |x|2(q − qh)||∞;Ωh
|| |x|fh||2;Ωh

)
.

Proof.We define the bilinear forma : S × S → R by

a(u, v) :=
∫

Ω
∇u · ∇v + quv.

a is continuous and coercive, that is, there is a numberΛ > 0 such that for
all u, v ∈ S

a(u, v) ≤ Λ ||u||S ||v||S , a(u, u) ≥ ||u||2S .

This is easily proved using estimates given in the proof of Theorem 1 and
we obtainΛ = 1 in Case I andΛ = 1 + 4 || |x|2q||∞ in Case II. Applying
the first Strang Theorem [Ci; Theorem 4.1.1] we obtain

||u − uh||S ≤ Λ inf
φh∈Sk

h

||u − φh||S
+ sup

vh∈Sk
h\{0}

1
||vh||S

|
∫

Ω
(f − fh)vh + (qh − q)uhvh|.

The second term on the right can be estimated by (as in the proof of Theo-
rem 1)

Case I : ||f−fh√
q ||2;Ωh

+ || q−qh
q ||∞;Ωh

||uh||S ,

Case II: 2 || |x|(f − fh)||2;Ωh
+ 4 || |x|2(q − qh)||∞;Ωh

||uh||S .

The assertion follows, since||uh||S can be estimated as in Theorem 1.2

For the following we need quantities measuring geometrical properties
of a given discretisation. The first is given by

(3.1) σint := max
{

dT

ρT
: T ∈ Th, BρT the largest ball inscribedT

}

and controls the shape regularity of the simplices ofTh. The second condi-
tion concerns the size of the simplices at the exterior boundary∂extΩh :=
∂Ωh\∂ω. Let T ∂

h be defined by

T ∂
h := {T ∈ Th : T ∩ ∂extΩh 6= ∅},

and define

(3.2) σext := max
{

dist(0, T )
dT

: T ∈ T ∂
h

}
.
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Later, we will make the assumption thatσint, σext will be uniformly bounded
on sequences of refined and enlarged discretisations. (Forσint this require-
ment is known asuniform shape condition).

We will further use the notation

Ω∂
h :=

⋃
T∈T ∂

h

T .

Thegrid size functionh ∈ L∞(Ω) is defined almost everywhere by

h|T := hT := dT ∀T ∈ Th.

Let Nh be a set of points inΩh with the following property: for each
p ∈ Nh there is a functionφp ∈ Sk

h such that{φp}p∈Nh
forms a basis

of Sk
h (Lagrange elements). In addition, the functionsφp should have the

properties

supp(φp) ⊂ Mp :=
⋃

T∈Th : p∈T

T , φp(q) = δpq ∀p, q ∈ Nh.

The next Lemma refers to the projection operatorP 0
h : S → Sk

h defined in
[Cl] by

(3.3) P 0
hv :=

∑
p∈Nh

cp(v)φp

where thecp are continuous functionals onL2(Mp).

Lemma 3. (Interpolation estimates) The projection operatorP 0
h defined

in (3.3) fulfils

Case I : ||v − P 0
hv||S ≤ C

(
||hk∇k+1v||2;Ωh

+
√

q1 ||hk+1∇k+1v||2;Ωh

+
(
1 +

1√
q0Rh

+
√

q1

q0

)
||v||

S;Ω∂
h∪(Ω\Ωh)

)
,

with q1 := ||q||∞ andRh := dist(0, Ω∂
h),

Case II: ||v − P 0
hv||S ≤ C

(
||hk∇k+1v||2;Ωh

+ ||∇v||2;Ω\Ωh

+|| v

|x| ||2;Ω∂
h

)

for all v ∈ S ∩ Hk+1,2
loc (Ω). The constants depend on∂ω, σint, σext (Case

II) , andk only.
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Proof.Let N ∂
h be the set of nodes located on∂extΩh. We can write

||v − P 0
hv||S ≤ ||v − Phv||S;Ωh

+ ||Phv − P 0
h ||

S;Ω∂
h

+ ||v||S;Ω\Ωh
,

wherePh is the projection operator from [Cl; Theorem 1]. It remains to
consider the last two terms of this inequality.
Exploiting the fact that the coefficientscp obey the estimate (cf. [D̈o2])

|cp| ≤ C
||v||2;Mp

||φp||2
,

we obtain

||(Ph − P 0
h )v||22 ≤ C

∑
p∈N ∂

h

||v||22;Mp
≤ C 1

q0
||v||2

S;Ω∂
h

, (Case I),

and similarly, using|x| ≤ 2σextdT for T ∈ T ∂
h ,

||∇(Ph − P 0
h )v||22 ≤ C

∑
p∈N ∂

h

1
d2

Mp

||v||22;Mp

≤ C 1
q0R2

h
||v||2

S;Ω∂
h

, (Case I),

≤ C || v
|x| ||22;Ω∂

h

, (Case II).

Therefore, in Case II we obtain (withm = k + 1, l = 0)

||v − P 0
hv||S;Ωh

+ ||v||S;Ω\Ωh
≤ C ||hk∇k+1v||2;Ωh

+C || v

|x| ||2;Ω∂
h

+ ||v||S;Ω\Ωh

and in Case I the result follows analogously.2

Theorem 3. (Convergence) Letu be the solution of(P)under the assump-
tions of Theorem2. Choose a finite computational domainΩh as described
before such that(without loss of generality) BR(0) ⊂ Ωh\Ω∂

h for some
R > dω. We defineΩh,R := ∪{T ∈ Th : T ∩ BR(0) 6= ∅}. If fh andqh

arek-th order approximations off andq, respectively, onΩh (k ≥ 1), the
difference betweenu and the discrete solutionuh ∈ Sk

h is estimated by

Case I : ||u − uh||S ≤ C hk + O(e− 1
2 q0R)

for R ≥ R0, supp(f) ∪ supp(q̃) ⊂ BR0(0),

Case II: ||u − uh||S ≤ C max
T : T⊂Ωh,R

{(
hT
|xT |

)k
1

|xT |ν
}

+ o(R−ν),
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wherexT denotes the barycentre of a simplexT and withν ∈ [0,min{νf ,
νq,

1
2}). The constants in this estimate depend on constants from interpola-

tion estimates and bounded norms of the solution and data, but not onR or
h. They are not uniformly bounded with respect toν → 1

2 .

Proof. We consider Case II only, Case I is similar. To derive the result, we
have to consider the error terms appearing in Lemma 2 and Lemma 3.
Let R > dω be given. By assumption on data and Theorem 2 we obtain for
ν as defined above

max
{

|| |x|l−1∇lu||2;Ω\BR(0) : l ∈ {0, 1, k + 1}, || |x|2∇f ||2;Ω\BR(0),

|| |x|3∇q||∞;Ω\BR(0)

}
= o(R−ν).

For the givenR we chooseΩh that satisfies the requirements stated above.
Now we will use that, for example,

|| |x|(f − fh)||2;Ωh
≤ c

(
|| |x|hk∇kf ||2;Ωh,R

+ || |x|2∇f ||2;Ω\BR(0)

)
.

A similar estimate can be obtained for the terms withq − qh and we get

||u − uh||S ≤ c (1 + 4 || |x|2q||∞) ||hk∇k+1u||2;Ωh,R

+2c || |x|hk∇kf ||2;Ωh,R

+8c || |x|fh||2;Ωh
|| |x|2hk∇kq||∞;Ωh,R

+o(R−ν).

For the first term on the left hand side we further compute

||hk∇k+1u||22;Ωh,R
=

∑
T : T⊂Ωh,R

||hk∇k+1u||22;T

≤ C
∑

T : T⊂Ωh,R

(
hT
|xT |

)2k
1

|xT |2ν || |x|k+ν∇k+1u||22;T

≤ C max
T : T⊂Ωh,R

{(
hT
|xT |

)2k
1

|xT |2ν

}
|| |x|k+ν∇k+1u||22;Ωh,R

.

This can be done similarly also for the two data error terms and this proves
the assertion. Choosing firstR large enough and thenh small enough on
Ωh,R the error will become arbitrarily small. 2

Remark 3.The purpose of the following considerations is to show that the
number of unknowns required for a numerical solution with a prescribed
accuracyε > 0 on an exterior domain inR3 is comparable to the case of a
bounded domain. To this end we will assume that we are in the worst case
for an adaptive procedure (of fixed polynomial degreek) that is, the a priori
error terms are equally distributed.
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i) The case of a bounded domainΩ ⊂ R
3. In this case we can compute

the step size that is necessary to achieve the accuracyε by

hk ||∇k+1u||2 ≤ ε

and the number of necessary degrees of freedomsN is then of the order

N ∼ ε−3/k.

ii ) The case of an exterior domainΩ ⊂ R
3. Here, we will refer to the

estimate given in Theorem 3.ii. Letω = B1(0), Rj := κj for someκ > 1,
andSj := BRj+1(0)\BRj (0) (j = 0, 1, . . .). To get an error boundε we
will need

R ∼ ε−1/ν and
( hT

|xT |
)k 1

|xT |ν ∼ ε.

Let T ∈ Sj . Then |xT | ∼ κj and we choose (due to the second rela-
tion) hT ∼ hj with hj/κj ∼ (εκjν)1/k. On each layerSj we thus have a
number of unknowns proportional to(κj/hj)3 and the number of layers is
l ∼ log(R). OutsideBR(0) we need additional layers to ensure a bounded
σext. For this we assume that outsideBR(0) the computational domainΩh

is covered by rings of increasing width but with geometrical decreasing
number of unknowns (so thatσint stays bounded). Hence the total amount
of unknowns outsideBR(0) will be bounded by a fixed number times the
number of unknowns in the last layer inBR(0). Therefore we obtain

N ∼
l∑

j=1

(κj

hj

)3
= ε−3/k

l∑
j=1

(κ−3ν/k)j .

For fixedk andν > 0 the last sum is bounded independently ofε and thus
N depends in the same way onε as in the case of a bounded domain. In
caseν = 0, the error is onlyo(1) for R → ∞. In this case one needs
N ∼ ε−3/k log(R(ε)) to achieve an accuracy ofε.

Remark 4. i) One can prove Theorem 3 also for the caseΩ = R
3. We only

have to replace the weight|x| by
√

1 + |x|2.
ii ) Forνq = 0 Theorem 3 can be proved with givenν ∈ [0,min{νf , 1

2}). For
this we apply the stability estimate|| |x|µuh||2 ≤ C|| |x|µfh||2 forµ ∈ [0, 1

2)
(this holds in the continuous case [BGH]; the discrete version is technical
and requires a decomposition ofΩh in annular domains as in Remark 3) and
replace the last term in Lemma 2 by|| |x|2−νqh||∞;Ωh

|| |x|νfh||2;Ωh
.
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4. A posteriori error estimates for exterior domains

Definition 1.
i) For vh ∈ Sh we define thecontinuous residualwith respect to problem
(Ph) by

rc|T := (−∆vh + qhvh − fh)|T ∀T ∈ Th.

ii) LetEh be the set of all faces of simplices in the discretisationTh excluded
those on∂ω. Forx ∈ E ∈ Eh we define

rs(x) = [∂nvh]E(x) := lim
s→0+

n · (∇uh(x + sn) − ∇uh(x − sn)),

wheren is a given normal vector onE (note that the definition above does
not depend on the orientation ofn). rs is calledsingular residual.
iii ) The local (residual) error indicatorηT is defined for eachT ∈ Th by

(4.1) η2
T := h2

T ||rc||22;T + hT ||rs||22;∂T\∂ω.

Note that this estimator differs from the usual definition by additional jump
terms on the exterior boundary. For any subsetΣh of Th we let

η2
Σh

:=
∑

T∈Σh

η2
T .

The following theorem shows that the error can be estimated by the com-
putable quantityηTH

and data errors. The corresponding result for bounded
domains has been proved by [Ve].

Theorem 4. (A posteriori error estimates) Letu, uh be the solutions of
(P), (Ph), respectively and leteh := u − uh.
Case I: Assume thatRh (defined in Lemma3) is such thatq0R

2
h ≥ 1. Then

the error is estimated by

||eh||S ≤ C ηTh
+ ||f − fh√

q
||2 + ||q − qh√

q
uh||2.

Case II:

||eh||S ≤ C ηTh
+ 2

(
|| |x|(f − fh)||2 + || |x|(q − qh)uh||∞

)
.

The constantsC depend onσint, σext (Case II),k, and∂ω.
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Proof.Let v ∈ S be arbitrary andvh := P 0
hv with P 0

h defined in Lemma 3.
Then ∫

Ω
∇eh · ∇v + qehv =

∑
E∈Eh

∫
E
[∂nuh]E (v − vh)

−
∫

Ω
(−∆uh + qhuh − fh) (v − vh)

+
∫

Ω
(f − fh)v +

∫
Ω

(qh − q)uhv

=: 〈rs, v − vh〉 −
∫

Ωh

rc (v − vh)

+
∫

Ω
(f − fh)v +

∫
Ω

(qh − q)uhv.

The last two terms can be estimated as in Lemma 2. From the proof of
Lemma 3 we obtain (cf. also [D̈o2; Lemma 2])

|
∫

Ωh

rc (v − vh)| ≤ C
(
||hrc||2;Ωh

||∇v||2 + ||rc||2;Ω∂
h

||v||2;Ω∂
h

)
.

Note that we have|x| ≤ 2σexth on Ω∂
h (and1/

√
q0Rh ≤ 1 in Case I).

Therefore

|
∫

Ωh

rc (v − vh)| ≤Case I
C

(
||hrc||2;Ωh

+ 1√
q0

||rc||2;Ω∂
h

)
||v||S

≤ C ||hrc||2;Ωh
||v||S ,

≤Case II
C

(
||hrc||2;Ωh

+ || |x|rc||2;Ω∂
h

)
||v||S

≤ C ||hrc||2;Ωh
||v||S .

In [Dö2; Lemma 2] it has been shown that

|〈rs, v − vh〉| ≤ C
( ∑

T∈Th

hT ||[∂nuh]||22;∂T ||∇v||22;Ωh

+
∑

T∈T ∂
h

h−1
T ||[∂nuh]||22;∂T ||v||22;Ω∂

h

) 1
2
.

For the last term we proceed as before.2

Remark 5. i) Theorem 4 allows to estimate the error on theunbounded
domainbased on the actual discrete solutionuh (here assumed to be known
exactly) and data. The constantC depends on the quality of our grid only and
we can assign a reasonable value (of order one) by numerical experience.
ηT can be computed exactly for eachT ∈ Th. Note that in contrast to a
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problem on a bounded domain it contains also jumps of the derivative on
the exterior boundary. The computation of the remaining terms requires
some a priori information on data since we have to integrate over large
elements (withhT ∼ dist(0, T )) or to estimate its influence fromΩ\Ωh.
These terms should not be neglected as “higher order terms”, as often done
in a posteriori error estimation.
ii ) We approximated the exterior domain problem by a problem on a finite
domain with homogeneous boundary conditions at the exterior boundary.
In the theory it turns out that the decay of the error with the diameterR
of the computational domain will, in Case II, in general be not better than
O(R−1/2+s) (s > 0 small). This can be improved to beO(R−3/2 +s) if
we let the exterior boundary be a large sphere provided with a boundary
condition of mixed type [SC]. However, our numerical experiments show
that even with the simple Dirichlet boundary condition only few degrees of
freedom have to be invested in the far field, cp. Remark 8.i, Sect. 6. Thus we
do not see any need for replacing this simple Dirichlet boundary condition.

5. Numerical method

In this section we develop the mechanism to adaptively solve the exterior
domain problem. We start with a coarse and “small” macro–discretisation.
According to information provided by the error estimator introduced in (4.1)
this discretisation is successively refined and expanded. More precisely, if
the local estimation of the error on an element is too big, this element will
be refined if it lies in the interior of the domain. If the element is located at
the outer boundary, the computational domainΩh has to be expanded, i. e.
an additional element has to be added to the discretisation. Thus we iterate
the procedure

solve→ estimate→ refine/expand.

To this end, we need two numerical devices:

– a marking strategythat decides, where to refine and expand according
to the local error estimation,

– an algorithm that actuallyrefinesandexpandsa given discretisation.

5.1. Marking strategy

In our computations we use theguaranteed error reduction strategypro-
posed in [D̈o1]. For that letuh be a discrete solution on the gridTh. Then
we choose the setΣ ⊆ Th of elements to be refined such that

ηΣ ≥ ϑ ηTh
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Fig. 1. “Cartesian” structure in 2D and one macro block

for some parameterϑ ∈ (0, 1). The setΣ should be as small as possi-
ble fulfilling the above inequality. See [D̈o1] on how to constructΣ and
chooseϑ.

5.2. Refinement/expansion strategy

The algorithm we present is an extension of a refinement algorithm based
on thebisection method, see [B̈a, Ma, Mi]. In order to get an efficient and
simple method we make the following two fundamental assumptions, that
appear to be quite natural:

– there isR > 0 such thatΩh\BR(0) is of “regular” structure, i. e. consists
of layers of macro blocks, each layer having the same topological and
geometrical structure and is divided into macro blocks in the same kind,

– all elements at the outer boundary ofΩh are of coarsest level.

By the first assumption an additional block of macro elements can easily
be matched to the current discretisation at the outer boundary. Moreover
this assumption allows for using a simple data structure to keep track of the
expansion process.

The second assumption guarantees that there will be no hanging nodes
after having added a macro block.

We consider a grid expansion strategy that generate meshes with bounded
σext for d ∈ {2, 3}. Besides that this property was required in Case II, an
exponentially growing grid seems to be advantageous from a numerical
point of view also in Case I: only few steps of the expansion strategy are
needed to reach the final domain.

5.2.1. 2D case The simplest example of a regular structure is the Cartesian
one, see Fig. 1. Note that in this case the constantσint defined by (3.1) trivially
stays bounded for the macro elements in a macro block whileσext (cf. (3.2))
blows up.
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Fig. 2. “Ring” structure in 2D and one macro block

Fig. 3. Icosahedron and one layer of the discretisation

To insure the boundedness ofσext we choose a second possibility. Here,
the regular structure consists of “rings” of stretched quadrilaterals divided
into two triangles, see Fig. 2. Without loss of generality the centre of the
rings is the origin. The inner radiusrj and the outer radiusrj+1 of thej-th
ring are given by

rj+1 = κrj = κj+1r0,

respectively, with someκ > 1. It is easy do see that in this caseσint and
σext stay bounded during expansion.

5.2.2. 3D case In analogy to the ring structure in 2D we define thej-
th layer in 3D as a discretisation of the annular region with inner radius
rj = κjr0 and outer radiusrj+1 = κj+1r0 for someκ > 1. The inner and
outer boundaries of these discretisations are icosahedra, i. e. consisting of
20 triangles. The macro blocks of one layer are the 20 prisms corresponding
to the 20 triangular faces. Each prism is subdivided in 3 tetrahedra in such
a way that the resulting discretisation is conforming, see Fig. 3.

5.2.3. Refinement/expansion algorithmAs mentioned above we incorpo-
rate expansion into the bisection method. We briefly recall the bisection
method. For details see for instance [Bä, Ma, Mi].



Adaptive finite elements for exterior domain problems 515

Fig. 4. Triangle with refinement edge

Fig. 5. Bisection of a single triangle

Before starting the refinement process one edge of every triangle of the
macro–discretisation is marked, see Fig. 4. This edge is calledrefinement
edge. To divide a single triangle, it is cut through the midpoint of the refine-
ment edge and the vertex opposite to the refinement edge. The refinement
edges for the new triangles are chosen as in Fig. 5. This kind of bisection is
callednewest vertex bisection, because the new refinement edges lie opposite
to the newest vertex.

There is also a natural generalization of this approach to 3D, see [Bä].
This local operation of bisecting an element is used to refine a given

discretisation (locally). For that letTk be a given regular discretisation and
a subsetΣ ⊆ Tk of elements which should be divided. Then one proceeds
as follows:

Refinement algorithm:

while Σ 6= ∅ do
for all T ∈ Σ

bisectT
Σ := {T ∈ T : T has a non-conforming node}

endwhile

It can easily be shown that this algorithm terminates in a finite number of
steps and that for a sequence{Tk}k of successively refined discretisations
the constantσint is bounded.

This algorithm can be modified to take into account also expansion. This
can be done in the following way. LetTk be a given regular discretisation
and a subsetΣ ⊆ Tk of elements which should be divided or where the
discretisation has to be expanded. Then apply the following procedure:
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Refinement/expansion algorithm:

while Σ 6= ∅ do
for all T ∈ Σ

if (T is a boundary element)
add a macro block

bisectT
Σ := {T ∈ T : T has a non-conforming node}

endwhile

“Add a macro block” is understood in the way explained above for the
ring structure in 2D and 3D.

If (for the 3D case) the decomposition of the prisms into 3 tetrahedra is
chosen properly, it is easy to show the following result:

Proposition 1. The above algorithm stops in a finite number of steps, the
resulting discretisations are conforming and for a sequence of successively
refined/expanded discretisationsσext andσint are bounded.

Remark 6.From our construction and the proof in [Bä] it is clear thatσext

and σint stay bounded. The only point to show is the termination of the
algorithm. In addition to the pure refinement algorithm one has to prove that
the algorithm does not enforce infinitely many macro blocks to be added.
This is simple to see in 2D for the regular structures introduced above. In
3D one can easily check this for a given decomposition of the 20 prisms into
tetrahedra.

5.2.4. Convergence of the adaptive iterationWe will summarize the pre-
vious description and establish convergence of the adaptive iteration in Case
II with q = 0 andk = 1 (for simplicity). Letε be the stopping criterion for
the estimated global error and assume that a macro–discretisation is given
such that the inner boundary is∂ω and the outer boundary∂extΩh has a
regular structure as described in 5.2.2.

Adaptive iteration. 1) Construct an initial meshT0 := Th0 , both fine and
large enough, such that

(5.1) max
{

|| |x|(f − fh∗)||2 , ||h∗fh∗ ||2
}

≤ µε

for some givenµ > 0 and all refinements/expansionsTh∗ of T0.

2) Given a discretisationTl := Thl
for l ≥ 0, we compute the (exact) discrete

solutionul, the local error indicatorsηT for T ∈ Tl, andηl := ηTl
. If ηl ≤ ε,

then stop. Otherwise mark a setΣ of elements inTl as described in 5.1 and
refine/expand the grid as in 5.2. Denote the new grid byTl+1 and continue.
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Theorem 5.Assume that we have a sequence of discretisations and discrete
solutions inS1

h, constructed by the algorithm above. Then there are numbers
µ∗ > 0 andρ ∈ (0, 1), depending onσint, σext andϑ only (cf. Proposition
1), such that the following holds: If we start from a macro–discretisationT0
such that(5.1) holds for someµ ≤ µ∗, we have for subsequent errors

||∇el+1||2 ≤ ρ ||∇el||2
as long asηl > ε.

Proof.The proof follows the lines of [D̈o1] with minor changes. We give a
short sketch. LetΩl be a given computational domain with finite element
spaceS1

l . LetΩl+1 be obtained fromΩl by the refinement/expansion process
described before. Obviously,Ωl ⊆ Ωl+1 andS1

l ⊆ S1
l+1. If u is the exact

solution andel andel+1 are the errors for the exact discrete solutions, we
obtain using (5.1)

||∇el||22 ≥ ||∇el+1||22 + ||∇(ul − ul+1)||22 − 8µ2ε2.

If E0
l denotes the set of all faces of simplices inTl that have been divided to

getTl+1 or have become inner faces after expansion, we get∑
E∈E0

l

dE ||∇[∂nul]E ||22;E ≤ c1 (||∇(ul − ul+1)||22 + µ2ε2)

(here and in the subsequel all constants will depend onσint, σext only). Using
in addition the marking and refinement/expansion strategy (5.1, 5.2) as well
as Theorem 4 we conclude

||∇el||22 − ||∇el+1||22 ≥ c2(ϑ2 − c3µ
2)||∇el||22

for µ small enough, as long asηTl
> ε. Note that the convergence factor

1 − c2(ϑ2 − c3µ
2) does not depend onl. 2

Remark 7. i) The first step in our adaptive algorithm needs a priori infor-
mation on the contribution of|x|f outside the given computational domain.
The construction of the initial mesh (that is, a mesh that satisfies (5.1) for
some givenµ) is done as in part 2) of the adaptive iteration, but with local
error indicatorsη0

T := max{|| |x|(f −fh0)||2;T , ||h0fh0 ||2;T } and stopping
criterionµε.
ii ) In our analysis and the numerical algorithm we made the idealization that
we have computed the exact numerical solutionul. In practice, however, we
accept the outcome of some iterative linear equation solver with some stop-
ping criterion. In our examples we used a stopping criterion which is strict
enough to ensure that the corresponding error is negligible compared to the
estimated error. Connections between iteration errors and errors in the finite
element solution have been studied in [BD].
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Table 1. Results for the 2D problem, discretisation by linear elements

k 1 2 3 4 5 6
Nk 504 576 840 1752 5064 13848
max. rad. 1.69 3.80 8.54 12.81 12.81 19.22
||ek||S 0.730 0.197 0.130 0.090 0.049 0.031

EOC — 18.49 2.12 0.97 1.14 0.91
EOCh — 3.84 2.20 1.21 0.98 0.95

6. Numerical results

In order to get a measure for the numerical efficiency we define the exper-
imental order of convergence EOC(k) in thek-th iteration step in terms of
the number of unknownsNk:

EOC(k) := d
log(||ek−1||S/||ek||S)

log(Nk/Nk−1)

and the numerical experimental order of convergence EOCh(k):

EOCh(k) := d
log(ηk−1/ηk)
log(Nk/Nk−1)

.

6.1. 2D case

Setq ≡ 1, uD = const. andω = B1(0), Ω = R
2\ω, so we solve

−∆u + u = 0 in Ω,

u = const. on∂Ω,

lim
|x|→∞

u(x) = 0.

ChoosinguD appropriately,u is given byu(x) = K0(x), K0 the modified
Bessel (or Macdonald) function. In Table 1 the results using the refine-
ment/expansion strategy are listed. Figure 6 shows the triangulations and
Fig. 7 the graph ofuh on the final grid.

6.2. 3D case

We consider the following problem:

−∆u = 0 in Ω,

u = uD on∂Ω,

lim
|x|→∞

u(x) = 0,
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Fig. 6. Computational domainsΩh; initial domain and domains after 3, 4 and 6 iterations
respectively

Fig. 7. Graph ofuh after 6 iterations

with ω = B1(0), Ω = R
3\ω. The boundary values are defined such that the

solution is a dipole field:

uD(x) = u(x) =
x1

r3 .

Table 2 shows the results using linear elements, Table 3 reports the results
for quadratic elements. Figures 8 and 9 display the discrete solutions and
corresponding grids.

Remark 8. i) As expected, the experimental order of convergence is 1 for
linear elements and 2 for quadratics, thus confirming our considerations in
Remark 3. Furthermore, most of the unknowns are located in the interior
of the domain. This means that there is no need for replacing the simple
conditionuh = 0 at the exterior boundary by a more sophisticated one.
ii ) The advantage using quadratic elements compared to linear elements for
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Table 2. Results for the 3D problem, discretisation by linear elements

k 1 2 3 4 5 6 7 8 9 10 11
Nk 520 652 1032 1900 3758 6686 13166 23152 43658 88096 163128
max. rad. 4.0 8.0 16.0 32.0 64.0 64.0 128.0 128.0 256.0 512.0 512.0
||ek||S 1.962 1.584 1.341 1.066 0.882 0.719 0.574 0.474 0.380 0.303 0.244

EOC — 2.34 0.97 1.05 0.80 1.07 0.95 1.02 1.06 0.93 1.06
EOCh — 2.81 1.33 1.24 0.75 1.10 1.07 0.93 1.09 0.98 1.00

Table 3. Results for the 3D problem, discretisation by quadratic elements

k 1 2 3 4 5 6 7 8 9
Nk 3538 3860 4570 5956 8482 14650 28100 47492 66676
max. rad. 4.0 8.0 16.0 32.0 64.0 64.0 128.0 256.0 256.0
||ek||S 0.903 0.635 0.435 0.338 0.233 0.170 0.121 0.082 0.065

EOC — 12.14 6.72 2.87 3.16 1.73 1.55 2.22 2.05
EOCh — 14.12 6.11 3.07 3.41 1.68 1.62 2.46 2.11

Fig. 8. Computational domainsΩh; initial domain and domains after 3, 4, 5 and 9 iterations
respectively, quadratic elements

our concrete numerical example can clearly be seen from Tables 2 and 3. To
achieve e. g. an accuracy of about0.2 one has to spend about 20-times the
number of unknowns using linear elements, resulting in a CPU time, which
is 22-times higher.
iii ) In order to solve the resulting systems efficiently we use multilevel
preconditioning. Some care has to be taken due to the fact that the macro
elements are not of equal size. So the method of choice inR

3 is the MDS
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Fig. 9. Clip atx3 = 0 into the final triangulation, quadratic elements

Table 4. Numbers of PCG-iterations, Iter1= diagonal scaling, Iter2= MDS, linear elements

k 1 2 3 4 5 6 7 8 9 10 11
Nk 520 652 1032 1900 3758 6686 13166 23152 43658 88096 163128
Iter1 17 31 38 48 51 61 74 83 88 106 114
Iter2 24 31 34 33 33 41 39 37 42 41 42

preconditioner, see [Ys]. See also Table 4 for a comparison using simple
diagonal scaling and MDS preconditioning.

7. Conclusions

We proved a priori and a posteriori error estimates (using only a priori in-
formation on data in the latter case) for the numerical solution of Poisson’s
equation with homogeneous boundary conditions on an exterior domain in
R

2 or R
3. Thereby the numerical solution is computed on a finite computa-

tional domain with homogeneous Dirichlet data. By a refinement/expansion
technique for the grid in connection with the use of an a posteriori error
estimator we get an efficient and reliable method. The strategy may eas-
ily be incorporated into existing adaptive finite element codes on bounded
domains. We are able to prove convergence for our adaptive procedure.
Numerical examples confirm the expected optimal order of convergence in
terms of number of unknowns.
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