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Summary. A third-order accurate Godunov-type scheme for the approxi-
mate solution of hyperbolic systems of conservation laws is presented. Its
two main ingredients include: 1. A non-oscillatory piecewise-quadratic re-
construction of pointvalues from their given cell averages; and 2. A central
differencing based onstaggeredevolution of the reconstructed cell aver-
ages. This results in a third-order central scheme, an extension along the
lines of the second-order central scheme of Nessyahu and Tadmor [NT].
The scalar scheme is non-oscillatory (and hence – convergent), in the sense
that it does not increase thenumberof initial extrema (– as does the exact
entropy solution operator). Extension to systems is carried out bycompo-
nentwiseapplication of the scalar framework. In particular, we have the
advantage that, unlike upwind schemes, no (approximate) Riemann solvers,
field-by-field characteristic decompositions, etc., are required. Numerical
experiments confirm the high-resolution content of the proposed scheme.
Thus, a considerable amount of simplicity and robustness is gained while
retaining the expected third-order resolution.

Mathematics Subject Classification (1991):65M10; 65M05

1 Introduction

In this paper we present a third-order, non-oscillatory central difference
scheme for the approximate solution of nonlinear systems of hyperbolic
conservation laws. The scheme can be viewed as natural next step in the
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sequel to the first-order Lax-Friedrichs(LxF) scheme, and the second-order
central scheme of Nessyahu and Tadmor, [NT]. Our third-order scheme
enjoys a major advantage of the central schemes over the upwind ones, in
that no Riemann solvers are involved. The use of third-order piecewise-
quadratic approximation compensates for the excessive viscosity typical to
the first-order LxF piecewise-constant solution, and it offers an improved
resolution beyond the second-order piecewise-linear approximation used in
[NT]. The result is a simple, robust, Riemann-solver-free central difference
scheme with third-order resolution.

In Sect. 2, we provide a self-contained discussion on Godunov-type
schemes. Such schemes are based on piecewise-polynomialreconstruction–
reconstruction of pointvalues from cell averages, followed by anevolution
step – the evolution of approximate fluxes. Our point of view is that the
distinction between upwind and central Godunov-type schemes, lies in the
way they realize the evolution of these piecewise-polynomials: Upwind
schemes sample the reconstructed values at themid-cells; central schemes
are based onstaggeredsampling at the interfacingbreakpoints.

In Sect. 3, we recall the non-oscillatory third-order accurate reconstruc-
tion due to Liu and Osher [LO], and combine it with central differenc-
ing, based onstaggeredsampling along the lines of [NT]. Thus, at each
time-level, we reconstruct from the given cell-averages, a non-oscillatory
piecewise-quadratic approximation of third-order accuracy. We then follow
the evolving solution to the next time level, and end up by projecting back
the staggered cell-averages of the solution.

In Sect. 4 we take a closer look at the non-oscillatory character of our
scalar third-order scheme, proving it is non-oscillatory in the sense of sat-
isfying the Number of Extrema Diminishing (NED) property; this, together
with an L∞-bound imply the total-variation boundedness and hence the
convergence of the third-order approximate solution.

Finally, in Sect. 5 we present numerical experiments with our third-
order, non-oscillatory central difference scheme. Both the quantitative and
qualitative results for a representative sample of compressible flow problems
governed by Euler equations, are found to be in complete agreement with
the high resolution expected by the scalar analysis. Taking into account
the ease of implementation, robustness and time performance, these results
compare favorably with the results obtained by the corresponding upwind-
based schemes. Similar results regarding the advantages ofcentral over
upwindschemes in robustness, efficiency and simplicity, were concluded
by e.g., Sanders, [Sa1],[Sa2], and Huynh, [Hu], and were further amplified
by our numerical experiments in the forthcoming [JT], [TW].

We conclude this Introduction with a brief overview of previous work on
non-oscillatory schemes of third-order accuracy. The first pioneering work

Numerische Mathematik Electronic Edition
page 398 of Numer. Math. (1998) 79: 397–425



Third order nonoscillatory central scheme for hyperbolic conservation laws 399

in this category is due to Colella and Woodward, [CW]. Their PPM method,
as well as the third-order versions of the ENO scheme, [HEOC], [Sh], in-
tegrate a co-monotonicity constrained piecewise-parabolic reconstruction
into the framework ofupwindGodunov-type scheme. Sanders [Sa1], and
Sanders and Weiser [SW], introduced a third-ordercentral scheme which
satisfies the Total-Variation Diminishing (TVD) property; to circumvent
the second-order limitation of TVD schemes, [OT], Sanders advances both
– mid-cell averages and interface pointvalues. The latter, however, were
evolved by ray tracing which require the complexity of characteristic infor-
mation. Finally, Huynh, [Hu], simplifies Sanders’ approach, using his own
co-monotone piecewise-parabolic reconstruction augmented with pointwise
evolution along the lines of [NT].

2 Godunov-type schemes

We want to solve the hyperbolic system of conservation laws

ut + f(u)x = 0(2.1)

by Godunov-type schemes. To this end we proceed in two steps. First, we
introduce a small spatial scale,∆x, and we consider the corresponding
(Steklov) sliding average ofu(·, t),

ū(x, t) :=
1

|Ix|
∫

Ix

u(ξ, t)dξ, Ix =
{

ξ
 |ξ − x| ≤ ∆x

2

}
.

The sliding average of (2.1) then yields

ūt(x, t) +
1

∆x

[
f(u(x +

∆x

2
, t)) − f(u(x − ∆x

2
, t))

]
= 0.(2.2)

Next, we introduce a small time-step,∆t, and integrate over the slabt ≤
τ ≤ t + ∆t,

ū(x, t + ∆t) = ū(x, t) − 1
∆x

[∫ t+∆t

τ=t
f(u(x +

∆x

2
, τ))dτ

−
∫ t+∆t

τ=t
f(u(x − ∆x

2
, τ))dτ

]
.(2.3)

We end up with an equivalent reformulation of the conservation law (2.1):
it expresses the precise relation between the sliding averages,ū(·, t), and
their underlying pointvalues,u(·, t). We shall use this reformulation, (2.3),
as the starting point for the construction of Godunov-type schemes.
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We construct an approximate solution,w(·, tn), at the discrete time-
levels,tn = n∆t. Here,w(x, tn) is a piecewise polynomial written in the
form

w(x, tn) =
∑

pj(x)χj(x), χj(x) := 1Ij ,

wherepj(x) are algebraic polynomials supported at the discrete cells,Ij =
Ixj , centered around the midpoints,xj := j∆x. An exactevolution of
w(·, tn) based on (2.3), reads

w̄(x, tn+1) = w̄(x, tn) − 1
∆x

[∫ tn+1

tn
f(w(x +

∆x

2
, τ))dτ

−
∫ tn+1

tn
f(w(x − ∆x

2
, τ))dτ

]
.(2.4)

To construct a Godunov-type scheme, werealize(2.4) – or at least an accu-
rate approximation of it, at discrete gridpoints. Here, we distinguish between
the main methods, according to their way ofsampling(2.4): these two main
sampling methods correspond to upwind schemes and central schemes.

2.1 Upwind schemes

Letw̄n
ν abbreviates the cell averages,w̄n

ν := 1
∆x

∫
Iν

w(ξ, tn)dξ. By sampling
(2.4) at themid-cells, x = xν , we obtain an evolution scheme for these
averages, which reads

w̄n+1
ν = w̄n

ν − 1
∆x

[∫ tn+1

τ=tn
f(w(xν+ 1

2
, τ))dτ −

∫ tn+1

τ=tn
f(w(xν− 1

2
, τ))dτ

]
.

(2.5)
Here, it remains to recover thepointvalues,{w(xν+ 1

2
, τ)}ν , tn ≤ τ ≤ tn+1,

in terms of their known cell averages,{w̄n
ν }ν , and to this end we proceed in

two steps:

– First, thereconstruction– we recover the pointwise values ofw(·, τ) at
τ = tn, by a reconstruction of a piecewise polynomial approximation

w(x, tn) =
∑
j

pj(x)χj(x), p̄ν(xν) = w̄n
ν .(2.6)

– Second, theevolution–w(xν+ 1
2
, τ ≥ tn) are determined as the solutions

of the generalized Riemann problems

wt + f(w)x = 0, t ≥ tn; w(x, tn) =

{
pν(x) x < xν+ 1

2
,

pν+1(x) x > xν+ 1
2
.

(2.7)
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Fig. 2.1. Upwind differencing by Godunov-type scheme

The solution of (2.7) is composed of a family of nonlinear waves – left-going
and right-going waves. An exact Riemann solver, or at least an approximate
one is used to distribute these nonlinear waves between the two neighboring
cells,Iν andIν+1. It is this distribution of waves according to their direction
which is responsible forupwind differencing, consult Fig. 2.1. We briefly
recall few canonical examples for this category of upwind Godunov-type
schemes.

The original Godunov scheme is based on piecewise-constant recon-
struction,w(x, tn) = Σw̄n

j χj , followed by an exact Riemann solver. This
results in a first-order accurate upwind method [Go], which is the fore-
runner for all other Godunov-type schemes. A second-order extension was
introduced by van Leer [Le]: his MUSCL scheme reconstructs a piece-
wise linear approximation,w(x, tn) = Σpj(x)χj(x), with linear pieces of

the formpj(x) = w̄n
j + w′

j

(
x−xj

∆x

)
so thatp̄j(xj) = w̄n

j . Here thew′
j-s

are possibly limited slopes which are reconstructed from the known cell-
averages,w′

j = w′{w̄n
j−1, w̄

n
j , wn

j+1}. (Throughout the paper we use primes,
w′

j , w
′′
j , . . ., to denotediscretederivatives, which approximate the corre-

sponding differential ones). A whole library of limiters is available in this
context, so that the co-monotonicity ofw(x, tn) with Σw̄jχj is guaranteed,
e.g., [Sw]. The Piecewise-Parabolic Method (PPM) of Woodward-Colella
[CW] and respectively, ENO schemes of Harten et.al. [HEOC], offer, re-
spectively, third- and higher-order Godunov-type upwind schemes. Fianlly,
we should not give the impression that limiters are used exclusively in con-
junction with Godunov-type schemes. Thepositive schemesof Liu and Lax,
[LL], offer simple and fast upwind schemes for multidimensional systems,
based on an alternative positivity principle.

2.2 Central schemes

As before, we seek a piecewise-polynomial,w(x, tn) = Σpj(x)χj(x),
which serves as an approximate solution to theexactevolution of sliding
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averages in (2.4),

w̄(x, tn+1) = w̄(x, tn) − 1
∆x

[∫ tn+1

tn
f(w(x + ∆x

2 , τ))dτ

−
∫ tn+1

tn
f(w(x − ∆x

2 , τ))dτ

]
.(2.8)

Note that the polynomial pieces ofw(x, tn) are supported in the cells,Iν ={
ξ
 |ξ − xν | ≤ ∆x

2

}
, with interfacing breakpoints at the half-integers grid-

points,xν+ 1
2

=
(
ν + 1

2

)
∆x.

We recall that upwind schemes (2.5) were based on sampling (2.4) in the
midcells, x = xν . In contrast, central schemes are based on sampling (2.8)
at theinterfacing breakpoints, x = xν+ 1

2
, which yields

w̄n+1
ν+ 1

2
= w̄n

ν+ 1
2
− 1

∆x

[∫ tn+1

τ=tn
f(w(xν+1, τ))dτ −

∫ tn+1

τ=tn
f(w(xν , τ))dτ

]
.

(2.9)
We want to utilize (2.9) in terms of the known cell averages at time level
τ = tn, {w̄n

ν }ν . The remaining task is therefore to recover thepointval-
ues{w(·, τ)| tn ≤ τ ≤ tn+1}, and in particular, thestaggered averages,
{w̄n

ν+ 1
2
}. As before, this task is accomplished in two main steps:

– First, we use the given cell averages{w̄n
ν }ν , to reconstructthe pointval-

ues ofw(·, τ = tn) as piecewise polynomial approximation

w(x, tn) =
∑
j

pj(x)χj(x), p̄ν(xν) = w̄n
ν .(2.10)

In particular, the staggered averages on the right of (2.9) are given by

w̄n
ν+ 1

2
=

1
∆x


∫ x

ν+1
2

xν

pν(x)dx +
∫ xν+1

x
ν+1

2

pν+1(x)dx


 .(2.11)

The resulting central scheme (2.9) then reads

w̄n+1
ν+ 1

2
=

1
∆x


∫ x

ν+1
2

xν

pν(x)dx +
∫ xν+1

x
ν+1

2

pν+1(x)dx




− 1
∆x

[∫ tn+1

τ=tn
f(w(xν+1, τ))dτ −

∫ tn+1

τ=tn
f(w(xν , τ))dτ

]
.(2.12)
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Fig. 2.2. Central differencing by Godunov-type scheme

– Second, we follow theevolutionof the pointvalues along the mid-cells,
x = xν , {w(xν , τ ≥ tn)}ν , which are governed by

wt + f(w)x = 0, τ ≥ tn; w(x, tn) = pν(x) x ∈ Iν .(2.13)

Let {ak(u)}k denote the eigenvalues of the JacobianA(u) := ∂f
∂u . By

hyperbolicity, information regarding the interfacing discontinuities at
(xν± 1

2
, tn) propagates no faster thanmax

k
|ak(u)|. Hence, the mid-cells

values governed by (2.13),{w(xν , τ ≥ tn)}ν , remain free of discon-
tinuities, at least for sufficiently small time step dictated by the CFL
condition∆t ≤ 1

2∆x · max
k

|ak(u)|. Consequently, since the numerical

fluxes on the right of (2.12),
∫ tn+1

τ=tn f(w(xν , τ))dτ , involve only smooth
integrands, they can be computed within any degree of desired accuracy
by an appropriate quadrature rule.

It is the staggeredaveraging over the fan of left-going and right-going
waves centered at the half-integered interfaces,(xν+ 1

2
, tn), which charac-

terizes thecentral differencing, consult Fig. 2.2. A main feature of these
central schemes – in contrast to upwind ones, is the computation ofsmooth
numerical fluxes along the mid-cells,(x = xν , τ ≥ tn), which avoids the
costly (approximate) Riemann solvers. A couple of examples of central
Godunov-type schemes is in order.

The first-order Lax-Friedrichs (LxF) approximation is the forerunner for
such central schemes – it is based on piecewise constant reconstruction,
w(x, tn) = Σpj(x)χj(x) with pj(x) = w̄n

j . The resulting central scheme,
(2.12), then reads (with the usual fixed mesh ratioλ := ∆t

∆x )

w̄n+1
ν+ 1

2
=

1
2
(w̄ν + w̄ν+1) − λ

[
f(w̄ν+1) − f(w̄ν)

]
.(2.14)

Nessyahu and Tadmor introduced in [NT] a second-order extension along
these lines. Using the piecewise-linear MUSCL reconstruction,

w(x, tn) =
∑

pj(x)χj(x), with pj(x) = w̄n
j + w′

j

(
x − xj

∆x

)
,
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leads to a straightforward evaluation of staggered averages

w̄n
ν+ 1

2
:=

1
∆x

∫ xn+1

xj

w(x, tn)dx

=
1
2
(w̄n

ν + w̄n
ν+1) +

1
8
(w′

ν − w′
ν+1).(2.15)

The numerical flux is approximated by the second-order midpoint quadrature
rule ∫ tn+1

τ=tn
f(w(xν , τ))dτ ∼ ∆t · f(w(xν , t

n+ 1
2 )).

Here, the pointwise values at the half-time steps are evaluated by Tay-
lor expansion (– recall the smoothness of (2.13) along the cell interfaces,
(xν , τ ≥ tn)),

w(xν , t
n+ 1

2 ) ∼ w(xν , t) +
∆t

2
wt(xν , t

n)

= w̄n
ν − ∆t

2
A(w̄n

ν )(pν(xν , t
n))x = w̄n

ν − λ

2
An

νw′
ν .

In summary, we end up with the central scheme, [NT], which consists of a
first-orderpredictor step,

w
n+ 1

2
ν = w̄n

ν − λ

2
An

νw′
ν , An

ν := A(w̄n
ν ),(2.16)

followed by the second-ordercorrector step, (2.12),

w̄n+1
ν+ 1

2
=

1
2
(w̄n

ν + w̄n
ν+1) +

1
8
(w′

ν − w′
ν+1) − λ

[
f(w

n+ 1
2

ν+1 ) − f(w
n+ 1

2
ν )

]
.

(2.17)

Thescalarnon-oscillatory properties of (2.16)–(2.17) were proved in [NT],
[NTT], including TVD, cell entropy inequality,L1

loc− error estimates. . .
Moreover, the numerical experiments, reported in [Ne], [NT], [ASV], [TW],
with one- and multi-dimensionalsystemsof conservation laws, show that
such second-order central schemes enjoy the same high-resolution as the cor-
responding second-order upwind schemes do. Thus, the excessive smearing
typical to the first-order LxF central scheme is compensated here by the
second-order accurate MUSCL reconstruction.

At the same time, the central scheme (2.16)–(2.17) has the advantage
over the corresponding upwind schemes, in that no (approximate) Riemann
solvers, as in (2.7), are required. Hence, these Riemann-free central schemes
provide an efficient high-resolution alternative in the one-dimensional case,
and a particularly advantageous framework for multidimensional computa-
tions, e.g., [AV], [ASV], [JT]. Also,staggeredcentral differencing, along the
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lines of the Riemann-free Nessyahu-Tadmor scheme (2.16)–(2.17), admits
simple efficient extensions in the presence of general source terms, [Er], and
in particular, stiff source terms, [BS]. Indeed, it is a key ingredient behind
the relaxation schemes studied in [JX], . . .

It should be noted, however, that the component-wise version of these
central schemes might result in deterioration of resolution at the computed
extrema. Of course, this – so called extrema clipping, is typical to high-
resolution upwind schemes as well; but it is more pronounced with our
central schemes due to the built-in extrema-switching to the dissipative LxF
scheme. Indeed, once an extrema cell,Iν , is detected (by the limiter), it sets
a zero slope,w′

ν = 0, in which case the second-order scheme (2.16)–(2.17)
is reduced back to the first-order LxF, (2.14).

With this in mind, we now turn to discuss athird-orderaccurate Godunov-
type central scheme along the above lines. It offers an improved resolution
over the second-order central scheme (2.16)–(2.17), and in particular, this
additional accuracy compensates for the lost resolution at the clipped ex-
trema.

3 Third-order central Godunov-type scheme

In this section we introduce our new third-order, non-oscillatory central
Godunov-type scheme. Following the framework outlined in Sect. 2, the
construction of such scheme consists of two main ingredients:

(i) A third-order, piecewise-quadratic polynomial reconstruction which en-
joys desirable non-oscillatory properties;

(ii) An appropriate quadrature rule to approximate the numerical fluxes
along cells’ interfaces.

We first address thescalar problem. And again, it should be reminded
that since our central scheme avoids (approximate) Riemann solvers, its
extension tosystemsmay proceed by a straightforwardcomponent-wiseap-
plication of the scalar recipe – no characteristic decompositions are required.

3.1 Third-order non-oscillatory reconstruction

We shall use the third-order non-oscillatory reconstruction of Liu and Osher
[LO]. Here is a reader’s digest for this reconstruction.

We start by seeking quadratic polynomials,qj(x) = aj + bj

(
x−xj

∆x

)
+

cj

(
x−xj

∆x

)2
, such that the piecewise parabolic reconstruction,w(x, tn) =

Σqj(x)χj(x), satisfies the two properties of:

P1 Conservation. Conserving the given cell-averages,{w̄n
j }j
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w̄(x, tn)|x=xj
= w̄n

j(3.1)

P2 Accuracy. Third-order accuracy

w(x, tn) = u(x, tn) + O((∆x)3).(3.2)

To satisfyP1 andP2, one constructs a quadratic polynomial,qj(x), whose
sliding averages interpolatēwj (– that is, propertyP1), and, in addition, it
interpolates the two neighboring cell averages,w̄n

j±1. The three constrains
then determine the unique parabola1

qj(x) =
(

w̄n
j − 1

24
∆+∆−w̄n

j

)
+ ∆0w̄

n
j

(
x − xj

∆x

)

+
1
2
∆+∆−w̄n

j ·
(

x − xj

∆x

)2
,(3.3)

which satisfies both (3.1) and (3.2). Moreover, since

q′
j(xj− 1

2
)q′

j(xj+ 1
2
) = ∆−w̄j · ∆+w̄j/(∆x)2,

it follows that the quadratic reconstruction in (3.3) satisfies the important
property of

P3 Shape-preserving. qj(x) has the same shape as
∑j+1

i=j−1 w̄n
i χi, that is,

– qj(x) is monotone (onIj) iff the cell averages{w̄n
j−1, w̄

n
j , w̄n

j+1} are;
– qj(x) admits an extremum value in the interior ofIj iff w̄n

j is an
extremum value (w.r.t̄wn

j±1).

The shape preserving propertyP3 tells us that the piecewise-parabolic re-
construction,w(x, tn) =

∑
j qj(x)χj(x), creates no new extrema at the

interior of the cells,Ij ’s; thus, spurious extrema, if any, can be createdonly
at interfaces where

sgn(qj+1(xj+ 1
2
) − qj(xj+ 1

2
)) 6= sgn(w̄n

j+1 − w̄n
j ).

To avoid such spurious extrema, we now turn to the last (– and essential) step
of limiting the reconstruction. To this end we consider convex modification
of the form

pj(x) = w̄n
j + θj(qj(x) − w̄n

j ), 0 < θj < 1.(3.4)

Sincep′
j(x) = θjq

′
j(x), propertiesP1 andP3 remain valid. Moreover, a

limiter θj is sought so that(1 − θj) is proportional to the interface jump,
qj+1(xj+ 1

2
)− qj(xj+ 1

2
); by the third-order accuracy ofq(·), the size of this

jump – and hence of(1−θj), is of orderO((∆x)3), and hence the modified
quadratic,pj(x) remains third-order accurate ( – propertyP2). Finally, it

1 We denote, as usual,∆±w(x) = ±(w(x ± ∆x) − w(x)) and∆0 = 1
2 (∆+ + ∆−)
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remains to specifyθj so as to eliminate spurious interface extrema. One
constructs such a limiterθj in terms of the cell quantities,

Mj = max
x∈Ij

qj(x), mj = min
x∈Ij

qj(x),(3.5)

(one need not actually compute these extremal values as we shall clarify in
a moment), and,


Mj± 1

2
= max

{
1
2(w̄n

j + w̄n
j±1), qj±1(xj± 1

2
)
}

,

mj± 1
2

= min
{

1
2(w̄n

j + w̄n
j±1), qj±1(xj± 1

2
)
}

.
(3.6)

The limiterθj is then given by

θj =




min
{

M
j+1

2
−w̄n

j

Mj−w̄n
j

,
m

j− 1
2

−w̄n
j

mj−w̄n
j

, 1
}

, if w̄n
j−1 < w̄n

j < w̄n
j+1,

min
{

M
j− 1

2
−w̄n

j

Mj−w̄n
j

,
m

j+1
2

−w̄n
j

mj−w̄n
j

, 1
}

, if w̄n
j−1 > w̄n

j > w̄n
j+1,

1 otherwise
(if ∆+w̄n

j · ∆−w̄n
j < 0).

(3.7)

Remark.We observe that the limiterθj is ‘switched-on’ only when the cell
averages,{w̄n

j−1, w̄
n
j , w̄n

j+1}, form a monotone sequence, which in turn,
by the shape-preserving propertyP3, implies thatqj(x)|x∈Ij

is monotone.
Hence, the pair of cell quantities{Mj , mj} in (3.5) admits one of the fol-
lowing two explicit values: either{Mj , mj} = {qj(xj+ 1

2
), qj(xj− 1

2
)} in

the first increasing case, and in particular,Mj+ 1
2
− Mj andmj− 1

2
− mj are

of orderO((∆x)3); or, {Mj , mj} = {qj(xj− 1
2
), qj(xj+ 1

2
)} in the second

decreasing case, and in particular,Mj− 1
2
−Mj andmj+ 1

2
−mj are of order

O((∆x)3). Consequently, in both cases,θj in (3.7) is a third-order limiter
as asserted, for1 − θj = O((∆x)3).

It was shown in [LO] that with this choice ofθj ’s, the resulting quadratic
reconstruction satisfies

P4 Non-oscillatory property. The piecewise-quadratic reconstruction is non-
oscillatory in the sense that

sgn(pj+1(xj+ 1
2
) − pj(xj+ 1

2
)) = sgn(w̄n

j+1 − w̄n
j ).(3.8)

In summary, the resulting piecewise parabolic reconstruction,w(x, tn) =
Σpj(x)χj(x), consists of quadratic pieces of the form

pj(x) = wn
j + w′

j

(
x − xj

∆x

)
+

1
2
w′′

j

(
x − xj

∆x

)2
.(3.9)
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Here,w′′
j are the (pointvalues of) thereconstructed second derivatives

w′′
j := θj∆+∆−w̄n

j ;(3.10)

w′
j are the (pointvalues of) thereconstructed slopes,

w′
j := θj∆0w̄

n
j ;(3.11)

andwn
j are thereconstructed pointvalues

wn
j := w̄n

j − w′′
j

24
.(3.12)

Observe that, starting with third- (and higher-) order accurate methods,
pointwise valuescannotbe interchanged with cell averages,wn

j 6= w̄n
j .

By propertiesP1 andP2, w(x1, t
n) = Σpj(x)χj(x) is a third-order

cell conservative reconstruction. By propertiesP3 and P4, it is a non-
oscillatory reconstruction in the sense thatN(w(·, tn)) – the number of
extrema ofw(x, tn), does not exceed that of its piecewise-constant projec-
tion, N(Σw̄n

j χj(·)),
N(w(·, tn)) ≤ N(Σw̄n

j χj(·)).(3.13)

We close this section by noting that one can further modify the limiter
θj in (3.5)–(3.7), consult [LO], so that the resulting quadratic reconstruc-
tion (3.9)–(3.12) satisfies – in addition to the NED property (3.13), also
the strict maximum principleproperty,‖w(·, tn)‖L∞ ≤ ‖Σw̄n

j χj(·)‖L∞ .
Consequently, the corresponding third-order reconstruction is total-variation
non-increasing.

3.2 The third-order scheme – scalar equations

The third-order accurate reconstruction of Sect. 3.1 is evolved in time using
the central Godunov-type framework outlined in (2.9),

w̄n+1
ν+ 1

2
= w̄n

ν+ 1
2
− 1

∆x

[∫ tn+1

τ=tn
f(w(xν+1, τ))dτ −

∫ tn+1

τ=tn
f(w(xν , τ))dτ

]
.

(3.14)
To this end we need to evaluate the staggered averages,{w̄n

ν+ 1
2
}, and to

approximate the interface fluxes,
{∫ tn+1

τ=tn f(w(xj , τ))dτ
}

.

With pj(x) = wn
j + w′

j

(
x−xj

∆x

)
+ 1

2w′′
j

(
x−xj

∆x

)2
specified in (3.9)–

(3.12), one evaluates the staggered averages of the third order reconstruction
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w(x, tn) = Σpj(x) χj(x)

w̄n
ν+ 1

2
=

1
∆x

∫ xν+1

xν

w(x, tn)dx =
1
2
(w̄ν + w̄ν+1) +

1
8
(w′

ν − w′
ν+1).

(3.15)

Remarkably, we obtain here the same formula for the staggered averages as
in the second-order cases, consult (2.15); the only difference is the use of
the new limited slopes in (3.11),w′

j = θj∆0w̄
n
j .

Next, we approximate the (exact) numerical fluxes by Simpson’s quadrat-
ure rule, which is (more than) sufficient for retaining the overall third-order
accuracy,

1
∆x

∫ tn+1

τ=tn
f(w(xν , τ))dτ ∼ λ

6

[
f(wn

ν ) + 4f(w
n+ 1

2
ν ) + f(wn+1

ν )
]
.

(3.16)

This in turn, requires the three approximatepointvalueson the right,wn+β
ν ∼

w(xν , t
n+β) for β = 0, 1

2 , 1. Following our approach in the second-order
case, [NT], we use Taylor expansion topredict

wn
ν ≡ w(xν , t

n) = w̄n
ν − w′′

ν

24
,(3.17)

w
n+ 1

2
ν = wn

ν +
λ

2
ẇn

ν +
λ2

8
ẅn

ν ,(3.18)

wn+1
ν = wn

ν + λẇn
ν +

λ2

2
ẅn

ν .(3.19)

Here, the first couple of time derivatives on the right are evaluated by exact
differentiation of the quadratic reconstruction (3.9) (here and below,a(u)
denotes the local speed,a(u) := fu(u)),

wn
ν = w̄n

ν − w′′
ν

24
;(3.20)

ẇn
ν ≡ (∆x · ∂t)w(xν , t

n) = −∆x · ∂xf(w(xν , t
n))

= −a(wn
ν ) · w′

ν , ;(3.21)

ẅn
ν ≡ (∆x · ∂t)2w(xν , t

n)
= ∆x · ∂x [a(wn

ν )∆x · ∂xf(w(xν , t
n))](3.22)

= a2(wn
ν )w′′

ν + 2a(wn
ν )a′(wn

ν )(w′
ν)

2.

These evaluations of Taylor expansions could be substituted by the more
economical Runge-Kutta integrations; the simplicity becomes more pro-
nounced withsystemswhich is the next issue in our discussion.
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In summary of the scalar setup, we end up with a two step scheme where,
starting with the reconstructed pointvalues

wn
ν = w̄n

ν − w′′
ν

24
,(3.23)

we predictthe pointvalueswn+β
ν by, e.g. Taylor expansions,

wn+β
ν = wn

ν + λβẇn
ν +

(λβ)2

2
ẅn

ν , β =
1
2
, 1;(3.24)

this is followed by thecorrectorstep

w̄n+1
ν+ 1

2
=

1
2
(w̄n

ν + w̄n
ν+1) +

1
8
(w′

ν − w′
ν+1)(3.25)

−λ

6

{[
f(wn

ν+1) + 4f(w
n+ 1

2
ν+1 ) + f(wn+1

ν+1)
]

−
[
f(wn

ν ) + 4f(w
n+ 1

2
ν ) + f(wn+1

ν )
]}

.

3.3 The third-order scheme – systems

We use the ingredients of the scalar scheme in Sect. 3.2, to construct the
third-order approximation for systems of conservation laws. The attractive
feature is simplicity – these Riemann-free ingredients involve simple alge-
braic manipulations which admits a straightforwardcomponent-wiseexten-
sion to systems. By assembling the ingredients in Sect. 3.2 we arrive at the
following predictor-corrector scheme.

First, wepredict the pointvalues, wn+β
ν , β = 1

2 , 1,

wn+β
ν = wn

j − λβAn
νw′

ν +
(λβ)2

2

{
(An

ν )2w′′
ν + 2An

νBn
ν [w′

ν , w
′
ν ]
}

.

(3.26)

Here, An
ν ≡ A(wn

ν ) and Bn
ν = B(wn

ν ) are, respectively, the Jacobian
of f(·), Aij = ∂fi

∂uj
, and the corresponding 3-tensor,Bijk = ∂fi

∂uj∂uk
, and

wn
ν , w′

ν , w
′′
ν are the vectors of pointvalues and their couple of derivatives,

derived from the non-oscillatory quadratic reconstruction in Sect. 3.1:

w′′
ν = Θν(w̄n

ν+1 − 2w̄n
ν + w̄n

ν−1)

w′
ν =

1
2
Θν(w̄n

ν+1 − w̄n
ν−1)

wν = w̄n
ν − 1

24
w′′

ν .

A couple of remarks is in order.
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– The limiter. Here we include the possibility of amatrixlimiter,Θν , which
takes into account Roe-like decompositions into characteristic waves
[Ro]. As already noted in [NT], however, one of the main advantages of
our central-staggered framework over that of the upwind schemes, is that
such expensive and time-consuming characteristic decompositions can
be avoided. Specifically, all the non-oscillatory computations reported
in Sect. 5 below were carried out with diagonal limiters,Θν , based on a
component-wiseextension of the scalar limiters outlined in (3.5)–(3.7).

– Taylor vs. Runge-Kutta expansion. There is a variety of more economical
alternatives to Taylor expansion used for the predictor step in (3.26). For
example, the explicit evaluation of the 3-tensorBn

ν on the right of (3.26)
can be avoided if the exact spatial derivatives inside the curly brackets
on the right of (3.26),(A2wx)x, are replaced by an approximate discrete
one,{·}′

ν := Θν∆0{·}ν ,

wn+β
ν = wn

ν − λβAn
νw′

ν +
(λβ)2

2
{(An

ν )2w′
ν}′.(3.26′)

Still another alternative which utilizes the discrete derivative, is the
second-order Runge-Kutta, which reads

wn+β
ν = wn

ν − λβ

{
f

(
wn

ν − λβ

2
An

νw′
ν

)}′
.(3.26′′)

And an even more greedy version is the second-order Runge-Kutta
which does not require the computation of any Jacobian,

wn+β
ν = wn

ν − λβ

{
f

(
wn

ν − λβ

2
{f(wn

ν )}′
)}′

.(3.26′′′)

The numerical experiments reported in this paper utilize the predictor
step in its basic version (3.26). As expected, its exactly differentiated terms
seem to provide a slightly more accurate results than the more econom-
ical versions in (3.26′)–(3.26′′′). We should point out, however, that the
latter, Jacobian-free versions (3.26′-3.26′′′), are still offering economical al-
ternatives – our numerical experiments, e.g., [TW], show that they retain
essentially the same high-resolution as the basic version (3.26).

Equipped with the predicted pointvalues in (3.26), together with Simp-

son’s quadrature (3.16), we evaluate the approximate flux,f
n+ 1

2
ν ,

f
n+ 1

2
ν :=

1
6

[
(f(wn

ν ) + f(w
n+ 1

2
ν ) + f(wn+1

ν )
]
;(3.27′)
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these approximate fluxed are then used with the exact staggered averaging,
(3.15), in order to evaluate the cell averages of the next time level,t = tn+1,
by the central recipe (3.14),

w̄n+1
ν+ 1

2
=

1
2
(w̄n

ν + w̄n
ν+1) +

1
8
(w′

ν − w′
ν+1) − λ

[
f

n+ 1
2

ν+1 − f
n+ 1

2
ν

]
,

(3.27′′)

The predictor-corrector scheme (3.26)–(3.27′′), expressed in terms of the
pointwise limited derivatives,wn

ν , w′
ν and w′′

ν , form our third-order non-
oscillatory central scheme.

4 Stability of the scalar scheme (the NED property)

In this section we make a precise assertion regarding the non-oscillatory
behavior of our third-order central scheme in the scalar case.

Our starting point is theexactstaggered averaging of the scalar piece-
wise-quadratic reconstruction,

w(x, tn) =
∑
j

[
wn

j + w′
j

(
x − xj

∆x

)
+

1
2
w′′

j

(
x − xj

∆x

)2
]

χj ,

which yields the corrector scheme (3.14)–(3.15)

w̄n+1
ν+ 1

2
=

1
2
(w̄ν + w̄ν+1) +

1
8
(w′

ν − w′
ν+1)

− 1
∆x

[∫ tn+1

τ=tn
f(wν+1(τ))dτ −

∫ tn+1

τ=tn
f(wν(τ))dτ

]
.(4.1)

Here,wν(τ) = w(xν , τ ≥ tn) are the mid-cells pointvalues governed by,
consult (2.13)

wt + f(w)x = 0, τ ≥ tn,(4.2)

w(x, τ = tn) = wn
ν + w′

ν

(
x − xν

∆x

)
+

1
2
w′′

ν

(
x − xν

∆x

)2
,(4.3)

x ∈ Iν .

To approximatethe temporal integrals on the right of (4.1), Simpson’s
quadrature rule, (3.16), followed by Taylor expansions, (3.17)–(3.19), were
used. We note that, at least in the scalar case under consideration, one can
evaluate these integralsexactlyin a straightforward manner. Indeed, thanks
to the central staggering, the mid-cells(xν , τ ≥ tn) are ‘secured’ inside
a smooth region where the local speedaν = a(wν(τ)) satisfies a simple
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quadratic(aν = a(wν−saνw
′
ν+ 1

2(saν)2w′′
ν)), whose approximate solution

yields

a(wν(τ)) =
a(wn

ν )
1 + sa′(wn

ν )w′
ν

[
1 +

a(wn
ν ) · s2w′′

ν

2(1 + sa′(wn
ν )w′

ν)2
+ O(s4)

]
,

s :=
τ − tn

∆x
.

Our first main result asserts the non-oscillatory behavior of the central
scheme (4.1) based on the above mentionedexactflux evaluation.

Proposition 1 Consider the central scheme (4.1)–(4.3), based on the third-
order accurate quadratic reconstruction, (3.9)–(3.12). Then it satisfies the
so-called Number of Extrema Diminishing (NED) property, in the sense that

N

(∑
ν

w̄n+1
v+ 1

2
χν+ 1

2
(x)

)
≤ N

(∑
ν

w̄n
ν χν(x)

)
.(4.4)

Proof We first recall that the quadratic reconstruction,w(·, tn), in (3.9)–
(3.12) is non-oscillatory in the sense of satisfying the NED property, consult
(3.13),

N(w(·, tn)) ≤ N

(∑
ν

w̄n
ν χν(·)

)
.

Next we consider thesliding averageof the reconstruction,̄w(x, tn) =
1

∆x

∫
Ix

w(ξ, tn)dξ; clearly, sincēw(·, t) = w(·, tn)∗ 1
∆xχ0, with the positive

mollifier 1
∆xχ0, we have

N(w̄(·, tn)) ≤ N(w(·, tn)).

Finally, we study the governing equation forw̄(·, t): by averaging (4.2)
we find an averages-pointvalues relation similar to (2.2), which we rewrite
as

w̄t(x, t) + ã(x, t)w̄x(x, t) = 0.(4.5)

Here,ã denotes the averaged speed,ã :=
∫ 1
η=0 a[w(x− ∆x

2 , t)+ η∆w(x−
∆x
2 , t)]dη.

Thus, the sliding average,̄w(·, t), is aC1-solution of thetransport equation
(4.5), and as such it satisfies

N(w̄(·, tn+1)) ≤ N(w̄(·, tn)).

In particular, by sampling at the mid-cells(xν+ 1
2
, tn+1), we have

N

(∑
ν

w̄n+1
ν+ 1

2
χν+ 1

2
(x)

)
≤ N(w̄(·, tn+1)) .

This, together with the previous last three inequalities yields the NED prop-
erty (4.4). ut
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Remarks.

1. Harten and Osher proved the NED property for theiruniformlysecond-
order non-oscillatory scheme [HO]. In particular, the NED property en-
ables to circumvent the limitation of first-order clipping phenomena in
TVD schemes [OT]. (Observe that the limiterθj in (3.7) isnot‘switched-
on’ at extrema whereθj = 1. If instead, we setθj = 0 in those cases,
we run into the familiar ’clipping’ phenomena, where we avoid increas-
ing extrema, at the expense of reducing to the first-order accurate LxF
scheme).

2. Let TV (w̄(·, tn)) =
∑

ν |w̄n
ν+1 − w̄n

ν | denote the total-variation of the
piecewise-constant approximation oft = tn, then the following straight-
forward upper-trend holds

TV (w̄(·, tn)) ≤ 2N

(∑
ν

w̄n
ν χν(·)

)
‖
∑

w̄n
ν χν(·)‖L∞ .

Thus, the NED property together with an additionalL∞-bound imply
Total Variation boundednessTV (w̄(·, tn)) ≤ Const., and hence the con-
vergence of the approximate solutions.

3. As we have already noted before, one can modify the limiter in (3.5)–
(3.7), consult [LO], so that the resulting quadratic reconstruction (3.9)–
(3.12) satisfies a (strict) maximum principle, in addition to the NED
property. Consequently, the corresponding third-order central scheme
(4.1)–(4.3) based on such modified limiter, is total-variation bounded and
hence convergent. We found, however, that the enforcement of an addi-
tional (strict) maximum principle is neither necessary (in the scalar case),
nor is it recommended for systems (which need not satisfy acomponent-
wisemaximum principle). Finally, our numerical experiments also show
that the conclusion of Proposition 1 remains valid with Simpson’s rule
(3.16) replacing the exact flux evaluations on the right of (4.1).

5 Numerical experiments

5.1 Scalar conservation laws

In this section we use some model problems to numerically test our schemes,
(3.23)–(3.25). In the scalar context, we used the modified nonoscillatory
limiter, which enforces the (strict) maximum principle, [LO].

Example 1 (Transport equation). We solve the model transport equation

ut + ux = 0, −1 ≤ x ≤ 1,(5.1)

subject to2-periodic initial data,u(x, 0) = u0(x).
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Table 5.1. Linear transport equation (5.1) withu0 = sin(πx). Errors att = 10. (mesh-ratio
λ = 0.45)

N L1 error L1 order L∞ error L∞ order
20 5.98608D−03 4.65946D−03
40 7.22214D−04 3.05 5.65980D−04 3.04
80 8.83936D−05 3.03 6.93894D−05 3.03

Table 5.2. Linear transport equation (5.1) withu0 = sin4(πx). Errors att = 1. (mesh-ratio
λ = 0.45)

N L1 error L1 order L∞ error L∞ order
20 3.68470D−02 4.76376D−02
40 4.24694D−03 3.11 5.61950D−03 3.08
80 5.74291D−04 2.89 6.13466D−04 3.20

Two sets of initial datau0(x) were used: the first one isu0(x) = sin(πx);
Table 5.1 quotes theL1 andL∞ errors att = 10. The second one isu0(x) =
sin4(πx), and we list the errors, recorded at timet = 1. in Table 5.2.

Remark.Here, and in all the examples below,N denotes the total number
of spatial cells, and∆x is the gridsize given by∆x = 2

N . Lp errors are
measured by the difference between the pointvalues of the “exact” solu-
tion, u(xν , t

n), and thereconstructedpointvalues of the computed solution
(consult (3.12)),wn

ν = w̄n
ν − 1

24w′′
ν .

For these two sets of initial data, we obtain third-order of accuracy in
the smooth region in bothL1 andL∞ norms. We note that standard ENO
approximations of (5.1) with the second set of initial data, experiences an
(easily fixed) loss of accuracy, see [RM], [Sh]. No such degeneracy was
found with our present method. Indeed, as noted by Shu, [Sh], the class of
centered schemes are particularly good candidates – in terms of uniform
convergence, independently of the initial data.

Example 2 (Propagation of singularities).Here we consider the transport
equation (5.1) initialized with the 2-periodicdiscontinuouscharacteristic
function,u0(x) = χ0 = 1− 1

2≤x≤ 1
2
. We observe the good resolution of the

computed solution in Fig. 5.1. As expected, the viscous profile spreads over
a transition layer of sizes(∆x)

3
4 , sharpening the first- and second-order

shock layers of the corresponding size
√

∆x and(∆x)
2
3 . This sharpening

will be borne out in our later numerical experiments, with the improved
resolution of contact discontinuities in the system of Euler’s equations.

Example 3 (Nonlinear transport equation).We solve the canonical, inviscid
Burgers’ equation

ut + (
1
2
u2)x = 0, −1 ≤ x ≤ 1,(5.2)
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The third-order solution at T = 2 

-- true solu     ++ approx. solu    N=80
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=
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3 
 

Fig. 5.1. Linear transport equation (5.1) withu0 = 1− 1
2 ≤x≤ 1

2
computed att = 2. (mesh-

ratioλ = 0.45)

Table 5.3. Inviscid Burgers’ equation (5.2) withu0(x) = 1 + 1
2sin(πx). Errors att = 0.3

(mesh-ratioλ = 0.33)

N L1 error L1 order L∞ error L∞ order
80 4.28013−05 1.13262D−04
160 5.82855−06 2.87 2.35429D−05 2.27
320 9.04921−07 2.69 4.91819D−06 2.26
640 1.59062−07 2.51 1.03645D−06 2.45
1280 2.7007D−08 2.55 2.16767D−07 2.26

subject to 2-periodic initial datau0(x) = 1 + 1
2sin(πx).

Recall that the exact solution is smooth up to the critical timet = 2
π ∼

0.6366. In Table 5.3 we list the errors att = 0.3. Note that we have close to
third-order accuracy inL1, and more than second-order of accuracy inL∞.

At t = 2
π , the Burgers’ equation develops a moving shock which then

interacts with a rarefaction wave; att = 1.1 the interaction between the
shock and the rarefaction waves is over, and the solution becomes monotone
between shocks. In Figs. (5.2)–(5.3) we observe the excellent agreement
between the exact and the non-oscillatory computed solution, in both stages
of the developed discontinuity. In particular, Table 5.4 records theL1 andL∞
errors in the smooth portion of the solution, bounded away from the moving
discontinuity. Third-order accuracy in both inL1 andL∞ is observed in the
smooth portion – at distance0.1 away from the shock. The errors are of
smaller magnitude than the ones in the smooth case, showing the reduction
in error propagation.
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The third-order solution at T = 0.6366 
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Fig. 5.2. Burgers’ equation (5.2) withu0(x) = 1 + 1
2sin(πx) computed att = 0.6366

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
The third-order solution at T = 1.1 

-- true solu     ++ approx. solu    N=80

dt
/d

x 
=

 0
.3

3 
 

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1

1.2

1.4

1.6
The third−order solution at T = 1.1 

−− true solu     ++ approx. solu    N=80

dt
/h

 =
 0

.3
  

Fig. 5.3. Burgers’ equation (5.2) withu0(x) = 1 + 1
2sin(πx) computed att = 1.1.

Nonoscillatory limiter: with enforcement of maximum principle (– on left) and without (–
on right)

Finally, we note that in Fig. (5.3) we record the results based on the
two versions of the nonoscillatory limiter (3.5)–(3.7): the figure on the left
utilizes themodifiedversion which enforces the additional the maximum
principle, [LO], and it is compared with the figure on the right, where the
basic version of the NED limiter is used without the enforcement of an extra
maximum principle. It is evident that we retain the same quality results
in both cases. This promotes us to concentrate, in the case of systems, on
the nonoscillatory limiter in its basic version, (3.5)–(3.7), without the extra
enforcement of the maximum principle.
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Fig. 5.4. Third- vs. second-order central schemes – Riemann problem with Sod’s initial data
(5.4) computed att = 0.1644

Numerische Mathematik Electronic Edition
page 418 of Numer. Math. (1998) 79: 397–425



Third order nonoscillatory central scheme for hyperbolic conservation laws 419

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.4

0.6

0.8

1

1.2

1.4

Lax’s problem by third-order central scheme with N=200 points

D
E

N
S

IT
Y

 a
t 

T
=

0
.1

6
 (

d
t/

d
x

=
0

.1
)

0.0 0.2 0.4 0.6 0.8 1.0
Lax’s problem by second-order upwind scheme with N=200 points

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
EN

SI
TY

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Lax’s problem by third-order central scheme with N=200 points

V
E

L
O

C
IT

Y
 a

t 
T

=
0

.1
6

 (
d

t/
d

x
=

0
.1

)

0.0 0.2 0.4 0.6 0.8 1.0
Lax’s problem by second-order upwind scheme with N=200 points

0.0

0.5

1.0

1.5

2.0

VE
LO

C
IT

Y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

1

1.5

2

2.5

3

3.5

4

Lax’s problem by third-order central scheme with N=200 points

P
R

E
S

S
U

R
E

 a
t 

T
=

0
.1

6
 (

d
t/

d
x

=
0

.1
)

0.0 0.2 0.4 0.6 0.8 1.0
Lax’s problem by second-order upwind scheme with N=200 points

0.0

1.0

2.0

3.0

4.0

PR
ES

SU
R

E

Fig. 5.5. Third-order central vs. second-order upwind schemes – Riemann problem with
Lax’s initial data (5.5) computed att = 0.16
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Fig. 5.6. Third- vs. second-order central schemes – Woodward-Colella double blast waves
with initial data (5.7), computed att = 0.01
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Fig. 5.7. Third-order central scheme – Woodward-Colella double blast waves with initial
data (5.7), computed att = 0.03 andt = 0.038
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Table 5.4. Burgers’ equation (5.2) withu0(x) = 1 + 1
2sin(πx). L1, L∞ errors0.1 away

from the shock, i.e.|x − shock location| ≥ 0.1, att = 1.1 (mesh-ratioλ = 0.33)

N L1 error L1 order L∞ error L∞ order
160 1.04754D−06 6.40499D−06
320 1.35814D−07 2.95 7.95149D−07 3.01
640 1.71942D−08 2.98 1.03092D−07 2.95

5.2 Euler equations of gas dynamics

In this subsection we apply our third-order scheme to the Euler equations
of polytropic gas,

ut + f(u)x = 0,(5.3)

whereu = (ρ, m, E)T is the unknown vector of densityρ, momentum,
m := ρq, and energyE, andf(u) is the corresponding flux,f(u) = qu +
(0, p, qp)T expressed in terms of the pressure,p := (γ −1)(E − 1

2ρq2) with
a fixedγ = 1.4.

Example 4 (Riemann problems).We consider the Riemann problems subject
to Riemann initial data,

u0(x) =
{

ul x < 0
ur x > 0.

Two sets of Riemann initial data are used: the one proposed by Sod in [So],

(ρl, ml, El) = (1, 0, 2.5), (ρr, mr, Er) = (0.125, 0, 0.25);(5.4)

and the one used by Lax [La]:

(ρl, ml, El) = (0.445, 0.311, 8.928),
(ρr, mr, Er) = (0.5, 0, 1.4275).(5.5)

Figure 5.4 shows the third-order central results for Sod’s problem, in
comparison to the corresponding second-order central results. Two major
impovements should be pointed out:
{i} A narrow transion layer with a considerably sharper resolution of the
contact wave (– an improvement already anticipated in the linear Example
2 above);
{ii}Third-order resolution improvement of the second-order results (– which
is most evident at the rarefaction tips).

Fig. 5.5 compares the results of the third-order central scheme with the
second-order upwind ULT scheme of Harten [Ha]. In this context (of dif-
ferent order of accuracy), we would like to emphasize the following two
points:
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{i} The sharper contact resolution by the third-order scheme;
{ii} The improved resolution, particularly near the rarefaction tips; very
mild oscillations, however, are detected in the third-order computation of the
velocity field. These are at the acceptable the level, once we take into account
the simplicity and efficiency offered by ourcomponentwisecomputation vs.
the complexity of the upwind characteristic approach.

Example 5 (Double blast waves).Our last example taken from Woodward
and Colella, [WC], describes the interaction of blast waves subject to initial
conditions

u0(x) =




ul 0 ≤ x < 0.1,
um 0.1 ≤ x < 0.9,
ur 0.9 ≤ x < 1,

(5.6)

with 


(ρl, ml, El) = (1, 0, 1000),
(ρm, mm, Em) = (1, 0, 0.01),
(ρr, mr, Er) = (1, 0, 100).

(5.7)

A solid wall boundary conditions (reflection) is applied to both ends. In
Fig. 5.6 we compare the third-order numerical results att = 0.01, with the
corresponding second-order computations of [NT]. Here we would like to
highlight:
{i} Sharper resolution of the shock waves;
{ii} Elimination of the extrema clipping which was evident in the second-
order computation of the density in Fig. 5.6: observe that the density spike
(on the right) has now the correct amplitude of∼ 5.2, up from the second-
order ’clipped’ value of∼ 3.7.
The numerical results computed at the later time,t = 0.03 andt = 0.038,
are presented in Fig. 5.7. It is remarkable that the third-order central scheme
is able to obtain such sharp resolution of the complex double blast problem,
withoutany use of characteristic information, additional artificial compres-
sion, ad hoc switches,etc.
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