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Summary. A ROW type approach is considered for integral form DAEs
arising in charge-oriented nodal analysis of digital networks. These net-
work equations define very special index-2 systems that can be solved by
Rosenbrock-Wanner (ROW) methods suitable for semi-explicit index-1 sys-
tems without order reduction. To obtain charge conservation, the charge
variables are projected on the linear charge constraint. In contrast to the
semi-explicit index-1 case, all order conditions for the algebraic variables
up to orderp have to be fulfilled for a method of orderp. CHORAL, an em-
bedded charge-oriented method of order (2)3, is introduced and compared
with DASSL and RODAS for two industrial applications, the NAND gate
and the two-bit adding unit.

Mathematics Subject Classification (1991):65L05

1. Introduction

TCAD based electric circuit simulation tools commonly use a charge ori-
ented approach to describe especially intrinsic charge flow effects in MOS
transistors physically correct [2,4]. Considering the important class of cir-
cuits without flux storing elements, this ansatz yields stiff differential-alge-
braic equations of integral form

F(x, q̇) = A · q̇(x) − f(x) = 0 on t ∈ [0, T ], x(0) = x0(1)
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as network equations1. The system (1) can be described as follows: The
vectorx ∈ R

n of unknowns consists of all node potentials at current defining
elements. Them terminal chargesqi(x), m ≈ 3n, given as functions of
node potentials, are assembled at each node by the incidence matrixA ∈
{−1, 0, 1}n×m. In general,A hasnot full row rank. The total time derivative
q̇i(x) =dqi(x)/dt describes the charge flow caused by thei-th terminal
chargeqi(x). At each nodej, the current[A · q̇(x)]j due to the charge flow
is related to the sum of all other static currentsfj(x) by Kirchhoff’s current
law. Note that circuits with time dependent input signals yield autonomous
network equations of type (1) as usual by introducingt as an additional
unknown.

Charge-oriented network equations are commonly solved by the direct
BDF ansatz [1,2,9] in industrial network simulation packages. This ap-
proach has the drawback that the step size control is based on charges, but
the user is only interested in the nodal voltages. The accuracy in the nodal
voltages is only checked in the Newton-Raphson iteration, or error estimates
in x have to be computed from estimates inq. In this paper, we introduce
Rosenbrock methods that directly offer an error control and step size pre-
diction based on nodal voltages. We restrict ourselves to the important class
of digital circuits, which are generally described by network equations of
the following special type:

(2a)
The JacobianAq′(x) is smooth and has constant image along the
solution. In general, the ranks of A is larger than the rankr of
Aq′(x).

(2b)
The matrix pencil{Aq′(x), f ′(x)} is regular and has index 1 of
nilpotency along the solution.

(2c)

The initial values are consistent, i. e.

f(x(0)) ∈ Im (Aq′(x(0))), y(0) = q(x(0)),

Though the first assumption may not be fulfilled along the whole solution,
it holds piecewise within every operation region of the transistor. The second
property can be achieved for digital circuits by appropriate modeling and
regularization techniques.

In the following section, we show that these network equations define
very special index-2 systems that can be solved by Rosenbrock methods
for semi-explicit index-1 systems without order reduction. We introduce
CHORAL, an embedded ROW method of order (2)3,which uses a projection
of the differential variables. Finally, this method is compared with DASSL

1 Here, and in the following,˙denotes the total time derivative and′ the partial derivative
with respect tox: Aq̇(x) = Aq′(x)ẋ
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and RODAS for two industrial applications: NAND gate and two-bit adding
unit.

2. Charge-oriented network equations for digital circuits

Using the integral form structure in (1), it is natural to introduce charges,
technically demanded in semiconductor physics, as additional state vari-
ables. Now (1) is enlarged into the differential-algebraic system

A · ẏ = f(x)(3a)

0 = y − q(x)(3b)

of linear-implicit form. This system is equivalent to an index-2 system with
the very special property that all index-2 variables are constant: Decompos-
ing the matrixA as

A = S

(
Is 0
0 0

)
T

with the identityIs and nonsingular constant matricesS ∈ R
n×n andT ∈

R
m×m, the assumption (2a) yields thats − r of the firsts components of

S−1Aq(x) are constant along the solution. Without loss of generality, we
can assume that the componentss−r+1 up tos of S−1Aq(x) are constant.
Hence system (3) can be transformed into the semi-explicit system

˙̃y1 = f̃1(x), 0 = ỹ1 − q̃1(x)(4a)
˙̃y2 = f̃2(x), 0 = ỹ2 − q̃2(x) = ỹ2 − const(4b)

0 = f̃3(x), 0 = ỹ3 − q̃3(x)(4c)

via constant regular matrix transformations, where the components of
(q̃1(x), q̃2(x), q̃3(x))t = Tq(x), (ỹ1(x), ỹ2(x), ỹ3(x))t = Ty(x) and
(f̃1(x), f̃2(x), f̃3(x))t = S−1f(x) have dimensionsr, s − r andn − s.
The differential index of system (3) depends on the dimension ofỹ2:

– In classical capacitance-oriented MOS modeling,s = r holds, and
dim ỹ2 = 0. System (4) is thus an index-1 Hessenberg system, since
the matrix(q̃′

1(x), f̃ ′
3(x))t is regular by condition (2b).

– If charge-oriented MOS models are used, generallys > r holds [4], and
dim ỹ2 > 0: the algebraic equation0 = ỹ2 − const occurs, which does
not depend on the algebraic variablesỹ3 andx. The index is 2, since the
matrix (q̃′

1(x), f̃ ′
2(x), f̃ ′

3(x))t is regular by condition (2b).

Hence digital MOS circuits yield charge-oriented network equations (3)
that are equivalent to the index-2 system (4) via constant regular matrix
transformations. Rosenbrock methods are invariant with respect to such
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transformations. Sincẽy2 = const holds, these components are integrated
exactly by a ROW method, and the numerical solution is thus identical to
that when the same Rosenbrock method is applied to

˙̃y1 = f̃1(x), 0 = ỹ1 − q̃1(x)(5a)

0 = f̃2(x), 0 = ỹ2 − const(5b)

0 = f̃3(x), 0 = ỹ3 − q̃3(x).(5c)

This is a semi-explicit index-1 problem. Rosenbrock methods for semi-
explicit index-1 problems can also be applied to the special type (3) of
charge-oriented network equations of index 2 — no order reduction takes
place.

3. ROW approach for charge-oriented network equations

A ROW method with stage numbers applied to the linear-implicit system
(3) reads [8,10]

x1 = x0 + btk,(6a)

y1 = y0 + btl,(6b)

with weightsb := (b1, . . . , bs)t and incrementsk := (k1, . . . , ks)t, l :=
(l1, . . . , ls)t defined by(

A −γhf ′(x0)
−γI γq′(x0)

)
·
(

li
ki

)
=(

hf(
∑i−1

j=1 αijkj) + hf ′(x0)
∑i−1

j=1 γijkj

y0 − q(
∑i−1

j=1 αijkj) +
∑i−1

j=1(αij + γij)lj − q′(x0)
∑i−1

j=1 γijkj

)
(6c)

whereαij = 0 for i ≥ j, γij = 0 for i > j andγii = γ /= 0, i, j = 1, . . . , s.
x1 andy1 are the approximations to the solution at timeh with x(0) = x0,
y(0) = y0. The increments are uniquely defined by the linear system (6c):
the matrix (

0 Aq′(x0) − γhf ′(x0)
−γI γq′(x0)

)
obtained after one block Gaussian elimination step is nonsingular for suffi-
cient small step sizesh, since the matrix pencil{Aq′(x), f ′(x)} is regular
due to condition (2b). The linear structure of the charge constraint (3b) al-
lows forki to be computed independently froml1, . . . , li−1. To fulfill charge
conservation during integration, the differential variablesy are projected at
each grid point in the integration interval[0, T ] on the charge constraint:

ym := q(xm), m = 1, 2, . . . , T/h(6d)
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Convergence and order conditions.As shown in Sect. 2, classical conver-
gence theory for semi-explicit index-1 problems can be applied to the ROW
method (6a,6c,6d) for the index-2 system (3). Owing to the projection (6d),
the local errorq(x1) − q(x(h)) must beO(hp+1) to obtain convergence
orderp. For arbitrary charge functions, this conditions leads to the require-
mentx1 − x(h) = O(hp+1). Since the special structure of the Hessenberg
index-1 system (5) cannot be exploited, we have the following theorem:

Theorem 1. To obtain orderp for the network equations (3), the coefficients
of the Rosenbrock method (6a,6c,6d) have to fulfill all order conditions for
the algebraic variables up to orderp in general index-1 Hessenberg systems.

Proof. To prove this theorem, it is sufficient to show that despite the special
structure of (5), all order conditions for the general index-1 Hessenberg
system have to be fulfilled for a ROW method of orderp.

We consider system (5) as a special case of an index-1 Hessenberg system

ż = f(x)
0 = g(x, z) = Bz + ḡ(x)

with fz ≡ 0 andB ∈ {0, 1}2n−r×r. Using the notation of Roche [11], the
elementary differentials for the following trees are vanishing:

[v1, . . . , vm, u1, . . . , un]z for m ≥ 1, n ≥ 0 (fz ≡ 0) ,
[v1, . . . , vm, u1, . . . , un]x for m ≥ 1, m + n ≥ 2 (gz ≡ B) ,

with v1, . . . , vm denoting trees inDATz, andu1, . . . , un in DATx. The
equivalenceΦi([v]x) = Φi(v), however, yields

Φi([v1, . . . , vm, u1, . . . , un]z) = Φi([[v1]x, . . . , [vm]x, u1, . . . , un]z) ,

Φi([v1, . . . , vm, u1, . . . , un]x) = Φi([[v1]x, . . . , [vm]x, u1, . . . , un]x) .

Since the number of meagre nodes is equal in both cases, the order conditions
coincide for the corresponding trees. But the order conditions for the trees
of type [[v1]x, . . . , [vm]x, u1, . . . , un]z and[[v1]x, . . . , [vm]x, u1, . . . , un]x,
resp., cannot be dropped in the special case (5). Hence all order conditions
for an index-1 Hessenberg are necessary.

The order conditions for index-1 Hessenberg systems can be found, e. g.,
in [10]. Forp = 1, 2, 3 and4 one, three, eight and 24 order conditions are
required to get a local error ofO(hp+1) for the algebraic variables.

Implementation of CHORAL.One notes that the coefficient sets of RO-
DAS [6,12], the state-of-the-art Rosenbrock method for linear-implicit in-
dex-1 problems, are constructed according to the demands made in theorem
1. Hence they yield embedded ROW methods of order (3)4 to solve charge-
oriented network equations of type (3). On account of the low smoothness
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properties of transistor models, as well as of the low accuracy demands re-
quired by the user, an embedded method of order (2)3 seems to be more
suitable.

The corresponding scheme, CHORAL, has four stages and only three
function evaluations. To avoid a constant term in the error estimate due to
inconsistent initial values, both methods are chosen as stiffly accurate [6].
The implementation of CHORAL is tailored to the time-dependent network
equations

Aq̇(x, t) − f(x, t) = 0(7)

of the special typeq(x, t) = q̄(x, s1(t)) andf(x, t) = f̄(x, s1(t)) + s2(t),
which arise in charge-oriented nodal analysis of digital circuits without in-
ductive behavior.s1(t) denotes the time-dependent input voltages, whereas
s2(t) describes the time-dependent current sources. Only linear systems of
dimensionn have to be solved:

x1 = x0 +
s∑

i=1

diκi,

with the incrementsκi given by the linear system(
A

∂q

∂x
− hγ

∂f

∂x

) ∣∣∣∣
x0,t0

κi = A (q(x0, t0) − q(ai, t0 + hαi))+

h
i∑

j=1

βijf(aj , t0 + hαj) + h

i−1∑
j=1

βij
∂f

∂x
(x0, t0)κj +

h2τi
∂f

∂t
(x0, t0) − hγiA

∂q

∂t
(x0, t0).

Here we have used withG = (γij)s
i,j=1, A = (αij)s

i,j=1, B = A + G
andS = (σij)s

i,j=1 := AG−1 the transformed incrementsκ = Gk and the
abbreviations

αi =
i−1∑
j=1

αij , γi =
i∑

j=1

γij , τi =
i∑

j=1

βijγj

andai = x0 +
i∑

j=1

σijκj .

The corresponding coefficient set of CHORAL is given in Table 1. Since
the usual error estimate (see, e. g., [10]) for stiffly-accurate embedded ROW
methods is used, a reliable error control and step size selection are offered
that are based on node potentials. No heuristic techniques are necessary to
recompute errors from charges into node potentials.
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Table 1. Coefficients for CHORAL

γ = 0.5728160624821349 β21 = −2.0302139317498051
d1 = d̂1 = σ21 = σ31 = σ41 = 1/γ β31 = 0.2707896390839690
d2 = d̂2 = σ32 = σ42 = 0.0 β32 = 0.1563942984338961
d3 = d̂3 = σ43 = 1.0 β41 = 2/3
d4 = 1.0 β42 = 0.08757666432971973
α2 = 1.0 β43 = −0.3270593934785213
α3 = 1.0 γ1 = γ
α4 = 1.0 γ2 = −2.457397870
τ1 = 0.3281182414375370 γ3 = 0
τ2 = −2.57057612180719 γ4 = 0
τ3 = −0.229210360916031
τ4 = 1/6

The method is compatible with circuit simulation packages such as
TITAN [2]: model evaluation, direct sparse matrix solvers and multi rate
techniques already implemented in the numerical integration kernel can be
used efficiently. This is confirmed by the numerical results in the next sec-
tion.

4. Technical application: NAND gate and two-bit adding unit

The NAND gate is a logical subcircuit that connects two input signals by
thenot and-operation. It is part of the two-bit adding unit, a digital circuit
which adds two two-digit binary numbers and one carry-in bit. The result is
a three-digit binary number. This device is the basis for more complex adder
units in CPUs. Its implementation in MOS-technique consists of three NOR
gates, one NAND gate, one ORANI gate and five ANDOI gates. See [3] for
a detailed description of the models2.

Using charge-oriented nodal analysis, the two-bit adding unit is described
by 175 node potentials as unknowns, and the NAND gate by 14. Neglecting
artificial load capacitances, the index of system (1) is one for both problems.

CHORAL is compared with DASSL [1], representing the standard inte-
gration software in circuit simulation packages, and different coefficient sets
implemented in RODAS [6]. The first set RODAS1 is given in [6], RODAS2
is a modification with stronger damping behavior. The third set RODASP
was constructed by Steinebach [12] to get order four also for linear parabolic

2 The model for the two-bit adding unit is available as FORTRAN77 sub-
routines at the CWI test set for IVP solvers [7] via WWW at the page
http://www.cwi.nl/cwi/projects/IVPtestset.shtml. The NAND gate model is avail-
able by the author via e-mail
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CHORAL (‘x’) vs. DASSL (‘•’)
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Fig. 1. Work-precision diagram for two-bit adding unit (left) and NAND-gate (right).
We used:rtol = 10−1+m/4 with m = 0, 1, . . . , 12 for CHORAL and RODAS, and
m = 0, 1, . . . , 20 for DASSL. The highly accurate reference solutions are obtained by
RADAU5 [6] with rtol = atol = 10−12

systems, avoiding order reduction phenomena for method of lines applica-
tions. All coefficient sets represent an A-stable stiffly accurate embedded
ROW method of order 4(3) with six stages that fulfill the demands of Theo-
rem 1. Hence they can be applied on systems of type (1), if the assumptions
made in (2) hold.
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In Fig. 1 we present the work-precision diagram (cf. [6], for example),
relating the achieved accuracy (Euclidian norm of relative errors in all com-
ponents) to the numberfcn of function evaluations for the two-bit adding
unit (left) and the NAND gate (right)3. This number is a reasonable measure
for the computation costs, since the costs for model evaluation generally
exceed the costs for the linear algebra part in common circuit simulation
tools [2].

All methods except RODAS1 show a robust behavior for both problems,
with CHORAL being the most efficient method for non stringent accuracy
demands required in network analysis. RODAS1, however, seems to react
very sensitive to the model discontinuities for higher tolerances. These are
mainly caused by changing operation regions of the transistors during in-
tegration; the used transistor model due to Shichman and Hodges [5] is
not smoothly fitted at the boundaries of different operation regions. Conse-
quently, each transistor introduces several discontinuity points caused by its
modeling. Due to our experience, it does not make sense to detect and local-
ize these points in order to restart the integration, i. e. to apply the so-called
switching point technique from optimal control [13].
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