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Summary. Usually, the minimal dimension of a finite element space is closely
related to the geometry of the physical object of interest. This means that some-
times the resolution of small micro-structures in the domain requires an inade-
quately fine finite element grid from the viewpoint of the desired accuracy.

This fact limits also the application of multi-grid methods to practical situ-
ations because the condition that the coarsest grid should resolve the physical
object often leads to a huge number of unknowns on the coarsest level.

We present here a strategy for coarsening finite element spaces independently
of the shape of the object. This technique can be used to resolve complicated
domains with only few degrees of freedom and to apply multi-grid methods
efficiently to PDEs on domains with complex boundary.

In this paper we will prove the approximation property of these generalized
FE spaces.

Mathematics Subject Classification (1991):65D05, 65N12, 65N15, 65N30,
65N50, 65N55

1. Introduction

In this paper, we will introduce so-calledComposite Finite Elementson two-
dimensional domains. However, we state that generalizations to more spatial
variables are obvious. We have in mind that these domains may have bound-
aries with complicated micro-structures. Consequently, every reasonable finite
element grid (quasi-uniform, satisfying the minimal angle condition) which has
to resolve the boundary will have a huge number of elements. Finite element
spaces corresponding to such grids and also finer grids usually satisfy an asymp-
totic approximation property. We will define subspaces of these finite element
spaces corresponding to “coarser” FE grids which also satisfy the asymptotic
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approximation property. The minimal number of unknowns will not be limited
by the shape of the domain.

This new class of finite elements is calledComposite Finite Elementsfor the
following reason. According to the definition of [4, Chap. 2.3], finite elements
are triples consisting of the element domain, the space of shape functions, and
the set of nodal functionals. Usually, the element domains are smooth images of
a reference element and the shape functions are smooth at least in the interior
of the element domain. For composite finite elements, however, the element
domainK is the union of many small standard elements. The shape functions on
K are composedlocally of piecewise polynomials on the small elements along
with suitable global constraints onK which leads to the namecompositefinite
elements.1

The ideas are closely related to Shortley-Weller discretizations in the context
of finite difference approximations as described in [13], [7], [10] implemented
in a hierarchical way using the Galerkin product (see [5]).

Another approach for coarsening finite element spaces can be found in [2]
and [3]. There, the authors define a hierarchical basis on non-nested grids and
prove grid-independent convergence rates for the corresponding BPX method.
In contrast to the method presented in our paper the coarsening strategy of the
mentioned authors can be applied to arbitrarily unstructured grids, while our ap-
proach uses the logically regular grid. Consequently, it turns out that, a priori,
we know that the coarsest grid will consist of extremely few degrees of free-
dom (typically smaller than 10) independent of the shape of the domain. The
coarsening approach in [2] is heuristic and, hence, it is beforehand not known
what the number of unknowns at the coarsest level will be, when the algorithm
terminates.

A further related method is presented in [11]. In that paper, the physical
domain is embedded in a domain of easy shape which is refined by standard
methods. The FE spaces are given by the restriction of the functions on the arti-
ficial larger domain to the physical domain. It was shown that subspace correction
methods can be applied successfully to this method.

Knowing the approximation property and stability behaviour, it is well known
that the Galerkin FEM has quasi-optimal convergence behaviour. Thus, if one is
interested in a relatively crude approximation of the solution, we are now able to
use composite finite element spaces of low dimension independent of the shape
of the domain and obtain the corresponding accuracy.

Following the theory of [6], the convergence of multi-grid methods can be
split in the proof of the approximation and the smoothing property. The approx-
imation property for multi-grid methods follows from the approximation quality
of the finite element spaces and assumptions on the differential equation on the
continuous butnot on the discrete level (see [6, Sect. 6.3.1]).

This paper is organized as follows. In the next chapter, we will introduce
strategies to coarsen triangulations of domains independently of the shape of

1 After submitting the paper we noticed that, in the context of approximating curved boundaries,
a similar finite element was introduced in [12].
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the domain. Then, in Sect. 3 we will define finite element spaces on these grids
by introducing suitable interpolation operators. In Sect. 4, we will prove the
approximation property of these FE spaces in the case that the domain is the
whole plane. Section 5 addresses the approximation quality of composite finite
element spaces on bounded domainsΩ using the previous results. Finally, in
Sect. 7 we prove a stability theorem for the interpolation process involved in
the definition of the FE space. This stability result plays the crucial role for the
estimates in theH 1-norm of Sects. 3 and 5.

The paper is the first in a sequence of two. In [10a], we will discuss the
efficient construction of the generalized FE spaces, the complexity of the method
and will include numerical experiments.

2. The construction of generalized FE grids

Composite Finite Elements will be defined in Sect. 3 in an abstract way. There,
some geometric assumptions will be imposed on the hierarchy of grids. In order
to make these assumptions more transparent we will first present an example
of a grid generator and a coarsening algorithm which generates an admissible
hierarchy of grids. It turns out that this algorithm carries over to the 3-d case in
a straightforward manner (see [10]).

We will present a strategy of generating FE grids on a complicated domain
Ω ⊂ R

2 which can easily be coarsened to grids which will be related to FE
spaces having only very few degrees of freedom. Before presenting the detailed
description of the method, we will outline the principal underlying idea. An illus-
tration of the process described below is given in Fig. 1. We consider an infinite
(virtual) sequence of uniform square grid triangulations{τ̃`}0≤`<∞ covering the
whole planeR2. These grids are thought to be nested in the sense that each
triangle∆̃ ∈ τ̃` has a father on a coarser level and four sons on the finer level,
which arise by connecting the midpoints of the edges of∆̃. Let us assume that
the grid τ̃`max is fine enough in the sense that small displacements of grid points
in τ̃`max, which may not destroy the logical connectivity, result in a gridτ∞`max

having the following property. There is a (finite) subsetτ`max ⊂ τ∞`max
which is a

proper triangulation ofΩ. “Proper” is meant in the sense that standard refinement
procedures as, e.g., projecting the midpoint of edges onto the physical boundary,
can be applied successfully. We emphasize thatτ`max may not necessarily be the
finest grid in the discretization process, but can be viewed as the coarsest grid,
where standard refinement procedures (including adaptivity) can be applied. A
fully adaptive version of the coarsening was presented in [8].

Since we have a one-to-one correspondence ofτ∞`max
and the virtual grid ˜τ`max,

coarsening can be performed easily by the following procedure. Let∆ be a
triangle of τ`max and ∆̃ the corresponding triangle of ˜τ`max. The father of∆̃,
∆̃f ∈ τ̃`max−1 with vertices

{
X̃i
}

1≤i≤3
, is well defined. The vertices{Xi }1≤i≤3

denote grid points corresponding to
{

X̃i
}

1≤i≤3
arising by adapting the virtual

grid to the physical domain. The triangle with vertices
{

X̃i
}

1≤i≤3
is contained
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Fig. 1. In the first line, the virtual grid ˜τ`max and coarser grids ˜τ` are depicted. The gridτ∞`max
arises

by moving grid points of ˜τ`max being close to the boundary onto the boundary. Coarser grids as,
e.g.,τ`max−1 arise by collecting the fathers of triangles inτ∞`max

, using the logical connection to the
uniform reference grid. The triangulationτ`max which is used for computations consists of triangles
which lie “inside” the domain. Coarser triangulations consist of the fathers of triangles on finer levels
and cannot be regarded as an approximation of the domain

in the coarser triangulationτ`max−1. This process can be iterated ending with a
coarsest gridτ0 which consists only of very few triangles. This grid will not
have much to do with the domainΩ. However, we will not define standard
finite element spaces on these non-fitting grids, but they are only used to connect
degrees of freedom with each other. The corresponding finite element space will
consist only of functions which are defined on the physical domain. To avoid
confusion, we state that the virtual grids ˜τ` and gridsτ∞` are never used in actual
computations, because, due to their regularity, the positions and connectivity of
the triangles are known beforehand.

2.1. The hierarchy of virtual reference grids

In this subsection, we will give the precise definition of the sequence of reference
grids. In order to indicate that a quantity belongs to the reference grid, we will use
a tilde, e.g., ˜τ for the reference grid and ˜x for a grid point of ˜τ . The corresponding
quantities on the true triangulation are denoted byτ, x, etc.
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The setΘ̃` of vertices is the square grid of sizeh̃` given byΘ̃` = h̃`Z2. We
choose an infinite sequence

{
h̃`
}

0≤`<∞ of step sizes with̃h` = 2h̃`+1. Conse-

quently, we obtain that the vertex sets form a hierarchy
{
Θ̃`

}
0≤`<∞ satisfying

Θ` ⊂ Θ`+1. The corresponding hierarchy of triangulations{τ̃`}0≤`<∞ is given
by the following procedure. Put lines along the co-ordinate axes through the grid
points ofΘ` resulting in a Cartesian square grid and insert diagonals through

the pairs of points̃h`

(
m
0

)
and h̃`

(
m− 1

1

)
, m ∈ Z. The arising triangles

define the grid ˜τ` (cf. Fig. 1(a)-(c)). The triangulations ˜τ` are nested in a natural
way. For any triangle∆̃ ∈ τ̃`, there exist four sons

{
∆̃′

j

}
1≤j≤4

∈ τ̃`+1, satisfying⋃4
j =1 ∆̃

′
j = ∆̃. The triangle∆̃ is the father of each∆̃′

j , and hence, each triangle
in τ̃` has a father in ˜τ`−1 provided` > 0.

2.2. Construction of the fine grid

Let us assume that the boundary of the domainΩ has to be resolved with a
step widthh̃`max and micro-structures being smaller can be neglected. Then, an
intermediate gridτ∞`max

is defined by moving grid points ˜x ∈ Θ̃`max of the reference
grid τ̃`max which are close to the boundary, i.e., satisfying dist(x̃, ∂Ω) � h`max,
together with the corresponding edges onto the physical boundary∂Ω. This
procedure defines a one-to-one mappingΦ : Θ̃`max → Θ∞

`max
. The triangles ofτ∞`max

are given by the condition:
A triangle with verticesA,B,C belongs toτ∞`max

, if and only if the triangle
with verticesΦ−1 (A) , Φ−1 (B) , Φ−1 (C) belongs to ˜τ`max.

Thus, any triangle∆̃ ∈ τ`max is linked to one and only one triangle∆ ∈ τ∞`max
.

The corresponding mapping is denoted byΦ? : τ̃`max → τ∞`max
. Since no confusion

is possible, we skip the superscript?.
The following procedureadapt illustrates, how the reference grid might be

adapted to the domainΩ. The procedureadapt is called by
adapt

(
Θ̃`max, τ̃`max, Φ,Θ

∞
`max

, τ∞`max

)
;

and is defined by

procedure adapt
(
Θ̃, τ̃ , Φ,Θ, τ

)
;

Comment This routines generates the adapted triangulationτ and the corres-
ponding set of nodal pointsΘ.

begin
Θ := Θ̃; τ := τ̃ ;Φ := Identity,
for each triangle∆̃ of τ̃ do begin
∆ := Φ

(
∆̃
)
;

if ∆ ∩ ∂Ω /= ∅ then begin
for i = 1 to 3 do begin

Let e := xµ, xλ be thei th edge of∆;
if e∩ ∂Ω /= ∅ then begin

Aη := arg min
x∈∂Ω∩e

‖x − xη‖ for η ∈ {µ, λ} ;
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Comment Θ andΦ are updated in the following step;
if ‖xµ − Aµ‖ ≤ ‖xλ − Aλ‖ then xµ := Aµ elsexλ := Aλ;
Comment τ is updated in the following step;
τ := Φ (τ̃ ) ;

end end end end end.

The result of the procedureadapt applied to the triangulation ˜τ`max is depicted
in Fig. 1(d).

Note that the algorithmadapt is not regarded as a subroutine in an imple-
mentation, but as a formal description of the explanations above. In order to
obtain the finite gridτ`max which represents a proper triangulations of the domain
Ω, we neglect all triangles, lying essentially outside of the domain.

τ`max =
{
∆ ∈ τ∞`max

| all vertices of∆ lie in Ω̄
}
.

In view of this definition, it is clear, how to modify the procedureadapt such
that only a finite number of triangles appear. One should consider only those
elements of ˜τ`max which intersects the boundary and construct the corresponding
elements ofτ∞`max

and, then, extending the triangulation over the whole interior
of the domain. We skip the algorithmic details, since they will be discussed in
[10a].

2.3. Coarsening of the fine grid

Since the gridτ∞`max
is linked to the reference grid ˜τ`max by the mappingΦ, we

can use the logical regularity of the reference grid to construct coarser grids
τ∞` , for ` < `max. We define the mappingΦ` acting on triangles∆̃ ∈ τ̃` by the
following conditions. Let

{
X̃i
}

1≤i≤3
denote the vertices of̃∆ and Xi = Φ

(
X̃i
)
.

The triangle with vertices{Xi }1≤i≤3 is denoted by∆ and we put∆ = Φ`
(
∆̃
)
.

Since no confusion is possible, we skip the index` and simply writeΦ. The
adapted triangulationτ∞` are given by (cf. Fig. 1(d)-(f))

τ∞` := Φ (τ̃`) :=
{
∆ | Φ−1 (∆) ∈ τ̃`

}
.

Obviously, the gridsτ∞` consist of infinitely many triangles and, hence, cannot be
used for practical computations. The coarser finite gridsτ` and the corresponding
sets of grid pointsΘ`, for ` < `max are defined recursively by

τ`max is defined as above,

Θ`max consists of all vertices ofτ`max.

Assume thatτ`+1 andΘ`+1 are given. Then,τ` is defined by

τ` : =
{
∆ ∈ τ∞` | ∃∆′ ∈ τ`+1 : Φ−1 (∆) is the father ofΦ−1

(
∆′)}

∪
{
∆ ∈ τ∞` | ∃x ∈ Θ`+1 : x ∈ ◦

∆
}

(1)

andΘ` is the set of all vertices ofτ`.
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We will not go further into algorithmic details as, e.g., the application of
relaxation strategies to the grids in order to avoid too large angles in triangles,
edge swapping, the generation of coarse grid triangulations without generating
the full fine grid, etc. The main issue of this paper lies in the definition of suitable
finite element spaces for such grids and to prove the approximation property. This
is done in a more abstract setting, thus, the construction presented in procedure
adapt can be regarded as an illustration how the abstract assumptions which are
made in the following chapters can be satisfied.

3. Composite finite element spaces onΩ = R2

In this chapter, we will introduce so-calledComposite Finite Element Spaces
on coarsened finite element grids. We will present the adaption of the uniform,
virtual reference grid ˜τ`max to the true triangulationτ`max in a more general setting
in order to treat adaptation strategies, possibly different from that described in
procedureadapt, within the same framework. All finite element functions will
be defined on the gridτ`max. We recall that in applicationsτ`max usually will not be
the finest grid but can be viewed as the coarsest grid where standard refinement
strategies apply. On the coarser gridsτ`, for 0≤ ` < `max, we will use the nodal
points to define grid functions in a purely algebraic way. Then, these vectors
are interpolated by using standard finite element interpolation onτ` in order to
define the corresponding grid function on a finer level. Finally, we will get a
grid function onτ`max, which will be interpreted as a finite element function by
standard prolongation.

The reason for separating the investigation of the caseΩ = R
2 from the

case of a bounded domain is to avoid as much as possible technicalities in the
presentation of the principal ideas.

We consider here the approximation of functionsu ∈ H 2 := H 2
(
R

2
)

by
piecewise linear functions. For this purpose, letR

2 be partitioned into a hier-
archy of uniform reference triangulations{τ̃`}0≤`<∞ as explained in the previous
chapter. We do not restrict ourself to the case that the gridτ`max has to be generated
by the procedureadapt, but assume in an abstract way thatΦ : Θ̃`max → Θ∞

`max

andΦ? : τ̃` → τ∞` transfer the reference grid onto the true triangulation. The
correspondence ofΦ andΦ? is the same as explained in the previous chapter.
Since no confusion is possible, we skip the superscript?. Since the domain
Ω = R2, it is not necessary to restrictτ∞` to a finite triangulationτ`. Here, we
identify τ∞` with τ` and skip the superscript∞.

The triangulations{τ`}0≤`<`max
are not physically nested. However, we will

define a logical hierarchy using the physical hierarchy of the reference grid. For
this, we have to introduce some notations.
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Fig. 2. The left picture shows the domain dom(σ (∆)) of a triangle∆ ∈ τ`max−2, while the right
one shows∆

3.1. Notations

Let H s (Ω) denote the usual Sobolev spaces as, e.g., defined in the book of Adams
(see [1]), equipped with the scalar product(·, ·)s,Ω and norm‖·‖s,Ω =

√
(·, ·)s,Ω .

The seminorm containing only the derivatives of highest order is denoted by
|·|s,Ω .

We have to distinguish between a set of triangles and the domain defined by
the union of these triangles. For any set of trianglesω, we define domω by

domω :=
⋃
∆∈ω

∆.

Since no confusion is possible, we write‖v‖2
t,ω instead of‖v‖2

t,domω. On level

`+ k, each reference trianglẽ∆ ∈ τ̃` has 4k sons characterized by the conditions

son`+k
`

(
∆̃
) ⊂ τ`+k ,

domson`+k
`

(
∆̃
)

= ∆̃.

Similarly, we define the sons of a triangle∆ ∈ τ` on level` + k as the set

son`+k
` (∆) := Φ

(
son`+k

`

(
Φ−1 (∆)

))
and as an abbreviation

σ (∆) = son`max
` (∆) .(2)

The sons of a triangle∆ arenot nested in the sense that∆ = dom
(
son`+k

` (∆)
)

is true in general. A hierarchical structuring is given byσ (∆) of (2). For all
triangles∆ ∈ τ`, we obtain

domσ
(
son`+k

` (∆)
)

= domσ (∆)

and
domσ

(
∆′) ⊂ domσ (∆) , ∀∆′ ∈ son`+k

` (∆) .

This situation is illustrated in Fig. 2.
The fatherF `

`+k

(
∆′) of a triangle∆′ ∈ τ`+k on coarser levelsτ` is defined

correspondingly by

F `
`+k

(
∆′) = ∆⇔ ∆′ ∈ son`+k

` (∆) .(3)

Furthermore, we have to associate sets of triangles with the corresponding ver-
tices. For any set of trianglesω ⊂ τ`, we defineV by

V (ω) = Θ` ∩ domω.(4)
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3.2. Construction of composite finite element spaces

In order to define the finite element spaces onτ`, we first have to introduce grid
functions which are mappingsγ` : Θ` → C. The space of grid functions on level
` is denoted byCΘ` .

We introduce prolongation operatorsP`+1
` : CΘ` → C

Θ`+1 by

(
P`+1
` γ`

)
(x) =

(
I int
` γ`

)
(x) , ∀x ∈ Θ`+1,

where the interpolationI int
` : CΘ` → C 0

(
R

2
)

is defined by the conditions

I int
` γ` is affine on each∆ ∈ τ`,(5) (
I int
` γ`

)
(x) = γ` (x) ∀x ∈ Θ`.

The prolongation operatorP`, which associates to each grid functionγ` ∈ CΘ`

a grid functions on level̀max, finally is defined by

P` := P`max
`max−1P`max−1

`max−2 · · ·P`+1
` .

The interpolation ofP`γ` at level `max describes the following finite element
space

S̀ :=
{
v ∈ H 1

(
R

2
) | ∃γ` ∈ CΘ` : v = I int

`max
P`γ`

}
.

We will illustrate this definition by characterizing the basis functions ofS̀ . For
simplicity we choosè = `max− 1. Let γµ` denote the unit vector onτ`, i.e.

γµ` (xν) :=

{
1 if ν = µ,
0 otherwise,

for all nodal pointsxν ∈ Θ`. The affine interpolant ofγ` on the gridτ` is the
standard hat functionϕµ (x) on the gridτ`. This functionϕµ (x) is now used to
define the values of the prolonged unit vectorP`+1

` γµ` , i.e. ,

(
P`+1
` γµ`

)
(x) = ϕµ (x) , ∀x ∈ Θ`+1.

Finally, the linear interpolant ofP`+1
` γµ` is the basis function ofS̀ corresponding

to the nodal pointxµ. The situation is illustrated in Fig. 3.

Remark 1.If the mappingΦ : Θ̃`max → Θ`max is the identity, then the spaceS̀ is
the standard finite element space on the gridτ`.

In any case, the spacesS̀ are nested in the sense thatSj ⊂ Sk for k > j .
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Fig. 3. Basis function ofS̀ generated by interpolating the standard basis function in the nodal points
of the finer level

3.3. Localization of the interpolation process

By the linearity ofP`, it follows that, for allγ` ∈ CΘ` , we can write

(P`γ`) (x) =
∑

y∈Θ`

cy (x) γ` (y)(6)

with some coefficientscy (x) which are independent ofγ`. The mappingP` has to
be local in the sense that, for the computation of a value(P`γ`) (x), only values
γ` (y) are needed which correspond to grid pointsy lying close tox. In order to
give the formal definition of this, we need the following

Definition 1. Let ω ⊂ τ`max. The set of triangles on level`, which influence the
computation of{(P`γ`) (x)}x∈V(ω) in (6) is given by

I` (ω) =
{
∆′ ∈ τ` | ∃y1, y2 ∈ V

(
∆′) , y1 /= y2, x ∈ V (ω) : cyj (x) /= 0

}
.(7)

This means that the computation ofP`γ` in the vertices of the sons of a
triangle∆ ∈ τ` on the finest level requires the values ofγ` in the vertices of the
influence setI` (σ (∆)) which is a subset ofτ`. The definition ofI` (σ (∆)) is
illustrated in Fig. 4.

Using this definition, the representation (6) can be localized as

P`γ` (x) =
∑

y∈V(I`(ω))

cy (x) γ` (y) , ∀x ∈ V (ω) .(8)

We require that the prolongation is local in the following sense.

Assumption 2.

(a) We require that, for all∆ ∈ τ`, there are only finitely many triangles∆′ ∈ τ`
such thatI`

(
σ
(
∆′)) intersects∆, i.e.,

sup
0≤`≤`max

sup
∆∈τ`

#
{
∆′ ∈ τ` | ∆ ∩ I`

(
σ
(
∆′)) /= ∅} ≤ Clocal.(9)

(b) Furthermore, the number of triangles inI`
(
σ
(
∆′)) have to be bounded, i.e.,
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Fig. 4. The setV (σ (∆0)) consists of the points{A,B,C ,M1,M2,M3}. Since M1 lies in ∆1
and M3 in ∆3, the computation of the prolongation for points inV (σ (∆0)) uses the points
{A,B,C ,D ,E,F}. Thus,I` (σ (∆)) is given by the union of

{
∆j

}
, 0≤ j ≤ 3

sup
0≤`≤`max

sup
∆∈τ`

#I` (σ (∆)) ≤ CI .(10)

Obviously, Assumptions (a) and (b) are implicit assumptions on the mapping
Φ. If, e.g.,Φ is the identity, we obtainI` (σ (∆)) = ∆, CI = 1 andClocal ≤ C (α0),
whereα0 denotes the smallest angle of the triangulationτ`.

Remark 2.Let v = I int
` P`γ` and ∆ ∈ τ`. Then the restrictionv |domσ(∆) is

uniquely determined by the valuesγ` (x) for x ∈ V (I` (σ (∆))). For example,
γ` (x) = 0 for all x ∈ V (I` (σ (∆))) implies thatv |domσ(∆)≡ 0.

The following assumption controls the regularity of the grid and the distortion
of triangles byΦ.

Assumption 3.

(a) Each triangle∆ = Φ
(
∆̃
) ∈ τ` has the same orientation as̃∆ ∈ τ̃`,

(b) h` := sup∆∈τ` diam {∆} ,
(c) h` ≤ Cdiam {∆} , ∀∆ ∈ τ`, i.e., τ` is quasi-uniform, while ˜τ` is uniform,
(d) sup{diamS | S is a ball contained in∆} ≥ Ch̀ , ∀∆ ∈ τ`,
(e) h` ≥ (1 + Cref) h`+1, with 1/2 < Cref ≤ 1

while all constants above are positive and independent of∆ and`.
(f) Let ∆ ∈ τ` and` ≤ m < `max. We introduce a parameter which controls the

distortion of domsonm+1
m

(
∆′) relative to a triangle∆′ ∈ Im (σ (∆)) by

dm (∆) := max
∆′∈Im(σ(∆))

max
x∈domsonm+1

m (∆′)
dist

(
x, ∆′)

diam∆′ .(11)

We assume thatΦ is such that for all∆ ∈ τ`

`max−1∑
m=`

dm (∆) ≤ C(12)
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is satisfied with a constantC independent of̀ , `max, and∆.

Assumption 3(f) can be interpreted in the following way. Letγ` ∈ CΘ` denote
a grid function. The computation ofγ`max := P`γ` can be split by introducing local
intermediate grid functionγm+1 for ` ≤ m ≤ `max− 1 by the recursion

γm+1 (x) =
∑

y∈V(Im(σ(∆)))

cy (x) γm (y) , ∀x ∈ V (Im+1 (σ (∆))) .

Condition (12) controls the distortion of the triangles ofIm (σ (∆)) compared
with its sons on the finer level. Later, this will be used in order to prove stability
of the interpolation processP`. Some relations to typical refinement strategies
and implications are concerned in the following

Lemma 4. (a) If the grid τ`max was constructed by the procedureadapt, then,
Assumption 3(f) is satisfied.

(b) Let ∆ ∈ τ` be a triangle with an edge e= X1X2 corresponding to a
boundary piece eΓ of classC 2. Let the midpoint of e be projected onto eΓ by a
refinement procedure resulting in x∈ eΓ . Then, we obtain

dist (x, ∆) ≤ Ch2
` .(13)

This assumption implies (12), too.
(c) If Assumption 3(f), is satisfied, we get

|σ (∆)|
|∆| ≤ C

while for any set of trianglesω, |ω| denotes the area measure ofdomω.

Proof. By the procedureadapt each grid pointΘ̃`max is moved at most by a
distance ofO

(
h`max

)
. Let ∆̃ ∈ τ̃` and ẽj an edge of∆̃. Let Mj denote the

midpoint of this edge. Then, we know that

dist
(
Mj , ∆̃

)
= 0.

In view of (11), we have to estimate

max
x∈domsoǹ +1

`
(∆)

dist (x, ∆) = max
1≤j≤3

dist
(
Φ
(
Mj
)
, ∆
)

= max
1≤j≤3

dist
(
Φ
(
Mj
)
, Φ
(
ẽj
)) ≤ 2Ch̀ max

and in view of the shape regularity of the triangles, i.e., Assumption 3(a)-(e), we
get for any∆ ∈ τ`

dm (∆) = max
∆′∈Im(σ(∆))

max
x∈domsonm+1

m (∆′)
dist

(
x, ∆′)

diam∆′ ≤ C (1 + Cref)
m−`max .

This implies that
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`max−1∑
m=`

dm (∆) ≤
`max−1∑

m=0

C (1 + Cref)
m−`max ≤ C

Cref
.

Estimate (13) is well known and proven by introducing a local coordinate
system with origin in the point ˆx of eΓ having maximal distance frome and
expandingeΓ as a Taylor series about ˆx. Here, we skip the details. It follows
that in this case

dm (∆) ≤ C (1 + Cref)
−m , ∀∆ ∈ τ`

holds and, hence,

`max∑
m=`

dm (∆) ≤
`max∑
m=0

C (1 + Cref)
−m ≤ Ĉ

Cref
.

In order to prove statement (c), we proceed as follows. For∆ ∈ τ`, let
ω` = dom∆ andω`+j := domson`+j

` (∆). In view of the coarsening process we
know thatω`+j is a polygon having a boundary which consists of at most 3· 2j

straight lines. Letδ` be defined by

δ`+j := max
x∈ω`+j

dist
(
x, ω`+j−1

)
.

Therefore, we can estimate

|ω`+j +1| ≤ |ω`+j | + 3 · 2j h`+j δ`+j

2
.

Let δ` := `max− `. Inductively, we obtain

|ω`max| ≤ |ω`| +
3
2

δ`−1∑
j =0

2j h`+j δ`+j ≤ |∆| +
3
2

δ`−1∑
j =0

2j h2
`+j

δ`+j

h`+j

≤ |∆| +
3
2

h2
`

δ`−1∑
j =0

(
2

(1 + Cref)
2

)j
δ`+j

h`+j
≤ |∆| +

3
2

h2
`

δ∑̀
j =0

δ`+j

h`+j
,

since Cref >
1
2 implies that 2

(1+Cref)2 < 1. Due to the assumption on the shape
regularity of the triangles, we obtain

|ω`max| ≤ |∆|
1 + C

δ∑̀
j =0

d`+j (∆)

 ≤ C |∆| . ut

Remark 3.In Lemma 4 (a) and (b), it was shown that for two typical refinements
strategies, Assumption 3(f) is satisfied. In view of (12), it is clear that it is allowed
to do finitely many times (independent of`max) any reasonable adaptation process,
while the sum (12) will still be bounded. This would include , e.g., edge swapping
(see [3]) in the coarsening process or movement of coarse grid points during the
coarsening process.
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Remark 4.For the refinement strategies presented in Lemma 4, we have not
used the fact that condition (12) is local. This would be important, if in different
regions of the triangulations, the quantitiesdm (∆) have a different decreasing
behaviour with respect tom. Then, usingdm := sup∆∈τm

dm (∆) instead ofdm (∆)
could possibly violate condition (12). For example, swapping of edges could be
allowed more often imposing the local condition, provided it takes place in
different parts of the triangulation.

4. Approximation of functions u ∈ H 2
(
R

2
)

In this chapter, we will develop the analysis of finite element approximation
for functionsv ∈ H 2

(
R

2
)
. Throughout this chapter, we will use the notation

H t := H t (Ω). In Sect. 5 the case of a bounded domain will be discussed. Here,
we will develop an estimate of the approximation error in the form that, for all
v ∈ H 2 and t ∈ {0, 1}, there exists a functionv` ∈ S̀ such that

‖v − v`‖t,R2 ≤ Ch2−t
` |v|2,R2 .

The error analysis is split into the following steps. For a functionv ∈ H 2, we
define the restriction operatorR̀ : C 0 → C

Θ` by

(R̀ v) (x) := v (x) , ∀x ∈ Θ`.(14)

The interpolation operator on the gridτ` was denoted byI int
` . We recall the

definition of the nodal valuesV
(
sonm

` ∆
)

corresponding to the sons of∆ on
level m (see (4)). Letvm be given by

vm := I int
`max

PmRmv .

Using the triangle inequality, we obtain

‖v − v`‖2
0,σ(∆) ≤ 2

‖v − v`max‖2
0,σ(∆) +

∑
∆′∈σ(∆)

‖v`max − v`‖2
0,∆′


≤ 2

‖v − v`max‖2
0,σ(∆) +

∑
∆′∈σ(∆)

max
x∈V(σ(∆))

|(v − v`) (x)|2 ‖1‖2
0,∆′


For the first term on the right side above standard error estimates apply. We will
show that the pointwise errors, appearing in the second term of the right hand
side above, can be estimated byCh̀ ‖v‖

I`(σ(∆)) and hence the approximation
property inL 2 follows. The stability of the interpolation process inH 1 plays
the key role for theH 1-estimate. We will show that

|v`max|1 ≤ C |v`|1
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is satisfied under moderate assumptions on the refinement (resp. coarsening)
process. In combination with theL 2-estimate and the inverse inequality the
approximation property inH 1 follows.

In this light, we will assume throughout this and the following chapters that
Assumptions 2 and 3 are satisfied.

We begin to estimate the approximation quality ofS̀ in L 2.

Lemma 5. Let u∈ H 2 andγ` ∈ CΘ` be the interpolating grid function of u:

γ` (x) = u (x) , ∀x ∈ Θ`.

Let γ`max = P`γ` be the corresponding grid function on the finest level.
Then, for all∆ ∈ τ`, the pointwise estimate,

|γ`max (x)− u (x)| ≤ Ch̀ |u|2,I`(σ(∆)) , ∀x ∈ V (σ (∆))(15)

is satisfied.

Proof. We define the intermediate grid functionγm+1 ∈ C
Θm+1 arising by

(m + 1− `)-times interpolatingγ`:

γm+1 := Pm+1
m Pm

m−1 · · ·P`+1
` γ`.

To compute the valueγm+1 (x) for a nodal pointx ∈ Θm+1, one has to determine
a triangle∆m ∈ τm with x ∈ ∆m. The vertices of∆m are denoted by{yj }1≤j≤3.
Then

γm+1 (x) =
3∑

j =1

αj (x) γm
(
yj
)

with some coefficientsαj (x) satisfying

αj (x) ≥ 0, 1≤ j ≤ 3,(16)
3∑

j =1

αj (x) = 1.

Hence, we obtain

|γm+1 (x)− u (x)| =

∣∣∣∣∣∣
3∑

j =1

αj (x) γm
(
yj
)− u (x)

∣∣∣∣∣∣
≤
∣∣∣∣∣∣

3∑
j =1

αj (x)
(
γm
(
yj
)− u

(
yj
))∣∣∣∣∣∣ +

∣∣∣∣∣∣
3∑

j =1

αj (x) u
(
yj
)− u (x)

∣∣∣∣∣∣
≤
 3∑

j =1

αj (x)

 max
1≤j≤3

∣∣γm
(
yj
)− u

(
yj
)∣∣ +

∣∣∣∣∣∣
3∑

j =1

αj (x) u
(
yj
)− u (x)

∣∣∣∣∣∣ .
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The linear interpolantuint of u on ∆m at the vertices{yj } coincides with∑3
j =1αj (x) u

(
yj
)
. Using standard interpolation results, we get (see [4, Theo-

rem 3.1.5])∣∣∣∣∣∣
3∑

j =1

αj (x) u
(
yj
)− u (x)

∣∣∣∣∣∣ ≤ max
x∈∆m

|uint (x)− u (x)| ≤ Chm |u|2,∆m .(17)

Together, we obtain

|γm+1 (x)− u (x)| ≤ max
1≤j≤3

∣∣γm
(
yj
)− u

(
yj
)∣∣ + Chm |u|2,∆m .

Let yk := arg max1≤j≤3

∣∣γm
(
yj
)− u

(
yj
)∣∣ and yk ∈ ∆m−1 ∈ τm−1. The vertices

of ∆m−1 are denoted by{zj }1≤j≤3. Using the same technique as before we get

|γm+1 (x)− u (x)| ≤ max
1≤j≤3

∣∣γm−1
(
zj
)− u

(
zj
)∣∣ + Chm−1 |u|2,∆m−1 + Chm |u|2,∆m .

Sinceγ` (x) = u (x) for all x ∈ Θ`, we get inductively

|γ`max (x)− u (x)| ≤ C
`max−1∑

m=`

hm |u|2,∆m .

It follows that

|γ`max (x)− u (x)| ≤ C |u|2,I`(σ(∆))

`max∑
m=`

hm ≤ h`
C

Cref
|u|2,I`(σ(∆)) , ∀x ∈ V (σ (∆))

with Cref defined in Assumption 3.ut
Using this Lemma, we easily obtain theL2-estimate of the approximation of

a H 2-function by interpolation.

Theorem 6. Let v ∈ H 2. Then, there exists a functionv` ∈ S̀ such that

‖v − v`‖0,R2 ≤ CClocalh
2
` |v|2,R2

is satisfied.

Proof. Let v ∈ H 2 andγ` denote the interpolating grid function:

γ` (x) = v (x) , ∀x ∈ Θ`.(18)

In order to define the corresponding finite element function, we first have to
prolongγ` onto the finest grid level:

γ`max := P`γ`(19)

and then to interpolate:v` := I int
`max

γ`max. The global norm can be decomposed into
local norms defined over the patches domσ (∆) :
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‖v − v`‖2
0,R2 =

∑
∆∈τ`

‖v − v`‖2
0,σ(∆) .

In the following we will use the convention that∑
j∈∆

. . . :=
∑

j :suppϕj∩∆/=∅
. . . .

This means that{j ∈ ∆} denotes the indices of the vertices of∆. We obtain

‖v − v`‖2
0,σ(∆) =

∑
∆′∈σ(∆)

‖v − v`‖2
0,∆′

≤ 2
∑

∆′∈σ(∆)

∥∥∥∥∥∥v −
∑
j∈∆′

v
(
xj
)
ϕj (x)

∥∥∥∥∥∥
2

0,∆′

+ 2
∑

∆′∈σ(∆)

∥∥∥∥∥∥
∑
j∈∆′

(
v
(
xj
)− v`

(
xj
))
ϕj (x)

∥∥∥∥∥∥
2

0,∆′

.

The function
∑

j∈∆′ v
(
xj
)
ϕj (x) denotes the linear interpolant ofv on∆′. There-

fore we know (see [7, Theorem 8.4.4]) that∥∥∥∥∥∥v −
∑
j∈∆′

v
(
xj
)
ϕj (x)

∥∥∥∥∥∥
0,∆′

≤ Ch2
`max

|v|2,∆′

is fulfilled. Using the fact thatv` (x) = γ`max (x) for all nodal points on the finest
level (see (19)) and the pointwise estimate of the Lemma above, we conclude
with

‖v − v`‖2
0,σ(∆) ≤ 2

∑
∆′∈σ(∆)

C2h4
`max

|v|22,∆′

+2
∑

∆′∈σ(∆)

max
j∈∆′

∣∣γ`max

(
xj
)− v

(
xj
)∣∣2 ‖1‖2

0,∆′

≤ 2C2h4
`max

|v|22,σ(∆) + 2
∑

∆′∈σ(∆)

C2h2
` |v|22,I`(σ(∆)) ‖1‖2

0,∆′

= 2C2h4
`max

|v|22,σ(∆) + 2C2h2
` |v|22,I`(σ(∆)) ‖1‖2

0,σ(∆)

≤ Ĉ2h4
` |v|22,I`(σ(∆)) .

For the last estimate we have used Lemma 4 (c). The global estimate follows
from

‖v − v`‖2
0,R2 =

∑
∆∈τ`

‖v − v`‖2
0,σ(∆) ≤ C2h4

`

∑
∆∈τ`

|v|22,I`(σ(∆))

≤ C2C2
localh

4
` |v|22,R2 . ut
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The estimate of the error in theH 1 seminorm is more involved. The reason
is the following. Letγ`+1 = P`+1

` γ`. Let x ∈ Θ`+1 and x ∈ ∆ ∈ τ`. Then, we
obtain

γ`+1 (x) =
∑

y∈vertex of∆

αy (x) γ` (y) ,

and in view of (16), we obtain

|γ`+1 (x)| ≤ max
y∈vertex of∆

γ` (y) .

Thus, the prolongation operatorP` is stable in the maximum norm with constant
1. For the gradients of the interpolationγ`+1 this is not true. Forj ∈ {0, 1}, let
v`+j = I int

`+j γ`+j and∆′ ∈ son`+1
` (∆). N (∆) denotes the set of neighbouring

triangles of∆. We will prove the representation

∇v`+j |∆′=
∑

∆̂∈N (∆)∪∆
ε∆′,∆̂∇v` |∆̂,

where the singular values of the 2× 2 matricesε∆′,∆̂ are smaller than one and∑
∆̂∈N (∆)∪∆

ε∆′,∆̂ = I . Unfortunately, an estimate of the form

‖∇v`+j |∆′‖ ≤ max
∆̂∈N (∆)∪∆

‖∇v` |∆̂‖

is not true for all grid functionsγ` ∈ CΘ` . Under reasonable assumption we can
still prove stability ofP` in the maximum norm, but, since it is rather technical,
we postpone the proof to Sect. 7. The assertion is stated in the following

Lemma 7. For any ` and any grid functionγ` ∈ CΘ` , the estimate∣∣I int
m Pm

m−1Pm−1
m−2 · · ·P`+1

` γ`
∣∣
1,R2 ≤ C

∣∣I int
` γ`

∣∣
1,R2 , ∀` ≤ m ≤ `max

is satisfied with a constant independent of`max and γ`, i.e., the interpolation
process Pm is stable in H1.

Using this Lemma, the proof of the approximation property ofS̀ is straight-
forward.

Theorem 8. Let v ∈ H 2. Then, there is a function p∈ S̀ such that

|v − p|1,R2 ≤ Ch̀ |v|2,R2 .

Proof. For a functionv ∈ H 2, we setvm := I int
`max

PmRmv (cf. (14)). We will show
that the interpolantp = v` has the asserted approximation property. We know
that

|v − v`|1,R2 ≤ |v − v`max|1,R2 + |v` − v`max|1,R2

≤ |v − v`max|1,R2 +
`max−1∑

m=`

|vm − vm+1|1,R2 .(20)
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Sincev`max is the interpolant ofv on the gridτ`max, we can apply the standard
finite element estimate (see e.g. [7, Theorem 8.4.4]) and obtain

|v − v`max|1,R2 ≤ Ch̀ max |v|2,R2 .

We know thatδm+1 := vm − vm+1 belongs toSm+1. Let γm+1 ∈ C
Θm+1 be the

corresponding grid function:

γm+1 (x) = (vm − vm+1) (x) , ∀x ∈ Θm+1

andδint
m+1 := I int

m+1γm+1 the interpolant on the gridτm+1. Using Lemma 7, we obtain

|δm+1|1,R2 ≤ C
∣∣δint

m+1

∣∣
1,R2 .(21)

We know that

δint
m+1 (x) = 0, ∀x ∈ Θm.

Similarly as in the proof of Lemma 5, we will show that for each triangle∆ ∈ τm

the estimate∣∣δint
m+1 (x)

∣∣ ≤ Chm |v|2,I`(σ(∆)) , ∀x ∈ V
(
sonm+1

m (∆)
)

(22)

holds. For this, letx ∈ V
(
sonm+1

m (∆)
)
. Then∣∣δint

m+1 (x)
∣∣ = |vm (x)− vm+1 (x)| = |vm (x)− v (x)|

and (22) follows from Lemma 5. Since the triangulationτm was assumed to be
quasi-uniform, we obtain for each∆ ∈ τm :

max
∆′∈sonm+1

m (∆)

∥∥∇δint
m+1 |∆′

∥∥ ≤ Ch−1
m+1

∥∥δint
m+1

∥∥
L∞(sonm+1

m (∆))

≤ C
hm

hm+1
|v|2,I`(σ(∆)) ≤ Ĉ |v|2,I`(σ(∆)) .

It follows that∣∣δint
m+1

∣∣2
1,R2 =

∑
∆∈τm

∑
∆′∈sonm+1

m (∆)

∣∣δint
m+1

∣∣2
1,∆′

=
∑
∆∈τm

∑
∆′∈sonm+1

m (∆)

∥∥∇δint
m+1 |∆′

∥∥2 |∆′|

≤
∑
∆∈τm

C |v|22,I`(σ(∆))

∣∣domsonm+1
m (∆)

∣∣
≤ CC2

localh
2
m |v|22,R2 .(23)

For the last estimate, we have used Lemma 4 (c). Combining (20), (21), and
(23), we get
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|v − v`|1,R2 ≤ |v − v`max|1,R2 +
`max−1∑

m=`

|vm − vm+1|1,R2

≤ Chmax |v|2,R2 + CClocal |v|2,R2

`max−1∑
m=`

hm

≤ C
Clocal

Cref
h` |v|2,R2 ,

yielding the proof. ut

5. Composite finite element spaces on bounded domains

In this chapter, we will define Composite Finite Element SpacesS̀ on bounded
domains. We will prove that, for any functionu ∈ H 2 (Ω), there is a functionu`
such that

‖u − u`‖t,Ω ≤ Ch2−t
` ‖u‖2,Ω

is satisfied fort ∈ {0, 1}. The definition of the spaces will rely on a proper
restriction of the adapted grids{τ`} which contains infinitely many triangles to
the domainΩ.

Let τ̃` denote the reference square grid triangulation as explained in Sect. 2.
We recall that the mappingΦ, defined in Sect. 3, adapts the grid points and
reference grid ˜τ`max onto the intermediate grid pointsΘ∞

`max
and triangulationτ∞`max

.
The triangulationτ`max was defined by restrictingτ∞`max

to the finite domainΩ.
The coarser triangualtionτ` were constructed by using the logical structure of the
reference triangulation (see (1)). The domains corresponding to the triangulation
τ` are given by

Ω` := domτ`.

We assume here for simplicity thatΩ = Ω`max. Since we assumed thatτ`max is
sufficiently close toΩ, we can treat the general case, namely, thatΩ /= Ω`max

with the standard theory of finite elements on domains with curved boundary.
Since the extremal points of the polygonΩ` are a subset ofΘ`, condition

(1) guarantees that
Ω0 ⊇ Ω1 ⊇ . . . ⊇ Ω`max = Ω.(24)

The finite element space is again defined by a suitable prolongation of grid
functions. In the case of bounded domains, the space of grid functions consists
of all mappingsγ` : Θ` → C, i.e., γ` ∈ CΘ` , whereΘ` is now a finite set. The
prolongation operatorP`+1

` : CΘ` → C
Θ`+1 is given by

P`+1
` γ` (x) := I int

` γ` (x) , ∀ x ∈ Θ`+1,(25)

whereI int
` is the standard finite element interpolation on the (finite) gridτ`. Due to

condition (1), it is guaranteed that for allx ∈ Θ`+1, there exists a triangle∆ ∈ τ`
such thatx ∈ ∆̄. Hence, the interpolation process (25) is well defined. Again,
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we setP` := P`max
`max−1P`max−1

`max−2 · · ·P`+1
` . The space of composite finite elements on

bounded domains is defined by

S̀ :=
{
v : R2 → C | ∃γ` ∈ CΘ` : v = I int

` P`γ`
}
.

Remark 5.The dimension of the spaceS̀ is given by

dim S̀ = #Θ`.

In the following, we will show that for every function inH 2 (Ω), there exists
a function in S̀ which satisfies the asymptotic approximation property. This
can easily be done by an extension argument and applying the theorems of
Sect. 4. The following theorem concerns the existence of an extension operator
for functionsu ∈ H 2 (Ω).

Theorem 9. Let Ω be a domain with Lipschitz boundary. Then, there exists an
extension operatorE and a constant C independent of` with the property that
for all 0≤ ` ≤ `max and u∈ H 2 (Ω) :

uext : = E u : Ω0 → C,

uext |Ω = u |Ω ,
‖uext‖2,Ω`

≤ C ‖u‖2,Ω .

Proof. The proof of this theorem is given in the book of Stein [14, p.181, The-
orem 5]. ut

The extension theorem is used to construct a function inS̀ having the required
approximation property.

Theorem 10. LetΩ be a domain with Lipschitz boundary and u∈ H 2 (Ω). Then,
there exists a function u` ∈ S̀ such that

‖u − u`‖t,Ω ≤ Ch2−t
` ‖u‖2,Ω

is satisfied for t∈ {0, 1}.

Proof. Let u ∈ H 2 (Ω) and the extensionuext defined as explained above. Since
the inclusion (24) holds, we can define a grid functionγ` ∈ CΘ` by

γ` (x) = uext (x) , ∀x ∈ Θ`

and u` := I int
`max

P`γ` the corresponding finite element function. All estimates in
the case ofΩ = R2 which have been derived in the previous chapter were local
in the sense that the error on patchσ (∆) was bounded by theH 2−seminorm in
a local neighbourhood of∆. If we replaceσ (∆) by σ (∆)∩Ω`max, the theorems
of Sect. 4 directly apply yielding

‖uext− u`‖t,Ω ≤ Ch2−t
` ‖uext‖2,Ω`

for t ∈ {0, 1}. Using the fact thatuext|Ω= u|Ω and the continuity of the extension
operator, we get

‖u − u`‖t,Ω ≤ Ch2−t
` ‖u‖2,Ω . ut
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6. Final remarks

In this paper, we have developed Composite Finite Elements in two dimensions.
However, the modification of procedureadapt to the case of uniform tetrahedral
partitionings ofR3 is obvious, where the analysis of the approximation behaviour
can be carried over directly.

On bounded domains, we have considered the approximation of functions in
H 2 which corresponds to the case of elliptic boundary value problems of second
order with Neumann boundary conditions. Dirichlet boundary conditions can be
treated by modifying the bilinear form using a penalty term. The details can
be found in [8]. The construction of composite finite element spaces satisfying
Dirichlet boundary conditions requires a slight modification of the prolongation
operators, to ensure that the trial spaces are conforming subspaces ofH 1

0 (Ω) ∩
H 2 (Ω). The values of prolonged grid functions at the boundary have to be set
to zero. Similiar modifications are necessary, if interfaces or changing boundary
conditions are present. The analysis of the approximation property has to be
modified in these cases and will be presented in a forthcoming paper.

After having computed the stiffness matrixA`max on the finest gridτ`max, it is
easy to derive coarser discretizations by means of the Galerkin product

A` =
(
P`+1
`

)?
A`+1P`+1

` ,(26)

where
(
P`+1
`

)?
denotes the adjoint ofP`+1

` with respect to a properly weighted
Euclidean scalar product. Since the prolongations were assumed to be local, the
complexity of computing the sequence of matrices{A`}0≤`≤`max

, which is needed,

e.g., in a multi-grid process, isO
(
h−2
`max

)
arithmetical operations. However, the

formula (26) is not the only way to computeA`. We state that it is possible
to compute the matrixA` by a complexity ofO

(
h−2
` + M`max

)
, where M`max

denotes the numbers of grid points ofΘ`max which have been moved by adapting
the reference grid ˜τ`max to the physical domain. TypicallyM`max = O

(
h−1
`max

)
is

satisfied. The algorithmic details, together with a discussion of the complexity,
are presented in [10a].

7. On the stability condition of the prolongation operator in H 1

For the proof of the approximation property we have assumed that∣∣I int
`max

P`γ`
∣∣
1,R2 ≤ C

∣∣I int
` γ`

∣∣
1,R2 , ∀γ` ∈ CΘ`(27)

is satisfied. We will proof this condition under Assumption 3 of Sect. 2. Since
some technicalities will arise in this chapter, we will outline the principal ideas.
Firstly, we will investigate, how piecewise linear functions on a gridτ` are
distorted by the interpolation process defined byP`. Then, in a second step, we
will estimate the growth of the gradients∇I int

`max
P`γ` relative to the gradients of

I int
` γ` dependent on the distortion of the nodal points relative to the reference
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grid. Finally, in a third step, we will use Assumption 3 to obtain an estimate of
the form (27).

We have to introduce some notations, namely, the neighbours of a triangle
∆ ∈ τ` by

N (∆) := {∆′ ∈ τ` | ∆′ /= ∆ and∆′ has a common edge with∆} .

We recall the definition of the father of a triangle on coarser levels (see (3)). Let
a grid functionγ` ∈ C

Θ` be given andv` (x) :=
(
I int
` γ`

)
(x) denote the linear

interpolant onτ`. We further define

v`+j (x) :=
(

I int
`+j P

`+j
`+j−1P`+j−1

`+j−2 · · ·P`+1
` γ`

)
(x)(28)

The gradient ofv`+j can be expressed by the gradients ofv`+j−1. The details are
in the following

Lemma 11. Let∆′ ∈ son`+j
`+j−1 (∆). Then, the gradient ofv`+j can be written as

∇v`+j |∆′= ∇v`+j−1 |∆ +
∑

∆̂∈N (∆)

ε∆′,∆̂
(∇v`+j−1 |∆̂ −∇v` |∆

)
,(29)

whereε∆′,∆̂ are 2×2 matrices of rank smaller than or equal to one. If∆′ and∆̂

have disjoint interior, thenε∆′,∆̂ = 0. The largest singular valueρ
(
ε∆′,∆̂

)
can

be estimated as

ρ
(
ε∆′,∆

) ≤ C

max
x∈soǹ +1

`
(∆)

dist (x, ∆)

diam∆
.

Proof. The proof of the Lemma is elementary but technical and can be found in
[9, Appendix]. ut

In the following, we will use the Lemma above to estimate the gradients of
prolonged grid functions. We recall the definition of the influence setI` (see
(7)) and representation formula (8). For givenγ` ∈ CΘ` , let v`+j be defined by
(28) and∆′ ∈ τ`+j . According to the representation formula (29), the gradients
∇v`+j |∆′ can be expressed as a linear combination of the gradients of∇v`+j−1

on the father triangle∆ = F `+j−1
`+j

(
∆′) and the neighbouring triangles by (29).

For a triangle∆′ ∈ τ`+j , we define those neighbourŝ∆ ∈ N (∆) which satisfy
ε`
∆′,∆̂

/= 0 :
◦

N
(
∆′) =

{
∆̂ ∈ N (∆) | εm−1

∆′,∆̂
/= 0
}
.

The triangles which are used to compute∇v`+j are given by

C
(
∆′) = ∆∪ ◦

N
(
∆′) .

Hence, (29) can be rewritten as
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∇v`+1 |∆′= ∇v` |∆ +
∑

∆̂∈
◦

N (∆′)

ε`
∆′,∆̂

(∇v` |∆̂ −∇v` |∆
)
.(30)

This representation will be used to estimate∇v`+1 |∆′ . The details are in the
following

Theorem 12. We use the notation of Lemma 11. For∆ ∈ τ` and ` ≤ m < `max,
let dm (∆) be defined by (11). The functionv` was given by (28). For∆′ ∈ σ (∆),
the gradients ofv` on the finest level can be estimated as

‖∇v`max |∆′‖ ≤
`max−1∏

m=`

(1 + 6dm (∆)) max
∆̂∈I`(σ(∆))

‖∇v` |∆̂‖ .(31)

Proof. Let ∆ ∈ τ` and∆′ ∈ son`+1
` (∆). Using (29), we obtain

‖∇v` |∆′‖ ≤

1 +
∑

∆̂∈
◦

N (∆′)

ρ
(
ε`
∆′,∆̂

) ‖∇v`−1 |∆‖

+
∑

∆̂∈
◦

N (∆′)

ρ
(
ε∆′,∆̂

)
‖∇v`−1 |∆̂‖

≤
(

1 + 6 max
∆̂∈

◦
N (∆′)

ρ
(
ε`
∆′,∆̂

))
max

∆̂∈C (∆′)
‖∇v`−1 |∆̂‖ .

Now, let∆′ ∈ σ (∆). Using Lemma 11, we get by induction

‖∇v`max |∆′‖ ≤
(
1 + 6d`max−1 (∆)

)
max

∆̂∈C (∆′)
‖∇v`max−1 |∆̂‖

≤ (1 + 6d`max−1 (∆)
) (

1 + 6d`max−2 (∆)
)

max
∆̂∈C (∆′)

max̂̂∆∈C (∆̂)

∥∥∥∇v`max−1 |̂̂∆∥∥∥
≤

`max−1∏
r =`

(1 + 6dr (∆)) max
∆̂∈I`(σ(∆))

‖∇v`max−1 |∆̂‖ ,

since the iterated maxima appearing in the induction, namely

max
∆̂∈C (∆̂)

max̂̂∆∈C (∆̂)
· · · ,

are by definition the maximum over a subset of the influence setI` (σ (∆)). ut
In view of (31), we will assume an estimate of the form

‖∇v`+j |∆′‖ ≤ C`,j max
∆′∈I`(σ(∆))

‖∇v` |∆′‖(32)

with ∆′ ∈ son`+j
` (∆) to estimate theH 1-seminorm ofv`+j . The details are in the

following
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Lemma 13. Let us assume that (32) is true. Then,

|v`+j |1,son`+j
`

(∆) ≤ Ĉ C̀ ,j |v`|1,I`(σ(∆))

is satisfied.

Proof. Let ∆ ∈ τ` and consider the triangles ofson`+j
` (∆). Then, we obtain

|v`+j |21,son`+j
`

(∆) =
∑

∆′∈son`+j
`

(∆)

|∇v`+j |21,∆′ =
∑

∆′∈son`+j
`

(∆)

‖∇v`+j |∆′‖2 |∆′|

≤ C2
`,j

(
max

∆̂∈I`(σ(∆))
‖∇v` |∆̂‖

)2 ∣∣∣domson`+j
` (∆)

∣∣∣
≤ C2

`,j

∣∣∣domson`+j
` (∆)

∣∣∣ ∑
∆̂∈I`(σ(∆))

‖∇v` |∆̂‖2

= C2
`,j

∣∣∣domson`+j
` (∆)

∣∣∣ ∑
∆̂∈I`(σ(∆))

1∣∣∆̂∣∣ |v`|21,∆̂ .

Due to the quasi-uniformity of the grid, we know that

1∣∣∆̂∣∣ ≤ C
1
|∆| , ∀∆̂ ∈ I` (σ (∆)) .

In Lemma 4, it was shown that Assumption 3 implies that
|domson`+j

`
(∆)|

|∆| ≤ C .
Consequently, we obtain

|v`+j |1,son`+j
`

(∆) ≤ CC̀ ,j |v`|1,I`(σ(∆)) . ut

An immediate consequence of this Lemma is the global estimate.

Theorem 14. Let γ` ∈ CΘ` be given andv`, v`+j be defined by (28). Then,

|v`+j |1,R2 ≤ CClocalC`,j |v`|1,R2 .(33)

Proof. This follows directly from Lemma 13 with the constantClocal defined by
(9). ut

Obviously, a sufficient condition for an estimate of the form

|v`+j |1,R2 ≤ C |v`|1,R2

with a constantC independent of̀ and j is that C`,j does not depend oǹ
and j . We will show that Assumption 3 implies thatC`,j < C . Condition (3) of
Assumption 3 reads

`max∑
`=0

d` (∆) ≤ C .(34)

Let ∆ ∈ τ`. Hence,
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`max−1∏
`=0

(1 + 6d` (∆)) ≤ exp

{
`max−1∑
`=0

log
(
1 + 6Ĉ d̀

)}

≤ exp

{
`max−1∑
`=0

6Ĉ d̀

}
≤ e6Ĉ C.

Condition (34) was guaranteed for the refinement strategies presented in Lemma
4 and Remark 3, and thus, result in the stability estimate of Theorem 14 and
finally, in the required approximation property as has been worked out in the
previous chapters.
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