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Summary. Usually, the minimal dimension of a finite element space is closely
related to the geometry of the physical object of interest. This means that some-
times the resolution of small micro-structures in the domain requires an inade-
guately fine finite element grid from the viewpoint of the desired accuracy.

This fact limits also the application of multi-grid methods to practical situ-
ations because the condition that the coarsest grid should resolve the physical
object often leads to a huge number of unknowns on the coarsest level.

We present here a strategy for coarsening finite element spaces independently
of the shape of the object. This technique can be used to resolve complicated
domains with only few degrees of freedom and to apply multi-grid methods
efficiently to PDEs on domains with complex boundary.

In this paper we will prove the approximation property of these generalized
FE spaces.

Mathematics Subject Classification (1991§5D05, 65N12, 65N15, 65N30,
65N50, 65N55

1. Introduction

In this paper, we will introduce so-calle@omposite Finite Elementsn two-
dimensional domains. However, we state that generalizations to more spatial
variables are obvious. We have in mind that these domains may have bound-
aries with complicated micro-structures. Consequently, every reasonable finite
element grid (quasi-uniform, satisfying the minimal angle condition) which has
to resolve the boundary will have a huge number of elements. Finite element
spaces corresponding to such grids and also finer grids usually satisfy an asymp-
totic approximation property. We will define subspaces of these finite element
spaces corresponding to “coarser” FE grids which also satisfy the asymptotic
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approximation property. The minimal number of unknowns will not be limited
by the shape of the domain.

This new class of finite elements is call€@dmposite Finite Elementsr the
following reason. According to the definition of [4, Chap. 2.3], finite elements
are triples consisting of the element domain, the space of shape functions, and
the set of nodal functionals. Usually, the element domains are smooth images of
a reference element and the shape functions are smooth at least in the interior
of the element domain. For composite finite elements, however, the element
domainK is the union of many small standard elements. The shape functions on
K are composedocally of piecewise polynomials on the small elements along
with suitable global constraints dd which leads to the nameompositefinite
elements?

The ideas are closely related to Shortley-Weller discretizations in the context
of finite difference approximations as described in [13], [7], [10] implemented
in a hierarchical way using the Galerkin product (see [5]).

Another approach for coarsening finite element spaces can be found in [2]
and [3]. There, the authors define a hierarchical basis on non-nested grids and
prove grid-independent convergence rates for the corresponding BPX method.
In contrast to the method presented in our paper the coarsening strategy of the
mentioned authors can be applied to arbitrarily unstructured grids, while our ap-
proach uses the logically regular grid. Consequently, it turns out that, a priori,
we know that the coarsest grid will consist of extremely few degrees of free-
dom (typically smaller than 10) independent of the shape of the domain. The
coarsening approach in [2] is heuristic and, hence, it is beforehand not known
what the number of unknowns at the coarsest level will be, when the algorithm
terminates.

A further related method is presented in [11]. In that paper, the physical
domain is embedded in a domain of easy shape which is refined by standard
methods. The FE spaces are given by the restriction of the functions on the arti-
ficial larger domain to the physical domain. It was shown that subspace correction
methods can be applied successfully to this method.

Knowing the approximation property and stability behaviour, it is well known
that the Galerkin FEM has quasi-optimal convergence behaviour. Thus, if one is
interested in a relatively crude approximation of the solution, we are now able to
use composite finite element spaces of low dimension independent of the shape
of the domain and obtain the corresponding accuracy.

Following the theory of [6], the convergence of multi-grid methods can be
split in the proof of the approximation and the smoothing property. The approx-
imation property for multi-grid methods follows from the approximation quality
of the finite element spaces and assumptions on the differential equation on the
continuous bunot on the discrete level (see [6, Sect. 6.3.1]).

This paper is organized as follows. In the next chapter, we will introduce
strategies to coarsen triangulations of domains independently of the shape of

1 After submitting the paper we noticed that, in the context of approximating curved boundaries,
a similar finite element was introduced in [12].
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the domain. Then, in Sect. 3 we will define finite element spaces on these grids
by introducing suitable interpolation operators. In Sect.4, we will prove the
approximation property of these FE spaces in the case that the domain is the
whole plane. Section 5 addresses the approximation quality of composite finite
element spaces on bounded domafasusing the previous results. Finally, in
Sect. 7 we prove a stability theorem for the interpolation process involved in
the definition of the FE space. This stability result plays the crucial role for the
estimates in théd 1-norm of Sects. 3 and 5.

The paper is the first in a sequence of two. In [10a], we will discuss the
efficient construction of the generalized FE spaces, the complexity of the method
and will include numerical experiments.

2. The construction of generalized FE grids

Composite Finite Elements will be defined in Sect. 3 in an abstract way. There,
some geometric assumptions will be imposed on the hierarchy of grids. In order
to make these assumptions more transparent we will first present an example
of a grid generator and a coarsening algorithm which generates an admissible
hierarchy of grids. It turns out that this algorithm carries over to the 3-d case in
a straightforward manner (see [10]).

We will present a strategy of generating FE grids on a complicated domain
£ c R? which can easily be coarsened to grids which will be related to FE
spaces having only very few degrees of freedom. Before presenting the detailed
description of the method, we will outline the principal underlying idea. An illus-
tration of the process described below is given in Fig. 1. We consider an infinite
(virtual) sequence of uniform square grid triangulatidfig},.,_ . covering the
whole planeR®?. These grids are thought to be nested in the sense that each
triangIeA~ € 7, has a father on a coarser level and four sons on the finer level,
which arise by connecting the midpoints of the edges&ofLet us assume that
the grid7,,, is fine enough in the sense that small displacements of grid points
in 7y, Which may not destroy the logical connectivity, result in a grjid
having the following property. There is a (finite) subsgt, C 77° which is a
proper triangulation of?. “Proper” is meant in the sense that standard refinement
procedures as, e.g., projecting the midpoint of edges onto the physical boundary,
can be applied successfully. We emphasize tgf may not necessarily be the
finest grid in the discretization process, but can be viewed as the coarsest grid,
where standard refinement procedures (including adaptivity) can be applied. A
fully adaptive version of the coarsening was presented in [8].

Since we have a one-to-one correspondenceg ofand the virtual gridr,,,
coarsening can be performed easily by the following procedure.A die a
triangle of 7, and A the corresponding triangle of,.... The father of A,

A € 7,1 With vertices{f(i }1<i<3, is well defined. The vertice$X; },; 5

denote grid points corresponding (cf(i }1<i<3 arising by adapting the virtual

grid to the physical domain. The triangle with vertic{aﬁi }1<i<3 is contained
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(a) Zmax (b) Zmax -1 (C) emax 2
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(d) Tzﬁax (e) Témax -1 (f) Tgmax -2
@ T, ) T 0 B2

Fig. 1. In the first line, the virtual gridr;, ., and coarser grids, are depicted. The grigd>° arises

. . . ~ - ~max .
by moving grid points ofry, . being close to the boundary onto the boundary. Coarser grids as,
€.0., Tyna—1 arise by collecting the fathers of triangles#ﬁ; . using the logical connection to the
uniform reference grid. The triangulatian,,, which is used for computations consists of triangles
which lie “inside” the domain. Coarser triangulations consist of the fathers of triangles on finer levels
and cannot be regarded as an approximation of the domain

in the coarser triangulation, 1. This process can be iterated ending with a
coarsest gridy which consists only of very few triangles. This grid will not
have much to do with the domaif2. However, we will not define standard
finite element spaces on these non-fitting grids, but they are only used to connect
degrees of freedom with each other. The corresponding finite element space will
consist only of functions which are defined on the physical domain. To avoid
confusion, we state that the virtual gridsand gridsr* are never used in actual
computations, because, due to their regularity, the positions and connectivity of
the triangles are known beforehand.

2.1. The hierarchy of virtual reference grids

In this subsection, we will give the precise definition of the sequence of reference
grids. In order to indicate that a quantity belongs to the reference grid, we will use
atilde, e.g.7Tor the reference grid anxifor a grid point ofr~ The corresponding
guantities on the true triangulation are denotedrhy, etc.
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The setd, of vertices is the square grid of sife given by &, = h,Z2. We
choose an infinite sequem{e}ng}oq<oo of step sizes withh, = 2hy,;. Conse-
guently, we obtain that the vertex sets form a hieranﬁlﬁi@}oq<C>O satisfying
©¢ C Op1. The corresponding hierarchy of triangulatiofts },_,_ .. is given
by the following procedure. Put lines along the co-ordinate axes through the grid
points of ©, resulting in a Cartesian square grid and insert diagonals through
m I 1 , m € 7. The arising triangles
define the gridr; (cf. Fig. 1(a)-(c)). The triangulations, are nested in a natural

way. For any triangled € 7, there exist four son%A}’}l<j < € Te+1, Satisfying

Ui—y &) = A. The triangleA is the father of each/, and hence, each triangle
in 7, has a father in,~ 1 provided? > 0.

the pairs of pointsh, r(r)] and hy

2.2. Construction of the fine grid

Let us assume that the boundary of the dom@irhas to be resolved with a
step widthh,, . and micro-structures being smaller can be neglected. Then, an
intermediate grid° is defined by moving grid points & égmax of the reference
grid 7, which are close to the boundary, i.e., satisfying ¢s02) < hy,__,
together with the corresponding edges onto the physical bound&ryThis
procedure defines a one-to-one mappmgégmax — O . The triangles of >
are given by the condition:

A triangle with verticesA, B, C belongs tor;* , if and only if the triangle
with vertices®—1 (A), o1 (B), &~ (C) belongs torz, ..

Thus, any triangle& € Tin IS linked to one and only one trianglé € 77° .
The corresponding mapping is denotedd®y: 7, — 7;° . Since no confusion
is possible, we skip the superscript

The following procedurexdapt illustrates, how the reference grid might be
adapted to the domaif?. The proceduradapt is called by

AQBD(O . iy P 75, 75,)
and is defined by

procedure adapt(6, 7, 9,0, 1) ;

Comment This routines generates the adapted triangulatiand the corres-

ponding set of nodal pointS.

begin

0 :=0;1:=70:= Identity,
for each triangleA of # do begin
A= (4);
if AN as2# 0 then begin
for i =1to 3 do begin
Let e := x,,, X be theith edge ofA;
if eN a2 # 0 then begin

:=arg min ||x — x,|| for AL
A, =arg min_[x —x|| for n € {1, A}
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Comment © and® are updated in the following step;
if X, —Aull < [[xa —Ay]| then x, 1= A, elsex, = Ay;
Comment 7 is updated in the following step;

T =P (7);

end end end end end.

The result of the proceduapt applied to the triangulationy, .
in Fig. 1(d).

Note that the algorithnadapt is not regarded as a subroutine in an imple-
mentation, but as a formal description of the explanations above. In order to
obtain the finite gridr,,,, which represents a proper triangulations of the domain
2, we neglect all triangles, lying essentially outside of the domain.

is depicted

max

Tioe = 1A € 722 | all vertices of A lie in 2} .

In view of this definition, it is clear, how to modify the procedadapt such
that only a finite number of triangles appear. One should consider only those
elements ofr;, . which intersects the boundary and construct the corresponding
elements ofr7° and, then, extending the triangulation over the whole interior
of the domain. We skip the algorithmic details, since they will be discussed in
[10a].

2.3. Coarsening of the fine grid

Since the gridrp° is linked to the reference grid,,., by the mapping?, we

can use the logical regularity of the reference grid to construct coarser grids
752, for £ < fmax. We define the mapping, acting on tnanglesd € 7¢ by the
following conditions. Let{XI }1<|<3 denote the vertices oft and X, = (X.)

The triangle with vertice§X; },_; 5 is denoted byA and we putA = &, (A).
Since no confusion is possible, we skip the indeand simply write®. The
adapted triangulatiom/* are given by (cf. Fig. 1(d)-())

=)= {A|HA) e R}

Obviously, the grids;* consist of infinitely many triangles and, hence, cannot be
used for practical computations. The coarser finite gridsnd the corresponding
sets of grid point®9,, for £ < ¢max are defined recursively by

Tena 1S defined as above,
Oy,.., consists of all vertices ofy, .

Assume that.; and @, are given. Theng, is defined by
¢ ={Aer®|3A €Ty d1(A) is the father ofp—1 (A"}
Q) u{Aae | 3x e Oumixeal

and©, is the set of all vertices ofy,.
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We will not go further into algorithmic details as, e.g., the application of
relaxation strategies to the grids in order to avoid too large angles in triangles,
edge swapping, the generation of coarse grid triangulations without generating
the full fine grid, etc. The main issue of this paper lies in the definition of suitable
finite element spaces for such grids and to prove the approximation property. This
is done in a more abstract setting, thus, the construction presented in procedure
adapt can be regarded as an illustration how the abstract assumptions which are
made in the following chapters can be satisfied.

3. Composite finite element spaces of2 = R?

In this chapter, we will introduce so-callédomposite Finite Element Spaces
on coarsened finite element grids. We will present the adaption of the uniform,
virtual reference grid-,  to the true triangulationy,_ in a more general setting

in order to treat adaptation strategies, possibly different from that described in
procedureadapt, within the same framework. All finite element functions will

be defined on the grid,, .. We recall that in applications, , usually will not be

the finest grid but can be viewed as the coarsest grid where standard refinement
strategies apply. On the coarser grigdsfor 0 < ¢ < /max, We will use the nodal
points to define grid functions in a purely algebraic way. Then, these vectors
are interpolated by using standard finite element interpolatiom,dn order to
define the corresponding grid function on a finer level. Finally, we will get a
grid function onr,, ., which will be interpreted as a finite element function by
standard prolongation.

The reason for separating the investigation of the c@se R? from the
case of a bounded domain is to avoid as much as possible technicalities in the
presentation of the principal ideas.

We consider here the approximation of functiamss H? := H? (R?) by
piecewise linear functions. For this purpose, Ifeét be partitioned into a hier-
archy of uniform reference triangulatiof, } ., .. as explained in the previous
chapter. We do not restrict ourself to the case that thergridhas to be generated
by the proceduradapt but assume in an abstract way tliat @zmax — 0p
and ¢* : 7, — 75° transfer the reference grid onto the true trlangulatlon The
correspondence ap and $* is the same as explained in the previous chapter.
Since no confusion is possible, we skip the superscripBince the domain
2 =2, it is not necessary to restrief® to a finite triangulationr,. Here, we
identify 72° with 7, and skip the superscripb.

The triangulationg{7¢} .., are not physically nested. However, we will
define a logical hierarchy using the physical hierarchy of the reference grid. For
this, we have to introduce some notations.
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Fig. 2. The left picture shows the domain do@ (A)) of a triangleA € 7, 2, While the right
one showsA

3.1. Notations

LetH s (£2) denote the usual Sobolev spaces as, e.g., defined in the book of Adams
(see [1]), equipped with the scalar prodict)s , and norml|-[s ;, = /(- )s -
The seminorm containing only the derivatives of highest order is denoted by

|'|s,()'
We have to distinguish between a set of triangles and the domain defined by
the union of these triangles. For any set of trianglesve define domv by

domw = U A.

Acw

Since no confusion is possible, we write||? , instead of|[v| 4o.,- ON level
¢ +k, each reference triangléd € 7, has 4 sons characterized by the conditions

sorf™ (4) C 7
domsorf* (4) = A.
Similarly, we define the sons of a triangl® € 7, on level/ + k as the set
sorf* (4) := & (sorf*™ (#71(4)))
and as an abbreviation
(2) o (4) = sorp™ (4).

The sons of a triangle arenot nested in the sense that= dom (sorf* (4))
is true in general. A hierarchical structuring is given byA) of (2). For all
trianglesA € 1,, we obtain

domo (sorf*™ (4)) = doma (A)

and
domo (4') C domo (4), VA’ € sorf™ (4).

This situation is illustrated in Fig. 2.
The father.7}, (4’) of a triangleA’ € 7,4 on coarser levels;, is defined
correspondingly by

3) Tih (&)= A6 A e sof™*(4).

Furthermore, we have to associate sets of triangles with the corresponding ver-
tices. For any set of triangles C 7,, we defineV by

4) V (w) =6, ndomuw.
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3.2. Construction of composite finite element spaces

In order to define the finite element spacesrgrwe first have to introduce grid
functions which are mappingg : ©, — C. The space of grid functions on level
¢ is denoted byC©-.

We introduce prolongation operatdPs*! : C®¢ — 1 by

(P{ ™) (%) = (1™ye) (X), VX € Opan,
where the interpolatioh!™ : C®* — £° (R?) is defined by the conditions

(5) | "t~ is affine on each\ € 7,
(1) () =7 (X) VX € O

The prolongation operatd?,, which associates to each grid functigne C®¢
a grid functions on levelnax, finally is defined by

-— P ¥max Lmax—1 +1
Pe =P, Py Py

The interpolation ofP,v, at level {max describes the following finite element
space
= {v e HL(B?) | 3y € C% tu =11 Py}

We will illustrate this definition by characterizing the basis functionsSofFor
simplicity we choose = /max — 1. Let 75 denote the unit vector ony, i.e.

. 1 ifv=y,
VQ(XV)::{ " 'u

0 otherwise,

for all nodal pointsx, € @,. The affine interpolant ofy, on the gridr, is the
standard hat functiop,, (x) on the gridr,. This functiony,, (x) is now used to
define the values of the prolonged unit veder‘*lyf, ie.,

(PE0) (X) = 0, (%), VX € Opr.

Finally, the linear interpolant d®;*1+/" is the basis function 0§, corresponding
to the nodal poink,,. The situation |s illustrated in Fig. 3.

Remark 1.If the mapping® : 6, — Oy, is the identity, then the spac is
the standard finite element space on the gyid
In any case, the spac&s are nested in the sense ti&tc S, for k > j.
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Fig. 3. Basis function ofS, generated by interpolating the standard basis function in the nodal points
of the finer level

3.3. Localization of the interpolation process

By the linearity ofP,, it follows that, for ally, € C®¢, we can write

(6) (Prye) 00 =D & ()7 (y)

YEO,

with some coefficients, (x) which are independent of. The mappind®, has to
be local in the sense that, for the computation of a véRie,) (x), only values
~¢ (y) are needed which correspond to grid poiptlying close tox. In order to
give the formal definition of this, we need the following

Definition 1. Letw C 7,,. The set of triangles on levé| which influence the
computation of (P¢ye) (X) }xev., In (6) is given by
(7)) Jew)={A er |y €V (A),y1#Y2,x €V (w):cy, (X)#0}.

This means that the computation Bfv, in the vertices of the sons of a
triangle A € 7, on the finest level requires the valuesnefin the vertices of the
influence set, (o (A)) which is a subset of,. The definition ofJ, (o (4)) is
illustrated in Fig. 4.

Using this definition, the representation (6) can be localized as

8 Prye ()= > o)), VX eV (w).
yev( @)

We require that the prolongation is local in the following sense.

Assumption 2.

(a) We require that, for all € 7, there are only finitely many triangled’ € =,
such thati (o (4')) intersectsA, i.e.,

(9) sup sup#{A' €r | ANT, (0 (4)) #0} < Ciocan
0< U< nax AETE

(b) Furthermore, the number of trianglesin(c (4’)) have to be bounded, i.e.,
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E
By D
A 4 .
A,
N
F B

Fig. 4. The setV (o (Ap)) consists of the point{A, B, C, M1, Mz, M3z}. Since M; lies in A
and M3 in Az, the computation of the prolongation for points Vh(o (Ap)) uses the points
{A,B,C,D,E,F}. Thus,3, (o (4)) is given by the union off A} ,0<j <3

(10) sup  sup #J, (0 (A4)) < Cs.

0<l<limax AET,

Obviously, Assumptions (a) and (b) are implicit assumptions on the mapping
. If, e.q.,® is the identity, we obtaif, (o (4)) = A, C; = 1 andCigcq < C (),
whereag denotes the smallest angle of the triangulatipn

Remark 2.Let v = I,i”tPgW and A € 7. Then the restrictiory |gomo(a) iS
uniquely determined by the valueg (x) for x € V (3, (o (4))). For example,
ve (X) = 0 for all x € V (3, (¢ (4))) implies thatv |gome(a)= O.

The following assumption controls the regularity of the grid and the distortion
of triangles by®.

Assumption 3.

() Each triangleA = & (A) € 7, has the same orientation @€ 7,

(b) he :=sup,,, diam{A},

(c) hy < Cdiam{A}, VA e 7, i.e.,r is quasi-uniform, whiler; is uniform,

(d) sup{diamS | S is a ball contained im} > Chy, VA € 1y,

(e) hy > (1 +Crer) hper, With 1/2 < Cer < 1
while all constants above are positive and independent ahd /.

() Let A € 7, andf < m < max. We introduce a parameter which controls the
distortion of domsorfji** (A’) relative to a triangled’ € J, (o (4)) by

max dist (x, A)

x€edomsoniti(A’)
11 dm (A) ;== max ,
11 m (4) A/ €m0 (A)) diamA/

We assume thab is such that for allA € 7,

Lmax—1

(12) Y dn(a)<C
m=¢
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is satisfied with a constai@ independent of, /nax, and A.

Assumption 3(f) can be interpreted in the following way. kete C®* denote
a grid function. The computation ef,_, := P;+, can be split by introducing local
intermediate grid functionm.1 for £ < m < ¢nax — 1 by the recursion

()= Y X)), VX € V (T (0 (4))).

YEV(Im(a(A))

Condition (12) controls the distortion of the triangles & (o (4)) compared
with its sons on the finer level. Later, this will be used in order to prove stability
of the interpolation procesB,. Some relations to typical refinement strategies
and implications are concerned in the following

Lemma 4. (a) If the grid 7, was constructed by the proceduaglapt, then,
Assumption 3(f) is satisfied.

(b) Let A € 7, be a triangle with an edge e XX, corresponding to a
boundary piece g of classZ 2. Let the midpoint of e be projected ontp by a
refinement procedure resulting in&xer. Then, we obtain

(13) dist (x, A) < ChZ.

This assumption implies (12), too.
(c) If Assumption 3(f), is satisfied, we get

o (4)]
<C

A

while for any set of triangles, |w| denotes the area measureddmw.

Proof. By the procedureadapt each grid pointé(gmax is moved at most by a
distance ofO (hy,,,). Let A € 7, and § an edge ofA. Let M, denote the
midpoint of this edge. Then, we know that

dist (M;, A) = 0.

In view of (11), we have to estimate

max  dist(x, 4) max dist (® (M;) , A)
xedomsonf*(A) 1<) <3

1r£JaSX3dISt (43 (MJ) ’¢ (q )) S 2C:hemax

and in view of the shape regularity of the triangles, i.e., Assumption 3(a)-(e), we
get for anyA € 7y

max dist (x, A7)

d (A) _ max xedomsoniti(A’)
m =

—£max
A'ETn(o(4)) diamA’ < C(1+Cren)™

This implies that
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Lmax—1 Lmax—1

Z dm (A) < Z C (1 "'Cref)m_‘/gmax <
m=¢ m=0

ref

Estimate (13) is well known and proven by introducing a local coordinate
system with origin in the poink of e having maximal distance frore and
expandinger as a Taylor series about Here, we skip the details. It follows
that in this case

Om (A) <C (l +Cref)_m7 VAec

holds and, hence,

emax lmax é
D dm(4) < Z C(1+Ce)™™ -
m=¢ re

In order to prove statement (c) we proceed as follows. Boe 7, let
we = domA andwgj = domso "(A). In view of the coarsening process we
know thatwy.; is a polygon havmg a boundary which consists of at mos? 3
straight lines. Let, be defined by

8o+ = max dist (X, wesj—1) -

XE w4

Therefore, we can estimate

g 64
|wg+j+1\ < |w£+j|+3,21 Z+12/3+l ]
Let 6¢ := ¢max — £. Inductively, we obtain
50—1 3001 Son
i i +)
|Wene| < |we| + Z 2Zhpsjbpsj < |A|+ Z 2h,; e

j=0

IN

3,5 2 by 50
Al + Th? 1A+ h kB
4 2" Z <(1+Cref)2> h/+ 4 ‘ Z

h
j=0 =

since Cret > ; implies that 1+C ) < 1. Due to the assumption on the shape
regularity of the triangles, We obtain

ol
Wil < 1AI [ 1+C ) dej (4) | <C A O
j=0

Remark 3.In Lemma 4 (a) and (b), it was shown that for two typical refinements
strategies, Assumption 3(f) is satisfied. In view of (12), itis clear that it is allowed
to do finitely many times (independent&f,x) any reasonable adaptation process,
while the sum (12) will still be bounded. This would include , e.g., edge swapping
(see [3]) in the coarsening process or movement of coarse grid points during the
coarsening process.
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Remark 4.For the refinement strategies presented in Lemma 4, we have not
used the fact that condition (12) is local. This would be important, if in different
regions of the triangulations, the quantitidg (A) have a different decreasing
behaviour with respect tm. Then, usingily, = sup, ., dm (4) instead ofdn, (4)

could possibly violate condition (12). For example, swapping of edges could be
allowed more often imposing the local condition, provided it takes place in
different parts of the triangulation.

4. Approximation of functions u € H?2 (R?)

In this chapter, we will develop the analysis of finite element approximation
for functionsv € H2(IR?). Throughout this chapter, we will use the notation
H':=H!'(£2). In Sect.5 the case of a bounded domain will be discussed. Here,
we will develop an estimate of the approximation error in the form that, for all
v € H? andt € {0, 1}, there exists a function, € S, such that

v — W”t,mz < ChzZit |U|2,m2 .

The error analysis is split into the following steps. For a functiog H?, we
define the restriction operat®; : ©° — C®* by

(14) (Rev) (X) == v (X), VX € 6,.

The interpolation operator on the grid was denoted byli'“. We recall the
definition of the nodal value¥ (sor;“A) corresponding to the sons af on
level m (see (4)). Lety, be given by

= int
) Lmax

PmRmv .

Using the triangle inequality, we obtain

2 2 2
f[v— WHo,g(A) <2||v- WmaxHo,g(A) + Z [Cr— W”o,A/
A'€a(A)

<2 v = Veallo oy * D (0 = v0) 0O 12115

i xeVla(a)

For the first term on the right side above standard error estimates apply. We will
show that the pointwise errors, appearing in the second term of the right hand
side above, can be estimated &Yy [[v[|;,(,(4) and hence the approximation
property in %2 follows. The stability of the interpolation process k' plays

the key role for theH t-estimate. We will show that

|’Uzmax|l S C |’Ug|1
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is satisfied under moderate assumptions on the refinement (resp. coarsening)
process. In combination with th&s2-estimate and the inverse inequality the
approximation property it follows.

In this light, we will assume throughout this and the following chapters that
Assumptions 2 and 3 are satisfied.

We begin to estimate the approximation qualitySefin £2.

Lemma 5. Let ue H2 andy, € C®* be the interpolating grid function of u:
e (X) = u(X), VX € Oy.

Lete,.. = Peye be the corresponding grid function on the finest level.
Then, for allA € 74, the pointwise estimate,

(15) [t (%) = U ()] < Chy Ul 5,5 ¥x € V (0 (4))
is satisfied.

Proof. We define the intermediate grid functiof,.s € C® arising by
(m+ 1 — ¢)-times interpolatingy,:

.— pM+lpm 0+1
Ym+1 2= Py Pz P e

To compute the valuen:1 (x) for a nodal poinix € ©n.1, one has to determine
a triangleA™ € Ty with x € A™. The vertices ofA™ are denoted byy; }, ;5.
Then o

3
Yme1 (X) = Z Q (X) Ym (y] )

j=1

with some coefficientsy; (x) satisfying

(16) o(x) =0,  1<j<3

3
>0 (x) =
i=1

|
=

Hence, we obtain

3
mea (%) = U 0l = > a5 (%) m () — u(x)

j=1

23:041 0 (ym (%) —u(M))| + Zgjai CJu (y) —u)

j=1 j=1

IN

A

3 3
< (X0 magbn () -0 601 +[Xes 00u09) ~u00).

j=1
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The linear interpolantli,, of u on A™ at the vertices{y;} coincides with
stzl a5 (X)u (yJ) Using standard interpolation results, we get (see [4, Theo-
rem 3.1.5])

3
(17) ;aj (U (¥) — U ()] < max]|um () — U ()| < Chn |ul, o
Together, we obtain

mea () = u (Ol < max ym () = u (3)| + Chin Ul 0

Let y := argmaX<j<s|ym () —u ()| andyx € A™1 € 7n_1. The vertices
of A™=1 are denoted byz }1<j<3' Using the same technique as before we get

|A/m+l (X) —u (X)‘ < 1@18%)% "ymfl (Z]) —u (Z])| + Chﬂ*l ‘u|27Am—1 + Chm |u|2,Am .

Since~, (X) = u (x) for all x € ©,, we get inductively

Clmax—1
e 0) ~ UG < C S AUl g
m=¢
It follows that
& c
[Vemee X) —U(X)| < C |u|2,35(g(4)) Z hm < hy o |u|2,3,,(a(A)) , VX €V (a(4))

m=¢
with Cies defined in Assumption 3.0

Using this Lemma, we easily obtain thé-estimate of the approximation of
a H2-function by interpolation.

Theorem 6. Letv € HZ2. Then, there exists a functian € S such that
v — WHo,mZ < CCIocalhe; |U\2,m2

is satisfied.

Proof. Let v € H2 and~, denote the interpolating grid function:

(18) e (X) = v (X), VX € Oy.

In order to define the corresponding finite element function, we first have to
prolong-y, onto the finest grid level:

(19) Vemax = Peve

and then to interpolatey, := |gg;xwm. The global norm can be decomposed into
local norms defined over the patches do)) :
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2 _ 2
lo = vellome = D v = vello pay -
A€y

In the following we will use the convention that

o= Y

jeA j :supppj NAZD

This means thafj € A} denotes the indices of the vertices Af We obtain

2 _ 2
||U—WH0,J(A)‘ Z ”U_WHO,A’

Al€a(A)
2
<2 ) flo=> v (%) ¢ x)
Alea(A) jea’ 0.4/

2

2 3 1Y (0 (%) —ve (%)) i ()

Alca(A) ||jear 0.4¢

The function)", . ,, v (%) ¢j (x) denotes the linear interpolantobn A’. There-
fore we know (see [7, Theorem 8.4.4]) that

v=>v(x)e )| < Ch_ |vlp

i ’
jea 0,A’

is fulfilled. Using the fact thab, (X) = 7e,,, (X) for all nodal points on the finest
level (see (19)) and the pointwise estimate of the Lemma above, we conclude
with

2 214 2
HU_WHO,U(A) <2 Z C hemax|U|z,A/

Alea(A)
+2 ) .rggmemax(&)*v(><j)|2\|1||§,A/
Alea(a)’

IN

2 2 2
Zczhzlmax |U‘270'(A) +2 Z Czhfz |U|2,ﬁe(0'(A)) ||1||O,A’
Aleo(A)

= 2C%hj |U\§,U(A) +2C%h; v

A4 2
< CN [v)2.5,000) -

2 2
2,3e(0(AQ)) || 1||0,0'(A)

For the last estimate we have used Lemma 4 (c). The global estimate follows
from

2 _ 2 2
lv = velloye = Z Il = vellg,o(ay < C*h7 Z [912,5,0(a))
A€Ty A€ty

202 K42
C CIocalhe |U|2,m2' U

IN
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The estimate of the error in thé! seminorm is more involved. The reason
is the following. Letvysq = Pf*lw. Letx € Oy andx € A € 7,. Then, we
obtain

Y ()= Y ay (X)),

yevertex of a
and in view of (16), we obtain

[Yer1 (X)| < max  ye(y).
yevertex of a
Thus, the prolongation operatBy is stable in the maximum norm with constant
1. For the gradients of the interpolation,; this is not true. Foj € {0, 1}, let
Vpsj = Igﬂ}wﬂ and A’ € sorf*1(4). .4 (4) denotes the set of neighbouring
triangles of A. We will prove the representation

Vowi [a= Y eaniVoelas
Ae v (AuA

where the singular values of thex22 matricese ,, ; are smaller than one and

> €a 4 = 1. Unfortunately, an estimate of the form
Ae 1 (AuA

Vo [arf < max [[Vog | 4]l
Ae 1 (Aua
is not true for all grid functionsy, € C®-. Under reasonable assumption we can
still prove stability of P, in the maximum norm, but, since it is rather technical,
we postpone the proof to Sect. 7. The assertion is stated in the following

Lemma 7. For any/ and any grid functiony, € C®¢, the estimate

int -1 /+1 int
[ Y A o7 W|m2 < C 1™y V< m < lmax

‘1,]1&2 ’

is satisfied with a constant independent/gfy and +,, i.e., the interpolation
process R is stable in H-.

Using this Lemma, the proof of the approximation propertysofs straight-
forward.

Theorem 8. Letv € H2. Then, there is a function g S such that
v — p|1,]1¢2 < Ch |U|2,m2 :

Proof. For a functionv € H?, we setvy, := 1" PRy (cf. (14)). We will show

Lrmax

that the interpolanp = v, has the asserted approximation property. We know
that

‘U - Uz‘l’]ﬂz < |’U - U‘emax|1,ﬂ§&2 + |vé — Ulmax 1,12
Lmax—1
(20) S |U - Il}zmax|1,]ﬂ2 + Z |Um - Um+1|1,ﬂ§&2 N
m=¢
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Sincewy,,, is the interpolant ofv on the gridr, ., we can apply the standard
finite element estimate (see e.g. [7, Theorem 8.4.4]) and obtain

‘U - vzmax'l,]ﬂz S Ch[max |U‘2,]I§&2 .

We know thatdms1 := vm — vme1 DElONGS t0Sh41. Let ymey € CO™ be the
corresponding grid function:

Ym+1 (X) = (Um - 'Um+1) (X) R VX € Ome1
andéim”‘+l = Iﬂﬂmﬂ the interpolant on the gridn+;. Using Lemma 7, we obtain
(21) |6m+1‘17m2 < C |5m5_1 1,82 "

We know that
M. (x)=0, VX € On.

Similarly as in the proof of Lemma 5, we will show that for each triangle m,
the estimate

(22) |1 ()| < Ch 912,53, (o) vx € V (sorfi*t (4))
holds. For this, lek € V (sorfi** (A)). Then
|81 (%)] = [om (X) = vmer ()] = [om (X) = v (X)|

and (22) follows from Lemma 5. Since the triangulatign was assumed to be
guasi-uniform, we obtain for eacA € m, :

int -1 int
A'eg%ﬁm) HV‘Smﬂ larf] < Chyia H‘5m+1HLoo(sorm+1(A))
hm A
< Cp L Paeay = C Wl oy

It follows that

i 2 i 2
int — int
omealige = 20 2 [emalia

A€Tm A’esonfti(A)

= Z Z HV‘Simnil | a7

A€Tm A’esonti(A)
2
< D Cluls,may |domsor™ (4)]
AETH
2
(23) < CGhcalhfn vl ge -

2|14

For the last estimate, we have used Lemma 4 (c). Combining (20), (21), and
(23), we get
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Lmax—1
|U - UZ|1}]I{&2 S |U - ’Uémax‘l’]ﬂz + Z |Um - 1)m+1|1)]ﬂ2
m=¢
Lmax—1
< Ch‘nax|v‘27m2 +Cclocal‘11|27m2 Z hm
m=¢
CIocal
< C he |v
— Cref v ‘ ‘2,]1&2 )

yielding the proof. O

5. Composite finite element spaces on bounded domains

In this chapter, we will define Composite Finite Element Sp&kesn bounded
domains. We will prove that, for any functiane H? (£2), there is a function,
such that

lu—uelly o < CHE™" lully,

is satisfied fort € {0,1}. The definition of the spaces will rely on a proper
restriction of the adapted grids} which contains infinitely many triangles to
the domains?.

Let 7, denote the reference square grid triangulation as explained in Sect. 2.
We recall that the mapping, defined in Sect. 3, adapts the grid points and
reference grid,,, onto the intermediate grid poin&7° and triangulation;° .

The triangulationr,,, was defined by restricting° to the finite domain(2.
The coarser triangualtiory were constructed by using the logical structure of the
reference triangulation (see (1)). The domains corresponding to the triangulation
T, are given by

2, .= domTy.

We assume here for simplicity th&t = (2, . Since we assumed that _ is

sufficiently close tof2, we can treat the general case, namely, that (2,

with the standard theory of finite elements on domains with curved boundary.
Since the extremal points of the polygdpy are a subset 0P,, condition

(1) guarantees that

(24) 20201 2...2 82, =12

The finite element space is again defined by a suitable prolongation of grid
functions. In the case of bounded domains, the space of grid functions consists
of all mappingsy, : ©, — C, i.e., v, € C®, where®, is now a finite set. The
prolongation operatoP;*! : C® — C® is given by

(25) P{ e () = 1™y, (x) V X € Opa,

wherelgnt is the standard finite element interpolation on the (finite) gridue to
condition (1), it is guaranteed that for allc ©,.1, there exists a trianglgl € 7,
such thatx € A. Hence, the interpolation process (25) is well defined. Again,
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we setP, := P;m>  p/mJ... p{*l The space of composite finite elements on

bounded domains is defined by
S={v:R*—C|Iy eC®: v=1"Py}.
Remark 5.The dimension of the spac® is given by
dimS, = #6,.

In the following, we will show that for every function i 2 (£2), there exists
a function inS, which satisfies the asymptotic approximation property. This
can easily be done by an extension argument and applying the theorems of
Sect. 4. The following theorem concerns the existence of an extension operator
for functionsu € H2(£2).

Theorem 9. Let 2 be a domain with Lipschitz boundary. Then, there exists an
extension operato#s and a constant C independent ©fvith the property that
forall 0 < ¢ < lmaxand ue H?(£2) :
Uxt : =&U: 2 — C,
Uext ‘(Z =u |Q»
[Uextll2,0, < Cllully-

Proof. The proof of this theorem is given in the book of Stein [14, p.181, The-
orem5]. O

The extension theorem is used to construct a functic& hraving the required
approximation property.

Theorem 10. Let {2 be a domain with Lipschitz boundary and=auH 2 (£2). Then,
there exists a function,u= S, such that

lu = el o < CHE™ ully g
is satisfied for te {0, 1}.

Proof. Let u € H?(£2) and the extensioney; defined as explained above. Since
the inclusion (24) holds, we can define a grid functipne C®* by

¥e (X) = Uext (X) VX € O,

andu, := Ig?ﬂtaXng the corresponding finite element function. All estimates in
the case off2 = R? which have been derived in the previous chapter were local
in the sense that the error on patefA) was bounded by thel °>—seminorm in

a local neighbourhood of\. If we replaces (A) by o (A) N £2,,.,, the theorems

of Sect. 4 directly apply yielding

Huext - uf”t)() < Chgz_t ||Uext||27_()£

for t € {0, 1}. Using the fact thatlex{ = U|, and the continuity of the extension
operator, we get
27
U — el , < Chy t Jully - O
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6. Final remarks

In this paper, we have developed Composite Finite Elements in two dimensions.
However, the modification of proceduaglapt to the case of uniform tetrahedral
partitionings of®3 is obvious, where the analysis of the approximation behaviour
can be carried over directly.

On bounded domains, we have considered the approximation of functions in
H 2 which corresponds to the case of elliptic boundary value problems of second
order with Neumann boundary conditions. Dirichlet boundary conditions can be
treated by modifying the bilinear form using a penalty term. The details can
be found in [8]. The construction of composite finite element spaces satisfying
Dirichlet boundary conditions requires a slight modification of the prolongation
operators, to ensure that the trial spaces are conforming subspaigq@) N
H?2(£2). The values of prolonged grid functions at the boundary have to be set
to zero. Similiar modifications are necessary, if interfaces or changing boundary
conditions are present. The analysis of the approximation property has to be
modified in these cases and will be presented in a forthcoming paper.

After having computed the stiffness matey, . on the finest gridr,,,, it is
easy to derive coarser discretizations by means of the Galerkin product

(26) Ar = (PEY) APl

where (P/**)" denotes the adjoint dP/** with respect to a properly weighted
Euclidean scalar product. Since the prolongations were assumed to be local, the
complexity of computing the sequence of matri¢s },_,., _, which is needed,

e.g., in a multi-grid process, i® (h;mi) arithmetical operations. However, the
formula (26) is not the only way to compute,. We state that it is possible

to compute the matrixd, by a complexity ofO (h,?+My,,.), where My,
denotes the numbers of grid points@®j,,, which have been moved by adapting

the reference grid,,,, to the physical domain. Typicall,,, = O (h[mix) is
satisfied. The algorithmic details, together with a discussion of the complexity,
are presented in [10a].

7. On the stability condition of the prolongation operator in H*

For the proof of the approximation property we have assumed that

V’yg c C@e

Lrmax

(27) 1 Pe“/e|1,m2 <C “ljnt'71z|l7mza

is satisfied. We will proof this condition under Assumption 3 of Sect.2. Since
some technicalities will arise in this chapter, we will outline the principal ideas.
Firstly, we will investigate, how piecewise linear functions on a gridare
distorted by the interpolation process definedRyy Then, in a second step, we
will estimate the growth of the gradientsl lﬁ’;imeg relative to the gradients of

I lﬁ”tw dependent on the distortion of the nodal points relative to the reference
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grid. Finally, in a third step, we will use Assumption 3 to obtain an estimate of
the form (27).

We have to introduce some notations, namely, the neighbours of a triangle
JARSE Y, by

N7(Q) ={A" €Ty | A" # A and A" has a common edge witd} .

We recall the definition of the father of a triangle on coarser levels (see (3)). Let
a grid functiony, € C®* be given andv, (x) := (1/™v,) (x) denote the linear
interpolant onr,. We further define

(28) ve ()= (1VAPL_IPIITS P ) (9

The gradient o+ can be expressed by the gradientagf _1. The details are
in the following

Lemma 11. Let A’ € sor)ffj[l (4). Then, the gradient af,; can be written as

(29)  Voei [a=Voeialat Y en s (Vosials —Voela),
Ae.1(A)

wheree ,, 4 are 2 x 2 matrices of rank smaller than or equal to oneAf and A

have disjoint interior, ther ,, 4 = 0. The largest singular valug (eA/ﬁAA> can

be estimated as _
max dist (x, A)
xesonf*i(A)

diamA

Proof. The proof of the Lemma is elementary but technical and can be found in
[9, Appendix]. O

plearn) <C

In the following, we will use the Lemma above to estimate the gradients of
prolonged grid functions. We recall the definition of the influence Befsee
(7)) and representation formula (8). For givene C®¢, let v,.j be defined by
(28) and A’ € 744j. According to the representation formula (29), the gradients
Vuesj |4 can be expressed as a linear combination of the gradief&af_1
-1

on the father triangled = T (A’) and the neighbouring triangles by (29).

For a triangleA’ € 744, we define those neighbours € . /" (A) which satisfy
EZA/’AA # O .
O _Jx e -1
() = {A €N ()| nh o} .
The triangles which are used to compXe,.; are given by
T (A) =AU (A

Hence, (29) can be rewritten as
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(30) Vopt |a= Vo [a+ Y €y 5 (Vor |z =Vor|a) .
Ae s (A

This representation will be used to estimafe,.1 |4-. The details are in the
following

Theorem 12. We use the notation of Lemma 11. Edre 7, and/ < m < #max
let dn (A) be defined by (11). The functienwas given by (28). For\’ € o (4),
the gradients ob, on the finest level can be estimated as

Zmax l
(31) IVor ol < ] (1+6dm(A)) max |
oty €3e(o(4)

Proof. Let A € 7, and A’ € sorf**(4). Using (29), we obtain

Ve [arl

IN

1+ > p(ha) | IVelal

Ae (A

+ 3 p(ewa) IVoealal

N o
A€ (A7)

<1+6 max p( A)) max HVW 14l

Ae_y(an S

IN

Now, let A’ € o (A). Using Lemma 11, we get by induction

[V 0l ]| < (1 +6dp,,—1(4)) ma}X [Vta1 | Al
E 2

S (1 + &jemax—l (A)) (1 + wemax—z (A)) max max vaémax—l
AG/(A’)A ‘/(A)

A
Lmax—1

< JI @+ed (4)  max HVWmax—l |l
) AE)@(U(

since the iterated maxima appearing in the induction, namely

_max_ _max ---,
Ae?(4) Acr (A)
are by definition the maximum over a subset of the influenc&set (4)). O
In view of (31), we will assume an estimate of the form

32 Ve |ar]] £ C \Y /
(32 [oes |l < Gy, max Vo ||

with A” € sory “J (4) to estimate thed 1-seminorm ofv.;. The details are in the
following
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Lemma 13. Let us assume that (32) is true. Then,
064 |1 sorf i ) = © Cai [0el 3,00
is satisfied.
Proof. Let A € 7, and consider the triangles ebrf” (4). Then, we obtain

2 _ 2 _ 2
eilisogicay = Do IVosilia = D [ Vue larl*2]
A/€sonf+i (A) Al Esonf"j Q)

IN

2
Cﬁj < max ||V, |A||> ‘domsoryj”J (A)‘
A€T(a(A))

2

IA

CA ‘doms:orye“j (A)‘ > Ve
Aegi(a(4))

; 1
sz,j ‘domSor}fﬂ (A)‘ Z |AA| |W|ij'
AeT,(a(4))

A

Due to the quasi-uniformity of the grid, we know that

1 1 .
. <C., VA €3, (0 (4)).
|A] — 14

. . L d A
In Lemma 4, it was shown that Assumption 3 implies trjwé) sory (4|

<C.
. |A] =
Consequently, we obtain

[0 1 sorf () < CCej Vel 3,002 - D
An immediate consequence of this Lemma is the global estimate.

Theorem 14. Let~, € C* be given andy, v be defined by (28). Then,

(33) s |y go < CCocalCej |velq e -

Proof. This follows directly from Lemma 13 with the constait., defined by
9. O

Obviously, a sufficient condition for an estimate of the form
|W+i |1,11¢2 <C ‘Udl,]ﬂz

with a constantC independent off andj is thatC,; does not depend oh
andj. We will show that Assumption 3 implies th&l,; < C. Condition (3) of
Assumption 3 reads

Lmax

(34) > d@=c.

=0
Let A € 7,. Hence,
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Zmax_l ‘gmax_l
JI @+6di(4)) < exps > log(1+6Cd,)
=0 ¢=0
‘gmax_l ~
< exp Z 6Cd, » < €.
¢=0

Condition (34) was guaranteed for the refinement strategies presented in Lemma
4 and Remark 3, and thus, result in the stability estimate of Theorem 14 and
finally, in the required approximation property as has been worked out in the
previous chapters.
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