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Summary. We present an adaptive finite element method for solving el-
liptic problems in exterior domains, that is for problems in the exterior of
a bounded closed domain R, d € {2,3}. We describe a procedure to
generate a sequence of bounded computational don#ing = 1,2, ...,

more precisely, a sequence of successively finer and larger grids, until the
desired accuracy of the solutian, is reached. To this end we prove an a
posteriori error estimate for the error on the unbounded domain in the en-
ergy norm by means of a residual based error estimator. Furthermore we
prove convergence of the adaptive algorithm. Numerical examples show the
optimal order of convergence.

Mathematics Subject Classification (199&5N15, 65N30, 65N50

0. Introduction

We consider the numerical treatment of elliptic partial differential equations
in exterior domainsf RY for d € {2, 3}, that is, the (open) complement of
a bounded (simply connected) domain

Besides the differential equation, we also have to impose boundary con-
ditions. Here we want to prescribe the function values on the finite boundary
and a homogeneous condition at infinity which we will formally write as
lim, o u(x) = 0. Note that the well-posedness of such a boundary con-
dition at infinity is not a trivial task [MS] for general elliptic operators. In
this work we will analyse Laplace’s equation and the correct boundary con-
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dition is part of the variational formulation (for example, we have that some
LP-norm (p € [1, o0)) of the solution will exist).

One possibility to solve such a problem &@undary element methods
[Ha]. Here one arrives at an integral equation on a function space on the finite
boundaryow and the solution can be computed pointwise by evaluating an
integral over the surface. Numerically, the advantage of such an algorithm is
that it works on a finite computational domain which is of lower dimension
than the original problem. The drawback, however, is that one has to know
the correct integral kernel, the arising matrices are dense, and the evaluation
of the solution outside the boundary is costly.

Another approach is to combine a usual finite element discretisation with
infinite element¢FEM/IEM) outside a given balB containingw. These
infinite elements are given as a product of a shape functioh/®times a
radial function.h-p finite—infinite elements for the Helmholtz equation in
R3 have been considered for example in [DI, GD].

The most natural idea, however, is to work on a finite approximation of
the exterior domain, since one can use standard finite element techniques.
This makes sense because due to some decay properties of the solution, the
corresponding error will tend to zero if the computational domain increases.
The main problem is to precisely estimate the error introduced by cutting
the domain. This will be the major point of this article.

In [Ba] the equation-Au + u = f in R? (subject to homogeneous
Dirichlet conditions) is considered. It is shown that on a uniformly discre-
tised (bounded) computational domain with (small enough) grid/sied
diameterR(h) = h~* (for arbitrarys > 0) the error in the energy norm
decreases at a rate almost like in the case of a bounded domain.

Since solutions of these boundary value problems have certain decay
properties (which is reflected by a priori estimates in weighted Sobolev
spaces), one would expect that a grid with radially increasing step size
would allow to compute an approximate solution of a given accuracy with
much less unknowns than in the uniform approach. This situation has been
analysed in [SC] for a class of elliptic operators includingh. It has been
proved that on a correctly spaced grid the error outside a given ball decreases
at the optimal rate with respect to the number of unknowns.

However, what is still lacking is an adaptive procedure that constructs a
large enough and a fine enough discretised computational domain to obtain
a discrete solution of prescribed accuracy (in some norm). Such a procedure
should only use a posteriori error estimates and a priori information on data.

In this work we present an adaptive algorithm for Laplace’s equation that
meets these requirements. We first discretise the doRein(B some balll
containingo). After computing a discrete solution subject to homogeneous
boundary conditions at the outer boundary, we estimate the error on the
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whole exterior domain (in the energy norm) by means of an a posteriori
error estimate (that is, in terms of computable quantities such as the discrete
solution and data). Using this estimate as a local error indicator, we will
enrich the discrete space both by refining the current grid and expanding
the computational domain. By expanding we mean that we add elements
(subject to a regular structure) at the outer boundary. From layer to layer the
size of these new elements will increase by a certain fagteayx = 2, so
that their diameter are of comparable size to their distance from

Our paper is organised as follows: in Sect. 1 we formulate the main
assumptions on data and state Hardy’s inequality which is the counterpart to
Poincaé’s inequality on bounded domains. In Sect. 2 we formulate the model
problem (Laplace’s equation), and prove existence, uniqueness, regularity
as well as decay properties. The discretisation of the problem is described
in Sect. 3. Here, we also prove a priori estimates and convergence. In Sect. 4
we derive a posteriori error estimates in the energy norm. A description of
the discretisation and the adaptive procedure is subject of Sect. 5. Numerical
examples in two and three dimensions are presented in Sect. 6.

1. Notations and preliminaries

For2 C RY, m € INg, andp € [1, o0] let H™P(§2) (H"P(02) := LP(12))
denote the Sobolev spaces [Ad] with the usual norms. [fherorm ony?2
will be denoted by|ull,, ,,. Let C5°(£2) be the space of infinitely differen-
tiable functions with compact support {n.

ForG c R?letdg := diam(G) denote theliameterof G and disfz, G)
= inf{|z — y| : y € G} thedistanceof x from G. B,.(z) denotes the ball
with radiusr and centet:.

Assumptions

We call 2 ¢ R* anexterior domainif there is a bounded domain c R?
such that? = R%\w. In the following, we will make the additional assump-
tions thatw is simply connected witld'>*°~boundary and that (without loss
of generality)0 € w.

Concerning data functions, ¢ (used in the model problem below) we will
make the following general assumptions. Fix sdire 1 (later this will be
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the order of our finite element space) and assume
Casel: de {2,3}, f € H*12(2) with compact support

q > qo > 0, andgq is of the formg = ¢, — ¢

for some constant, > qo > 0

andg € H*+12(£2) with compact support

Casell: d=3,forvs,v, >0andl €{0,...,k}

2| VL € L2(0),
q >0, 2]+ Vig € L),
if v, =0: Rh_rgo I |x’3vq||oo;Q\BR(0) = 0.

Note that forp € [1,00] and0 < p < v: |z|V¢ € LP(£2) implies|z| ¢ €
LP(92).

Remark 1.} If, in Case Il, f andq are given byf(x) = |z|*, q(z) = |x|*2,

this impliesa; < —2.5 andas < -2 (for vy = v, = 0).

ii) Not all our assertions ofi andg will need all the requirements stated in
the assumptions above, but this will be apparent from the respective proofs.

The counterpart t@oincate’s inequalityon bounded domains (that is,
[[v]ly.0 < Cpl|Vully.q forallv € C5°(£2)) will be the following inequality
on unbounded domains.

Lemmal. (Hardy'sinequality) Let? C R?,0 ¢ (2, an exterior domain.
Then for any € C§°(£2) andp € (f%, %)

4
252 o2 < / 22 Vo2,
/rz L—4p? Jo

Proof. The proof is a slight modification of the arguments in [BGH] that
lead to the same inequality, but with| replaced by,/1 + |z[2. O

2. The model problem

As a model problem, we consider the boundary value problem
—Au+qu = f in {2,
u = up 0onafl,

lim wu(x) = 0,
|z|—o00
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whereup € H*+22((2) has compact support. Introducing- up as a new
dependent variable, we end up with a problem with homogeneous bound-
ary conditions and modified right hand side (again satisfying the previous
assumptions).

We now want to formulate our problem in a variational setting to which
end we introduce the following spaces and norms (depending on the space
dimension considered)

S = CgO(Q)H'HS where

Casel: [Jullg = [[Vull§ +|\/qull3,
Casell: |[ull% := ||Vull3.
Here and in the following we l&t. |[, = [|. [|,,.-

Theweak formulatiorof our problem reads as follows:

(P) findu € S such that / Vu-Vo+qup = / fo Vo € S.
Q Q

Theorem 1. (Existence and uniqueness) L@tc RY (d € {2,3}) be an
exterior domain and, ¢ as in the assumptions in Sett.Then problengP)
admits a unigque solution € S satisfying the bounds

Casel: ||ullg < H%Hm

Case ll: [|ullg < 2|||z|f]]5-

Proof. Consider Case I. Since

|/Qqu¢| < JJulls 14115, I/chbl < |rja||2|¢|s,

all integrals in (P) are well defined and the right hand side is a linear func-
tional onS. In Case II, we obtain using Hardy’s inequality (cf. Lemma 1 for

p=0)

S
<
I
<
AN

< 1z Palloo 1l 15l < 41l1elPallos fulls N1l

!/Qﬂb\ < alflla (1512 < 2112l 116l

This shows the same result as above and since in both cases

[ vuVutquu = Jul,
2
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we can conclude the existence of a unique solution by the Lax—Milgram
theorem [GT; Ch. 5]. The bound farfollows easily using the test function
p=u. 0O

Remark 2.) Note that it is crucial to defin& by the closure of”5°((2)
(with respect td] . ||s) andnotby {v € H*(2) : ||v]|g < oo}. The
second choice would lead to non-uniqueness in Case W2 ferR?\ B; (0)
bothwu; := 0 andusy := 1 — 1/|z| solve the homogeneous boundary value
problem. However, with the first definition we have ¢ S [SS; pp. 12].

ii) It is possible to treat alsd = 2 within Case Il. One has to work in
weighted Sobolev spaces using an estimate cited in [SS; p. 95] (which re-
places Hardy’s inequality).

iii) Instead of using| |x|f||, in Case Il, we may refer to the embedding
S — L5(12) (thatis||v||g < C.||v]|4 for all v € S [BF; 4-7]) and obtain
(using Holder’s inequality)

S
»Q
<
<
A

< llalls llellsli¢lle < C3 llalls lllls [1¢l]s,

S
~
=
IA

[1£1l¢ 11l < Cullfllg lllls-

Obviously, in this situation we have to impose the conditigns: L%(Q)

andf € Lg(Q). Generalisations of these inequalities to weighted Sobolev
spaces can be found in [BGH].

Theorem 2. (Regularity and decay properties) Let dataq, {2, andu
as in Theorenl. Thenu € H'T4%(02) and forl € {0,... k + 1}

loc
Casel: |Viu(x)] = O(e~®l*l) for |z| — oo,
Casell: |||z~ V'ul|,, isbounded for € [0, min {vy, 5}).
Proof. To prove the asymptotic behaviour, we start with Case I. Inserting

q = g« — g we see that; satisfies an equation with constant coefficients and
compactly supported right hand side, namely,

—Au+qgu = qu+ f inf2, uw =0 onds.

From [DL; p. 636] we obtain that = O(e~%l*l) for |z| — co.
Differentiating the differential equation we obtain that= Vu solves
the boundary value problem

—Aw+qgw = qw+Viu+Vf in2, w = Vu onos.
Since Vu is bounded ordf2 (note thatVu € HF'Y(0) ¢ H2. () c

loc loc
LOO

> () (for d € {2,3} andk > 1) by elliptic estimates) and the right
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hand side is compactly supported, we again concludedthlaence Vu|, is
exponentially decaying. Further differentiating gives the assertigivfari,
l=2,....k+1.

Now we consider Case Il. It is shown in [BGH; p. 1023] that the vari-
ational problem (P) admits a unique solution for whighe|*Vu||, is
bounded byj| |z|'*# f||, for 1 € [0, 1). This shows the assertion fbe= 1.
The casd = 0 then follows immediately from Lemma 1 and the cases
1 =2,...,k+ 1 will follow from an iterative argument as before.

To prove forl = 2, we refer to a result of [MO1, MOZ2], where it has
been proved that\ is an isomorphism

A M22,71+u(9) — M&H”(Q)

for u € (=3, 3), where M? (1) is defined as the completion ¢ €
C>®(02) : v|,, =0, supfv) CcC R3} under the norm
HUHJV[ié(Q) = Z; | ‘$|m+6vm’0|’2

(we could derive this result also from the cdse 1, but we prefer to show
one iteration for the strong form of the differential equation). pix d,,.
Letp € C*(N2) with0 < ¢ < 1, ¢(x) = 0forz € B,(0) andgp(x) = 1
for z € £2\ B2, (0). Sincew := ¢u solves the differential equation:

—Aw = ¢(f —qu) —uAp —2Vu-Vé =: f in2, w = 0 ond,
we have )
| 2]V wlly < Coll ] fll,-

|| |z|*** f]|, can be shown to be bounded (depending on datad p;
observe thaf| [z"*qully < |||z[q|l. |||2]~**ull, and thatVe, A¢
have compact support). Now takié := |z|Vw. Again

12wy < Coll | AW ],.

Observing that

H |m|2+vv3 ‘2+l/v3w||2

ullyn,, < Il
< |lal VWi,
2] 292wl + | 2] V],

we obtain the assertion by computing
[z AW ]y < 2] |2Vl + (| 2" Vwlly + [[ |2V £l

and using the assumptions on data and previous results.



504 E. Bansch, W. Drfler

3. Discretisation

The idea of our approach is to construdi@unded computational domain
(2, such that the corresponding finite element solutigns close to the
continuous solutiom up to a given tolerance. This is expected to be possible
sinceu decays towards infinity at some rate (cf. Theorem 2). Thus we will
need(?, both discretised fine enough and large enough.

To simplify our presentation (that will focus on the disretisation of the
unbounded domain), we assume that we esact finite elementsf La-
grangian type at the finite part of the boundaryos?. These areurved
finite elementshat exactly represent the boundary. For a detailed analysis
see [Be]. For error estimates including the approximation of the boundary
see [BK] (a priori) and [DR] (a posteriori).

Let 2, C 2 be composed of generalised simplices (curved or straight)
in the usual way [Be, Ci (Ch. 2)]. In fact, every simplex having fewer than
two vertices ordw will be straight. By7;, we denote this set of simplices.
For eachl’ € 7, we fix a mappingF. (of classC*°) that maps the unit
simplexT” ontoT" (cf. [Be]). A finite element space of ordéion (2, is given

by

S}If = {Uh € CO(Q) VT €Ty, UhOFfl‘T € IP;,
vy, = 00nd2, and in2\2,} C S.

We assume that datg f are approximated by;,, f;, respectively, where
qn, frn are setto zero outsidg;. Then thaliscrete weak formulatioreads
as follows

find uy, € S,’j such that / Vuyp - Von + qpunon
(R) “
= /th¢h Vo, € S.

Since the left hand side @P;,) defines a strictly positive definite bilinear
form, a discrete solution;, of this problem exists.

Lemma 2. (A priori error estimate) Let, u;, be the solutions of problems
(P), (R,), respectively. Then

. o : o f—1fn
Casel: [[u—upllg < ;relfﬁHU Onlls +1| \/51”2;!2;1,

+Hq71qh Hoo;.Qh H%HZQH
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: — < 2 i —
Casell: lu—unlls < (1+4]ll2%dll) = onlls
+2 (1121(f = filllo,
+411122(a = @)l 1 o1l |, )-
Proof. We define the bilinear form : S x S — R by

a(u,v) ZZ/VU‘VU-F(]UU.
Q

a 1S continuous and coercive, that is, there is a number 0 such that for
allu,v e S
a(u,v) < Allullg|lvlls, alu,u) > |[ull?.

This is easily proved using estimates given in the proof of Theorem 1 and
we obtainA = 1in Case | andl = 1 + 4| |z|?q||, in Case II. Applying
the first Strang Theorem [Ci; Theorem 4.1.1] we obtain

lu —unlls < A inf ju—¢nlls

hE h 1
+ sup \ / (f = fn)vn + (an — Qupvnl.
wesivioy |vnlls Je

The second term on the right can be estimated by (as in the proof of Theo-
rem 1)

Case |l : Hf:/gh H2;Qh + H(I*QO Hoo;(?h HuhHS’

Case ll:  21[]z|(f = fu)llyq, + 411|217 (@ — @)l s, [1unlls-

The assertion follows, sindéuy|| g can be estimated as in Theorem 10

For the following we need quantities measuring geometrical properties
of a given discretisation. The first is given by

(3.1) o = maX{ZT : T € Tn, B,, the largest ball inscribe@’}
T

and controls the shape regularity of the simpliceg;0fThe second condi-

tion concerns the size of the simplices at the exterior boundary?, :=

002;\Ow. Let T2 be defined by

TP = {T € Th : TN 0wl # 0},
and define
dist(0, 7)

(3.2) Oext 1= IMax { dis
dr

: Teﬁa}.
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Later, we will make the assumption thaf;, o.,; will be uniformly bounded
on sequences of refined and enlarged discretisationso(kadhis require-
ment is known asiniform shape condition

We will further use the notation

29 = U T.
TeT?

Thegrid size functiomh € L>°(£2) is defined almost everywhere by
h‘T = hr :=dr VYT €7,

Let NV}, be a set of points in2;, with the following property: for each
p € N, there is a functiony, € SF such that{¢,},cx; forms a basis
of S¥ (Lagrange elemenysin addition, the functiong,, should have the
properties

supdp) C My = | T, ¢(a) = 6pq Vp,q €N
TeT, : peT

The next Lemma refers to the projection opera®r: S — S¥ defined in
[CI] by

(3.3) Plo = > cp(v)dy

peEN}

where ther, are continuous functionals ai? (M,,).

Lemma3. (Interpolation estimates) The projection operafeff defined
in (3.3)fulfils

Casel : [lv— P{ulls < C <||hkv’f+1v|rz;gh + ar [REITE g,

1 q1

with ¢1 := ||q||c and Ry, := dist(0, £29),

Case ll: [[v— Plul|s < C (Hh‘“vk*lvumh Vel

v
Hl g

forall v € SN HETH2(42). The constants depend 6, o1y, oy (Case

loc
I1), andk only.
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Proof. Let V¥ be the set of nodes located 8., £2;,. We can write

v = PYv|ls < [l — Pavlls.g, + || Pav — Pf(L)HS;Qg + 1vlls;\0,»

where P, is the projection operator from [Cl; Theorem 1]. It remains to
consider the last two terms of this inequality.
Exploiting the fact that the coefficientg obey the estimate (cf. [@2])

[[0]l9. ps
| < C— 222
P | bplly
we obtain
1By = PRI < € % lvlBay, < O llol2g.  (Case),

peNP
and similarly, usingz| < 20..dr for T € T2,
IV(P, — PR)oll3 < C X2 d%|\vf\g;Mp
pENa Mp

C o ol g, €

CH';—'H;Q’?, (Case ).

Case),

IN

Therefore, in Case Il we obtain (with = k£ + 1,1 = 0)

kk
o = Prolls.o, + lls.av0, < ClR*Vollyq,

v
+C HHHQ;QE + [l g0,
and in Case | the result follows analogouslyt

Theorem 3. (Convergence) Letbe the solution ofP)under the assump-
tions of Theorem. Choose a finite computational domaity as described
before such thatwithout loss of generalily B(0) C §2,\2¢ for some
R > d,. We defing?2, g := U{T € T}, : TN Br(0) # 0}. If f, andgy,
are k-th order approximations of andgq, respectively, o2, (k > 1), the
difference between and the discrete solution, € S} is estimated by

Casel: |[ju—uyl|lg < Ch*+ O(e 2908R)

for R > Ry, supg f) Usupfq) C Bg,(0),

. _ hiT k 1 } —v
Casell: [|lu—up|lg < CT:ITnCaéch’R{<|IT|> wry T o(R7"),



508 E. Bansch, W. Drfler

wherex. denotes the barycentre of a simplExand withy € [0, min{vy,

Vg, %}). The constants in this estimate depend on constants from interpola-
tion estimates and bounded norms of the solution and data, but nBtan

h. They are not uniformly bounded with respectte» %

Proof. We consider Case Il only, Case | is similar. To derive the result, we
have to consider the error terms appearing in Lemma 2 and Lemma 3.
Let R > d, be given. By assumption on data and Theorem 2 we obtain for
v as defined above

maX{H 27V Ul o) ¢ 1 E {0, Lk + 13 2PV fllgu Br(0):

12Vl sy o)} = oF™).

For the givenR we choose?;, that satisfies the requirements stated above.
Now we will use that, for example,

el = )l < ¢ (12lR* Y Il , + 11122V fllo\s000))-
A similar estimate can be obtained for the terms with ¢;, and we get
lu—uplls < (X +4]zqllo0) [F*VEully g,
+2¢ || |2 h*V* .0,
+8c [zl fnllo;g0, I 122hF V]|

+o(R™Y).

00;2n R

For the first term on the left hand side we further compute

Hhkkarlqu;Qh,R = ZT:TCf?h,R HhkkarluH%%T

IN

he \2F 1 k k
C Srircann(55) mm el viiul,

he \2F 4 k k+1..112
¢ max {(55) e el v g,

IN

This can be done similarly also for the two data error terms and this proves
the assertion. Choosing fir&t large enough and theln small enough on
{2y, r the error will become arbitrarily small. O

Remark 3The purpose of the following considerations is to show that the
number of unknowns required for a numerical solution with a prescribed
accuracye > 0 on an exterior domain iR? is comparable to the case of a
bounded domain. To this end we will assume that we are in the worst case
for an adaptive procedure (of fixed polynomial degkgthat is, the a priori
error terms are equally distributed.
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i) The case of a bounded domaihC R3. In this case we can compute
the step size that is necessary to achieve the accutagy

RE VM ]y < e
and the number of necessary degrees of freed@rissthen of the order
N ~ e 3/k,
i) The case of an exterior domai@ C R3. Here, we will refer to the
estimate given in Theorem 3.ii. Let= B;(0), R; := «’ for somex > 1,

andS; := Bg,,,(0)\Bg;(0) (j = 0,1,...). To get an error bound we
will need

h ko1
R ~ ¢ and (—T> V
|xT| |$T|

Let T € S;. Then|z,| ~ «/ and we choose (due to the second rela-
tion) hy ~ h; with hj/k; ~ (ex??)!/. On each layesS; we thus have a
number of unknowns proportional e’ /h;)® and the number of layers is

[ ~log(R). OutsideBr(0) we need additional layers to ensure a bounded
Oext- FOr this we assume that outsié; (0) the computational domaif?;,

is covered by rings of increasing width but with geometrical decreasing
number of unknowns (so that,; stays bounded). Hence the total amount
of unknowns outsidé3(0) will be bounded by a fixed number times the
number of unknowns in the last layer Bz (0). Therefore we obtain

: !
N o~ Z<Zj>3 _ 3k ;(K—:’wﬂc)j‘

For fixedk andv > 0 the last sum is bounded independently afnd thus
N depends in the same way eras in the case of a bounded domain. In
casev = 0, the error is onlyo(1) for R — oc. In this case one needs
N ~ e3/% log(R(€)) to achieve an accuracy ef

Remark 4.) One can prove Theorem 3 also for the cése- R3. We only
have to replace the weight| by /1 + |z|2.

i) Forv, = 0 Theorem 3 can be proved with givere [0, min{v, 3}). For

this we apply the stability estimaligz | up||, < C|| =] fx||5for € [0, 3)

(this holds in the continuous case [BGH]; the discrete version is technical
and requires a decomposition@f, in annular domains as in Remark 3) and
replace the last term in Lemma 2 By|* || 0., Il [2]” f]

2§Qh.
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4. A posteriori error estimates for exterior domains

Definition 1.
i) Forvy, € Sy, we define thecontinuous residualith respect to problem
(R.) by

relp == (=Avn + qavn — fo)l, VT € Th.

i) Let&y, be the set of all faces of simplices in the discretisafipexcluded
those omMw. Forx € E € &;, we define

rs(z) = [Opvp)p(z) == lim n- (Vup(z + sn) — Vuy(x — sn)),

s—0+

wheren is a given normal vector o (note that the definition above does
not depend on the orientation 0j. r, is calledsingular residual
iii ) Thelocal (residual) error indicatom,. is defined for eacl” € 7;, by

(4.1) = hillre

5.7 + brl|rs 3.0 00

Note that this estimator differs from the usual definition by additional jump
terms on the exterior boundary. For any subsgbf 7, we let

=Y

TeXy,

The following theorem shows that the error can be estimated by the com-
putable quantitnyH and data errors. The corresponding result for bounded
domains has been proved by [Ve].

Theorem 4. (A posteriori error estimates) Let, u;, be the solutions of
(P), (R,), respectively and let;, := u — uy,.

Case I: Assume that,, (defined in Lemma) is such thayRZ > 1. Then
the error is estimated by

f—1In q—an
o + 1] up| |-

Vi Vi

lealls < Cng, + |

Case I
lenlls < Cn +2 (al(f = fidllz + 11121 (a — an)unl o ).

The constant€’ depend oy, 0., (Case )k, andow.
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Proof.Letv € S be arbitrary andy, := Pv with P defined in Lemma 3.
Then

/ Vep - Vv + gepv = Z [Onun] g (v —vp,)
9}

Eeg&y, E
— /Q(_Auh + qnun — fn) (v —vy)

—|—/Q(f—fh)v+/g(Qh—Q)uhU
=: <rs,v—vh)—/m7“c(v—vh)

[ 7= s+ [ (@ o

The last two terms can be estimated as in Lemma 2. From the proof of
Lemma 3 we obtain (cf. also [@2; Lemma 2])

| rew =l < € (hrella, 11Volla +1Irellgp 1ol o0 )
h

Note that we haver| < 20..h on 22 (and1/,/goR, < 1 in Case ).
Therefore

Case I
], 7=l ST (Ul + s el gp) s
< C|lhrellsg, lIvlls,
Case II
<0 (Whrellasg, + Il alrellygp) llells
< Clhrellyg, IIolls:

In [D62; Lemma 2] it has been shown that

(v =) < C (D hrllaun) Bor 1V0le,
TET,

- 2
£ 30 b ldwun Bar 1v]B.00)
TeT?

-

For the last term we proceed as before

Remark 5.) Theorem 4 allows to estimate the error on theounded
domainbased on the actual discrete solutipn(here assumed to be known
exactly) and data. The constantepends on the quality of our grid only and

we can assign a reasonable value (of order one) by numerical experience.
np can be computed exactly for eaghe 7;,. Note that in contrast to a
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problem on a bounded domain it contains also jumps of the derivative on
the exterior boundary. The computation of the remaining terms requires
some a priori information on data since we have to integrate over large
elements (withh ~ dist(0,7")) or to estimate its influence from®\ £2;,.
These terms should not be neglected as “higher order terms”, as often done
in a posteriori error estimation.

i) We approximated the exterior domain problem by a problem on a finite
domain with homogeneous boundary conditions at the exterior boundary.
In the theory it turns out that the decay of the error with the diamg&ter

of the computational domain will, in Case I, in general be not better than
O(R~/2%5) (s > 0 small). This can be improved to k@(R—3/2+) if

we let the exterior boundary be a large sphere provided with a boundary
condition of mixed type [SC]. However, our numerical experiments show
that even with the simple Dirichlet boundary condition only few degrees of
freedom have to be invested in the far field, cp. Remark 8.i, Sect. 6. Thus we
do not see any need for replacing this simple Dirichlet boundary condition.

5. Numerical method

In this section we develop the mechanism to adaptively solve the exterior
domain problem. We start with a coarse and “small” macro—discretisation.
According to information provided by the error estimator introduced in (4.1)
this discretisation is successively refined and expanded. More precisely, if
the local estimation of the error on an element is too big, this element will
be refined if it lies in the interior of the domain. If the element is located at
the outer boundary, the computational dom&inhas to be expanded, i. e.
an additional element has to be added to the discretisation. Thus we iterate
the procedure

solve— estimate— refine/expand.

To this end, we need two numerical devices:

— amarking strategythat decides, where to refine and expand according
to the local error estimation,
— an algorithm that actuallsefinesandexpandsa given discretisation.

5.1. Marking strategy

In our computations we use tlgeiaranteed error reduction strategyro-
posed in [®1]. For that letu;, be a discrete solution on the grfg. Then
we choose the sef C 7, of elements to be refined such that

Ny 2 19777h
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Z\

Fig. 1. “Cartesian” structure in 2D and one macro block

for some parametef < (0,1). The setX should be as small as possi-
ble fulfilling the above inequality. See fil] on how to construct’ and
choosed.

5.2. Refinement/expansion strategy

The algorithm we present is an extension of a refinement algorithm based
on thebisection methodsee [B, Ma, Mi]. In order to get an efficient and
simple method we make the following two fundamental assumptions, that
appear to be quite natural:

— thereisR > 0 such that?,\ Br(0) is of “regular” structure, i. e. consists
of layers of macro blocks, each layer having the same topological and
geometrical structure and is divided into macro blocks in the same kind,
— all elements at the outer boundaryf@f are of coarsest level.

By the first assumption an additional block of macro elements can easily
be matched to the current discretisation at the outer boundary. Moreover
this assumption allows for using a simple data structure to keep track of the
expansion process.

The second assumption guarantees that there will be no hanging nodes
after having added a macro block.

We consider a grid expansion strategy that generate meshes with bounded
oo fOr d € {2,3}. Besides that this property was required in Case I, an
exponentially growing grid seems to be advantageous from a numerical
point of view also in Case I: only few steps of the expansion strategy are
needed to reach the final domain.

5.2.1. 2D case The simplest example of a regular structure is the Cartesian
one, see Fig. 1. Note that in this case the constagndefined by (3.1) trivially
stays bounded for the macro elements in a macro block whil€cf. (3.2))
blows up.
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Fig. 2. “Ring” structure in 2D and one macro block

Fig. 3. Icosahedron and one layer of the discretisation

To insure the boundednessxf; we choose a second possibility. Here,
the regular structure consists of “rings” of stretched quadrilaterals divided
into two triangles, see Fig. 2. Without loss of generality the centre of the
rings is the origin. The inner radiug and the outer radius;; of the j-th
ring are given by

_ EES |
rit1 = krj = K7,

respectively, with some > 1. It is easy do see that in this casg, and
Oext Stay bounded during expansion.

5.2.2. 3D case In analogy to the ring structure in 2D we define the

th layer in 3D as a discretisation of the annular region with inner radius
r; = k/ro and outer radius;;; = x/Try for somex > 1. The inner and
outer boundaries of these discretisations are icosahedra, i. e. consisting of
20 triangles. The macro blocks of one layer are the 20 prisms corresponding
to the 20 triangular faces. Each prism is subdivided in 3 tetrahedra in such
a way that the resulting discretisation is conforming, see Fig. 3.

5.2.3. Refinement/expansion algorithtAs mentioned above we incorpo-
rate expansion into the bisection method. We briefly recall the bisection
method. For details see for instancé&[Bla, Mi].



Adaptive finite elements for exterior domain problems 515

Fig. 4. Triangle with refinement edge

Fig. 5. Bisection of a single triangle

Before starting the refinement process one edge of every triangle of the
macro—discretisation is marked, see Fig. 4. This edge is cedfetement
edge To divide a single triangle, it is cut through the midpoint of the refine-
ment edge and the vertex opposite to the refinement edge. The refinement
edges for the new triangles are chosen as in Fig. 5. This kind of bisection is
callednewest vertex bisectipbecause the new refinement edges lie opposite
to the newest vertex.

There is also a natural generalization of this approach to 3D, sde [B

This local operation of bisecting an element is used to refine a given
discretisation (locally). For that |€f, be a given regular discretisation and
a subset C 7, of elements which should be divided. Then one proceeds
as follows:

Refinement algorithm:

while X' # () do
forall T e X
bisectT’
Y :={T € T : T has a non-conforming nogle
endwhile

It can easily be shown that this algorithm terminates in a finite number of
steps and that for a sequench, }. of successively refined discretisations
the constant;,; is bounded.

This algorithm can be modified to take into account also expansion. This
can be done in the following way. L&, be a given regular discretisation
and a subset’ C 7. of elements which should be divided or where the
discretisation has to be expanded. Then apply the following procedure:
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Refinement/expansion algorithm:

while X' # () do
forall T € X
if (T"is a boundary element)
add a macro block
bisectT
Y :={T € T : T has a non-conforming nogle
endwhile

“Add a macro block” is understood in the way explained above for the
ring structure in 2D and 3D.

If (for the 3D case) the decomposition of the prisms into 3 tetrahedra is
chosen properly, it is easy to show the following result:

Proposition 1. The above algorithm stops in a finite number of steps, the
resulting discretisations are conforming and for a sequence of successively
refined/expanded discretisations,, ando;,; are bounded.

Remark 6 From our construction and the proof ingBit is clear thatr.,;

and oy,,; stay bounded. The only point to show is the termination of the
algorithm. In addition to the pure refinement algorithm one has to prove that
the algorithm does not enforce infinitely many macro blocks to be added.
This is simple to see in 2D for the regular structures introduced above. In
3D one can easily check this for a given decomposition of the 20 prisms into
tetrahedra.

5.2.4. Convergence of the adaptive iteratiowe will summarize the pre-
vious description and establish convergence of the adaptive iteration in Case
Il with ¢ = 0 andk = 1 (for simplicity). Lete be the stopping criterion for

the estimated global error and assume that a macro—discretisation is given
such that the inner boundary d& and the outer bounda®y.,.{2;, has a
regular structure as described in 5.2.2.

Adaptive iteration. 1) Construct an initial mesfi, := 7},,, both fine and
large enough, such that

(5.1) max{ || [2/(f = fn.)

o [Pl < e

for some givern, > 0 and all refinements/expansiofg, of 7p.

2) Given adiscretisatiody := 7, forl > 0, we compute the (exact) discrete
solutionu;, the local error indicatorg,. for ' € 7;, andn, := n. If g, <,
then stop. Otherwise mark a setof elements ir/; as described in 5.1 and
refine/expand the grid as in 5.2. Denote the new grifijhy and continue.



Adaptive finite elements for exterior domain problems 517

Theorem 5.Assume that we have a sequence of discretisations and discrete
solutions inS}, constructed by the algorithm above. Then there are numbers
e > 0andp € (0, 1), depending om;,, 0., and® only (cf. Proposition

1), such that the following holds: If we start from a macro—discretisafign
such that(5.1) holds for some: < u., we have for subsequent errors

IVerilly < pllVeilly

as long as); > e.

Proof. The proof follows the lines of [D1] with minor changes. We give a
short sketch. Let?; be a given computational domain with finite element
spaceS‘ll. Let(2;, 1 be obtained froni2; by the refinement/expansion process
described before. Obviouslg, C (24, andS} C S}, ;. If u is the exact
solution ande; ande;.; are the errors for the exact discrete solutions, we
obtain using (5.1)

IVell3 > [[Versal3 + |V (w — wi)|[3 — 8p?e®.

If £7 denotes the set of all faces of simpliceg/jrthat have been divided to
get7;.1 or have become inner faces after expansion, we get

> dp||V[onulellle < o ([[V(w — w3 + p’e)
Eeg?

(here and inthe subsequel all constants will depend.gno.,; only). Using
in addition the marking and refinement/expansion strategy (5.1, 5.2) as well
as Theorem 4 we conclude

IVedl|3 = [[Veralld > e2(9? = esu®)[[Verll3

for . small enough, as long ag. > €. Note that the convergence factor
1 — co(9? — c3p?) does not depend dn O

Remark 7.) The first step in our adaptive algorithm needs a priori infor-
mation on the contribution gf| f outside the given computational domain.
The construction of the initial mesh (that is, a mesh that satisfies (5.1) for
some givery) is done as in part 2) of the adaptive iteration, but with local
er_ror_indicators;% r= max{|| |[z[(f — fno)lla.7 » I[h0fhollo,r} @Nd Stopping
criterion pe.

ii) In our analysis and the numerical algorithm we made the idealization that
we have computed the exact numerical solutigrin practice, however, we
accept the outcome of some iterative linear equation solver with some stop-
ping criterion. In our examples we used a stopping criterion which is strict
enough to ensure that the corresponding error is negligible compared to the
estimated error. Connections between iteration errors and errors in the finite
element solution have been studied in [BD].
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Table 1. Results for the 2D problem, discretisation by linear elements

% 1 2 3 z 5 6
N 504 576 840 1752 5064 13848
max.rad. 1.69 3.80 854 1281 1281 19.22
lex|ls 0730 0197 0.130 0.090 0.049 0.031
EOC — 1849 212 097 114 091
EOG, — 384 220 121 098 095

6. Numerical results

In order to get a measure for the numerical efficiency we define the exper-
imental order of convergence EQK in the k-th iteration step in terms of
the number of unknowna/,.:

log(|lex—1lls/llexlls)
EOCk) :=d
C( ) 10g(Nk/Nk_1)
and the numerical experimental order of convergence E®C
log (y,_1/m;)
log(Ny/Ni—1)

EOG, (k) := d

6.1. 2D case
Setq = 1, up = const. andw = B1(0), 2 = R?\w, so we solve
—Au+u=0 in £,
u = const. oms2,

lim wu(z) = 0.
|z|—o0

Choosingup appropriatelyy is given byu(z) = Ko(x), Ko the modified
Bessel (or Macdonald) function. In Table 1 the results using the refine-
ment/expansion strategy are listed. Figure 6 shows the triangulations and
Fig. 7 the graph of.;, on the final grid.

6.2. 3D case
We consider the following problem:
—Au =0 in 2,
u = up 0nas2,

lim wu(z) = 0,
|z|—o0
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Fig. 6. Computational domaing},; initial domain and domains after 3, 4 and 6 iterations
respectively

Fig. 7. Graph ofu,, after 6 iterations

with w = B1(0), 2 = R3\w. The boundary values are defined such that the
solution is a dipole field:

up(z) = u(z) = %

Table 2 shows the results using linear elements, Table 3 reports the results
for quadratic elements. Figures 8 and 9 display the discrete solutions and
corresponding grids.

Remark 8.) As expected, the experimental order of convergence is 1 for
linear elements and 2 for quadratics, thus confirming our considerations in
Remark 3. Furthermore, most of the unknowns are located in the interior
of the domain. This means that there is no need for replacing the simple
conditionu, = 0 at the exterior boundary by a more sophisticated one.

i) The advantage using quadratic elements compared to linear elements for
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Table 2. Results for the 3D problem, discretisation by linear elements

k 1 2 3 4 5 6 7 8 9 10 11

Ny, 520 652 1032 1900 3758 6686 13166 23152 43658 88096 163128
max.rad. 4.0 8.0 16.0 320 64.0 64.0 128.0 128.0 256.0 512.0 512.0
llex]ls 1.962 1.584 1.341 1.066 0.882 0.719 0.574 0.474 0.380 0.303 0.244
EOC — 234 097 105 080 1.07 095 1.02 1.06 093 1.06

EOG, — 281 133 124 075 1.10 1.07 093 1.09 098 1.00

Table 3. Results for the 3D problem, discretisation by quadratic elements

3 1 2 3 4 5 6 7 8 9

N 3538 3860 4570 5956 8482 14650 28100 47492 66676
max.rad. 40 80 160 320 640 640 1280 2560 256.0
llex]ls  0.903 0.635 0.435 0.338 0.233 0.170 0.121 0.082 0.065

EOC — 1214 6.72 287 316 173 155 222 205
EOGC, — 1412 6.11 307 341 168 162 246 211
L]

&

&

Fig. 8. Computational domaing},; initial domain and domains after 3, 4, 5 and 9 iterations
respectively, quadratic elements

our concrete numerical example can clearly be seen from Tables 2 and 3. To
achieve e. g. an accuracy of abéL2 one has to spend about 20-times the
number of unknowns using linear elements, resulting in a CPU time, which
is 22-times higher.

ii) In order to solve the resulting systems efficiently we use multilevel
preconditioning. Some care has to be taken due to the fact that the macro
elements are not of equal size. So the method of choi® iis the MDS
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Fig. 9. Clip atzs = 0 into the final triangulation, quadratic elements

Table 4. Numbers of PCG-iterations, Iterd diagonal scaling, Iter2 MDS, linear elements

k 1 2 3 4 5 6 7 8 9 10 11

N, 520 652 1032 1900 3758 6686 13166 23152 43658 88096 163128
lter1 17 31 38 48 51 61 74 83 88 106 114
lter2 24 31 34 33 33 41 39 37 42 41 42

preconditioner, see [Ys]. See also Table 4 for a comparison using simple
diagonal scaling and MDS preconditioning.

7. Conclusions

We proved a priori and a posteriori error estimates (using only a priori in-
formation on data in the latter case) for the numerical solution of Poisson’s
equation with homogeneous boundary conditions on an exterior domain in
R? or R3. Thereby the numerical solution is computed on a finite computa-
tional domain with homogeneous Dirichlet data. By a refinement/expansion
technique for the grid in connection with the use of an a posteriori error
estimator we get an efficient and reliable method. The strategy may eas-
ily be incorporated into existing adaptive finite element codes on bounded
domains. We are able to prove convergence for our adaptive procedure.
Numerical examples confirm the expected optimal order of convergence in
terms of number of unknowns.
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