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Summary. We generalise and apply a refinement indicator of the type originally
designed by Mackenzie, Süli and Warnecke in [15] and [16] for linear Friedrichs
systems to the Euler equations of inviscid, compressible fluid flow. The Euler
equations are symmetrized by means of entropy variables and locally linearized
about a constant state to obtain a symmetric hyperbolic system to which ana
posteriorierror analysis of the type introduced in [15] can be applied. We discuss
the details of the implementation of the refinement indicator into the DLR-τ -Code
which is based on a finite volume method of box type on an unstructured grid
and present numerical results.
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1 Introduction

Adaptive a posteriori error control is now a well-established device in the finite
element solution of elliptic and parabolic problems. Unfortunately, there is a
lack of an analogous theoretical framework for finite volume approximations
of hyperbolic equations in gas dynamics. The absence of such an analysis can
be attributed to the inherent nonlinearity of the equations, the incompleteness
of the corresponding well-posedness theory, as well as to the fact that the basic
stability and accuracy properties of finite volume methods for this class of partial
differential equations are not well understood. Inspired by results of C. Johnson
et al. [7] concerning error indicators for the streamline diffusion finite element
method, in [21] we introduced weighted residual-based refinement indicators for
finite volume approximations of the equations of compressible fluid flow. We
begin with an informal outline of this approach.
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620 T. Sonar, E. S̈uli

Consider the partial differential equation

L u = f

on a given domainΩ ⊂ R
N , whereL denotes an invertible linear differential

operator of first order possessing a bounded inverse operatorL −1. Denoting by
uh the finite volume approximation to the analytical solutionu, we define the
global error of the method as

eh := uh − u.(1.1)

Letting
r h := L uh − f(1.2)

be the corresponding residual, it follows that

r h = L eh.

Hence
‖eh‖(1) ≤ |||L −1||| ‖r h‖(2),(1.3)

with suitable norms‖ · ‖(1), ‖ · ‖(2) and ||| · |||. In contrast with the global error
e, the residual is a computable quantity even if the true solution is not known.
Assuming that an upper bound on|||L −1||| is available, inequality (1.3) can
be used for reliable a posteriori error estimation and adaptive error control. Of
course, it may happen that the error is very much overestimated by the right-hand
side of (1.3) so that unnecessarily fine grids are generated, which in turn degrades
the efficiency of the underlying adaptive method. However, if in addition to (1.3)
an inequality of the form

c‖r h‖(2) ≤ ‖eh‖(1)

is available, wherec is a computable constant, then the efficiency of the adaptive
numerical method can be ensured.

If L is nonlinear and most of its properties are unknown, it is unlikely that
a relation of the form

c1‖r h‖(2) ≤ ‖eh‖(1) ≤ c2‖r h‖(2)(1.4)

will be available with computable constantsc1 andc2; indeed, for the Euler equa-
tions of compressible multi-dimensional gas dynamics it is practically impossible
to determine the norms‖ · ‖(1) and‖ · ‖(2) and the constantsc1 andc2.

Thus, in [21], theL2-norm of the residual was examined as an ad hoc error
indicator for finite volume approximations of compressible flow problems. It was
shown, by means of a simple one-dimensional example, that, in the presence of
a discontinuous solution,‖r h‖L2(Ω) →∞ ash → 0. More generally, ifuh is an
approximation to a discontinuous solutionu in Ω ⊂ R

N , then

‖r h‖L2(Ω) = O
(

h−
1
2

)
,

see [22]. To remedy the situation, in [21], the scaled refinement indicator
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Rh
L2 := h‖r h‖L2(T)

was used on each triangleT of a triangulationT h ⊂ R
2. Here, h is a local

measure ofT, such as the length of the longest edge. Besides the desire to
counteract theO (1/

√
h) behaviour of theL2-norm of the residual, the choice of

the exponent ofh in the definition ofRh
L2 was motivated by the form of typical

residual-based a posteriori error bounds for the streamline diffusion method,
see [21]. There the power ofh occurs naturally in the numerical treatment of
hyperbolic model problems due to the properties of the method and, in particular,
to the presence of numerical dissipation. Unfortunately, there is no analogous
theory for finite volume approximations of hyperbolic problems.

Another ad hoc indicator considered by the authors (see [21]) is

Rh
H−1 := ‖r h‖H−1(T).

This was motivated by the observation that if the analytical solutionu of L u = f
is discontinuous anduh converges tou in L2(Ω), then, at least for a linear differ-
ential operatorL , the residualr h = L uh− f converges to zero inH−1(Ω). The
H−1 refinement indicator, although not computable, was approximated using a
local subdivision technique in [21]; this lead to results which were very compara-
ble to those obtained with theRh

L2-indicator. Although a posteriori error estimation
by these ad hoc error indicators is possible and the computations based on them
yield satisfactory results, it is unlikely for first-order hyperbolic systems that they
satisfy two-sided error bounds of the form (1.4), with‖ · ‖(1) = ‖ · ‖L2(Ω). Con-
sequently, there is no guarantee that they provide reliable or efficient estimates
of the error in theL2-norm. The aim of this paper is to pursue a mathematically
systematic approach to arrive at a two-sided a posteriori bound of the form (1.4)
for the error in theL2-norm.

Our work here is a development of the techniques introduced by Macken-
zie, S̈uli and Warnecke in [15], where two-sided a posteriori error bounds were
derived for Petrov-Galerkin finite element approximations of Friedrichs systems.
There, the approach was based on a decomposition of the global error of the
numerical method into a locally created partecell whose properties are entirely
governed by the local cell residual, and a propagating componentetrans which is
transported into the cell through the inflow boundary. It was shown in [15] that

‖r h‖D′(L ∗,T) ≤ ‖ecell‖L2(T) ≤
1
c
‖r h‖D′(L ∗,T)

holds on each computational cellT, where‖ · ‖D′(L ∗,T) is the, so called, dual
graph-norm andL ∗ the formal adjoint operator ofL . The viability of residual-
based local a posteriori error estimation hinges on the assumption that the cell
error dominates the transported error.

In this paper, following a similar approach, we perform an a posteriori error
analysis for finite volume approximations of the compressible Euler equations
of gas dynamics, exploiting a symmetrisation by means of entropy variables fol-
lowed by local linearisation about a constant mean state. The resulting system
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622 T. Sonar, E. S̈uli

is of Friedrichs type and thus an a posteriori error analysis analogous to the
one developed in [15] is possible. Since the symmetrised Euler equations are
rarely used in practice we perform the computation of the approximate solution
uh in the conserved physical variables. The dual graph-norm indicator can then
be computed element-by-element fromuh by means of a carefully chosen ap-
proximation procedure. To the best of our knowledge, this is the first refinement
indicator for finite volume approximations of Euler’s equations which is – in the
sense of local linearisation – with a sound mathematical foundation.

2 Symmetrisation of the Euler equations

2.1 The Euler equations

We consider plane flow of an inviscid, compressible, ideal gas. Denoting by
ρ, v = (v1, v2),p,E the density, cartesian velocity, pressure and total energy,
respectively, the equations of motion are

∂t u +
2∑

i =1

∂xi fi (u) = 0,(2.1)

where the vector of conservative variablesu and the fluxesfi (u) are defined by

u :=




ρ
ρv1

ρv2

ρE


 , fi (u) :=




ρvi

ρv1vi + pδi
1

ρv2vi + pδi
2

ρH vi


 .

The quantityδi
k denotes the Kronecker-delta whileH is the total enthalpy defined

as
H = E +

p
ρ
.

The range of the conservative variables is a subsetS of R
4 called the state space.

The equation of state for an ideal gas is given by

p = (κ− 1)ρ

(
E − |v|2

2

)

whereκ is the ratio of specific heats which, for dry air, isκ = 1.405.
If the flow is sufficiently smooth, (2.1) can be equivalently expressed in

quasilinear (non-conservative) form as

∂t u +
2∑

i =1

Ai (u)∂xi u = 0(2.2)

where theAi (u) := ∇ufi (u) denote the Jacobian matrices of the fluxes, given by
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A1(u) =




0 1 0 1
κ−3

2 v2
1 + κ−1

2 v2
2 (3− κ)v1 (1− κ)v2 κ− 1

−v1v2 v2 v1 0
(κ− 1)v1|v|2 − κv1E κE − κ−1

2 (v2
2 + 3v2

1) (1− κ)v1v2 κv1




A2(u) =




0 0 1 0
−v1v2 v2 v1 0

κ−3
2 v2

2 + κ−1
2 v2

1 (1− κ)v1 (3− κ)v2 κ− 1
(κ− 1)v2|v|2 − κv2E (1− κ)v1v2 κE − κ−1

2 (v2
1 + 3v2

2) κv2


.

The system (2.1) of Euler’s equations is hyperbolic, i.e. the matrix

A(u, ν) :=
2∑

i =1

νi Ai (u)

possesses four real eigenvaluesλi (u, ν), i = 1, . . . ,4, for all values ofu ∈ S and
all ν ∈ R

2. Although the matricesAi , i = 1,2, can be individually diagonalised,
it is well known that they cannot be diagonalised simultaneously. To see this,
note that the product of the Jacobian matrices is not symmetric, i.e.

(A1(u)A2(u))∗ /= A1(u)A2(u).

Note that the adjoint matrix in the case of Euler’s equations is simply the trans-
pose. If both Jacobian matrices could be diagonalised simultaneously there would
exist an orthogonal transformation matrixD(u) ∈ R

4×4 such that

D−1(u)Ai (u)D(u) = Λi (u), i = 1,2,

whereΛ(u) is the required diagonal matrix. If we assume the existence of such
a matrix the calculation

D−1(u)A1(u)A2(u)D(u) = D−1(u)A1(u)D(u)D−1(u)A2(u)D(u)

= Λ1(u)Λ2(u)

=: Λ3(u) = Λ∗3(u) =
(
D−1(u)A1(u)A2(u)D(u)

)∗
= D−1(u)(A1(u)A2(u))∗D(u)

shows that the productA1(u)A2(u) is then necessarily symmetric, which leads to
a contradiction.

Nevertheless, Euler’s equations can be symmetrised by exploiting the entropy
variables. The precise description of this symmetrisation is the subject of the next
section.
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624 T. Sonar, E. S̈uli

2.2 Entropy variables

We assume that an entropy inequality holds for all weak solutions of Euler’s
equations, i.e. for functionsu ∈ BV([0, t∗]; L1 ∩ L∞(Ω)), t∗ > 0, such that

d
dt

∫
σ

u dx = −
∮
∂σ

2∑
i =1

fi (u)ν̂i ds

holds on everycontrol volumeσ ⊂ R
2. For our purposes a control volume is a

bounded simply connected domain with polygonal boundary and outer unit vector
ν̂ = (ν̂1, ν̂2), defined almost everywhere on∂σ. Thus we assume the existence of
an entropy function

S 3 u
η7−→ η(u) ∈ R

as well as the existence of entropy fluxes

S 3 u
qi7−→ qi ∈ R

which are compatible withη in the sense that

∇uη(u) · Ai (u) = ∇uqi (u); i = 1,2.

The entropy and the entropy fluxes are, furthermore, assumed to satisfy an entropy
inequality

∂tη(u) +
2∑

i =1

∂xi qi (u) ≤ 0

in the weak sense, i.e.

d
dt

∫
σ

η(u) dx ≤ −
∮
∂σ

2∑
i =1

qi (u)ν̂i ds

holds on each control volumeσ. Note that the entropy inequality is the math-
ematical model of the second law of thermodynamics. In the case of Euler’s
equations the thermodynamical entropy density

η(u) := −ρs

with entropy

s := log
p
ρκ

is a candidate for an entropy function. The discrepancy in the signs of the two
entropies is due to the historical convention that a mathematical entropy is con-
vex, by definition, while the thermodynamical entropy is defined to be a concave
function.

We convert the Euler equations (2.1) into a symmetric system of partial
differential equations using an invertible change of variables

u 7−→ U (u).

The following theorem, due to Mock (see [8], [18]), identifies the role of the
entropy.
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Theorem 2.1. If η is an entropy function then the change of variables

S 3 u
U7−→ U (u) := ∇uη(u)

symmetrises the system(2.1).

Applying this change of variables to system (2.1), we obtain the system of partial
differential equations

∂t u(U ) +
2∑

i =1

∂xi fi (u(U )) = 0(2.3)

which is still in conservation form. WritingFi (U ) := fi (u(U )), and using the
chain rule, yields

(∇U u) ∂t U +
2∑

i =1

(∇ufi (u(U ))) (∇U u) ∂xi U = 0,

or, denotingA0(U ) := ∇U u, we can write this as

A0(U )∂t U +
2∑

i =1

Ai (u(U ))A0(U )∂xi U = 0.(2.4)

The mappingu 7−→ U is given by

U (u) =
κ− 1

p




p
κ−1(κ + 1− s)− ρE

ρv1

ρv2

−ρ


 =:




U1

U2

U3

U4


 ,(2.5)

while the inverseU 7−→ u is given by

u(U ) =
p

κ− 1




−U4

U2

U3

1− 1
2

U 2
2 +U 2

3
U4


 ,

see [13], for example. Thus,

A0 =
1

κ− 1




ρ ρv1 ρv2
p

κ−1 + 1
2ρ|v|2

p + ρv2
1 ρv1v2

1
2ρv1|v|2 + κv1p

κ−1
p + ρv2

2
1
2ρv2|v|2 + κv2p

κ−1

symm 1
4ρ|v|2 − κ|v|2p2

(κ−1)2 + κp2

ρ(κ−1)2


 ,

while its inverseA0−1
is given by
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A0−1

=
κ− 1

p2




1
4ρ|v|2 + κp2

κ−1
1
2ρv1|v|2 1

2ρv2|v|2 p
κ−1 − 1

2ρ|v|2
ρv2

1 + p
κ−1 ρv1v2 −ρv1

ρv2
2 + p

κ−1 −ρv2

symm ρ


 .

Thus, we can rewrite the system as

2∑
i =0

Mi (U )∂xi U = 0,

whereM0(U ) := A0(U ) and Mi (U ) := Ai (u(U ))A0(U ), i = 1,2, are symmetric
4× 4 matrices andx0 := t . The symmetry of the matricesMi can be shown by
evaluating the matrix product. A direct proof can be given along the following
lines. Define functionsr (U ) := U ∗u(U ) − η(u(U )) and si (U ) := U ∗fi (u(U )) −
qi (u(U )), i = 1,2. Since the compatibility relation∇uη(u) = Ai (u)qi (u) between
entropy and entropy fluxes changes under the transformation of variables to
U ∗∇U fi (u(U )) = ∇U qi (u(U )) the derivatives ofr ands are given by

∇U r(U ) = u(U )

∇U si (U ) = fi (u(U )), i = 1,2.

Taking derivatives again shows that

∇2
U r(U ) = ∇U u(U )

∇2
U si (U ) = ∇U fi (u(U )), i = 1,2.

This indicates that the Jacobian matrices of the transformed fluxes are the Hes-
sians of the auxiliary functionssi and hence symmetric.

Applying A0−1
to (2.4) from the left, we arrive at the system

∂t U +
2∑

i =1

A0−1

(U )Ai (u(U ))A0(U ) ∂xi U = 0.

We can rewrite this as
2∑

i =0

M̃i (U )∂xi U = 0(2.6)

where theM̃i are non-symmetric 4× 4 matrices given by

M̃0(U ) := I ,

M̃i (U ) := A0−1

(U )Mi (U ), i = 1,2.

Equivalently, if we define the matrix

A0 := I ,

all M̃i are given byM̃i (U ) := A0−1
(U )Ai (u(U ))A0(U ) for i = 0,1,2.

Next, we perform a local linearisation of (2.4) about a mean constant state
in each cell, thus obtaining a linear symmetric positive (Friedrichs) system in
the entropy variables for which an a posteriori error analysis, similar to the one
proposed in [15], may be carried out.
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2.3 Local linearisation

We consider the non-linear system (2.3) and assume the existence of a mean
constant stateUc ∈ R

4 such that the decomposition

U = Uc + V

holds for a small non-constant perturbation functionV . It follows that

u(U ) = u(Uc + V ) = u(Uc) +∇U u(Uc)V + O (|V |2)

= u(Uc) + A0(Uc)V + O (|V |2)

and

fi (u(U )) ≡ Fi (U ) = Fi (Uc + V ) = Fi (Uc) +∇U Fi (Uc)V + O (|V |2)

= Fi (Uc) +∇U fi (u(Uc))V + O (|V |2)

= Fi (Uc) +∇ufi (u(Uc))(∇U u)V + O (|V |2)

= Fi (Uc) + Ai (u(Uc))A0(Uc)V + O (|V |2).

Writing uc := u(Uc) and dropping theO (|V |2) terms, we get the symmetric
system

A0(Uc)∂t V +
2∑

i =1

Ai (uc)A0(Uc)∂xi V = 0,(2.7)

where all matrix elements are constant. Applying the inverse constant matrix
A0−1

(Uc) from the left yields the non-symmetric linear system

∂t V +
2∑

i =1

A0−1

(Uc)Ai (uc)A0(Uc)∂xi V = 0.(2.8)

Equation (2.7) is our starting point for the a posteriori error analysis; it can be
rewritten as

L V :=
2∑

i =0

Mi (Uc)∂xi V = 0,(2.9)

where theMi are evaluated at the constant stateUc, i.e.

M0(Uc) := A0(Uc),

Mi (Uc) := Ai (uc)A0(Uc), i = 1,2.

If only steady flow problems are considered then∂t V ≡ 0 and the system (2.7)
collapses to

2∑
i =1

Ai (uc)A0(Uc)∂xi V = 0.

Note that in contrast with the variable-coefficient operators studied in [15], here
the operatorL has constant coefficients.
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3 Primary and secondary grids

We consider compressible fluid flow in a bounded domainΩ ⊂ R
2; for the

sake of simplicity,Ω is assumed to have a polygonal boundary∂Ω. On Ω we
define a triangulationT h as a partition ofΩ into finitely many subsetsTi ⊂ Ω,
i = 1, . . . ,#T, such that:

– Ω = ∪i∈{1,...,#T}Ti ;
– Every Ti ⊂ T h is closed with non-empty interior;
– For any twoTi ,Tj ∈ T h, with i /= j , the interiors ofTi andTj are disjoint;
– EachTi ∈ T h has polygonial boundary.

We use a conforming triangulation ofΩ, in the sense that every edge of each
Ti ∈ T h is either a subset of the boundary∂Ω := Ω\Ω or the edge of another
Tj ∈ T h with i /= j .

For the finite volume method considered here the actual shape ofTi is of no
significance; however, for the sake of computational simplicity, we use triangular
elements. The conforming triangulation ofΩ is called theprimary grid.
In addition to the primary grid we consider what we call thesecondary grid, see
[12]. This is defined as follows. Let

Kh,i := {T ∈ T h | nodei is a vertex ofT}
be the set of all triangles surrounding nodei , andeT,k , k = 1,2,3, the three edges
of triangleT. Then

Eh,i := {eT,k | T ∈ T h, k ∈ {1,2,3}, nodei is a vertex ofeT,k}
is the set of all edges emanating from pointi . The subsetBi ⊂ Ω defined as
the region surrounding nodei , bounded by the straight line segments joining the
barycentres ofTk ∈ Kh,i with the midpoints of the edgeseTk ,j , is called a box
or control volume. Ifi is a node on∂Ω then boxBi is defined as the region
around nodei , bounded by the straight line segments joining the barycentres of
Tk ∈ Kh,i with the midpoints of the edgeseTk ,j , and joining the midpoints of the
edges ofeTk ,j that lie on∂Ω to nodei . Various configurations of primary and
secondary grids are shown in Figs. 1 and 2. The DLR-τ -Code is based on a finite
volume discretisation using discontinuous piecewise polynomial functions to ap-
proximate the analytical solution on the boxes; restricting these to the vertices of
the triangles in the primary grid one can construct a continuous piecewise linear
interpolant over the triangulationT h which can be considered as an approxima-
tion of the analytical solution on the primary grid. It is this latter approximation
that will be exploited in the calculation of the local error indicators. The actual
definition of the finite volume approximationuh to the analytical solutionu is
irrelevant for the description of the type of a posteriori error estimator considered
here; thus we postpone the detailed presentation of the numerical method to Sect.
5.

The outline of the approach to a posteriori error estimation adopted here is as
follows. Let us assume that a piecewise polynomial approximationuh has been
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Fig. 1. Primary and secondary grid

Fig. 2. Primary and secondary grid at boundaries

calculated on a space-time prismPin = (tn, tn+1)× Ti , whereTi is a a triangle in
the primary grid. On eachPin we calculate, changing to entropy variables, the
correspondingU h = U h(uh); substituting this into the linearised symmetrised
Euler equations onPin we calculate a local residual. In the next section we show
that a suitable norm of the residual provides a two-sided bound on the error in
the L2-norm.

4 Residual-based a posteriori error estimation

In order to be able to derive a local a posteriori error bound, we first perform
a localisation procedure based on decomposing the global error into a locally
created part (called the cell error) whose size is controlled by the computable
local residual, and a non-local propagating component (called the transported
error) upon which the residual has no direct control.

4.1 Cell error and transported error

We consider, for a triangleTi ∈ T and the associated space-time prismPin =
(tn, tn+1)× Ti , the matrix
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B(Pin ) :=
2∑

j =0

ν̂j Mj =
2∑

j =0

ν̂j Aj (uci )A
0(Uci )

where ˆν = (ν̂0, ν̂1, ν̂2) denotes the outer unit normal vector to∂Pin . We shall
suppose thatB(Pin ) is non-singular on∂Pin ; in other words, that∂Pin is a non-
characteristic hypersurface for the operatorL . We splitB into a negative semi-
definite partB− and a positive semi-definite partB+ = B − B−. We call B−v
the inflow part of a vector fieldv andB+v its outflow part. Given a sufficiently
smooth functiong on ∂Pin ,

B−V = B−g on ∂Pin

defines an admissible boundary condition for the symmetric hyperbolic problem
(2.9), in the sense that, subject to this boundary condition, (2.9) has a unique
strong solution (see [5] and [11]).

In order to proceed, we shall assume that we are given the numerical solution
uh on the space-time prismPin = (tn, tn+1) × Ti , whereTi is a triangle in the
primary grid, and that we have calculated, converting to entropy variables,U h =
U h(uh). Following [15], we consider the following boundary value problem on
Pin :

L Ũ h = 0 on Pin

B−Ũ h
∣∣
∂Pin

= B−U h
∣∣
∂Pin

.

We interpret the functionŨ h as follows. Suppose that we have constructed an
approximationU h to the analytical solutionU of (2.9). Then the boundary data
B−U h|∂Pin is distorted by numerical errors upwind of cellPin . Thus,Ũ h is the
exact solution of (2.9) under these distorted boundary values. Consequently,

ecell
Pin

:= U h − Ũ h

is the error in the numerical solution which is produced onPin , while

etrans
Pin

:= Ũ h − U

is the error which is created upwind of the cellPin and is advected into the cell
by the numerical method. We callecell

Pin
the cell error and etrans

Pin
the transported

error. Clearly,
ePin = ecell

Pin
+ etrans

Pin
.

It is important to note that the residual has no direct control over the transported
error. Indeed, a simple calculation shows that

L etrans
Pin

= L Ũ h −L U = 0,

subject to the boundary condition

B−etrans
Pin

= B−(U h − U )
∣∣
∂Pin

= B−e
∣∣
∂Pin

,
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while the cell error is governed directly by the residual via

r h = L ePin = L ecell
Pin

on Pin ,

subject to the boundary condition

B−ecell
Pin

= 0 on∂Pin .

Now we are ready to proceed with the derivation of our local a posteriori error
bound onecell

Pin
in terms of the computable local residual.

Note that the remarks of this section apply equally well to the non-symmetric
system (2.8), where the corresponding boundary matrix is given by

B̃(Pin ) =
2∑

j =0

ν̂j M̃j .(4.1)

4.2 A weak a posteriori error estimate

We have shown above that, upon local linearisation about a constant state in a
cell Pin , the symmetrised form of the Euler equations is a Friedrichs system. Let
us therefore consider the following linear partial differential operator (slightly
more general than required in order to deal with the constant-coefficient problem
(2.9)) on a space-time prismPin = (tn, tn+1) × Ti in the independent variables
x0 = t , x1 andx2:

L v :=
2∑

j =0

Mj (x)∂xj v + C(x)v, x ∈ Pin ,

where theMj and C are 4× 4 matrices, the entries of each of theMj being
Lipschitz continuous onPin , and the entries ofC being continuous functions on
Pin . We make the following additional assumptions:

i) for eachPin there exists a weight functionwin ∈ C1(Pin ), positive onPin ,
and a positive constantcin such that, for allx ∈ Pin , in a pointwise sense,

1
2

(K (x) + K ∗(x)) ≥ cin I ,

where

K := C +
2∑

j =0

(
∂xj lnwin

)
Mj − 1

2

2∑
j =0

∂xj Mj ;

ii) Mj (x) = M ∗
j (x) for all x ∈ Pin , j = 0,1,2.
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Note that the condition on the symmetric part ofK in i) is equivalent to the
symmetric part ofK being positive definite.

For the particular case of the symmetrised Euler equations, linearised about a
constant state onPin , theMj are symmetric constant matrices andC is identically
zero. We note that for symmetrichyperbolicsystems, the case that we have been
led to consider for the unsteady compressible Euler equations, the weight function
can be taken to be

win (x) = eξin ·(x−xc
in ),

whereξin is a local time-like direction onPin (suitably scaled so as to satisfy
hypothesis i) above), andxc

in is the centroid of the space-time prismPin .
Let

B(x) =
2∑

j =0

ν̂j Mj (x),

and suppose that the matrixB(x) is non-singular, almost everywhere on∂Pin . De-
composingB(x) asB(x) = B+(x) + B−(x), whereB+(x) is positive semi-definite
on ∂Pin , B−(x) is negative semi-definite on∂Pin , we consider the weighted
graph-norm‖ · ‖D(L ,Pin ) on

D−(L ,Pin ) := {φ ∈ L2(Pin ) |L φ ∈ L2(Pin ), B−φ = 0 on∂Pin},
defined by

‖φ‖D(L ,Pin ) = (‖winφ‖2
L2(Pin ) + ‖winL φ‖2

L2(Pin ))
1/2,

and the associated dual graph-norm

‖v‖D′(L ,Pin ) := sup
φ∈D−(L ,Pin )

|(v, φ)Pin |
‖φ‖D(L ,Pin )

,

where (·, ·)Pin denotes the usualL2 inner product onPin . Similarly, by introducing
the formal adjoint

L ∗φ := −
2∑

j =0

∂xj (Mj φ) + C∗φ,

with

φ ∈ D+(L ∗,Pin ) := {φ ∈ L2(Pin ) |L ∗φ ∈ L2(Pin ), B+φ = 0 on∂Pin},
we may equipD+(L ∗,Pin ) with the graph-norm

‖φ‖D(L ∗,Pin ) = (‖winφ‖2
L2(Pin ) + ‖winL ∗φ‖2

L2(Pin ))
1/2.

The associated dual graph-norm is defined by

‖v‖D′(L ∗,Pin ) := sup
φ∈D+(L ∗,Pin )

|(v, φ)Pin |
‖φ‖D(L ∗,Pin )

.
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The existence of the traces is not obvious and has to be proven. This was
done in [15].

We have the following local a posteriori error bound for theL2-norm of the
cell errorecell

Pin
on a space-time prismPin in terms of the dual graph-norm of the

local residualr h.

Theorem 4.1. Under hypothesesi) and ii) stated above,

(min
Pin

win ) ‖r h‖D′(L ∗,Pin ) ≤ ‖ec‖L2(Pin ) ≤
(

1 +
1

c2
in

)1/2

(max
Pin

win ) ‖r h‖D′(L ∗,Pin ).

Proof. In order to simplify the notation, we shall writeec instead ofecell
Pin

through-
out this proof. To begin, we show that the graph norm‖ · ‖D(L ∗,Pin ) is equivalent
to the norm‖winL ∗ · ‖L2(Pin ) on D+(L ∗,Pin ). Then, in the second part of the
proof, we shall use this result to deduce the stated two-sided bound on the cell
error in terms of the dual graph-norm of the local residual.

A straightforward calculation based on integration by parts shows that, for
anyφ ∈ D+(L ∗,Pin ),

(
∂xj (Mj φ), w2

inφ
)

Pin
=

1
2

(
ν̂j Mj φ,w

2
inφ
)
∂Pin

(4.2)

+
1
2

((
∂xj Mj −Mj ∂xj (lnw

2
in )
)
φ,w2

inφ
)

Pin
,

for j = 0,1,2, where ˆν = (ν̂0, ν̂1, ν̂2) denotes the unit outward normal to∂Pin . To
prove this equality we start from its right-hand side. It follows from integration
by parts that

1
2

(
(∂xj Mj )φ,w

2
inφ
)

Pin
− 1

2

(
(∂xj w

2
in )Mj φ, φ

)
Pin

=
1
2

(
ν̂j Mj φ,w

2
inφ
)
∂Pin

− (Mj φ, (∂xj w
2
in )φ +w2

in (∂xj φ)
)

Pin
.

Thus, the right-hand side of (4.2) becomes(
ν̂j Mj φ,w

2
inφ
)
∂Pin

− (Mj φ, (∂xj w
2
in )φ +w2

in (∂xj φ)
)

Pin
.

On the other hand, integration by parts on the left-hand side of (4.2) yields(
∂xj (Mj φ), w2

inφ
)

Pin
=

(
ν̂j Mj φ,w

2
inφ
)
∂Pin

− (Mj φ, ∂xj (w
2
inφ)

)
Pin

=
(
ν̂j Mj φ,w

2
inφ
)
∂Pin

− (Mj φ, (∂xj w
2
in )φ +w2

in (∂xj φ)
)

Pin

which proves (4.2). Thence, with

B =
2∑

j =0

ν̂j Mj ,

andB+ + B− = B, we have that
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(
L ∗φ,w2

inφ
)

Pin
=
(
K ∗φ,w2

inφ
)

Pin
− 1

2

2∑
j =0

(
ν̂j Mj φ,w

2
inφ
)
∂Pin

,

yielding

(L ∗φ,w2
inφ)Pin = (K ∗φ,w2

inφ)Pin +
1
2

(−B−φ,w2
inφ)∂Pin ,

where we have made use of the fact thatB+φ = 0 on∂Pin . Now

(L ∗φ,w2
inφ)Pin =

1
2

[
(L ∗φ,w2

inφ)Pin + (w2
inφ,L

∗φ)Pin

]
=

1
2

(
(K + K ∗)φ,w2

inφ
)

Pin
+

1
2

(−B−φ,w2
inφ)∂Pin .

Recalling that the matrix−B− is positive semi-definite and exploiting hypothesis
i), we deduce that

(L ∗φ,w2
inφ)Pin ≥ cin‖winφ‖2

L2(Pin ).

Applying the Cauchy-Schwarz inequality on the left-hand side yields

‖winL ∗φ‖L2(Pin ) ≥ cin‖winφ‖L2(Pin ).

Consequently,

‖φ‖D(L ∗,Pin ) ≤
(

1 +
1

c2
in

)1/2

‖winL ∗φ‖L2(Pin ).(4.3)

Since, by the definition of the graph norm,

‖winL ∗φ‖L2(Pin ) ≤ ‖φ‖D(L ∗,Pin ),(4.4)

recalling (4.3) we obtain the two-sided bound

‖winL ∗φ‖L2(Pin ) ≤ ‖φ‖D(L ∗,Pin ) ≤
(

1 +
1

c2
in

)1/2

‖winL ∗φ‖L2(Pin ),(4.5)

for any φ ∈ D+(L ∗,Pin ). We shall exploit this pair of inequalities to derive a
bound on the dual graph-norm of the residualr h. Since

L ec = r h on Pin

B−ec = 0 on∂Pin ,

it follows that
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‖r h‖D′(L ∗,Pin ) = sup
φ∈D+(L ∗,Pin )

|(L ec, φ)Pin |
‖φ‖D(L ∗,Pin )

= sup
φ∈D+(L ∗,Pin )

|(ec,L ∗φ)Pin |
‖φ‖D(L ∗,Pin )

= sup
φ∈D+(L ∗,Pin )

|(w−1
in ec, winL ∗φ)Pin |
‖φ‖D(L ∗,Pin )

≤ sup
φ∈D+(L ∗,Pin )

‖w−1
in ec‖L2(Pin )‖winL ∗φ‖L2(Pin )

‖φ‖D(L ∗,Pin )
.

Thus, by virtue of (4.4), we obtain

‖r h‖D′(L ∗,Pin ) ≤ ‖w−1
in ec‖L2(Pin ) ≤ (min

Pin

win )−1 ‖ec‖L2(Pin ),

and hence
(min

Pin

win ) ‖r h‖D′(L ∗,Pin ) ≤ ‖ec‖L2(Pin ),(4.6)

which is the desired lower bound on the cell error. In order to prove the upper
bound on theL2-norm of the cell error, we consider the auxiliary problem

L ∗ψ = ec on Pin

B+ψ = 0 on∂Pin ;

this has a unique solutionψ ∈ D+(L ∗,Pin ) satisfying (4.5) (see [11]). Thus,

‖r h‖D′(L ∗,Pin ) = sup
φ∈D+(L ∗,Pin )

|(L ec, φ)Pin |
‖φ‖D(L ∗,Pin )

= sup
φ∈D+(L ∗,Pin )

|(ec,L ∗φ)Pin |
‖φ‖D(L ∗,Pin )

≥ |(ec,L ∗ψ)Pin |
‖ψ‖D(L ∗,Pin )

=
‖ec‖L2(Pin )‖L ∗ψ‖L2(Pin )

‖ψ‖D(L ∗,Pin )

=
‖ec‖L2(Pin )‖w−1

in winL ∗ψ‖L2(Pin )

‖ψ‖D(L ∗,Pin )

≥ (max
Pin

win )−1‖ec‖L2(Pin )‖winL ∗ψ‖L2(Pin )

‖ψ‖D(L ∗,Pin )
.

Recalling (4.3), it follows that

‖r h‖D′(L ∗,Pin ) ≥
(

1 +
1

c2
in

)−1/2

(max
Pin

win )−1‖ec‖L2(Pin ),

which yields the required upper bound on theL2-norm of the cell error in terms
of the dual graph norm of the local residualr h. �
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The sharpness of the cell error estimate stated in Theorem 4.1 depends on the
size of cin , as well on minPin win and maxPin win . Choosingwin (x) = eξin ·(x−xc

in ),
with ξin a local time-like direction onPin andxc

in the centroid ofPin , it follows
thatwin (x) = 1 +O (diam(Pin )), which implies thatwin is close to unity on each
Pin . For unsteady problemsξ is chosen as the time-direction, while for steady
problems it is taken to be a local time-like direction.

The next section is devoted to the practical implementation of the two-sided
error bound stated in Theorem 4.1 into the DLR-τ -Code for the numerical solu-
tion of the compressible Euler equations.

5 The DLR-τ -code

We aim at describing the implementation of the dual graph norm error indicator
in the framework of the DLR-τ -Code. We report briefly on the design and the
features of the code and describe the adaptive techniques used.

5.1 Cell averages, finite volume approximations and recovery functions

We consider weak solutions of the Euler equations on the boxesBi of a given
triangulation, i.e. we identify the boxesBi of the secondary grid with control
volumes. The cell average operator on boxBi is defined as

A(Bi )u(t) :=
1
|Bi |

∫
Bi

u(x, t) dx.

Thus, on each boxBi the cell average of a weak solutionu satisfies the evolution
equation

d
dt

A(Bi )u(t) = − 1
|Bi |

∮
∂Bi

2∑
i =1

fi (u)ν̂i ds.

Introducing a numerical flux function

S× S× R
2 3 u, v, ν̂

H7−→ H (u, v; ν̂) ∈ R
4

satisfying the fundamental consistency condition

∀v ∈ S : H (v, v; ν̂) =
2∑

i =1

fi (v)ν̂i

leads, for smooth solutions, to

d
dt

A(Bi )u(t) = − 1
|Bi |

∮
∂Bi

H (u,u; ν̂) ds.

If we denote the set of indices of neighbouring boxes to boxBi by N (i ), and the
two segments ofBi ∩ Bj , j ∈ N (i ), by l k

ij , k = 1,2, see Fig. 3, we arrive at
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l ij
1

l ij
2

i

j

ν

ν

1

2

ij

ij

Fig. 3. Box boundary

d
dt

A(Bi )u(t) = − 1
|Bi |

∑
j∈N (i )

2∑
k=1

∫
l k
ij

H (u,u; ν̂k
ij ) ds,

ν̂k
ij denoting the outer unit normal vector atl k

ij with respect toBi . Applying
one-point Gaussian quadrature to the integral yields

d
dt

A(Bi )u(t) = − 1
|Bi |

∑
j∈N (i )

2∑
k=1

H
(
u(xk

ij , t),u(xk
ij , t); ν̂k

ij

) ∣∣l k
ij

∣∣ + O (h2)

where xk
ij denotes the centre ofl k

ij . Note that the error due to the Gaussian
quadrature is proportional toh2.

A basic approximation which is at the heart of finite volume methods con-
sists of replacing the point valuesu(xk

ij , t) by the cell averages onBi and Bj ,
respectively.

Definition 5.1. The system of ordinary differential equations

d
dt

ui (t) = − 1
|Bi |

∑
j∈N (i )

2∑
k=1

H
(
ui (t),uj (t); ν̂k

ij

) ∣∣l k
ij

∣∣
ui (t) := A(Bi )u(0)

is called the basic finite volume approximation to (2.1).

To prove a formal order of accuracy of the basic finite volume approximation
we need a result concerning the approximation properties of the cell average
operator.

Lemma 5.1. Let ci denote the barycenter of box Bi . Then the approximation
properties

1. A(Bi )u(t) = u(ci , t) + O (h2),
2. A(Bi )u(t) = u(x, t) + O (h), x /= ci

are valid.
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Proof. Let uj denote a generic component ofu. Taylor expansion aboutci yields

uj (x, t) =
r−1∑
µ=0

1
µ!

∑
|α|=µ

(x − ci )
α∂αuj

∣∣
x=ci

+ O (hr )

for any r ∈ N. If the cell average operator is applied andr = 2 is chosen then

A(Bi )u
j (t) = uj (ci , t) +

1
|Bi |

∫
Bi

(x − ci ) dx · ∇xuj (x, t)|x=ci + O (h2)

holds. Now

ci =
1
|Bi |

∫
Bi

x dx

by the definition of the barycenter, which proves (1). Statement (2) follows along
the same lines by expanding aboutx /= ci . �
Using Taylor expansion again and noting that the use of the one-point Gaussian
quadrature rule has an error of orderO (h2) it is easily seen that the following
result holds.

Theorem 5.1. Assuming u and H to be smooth, the basic finite volume approxi-
mation is of spatial orderO (h) in the sense that

H (ui (t),uj (t); ν̂k
ij ) =

2∑
l =1

fl
(
u(xk

ij , t)
)
ν̂k

ij ,l + O (h).

Note that one cannot establish an order of accuracyO (h) in the sense of∑2
`=1 ∂x` f`(u) = 1

|Bi |
∑

j∈N (i )

∑2
k=1 H (ui (t),uj (t); ν̂k

ij )|l k
ij | + O (h), since supracon-

vergence phenomena occur on unstructured grids, see [6].
To increase the spatial order of accuracy we use the theory of recovery as

developed and described in [19]. Suppose on boxBi a linear polynomial

pu
i (x) := ai

00 + ai
10(x1 − ci ,1) + ai

01(x2 − ci ,2)

has to be recovered from cell average data (at each time levelt , which we drop
for simplicity). In order to preserve cell averages we insist on

A(Bi )p
u
i = A(Bi )u,

which, sinceA(Bi )x = ci , yields

ai
00 ≡ ui .

Thus, the recovery of a linear polynomial reduces to the recovery of a gradient

∇xpu
i = (ai

10,a
i
01).

Consider the recovery problem on boxBi and letT be a triangle with nodexi

according to Fig. 4, i.e.T ∈ Kh,i . On T we consider the spaceΠ1(T) of linear
polynomials with basis{ϕi , ϕj , ϕk} characterised by the conditions
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x i

x j

xk

B i
B j

B k

Fig. 4. Generic triangleT ∈ Kh,i

ϕl (xm) = δm
l , l ,m ∈ {i , j , k},

and we define the Lagrange interpolant of the cell averages as

uh
T (x) := uiϕi (x) + ujϕj (x) + ukϕk(x).

For each triangleT ∈ Kh,i we compute∇xuh
T which is a constant vector onT.

We then define

∇xpu
i := ∇xuh

T̃ ,
∣∣∇xuh

T̃

∣∣ = min
T∈Kh,i

∣∣∇xuh
T

∣∣ ,
i.e. the smallest gradient of the Lagrangien interpolants on the triangles around
nodei is assigned to be the gradient on boxBi .

Instead of using the piecewise constant cell averages, which have poor ap-
proximation properties, as arguments in the numerical flux function we now use
the value of thepu

l at the midpointxk
ij of the edges of neighbouring boxes. The

final finite volume approximation is then described by the system of ordinary
differential equations

d
dt

ui (t) = − 1
|Bi |

∑
j∈N (i )

2∑
k=1

H
(
pu

i (xk
ij , t),pu

j (xk
ij , t); ν̂k

ij

) ∣∣l k
ij

∣∣(5.1)

ui (0) = A(Bi )u(0).(5.2)

We remark that within the DLR-τ -code the primitive variablesρ, v1, v2,p are
recovered instead of the conservative variablesu. From recovered primitive data,
the values of conservative data are easily computed at the pointxk

ij .
We can show by a simple Taylor expansion in the variables of the numerical

flux function that the finite volume approximation (5.1) is spatially consistent of
the orderO (h2) in the sense of Theorem 5.1. This is by no means equivalent to
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second order convergence of the scheme which we indeed can not prove due to
the inherent nonlinearity of the problem and the discretisation.

We want to concentrate on explicit time stepping schemes, for simplicity, i.e.
the right-hand side of (5.1) is evaluated at time levelt = n + ∆t , n ∈ N, while
the left-hand side is discretised so that an explicit formula forui ((n + 1)∆t) can
be derived. The simplest scheme of this kind is given by

ui ((n + 1)∆t)− ui (n∆t)
∆t

=
d
dt

ui (t) + O (∆t)

which is what we shall exploit in the experiments. Note that a severe Courant-
Friedrichs-Lewy (CFL) stability condition has to be satisfied with this simple
discretisation. We used, on each boxBi ,

∆ti
Si

≤ max
l k
ij

{|ev(A(ui , ν̂
k
ij ))|}

whereSi denotes the shortest distance from the barycentre ofBi to its bound-
ary andev(A) the set of eigenvalues ofA. For time accurate computations the
minimum

∆t := min
i
∆ti

is chosen as global time step. For more sophisticated explicit time stepping
schemes used in the DLR-τ -code see [20]. Implicit schemes are considered in
depth in [17], see also [4].

Fig. 5. Red refinement

5.2 Adaptive techniques

Of the several different strategies that were tested in the past and documented in
[21], [22], [9], an isotropic red-green refinement, following ideas of Bank et al.
[1] and Kornhuber and Roitzsch [14], seems to be most appropriate.

The red refinement of a triangle is shown in Fig. 5. If a set of triangles
is red-refined the resulting hanging nodes can be removed through the green
refinement shown in Fig. 6. Obviously the red refinement is harmless because it
splits a triangle into four geometrically similar subtriangles. In contrast, the green
refinement may lead to triangles with very small angles. To ensure stability of
the algorithm we use a procedure described by Kornhuber and Roitzsch [14]. At
the beginning of each refinement step all green refinements are removed from
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Fig. 6. Green refinement

the grid. After red-refining all triangles that have to be refined due to information
of the refinement indicator, all triangles with more than one hanging node are
also red-refined. In a final phase the remaining hanging nodes are removed by
means of the green refinement.

If the refinement indicator signals that a triangle has to be removed from the
triangulation a coarsening procedure developed by Hempel [10] is used. This
procedure is able to remove successively all levels of refinement down to the
initial grid and is based on local considerations concerning the triangles which
share a common point.

5.3 Remarks concerning the finite volume approximation

It should be noted that the finite volume code described previously numerically
solves the Euler equations inconservedvariables and not inentropyvariables.
Since our considerations concerning the error indicator are based on entropy vari-
ables we have two distinct ways of implementing the dual graph-norm indicator.
We could have re-written the code in terms of entropy variables and then consis-
tently work only in this set of variables. This approach would have been far from
practical since virtually all numerical methods for the Euler equations rely on
conserved variables due to their physical significance. Our approach stays with
the finite volume approximation of the Euler equations in conserved variables.
In the initial step of the adaptive process our conservative data is transformed
to entropy variables. It is in this sense that the hypotheses i) and ii) of Subsect.
4.2 are satisfied since the matrices occuring in the transformed system satisfy
these conditions. The Euler equations in conserved variables do not satisfy the
hypotheses. Since it is well known that the system in entropy variables have
the same weak solutions as the systems in conserved variables a transformation
between these sets of variables does not do harm to the numerical solution.

6 The implementation of the dual graph norm indicator

There are in principle two different strategies for the implementation of the dual
graph norm indicator: both of them are based on approximating‖r h‖D′(L ∗,Pin )

using a subdivision ofPin . On a particular subdivision we exploit a finite element
basis{Φ} that satisfies the local boundary conditionB+Φ = 0 on∂Pin . We start by
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describing the imposition of boundary conditions. In order to derive an applicable
error indicator we start with the non-symmetric system (2.8) which is nothing
but the symmetric system (2.7) in a form more convenient for computational
purposes.

t

x1

x2

(n+1)

n ∆

t

t

∆

P
in

Fig. 7. Space-time prismPin

6.1 Boundary conditions

Consider a space-time prismPin as in Fig. 7. Recall that the boundary condition
matrix (4.1) for system (2.8) is given by

B̃(Pin ) =
2∑

j =0

ν̂j M̃j =
2∑

j =0

ν̂j A
0−1

(Uci )Aj (uci )A
0(Uci )

= ν̂0I +
2∑

j =1

ν̂j A
0−1

(Uci )Aj (uci )A
0(Uci ),

whereUci ,uci denote constant mean states of entropy and conservative variables,
respectively, within the prismPin .

In order to distinguish inflow from outflow boundaries the matrixB̃(Pin ) is
split into a positive semi-definite part̃B+(Pin ), the outflow part, and a negative
semi-definite part̃B−(Pin ), the inflow part, so that

B̃(Pin ) = B̃+(Pin ) + B̃−(Pin ).

Since the matrices̃Mj are similar toAj , for j = 1,2, andM̃0 is similar to I , the
set of eigenvalues of̃B(Pin ) is given by
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ev(B̃(Pin )) = ν̂0 + ev


 2∑

j =1

ν̂j Aj (uci )


 .

Now it is well known (see [3]) that there exists an invertible matrixP(uci , ν̂1, ν̂2) ∈
R

4×4 such that

P(uci , ν̂1, ν̂2)−1


 2∑

j =1

ν̂j Aj (uci )


P(uci , ν̂1, ν̂2) = Λ(uci , ν̂1, ν̂2),

whereΛ is the diagonal matrix

Λ(uci , ν̂1, ν̂2) = diag




2∑
j =1

ν̂j vci ,j ,
2∑

j =1

ν̂j vci ,j ,
2∑

j =1

ν̂j vci ,j + aci |(ν̂1, ν̂2)|,

2∑
j =1

ν̂j vci ,j − aci |(ν̂1, ν̂2)|

 ,

aci :=
√
κ pci

ρci
denoting the mean constant speed of sound inPin . We splitΛ into

a matrixΛ+ containing the positive eigenvalues, andΛ− containing the negative
eigenvalues, i.e.

Λ(uci , ν̂1, ν̂2) = Λ+(uci , ν̂1, ν̂2) +Λ−(uci , ν̂1, ν̂2).

Thus,
∑2

j =1 ν̂j Aj (uci ) can be represented as a sum of a positive semi-definit and
a negative semi-definite part, i.e.

2∑
j =1

ν̂j Aj (uci ) = Pλ+P−1(uci , ν̂1, ν̂2) + Pλ−P−1(uci , ν̂1, ν̂2)

and we end up with a representation for the boundary matrixB(Pin ) of the form

B̃(Pin ) = ν̂0I + A0−1

(Uci )
(
PΛ+P−1(uci , ν̂1, ν̂2)

)
A0(Uci )

+ A0−1

(Uci )
(
PΛ−P−1(uci , ν̂1, ν̂2)

)
A0(Uci ).

Note that on the bottom faceTi ∩{n∆t} of the space-time prismPin there holds
ν̂ = (−1,0,0) and thus

B̃(Pin ) = −I = B̃−(Pin ).

Therefore, the bottom face is an inflow boundary ofPin . Analogously, on the top
faceTi ∩ {(n + 1)∆t} we have ˆν = (1,0,0) and thus

B̃(Pin ) = I = B̃+(Pin ),

i.e. this is an outflow face. On the three side faces ofPin , ν̂0 = 0 is valid and
thus B̃(Pin ) is split according to the signs of eigenvalues inΛ. Note that this
corresponds to the flux vector splitting of Steger and Warming, see [23]. Thus,
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if φ ∈ D+(L ∗,Pin ) is sought then the components ofφ have to be chosen in
order to cancel the expression

B̃+(Pin )φ = 0

on the face under consideration. This is achieved by splittingΛ according to
Λ = Λ+ +Λ− and looking forφ which satisfy the condition

Λ+φ = 0.

6.2 The error indicator

As was already noted, two different strategies exist in principle for setting up the
graph norm error indicator. In both approaches the space-time prismsPin have
to be subdivided and a finite set of test functionsφ has to be defined on this
subdivision. In the first approach one uses test functionsφ ∈ D+(L ∗,Pin ) in
linear-linear tensor product form

φ(x, t) = α000 + α100t + α010x1 + α001x2 + α110x1t + α101x2t ,

compare [2]. OnTi the Lagrange interpolantsuh
Ti

of the cell averages are com-
puted at timesn∆t and (n + 1)∆t anduci is defined to be the average of the six
values ofuh

Ti
at the nodes ofTi at the two time levels. Using quadrature rules

the dual graph norm of the residual may be computed withinPin on the partition
of the space-time prisms.

For the sake of simplicity and to save computing time we shall exploit an
alternative to this approach which seems to be better suited to explicit time
stepping schemes. We aim to compute the dual graph norm indicator from data
which is available at timen∆t . Note that after one flux balance we know not
only the valuesul (n∆t) but also the values of the temporal change

ul ((n + 1)∆t)− ul (n∆t)
∆t

= Ql ,

whereQl denotes the spatial finite volume discretisation. On triangleTi a subdi-
vision of the form shown in Fig. 8 is established and we assume our test functions
to be constant in time, piecewise linear in space, i.e. of the form

φ(x, t) = φ(x) = α00 + α10x1 + α01x2.

The subdivision ofTi gives rise to 15 different test functionsφk , k = 1, . . . ,15,
which we define to be the linear hat functions characterised byφk(xj ) = δk

j . To
take into account the boundary conditions we proceed as follows. If element
λ+

ll of Λ+ is non-zero at one of the boundary points on∂Ti the corresponding
component ofφk , i.e. φk,l , is set to zero so thatΛ+φk = 0 holds for allφk .
Obviously,φk ∈ D+(L ∗,Pin ). Thus, the dual graph norm is approximated by

‖r h‖D′(L ∗,Pin ) ≈ max
k=1,...,15

|(r h, φk)Pin |
‖φk‖D(L ∗,Pin )

,
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x1 x2

x3

Ti,l

Ti

Fig. 8. Local subdivision of triangleTi

with φk as previously defined. To compute the numerator and the denominator
in the approximated dual graph norm we choose the mean constant state inPin

to be

uci :=
1
3

(u1(n∆t) + u2(n∆t) + u3(n∆t)),(6.1)

where the nodes ofTi are labelled 1,2,3 for simplicity. Note that this gives an
O (∆t)-approximation to a mean constant state which also includes the values at
time level (n + 1)∆t , provided we assume smoothness of the solution. Thus,

v(x, t) = uh(x,n∆t)|Ti − ui c(6.2)

is identified as linear perturbation of the mean constant state at time [n∆t , (n +
1)∆t ]. From (6.1) the mean constant state of entropy variabelsUci is computed
using (2.5) and from (6.2) the linear perturbation

V (x, t) = U (x, t)|Ti − Uci , t ∈ [n∆t , (n + 1)∆t ],

follows. According to (2.9) the residual is now computed from

r h = L V = ∂t V +
2∑

j =1

A0−1

(Uci )Ai (uci )A
0(Uci )∂xi V .

Taking theL2-inner product with our test functionsφk ∈ D+(L ∗,Pin ) leads to

(r h, φk)Pin =
∫

Ti

∫ (n+1)∆t

n∆t
∂t V · φk dt dx

+
2∑

j =1

A0−1

(Uci )Aj (uci )A
0(Uci )

∫
Ti

∫ (n+1)∆t

n∆t
∂xj V · φk dt dx.
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In order to stay at then-th time level in the spatial part we use a simple one-point
quadrature rule where the quadrature point isn∆t . This gives

(r h, φk)Pin =
∫

Ti

φk(x) · (V (x, (n + 1)∆t)− V (x,n∆t)) dx

+
2∑

j =1

A0−1

(Uci )Aj (uci )A
0(Uci )∆t

∫
Ti

∂xj V (x,n∆t) · φk(x) dx

+O (∆t2).

For each of the nodesxl , l = 1,2,3, of the triangleTi we know the valueQl of

ul ((n + 1)∆t)− ul (n∆t)
∆t

= Ql .

Since Ql can be expressed as the difference of conservative variables we can
switch to entropy data by means of transformation (2.5) yielding

U l := U (ul ((n + 1)∆t))− U (ul (n∆t))

= U (ul (n∆t) +∆tQl )− U (ul (n∆t))

The linear interpolant ofU l on Ti given by

U h
Ti

(x) :=
3∑

l =1

U lϕl (x),

ϕl (xm) = δm
j , can be calculated and this yields the linear perturbation

V h
Ti

(x) := U h
Ti

(x)− Uci =
3∑

l =1

U lϕl (x)− Uci

in entropy variables. Thus, the time differenceV (x, (n + 1)∆t)−V (x,n∆t) can
be replaced by a transformed spatial flux balance resulting in

(r h, φk)Pin

.
=

∫
Ti

φk(x) · V h
Ti

(x) dx

+
2∑

j =1

A0−1

(Uci )Aj (uci )A
0(Uci )∆t

∫
Ti

∂xj V (x,n∆t) · φk(x) dx

where we introduce the symbol
.
= meaning equality up to terms of order

O (∆t2,h|Ti |). Now ∂xj V is a constant onTi and can be removed from the
integral. SinceTi = ∪16

l =1Ti ,l and |Ti ,l | = |Ti |/16 we arrive at

(r h, φk)Pin

.
=

16∑
l =1

∫
Ti ,l

φk(x) · V h
Ti

(x) dx

+
2∑

j =1

A0−1

(Uci )Aj (uci )A
0(Uci )∆t ∂xj V

∣∣
Ti

16∑
l =1

∫
Ti .l

φk(x) dx.
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If we apply the one-point quadrature rule in each subtriangleTi ,l we finally end
up with

(r h, φk)Pin

.
=

|Ti |
16

16∑
l =1

φk(ci ,l ) · V h
Ti

(ci ,l )

+
2∑

j =1

A0−1

(Uci )Aj (uci )A
0(Uci )∆t ∂xj V

∣∣
Ti

|Ti |
16

16∑
l =1

φk(ci ,l ).

The denominator in the dual graph norm indicator is given by

‖φk‖D(L ∗,Pin ) =
√
‖winφk‖2

L2(Pin ) + ‖winL ∗φk‖2
L2(Pin )

wherewin (x) = eξin ·(x−xc
in ) is the local scaling (weight) function. Note that using

this weight function with the time-like directionξin ensures that hypotheses i) in
Subsect. 4.2 holds. We have

‖winφK ‖2
L2(Pin ) =

∫
Ti

∫ (n+1)∆t

n∆t
(winφk)2 dt dx =

∫
Ti

φ2
k

∫ (n+1)∆t

n∆t
w2

in dt dx

since our test functions were assumed to be constant in time. Using a one-point
quadrature in the space-time barycenterxc

in yields

‖winφk‖2
L2(Pin )

.
= ∆t

∫
Ti

φ2
k dx

.
= ∆t

16∑
l =1

∫
Ti ,l

φ2
k dx

.
=
|Ti |
16

16∑
l =1

(
φk(ci ,l )

)2
.

The formal adjoint of the linearised operator

L = ∂t +
2∑

j =1

A0−1

(Uci )Aj (uci )A
0(Uci )∂xj

is simply given by
L ∗ = −L .

Thus,

‖winL ∗φk‖2
L2(Pin ) =

∫
Ti

∫ (n+1)∆t

n∆t

(
winL φk

)2
dt dx.

Sinceφk are assumed not to change with time withinPin we arrive at

‖winL ∗φk‖2
L2(Pin ) =

∫
Ti


 2∑

j =1

A0−1

(Uci )Aj (uci )A
0(Uci )∂xj φk




2

×

∫ (n+1)∆t

n∆t
w2

in dt dx

.
= ∆t

∫
Ti


 2∑

j =1

A0−1

(Uci )Aj (uci )A
0(Uci )∂xj φk




2

dx
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where the time integral was again approximated by a one-point rule with quadra-
ture pointxc

in . Thus, we end up with

‖winL ∗φk‖2
L2(Pin )

.
= ∆t

|Ti |
16

16∑
l =1


 2∑

j =1

A0−1

(Uci )Aj (uci )A
0(Uci )∂xj φk(ci ,l )




2

.

Gathering our partial approximations gives
(6.2)

‖r h‖D′(L ∗,Pin ) ≈ ‖r h‖∆′(L ∗,Pin ) :=

|Ti |
16

∣∣∣∑16
l =1φk(ci ,l ) ·

{
V h

Ti
(ci ,l ) +∆t

∑2
j =1 A0−1

(Uci )Aj (uci )A0(Uci ) ∂xj V
∣∣
Ti

}∣∣∣√
|Ti |
16

∑16
l =1

{(
φk(ci ,l )

)2
+∆t

(∑2
j =1 A0−1(Uci )Aj (uci )A0(Uci )∂xj φk(ci ,l )

)2
}

(6.3)
as an approximation to the dual graph norm error indicator.

The adaptive procedure using this refinement indicator is as follows. Given
two tolerances TOLrefineand TOLcoarsethe adaptive algorithm sweeps through
the grid at certain times and refines all those triangles, for which

‖r h‖∆′(L ∗,Pin ) < TOLrefine

is valid, while triangles are deleted from the mesh for which

‖r h‖∆′(L ∗,Pin ) > TOLcoarse,

holds.

7 Numerical experiments

To show the ability of our refinement indicator in resolving flow phenomena we
apply the DLR-τ -Code together with the approximated error indicator (6.3) to
several test problems. In all cases the approximate Riemann solver of Roe was
used as the numerical flux function together with the usual entropy fix to exclude
stable expansion shocks.

7.1 Transonic steady flow about NACA0012

The first test problem is transonic steady flow about a NACA0012 airfoil in
which the onflow conditions are given by

Ma∞ = 0.8, α = 1.25◦
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Fig. 9. Initial grid for transonic flow about NACA0012 airfoil

whereα denotes the angle of attack. Note that we non-dimensionalised the Euler
equations with the onflow velocity and not with the speed of sound.
The dominant flow features in this particular case are a strong shock on the upper
side of the airfoil and a weak one on its lower side. It was shown in [21] that
classical refinement indicators based on gradients of flow variables often have
problems in detecting the weak shock if the initial grid is not fine enough. Thus,
as a first test, the new refinement indicator should detect the weak lower side
shock. The initial grid used is the one shown in Fig. 9 and is the same that was
used in [21]. The density distribution on this grid can be seen in Fig. 10. If the
refinement indicator (6.2) is used after 1000 timesteps the resulting grid after 3
adaption periods is shown in Fig. 11. The refinement indicator has detected both,
the strong shock on the upper side of the airfoil and the weak shock on the lower
side. Parts of the supersonic bubble on the upper side are also adapted but the
size of the adapted region depends more strongly on the size of the user-given
tolerance.

The corresponding density distribution is shown in Fig. 12. The same number
of isolines (i.e. not the same values of density) was used in the presentation of
the adapted as well as in the figure showing the non-adapted solution.

7.2 Supersonic steady flow about a cylinder

The next problem we consider is the supersonic flow about a cylinder where the
onflow Mach number is given by

Ma∞ = 3.0.

We start with an initial grid as shown in Fig. 13. The distance between the cylinder
of radiusr = 2 and the bow shock should bed = 1.703 as can be estimated from
linearised theories, compare [26]. The solution of the DLR-τ -Code is shown in
the right half of Fig. 13 where the density distribution can be seen. Applying
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Fig. 10. Density distribution on the initial grid

the adaptive techniques of the DLR-τ -code triggered by our refinement indicator
(6.3) gives the grid and numerical solution as shown in Fig. 14. Besides the
bow shock, which is captured at the correct position, the grid is also refined
at the outflow boundaries down to the body surface. The solution around the
stagnation point suffers from the carbuncle phenomenon of Roe’s approximate
Riemann solver which is only slightly surpressed by our choice of the entropy
fix.

7.3 Supersonic unsteady flow in a channel

Some years ago Woodward and Colella proposed a model problem that is now
accepted as one of the standard test cases for numerical methods for unsteady
Euler equations, see [25]. A supersonic flow is established in a channel and at
time t = 0 a forward facing step on the lower side of the channel is suddenly
introduced. The onflow Mach number in this problem is
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Fig. 11. Grid after three adaption cycles for transonic flow about NACA0012 airfoil

Fig. 12. Density distribution on the adapted grid
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Fig. 13. Initial grid and density distribution

Ma∞ = 3.0

while the flow is parallel to the channel walls. The most interesting flow phe-
nomena are present in the flow at timet = 8 when a shock system is fully
developed within the channel. Note that Woodward and Colella used the onflow
speed of sound to non-dimensionalise the Euler equations so that our timet = 8
corresponds to their timet = 4.

Figure 15 shows the grid at timet = 0.119. The bow shock has just detached
from the step and starts moving around the corner.

A detail of the grid and the corresponding density distribution can be seen
in Fig. 16. The grid at timet = 0.67 and the corresonding density are shown in
Fig. 17. At timet = 1.44 the bow shock is already attached to the upper wall of
the channel. As can be seen from Fig. 18 the refinement of the grid follows the
development of the flow phenomena accurately. A reflected shock is now moving
downstream. Figure 19 shows grid and density distribution at timet = 2.48. The
first reflected shock is just touching the lower wall.

Approximately at timet = 4 the overall shock structure is established in the
channel. From that time on the dynamics of the flow field change drastically and
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Fig. 14. Adapted grid and density distribution

start to influence the refinement indicator. Beforet = 4 a drastic temporal change
of the flow field can be observed in the sense that flow phenomena, like shocks,
move with high relative velocity. Aftert = 4 temporal changes are negligible and
all structures of the flow field move very slowly and do not change very much
betweent = 4 andt = 8. As a consequence, the detected error exceeds the user-
given tolerances TOLrefine and TOLcoarse. To take this behaviour of the flow
field into account we had to change the refinement tolerance bounds within the
computation. The adaptive tuning of the tolerance bounds makes sense since our
refinement indicator is a space-time indicator. Thus, temporal as well as spatial
errors contribute to the overall error.

Figure 20 shows the grid and the density distribution at timet = 4.77. As can
be seen the structural details of the solution are already fully developed. Note
that the second reflected shock is already poorly treated by the adaption process.
Changing the refinement limits we get the final solution and grid at timet = 8
shown in Fig. 21. In contrast with the ad hoc refinement indicators presented in
[21] and [22] the dual graph norm refinement indicator triggered the adaptive
algorithm to refine the greater vicinity of the contact discontinuity.
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Fig. 15. Adapted grid and detail of the grid att = 0.119

Fig. 16. Detail of the adapted grid and density distribution att = 0.119

Fig. 17. Adapted grid and density distribution att = 0.67
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Fig. 18. Adapted grid and density distribution att = 1.44

Figure 22 shows the Mach number distribution on the final grid. The results
compare well with results obtained with other residual based error indicators but
in contrast with them, the dual graph norm indicator is a true rather than ad hoc
error indicator.

Fig. 19. Adapted grid and density distribution att = 2.48

8 Conclusions

We have presented a new refinement indicator applicable to adaptive computa-
tions of solutions of symmetric hyperbolic systems. A two-sided error bound on
the dual graph norm of the residual of the numerical approximation is proved
and thus this dual graph norm refinement indicator is a true error indicator. The
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Fig. 20. Adapted grid and density distribution att = 4.77

Fig. 21. Adapted grid and density distribution att = 8

Fig. 22. Mach number distribution att = 8
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Euler equations of gas dynamics are symmetrised by means of entropy variables
and locally linearised about a mean constant state. In this form the dual graph
norm refinement indicator is applicable in adaptive algorithms for inviscid com-
pressible flow problems. We developed a careful discrete approximation to the
dual graph norm indicator in the framework of the DLR-τ -Code and applied the
new refinement indicator to steady as well as unsteady test problems. For further
analytical results on the dual graph norm and its relationship withh‖r h‖L2(Pin )

we refer to [24].
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