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Summary. Hierarchic plate models are dimensional reductions obtained by
semidiscretization of the three-dimensional plate problem in the transverse di-
rection and energy projection. We derive computable a-posteriori estimators for
the modeling error thus incurred under the assumption that the resulting two-
dimensional plate models are solved exactly. The estimators are valid for homo-
geneous, monoclinic materials, for plates with unsmooth midsurfaces and for a
wide class of variational edge conditions. Computable a-posteriori bounds on the
effectivity indices are also derived and sufficient conditions for the asymptotic
(i.e. as the plate thickness tends to zero) and the spectral (i.e. as the order of the
plate model tends to infinity) exactness of the estimators are given. Numerical
examples are presented.
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1. Introduction

A large part of the boundary value problems in three-dimensional elastostatics
that are solved in current engineering applications are posed on thin domains or on
domains with thin components, such as beams, plates and shells. Classically, such
boundary value problems have beenmodelledby dimensionally reduced problems
on two- or one-dimensional domains; we mention only the Bernoulli beam, the
Kirchhoff-Love [9, 10] or the Reissner-Mindlin [12, 15, 16] plate models. These
models have been more amenable to analytical solution, for example by Fourier
series, than the fully three dimensional equations. With the advent of the digital
computer and in particular the finite element method (FEM), the widespread use
of these classical, dimensionally reduced models has continued, now however due
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to the computational savings achieveable with a lower dimensional model. The
fact that standardh-Version FE-discretizations of three-dimensional problems on
thin domains require excessive mesh refinement and exhibit numerical stiffness
also contributed to this trend.

In recent years increasingly accurate FE solutions of the classical lower di-
mensional models became available and there was a growing awareness that
at finite, positive thickness these models merely constituteapproximationsto
the underlying three-dimensional problems (see, for example, [8], [3]). Even if
solved exactly, lower dimensional models consequently incur a corresponding
approximation error, the so-calledmodelling error. Numerous papers have been
devoted to thejustification of lower-dimensional models, i.e. to the proof that
the rescaled modeling error vanishes as the thickness of the structure tends to
zero, by asymptotic methods (see [7], [8], [11] and the references therein). In
practice, however, the thickness of the structure is positive and given, i.e. not
at our disposal. Hence there arises the question for an accurate modeling error
estimation for a positive, given thickness and given load data. Such estimates
which are necessarilya-posteriori were for the KL- and the RM-plate model
given in [20]. With the availability of such modeling-error estimates the question
ariseswhat one should do if the classical models are not found to be sufficiently
accurate.

To this end it was proposed in [1, 3, 5, 17, 28, 27] to embed the classical
models into ahierarchy of lower dimensional models of increasing accuracy
and complexity. These hierarchies are obtained by constraining the admissible
displacements in the three-dimensional variational principle to director fields ex-
hibiting a certain prespecified behaviour in the cross section of the structure. For
example, in the case of homogeneous plates and shells, the hierarchy is obtained
by constraining the displacements admissible in the three-dimensional variational
principle to be polynomials in the transverse direction whereas for laminated ma-
terials special, nonpolynomial transverse behaviour must be imposed in order to
ensure certain optimality properties of the lower dimensional models [5], [11].
Thus hierarchic modeling is a special case of the method of constraints [2] and
leads to a singularly perturbed, elliptic system in the two-dimensional midsurface
of the three-dimensional structure. The methodology for constructing a flexible
hierarchy of lower dimensional models is general, i.e. it applies to any variational
problem on a three-dimensional, thin domain. As with any of the classical lower
dimensional models, aquantitative, computable modelling error estimatormust
be available in order to assess the accuracy of the members of the hierarchy for
a given boundary value problem.

The present paper is devoted to the derivation and analysis of a-posteriori
modeling error estimators for hierarchic models of homogeneous, elastic plates.
We consider monoclinic materials which are the most general ones for which
bending and membrane effects can be seperated. We derive computable modeling
error estimators which are based on the residual tractions on the faces of the plate.
We demonstrate numerically that the estimators perform well in applications.
The results in the present paper generalize earlier ones [19, 20] by the author.
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In [19], an estimator was derived which is valid only for totally clamped edge
conditions. The constants defining the error estimators were characterized as
smallest eigenvalues of a Steklov eigenvalue problem which had to be solved
numerically. In [20], the basic idea in the derivation of modeling error estimators
for general edge conditions was presented and the estimators were derived for
isotropic materials. In the present paper, we generalize these results to general
monoclinic materials. We prove that they are guaranteed upper estimators and,
under more restrictive assumptions, that they are asymptotically and spectrally
exact. This was previously done only for heat conduction problems in a plate
in [6]. Hierarchic models allow also for the simultaneous use of different model
orders in various subregions of the plate [6, 18, 20]. In conjunction with modeling
error estimators of good quality, this allows foradaptive hierarchic modelingof
thin structures [4]. Here the contributions to the modeling error from different
subdomains of the plate (e.g. the interior and the boundary region) are used as
modelling error indicatorson which the decision where to raise the model order
within the hierarchy is based. Although we treat in the present paper explicitly
only the case of plates, the techniques introduced here for the derivation of the
modelling error estimators, i.e. a covering of the midsurface by a family of
axiparallel squares and the asymptotic analysis of a certain variational problem
to determine the constants in the estimators, are clearly not limited to plates.
The feasibility of hierarchic models for homogeneous shells was demonstrated
in [28] where also the notion ‘hierarchic model’ was first introduced.

The outline of the paper is as follows: in Sect. 2, we introduce notation and
present the three-dimensional plate problem with general edge conditions. We
describe in particular the decoupling into a bending and a membrane problem.
In Sect. 3, we describe the hierarchy of plate models. In Sect. 4, we derive the
modeling error estimators and in Sect. 5 we prove its asymptotic exactness and
derive a computable bound for its effectivity index. Section 6 contains some
numerical results obtained with a recent commercial code where hierarchical plate
models and our a-posteriori error estimation are implemented. There each plate
model in the hierarchy is also solved approximately by ap-version finite element
method which is known to be considerably less susceptible to shear locking
than, e.g., lower order finite element methods (see, e.g., [26]). We address briefly
some mesh design principles for thep-version applied to plate models which are
suggested by the analysis [22, 23]. We demonstrate the practical reliability of
our modelling error estimators even for thick, highly anisotropic plates and high
model orders.

2. The three-dimensional plate problem

2.1. Governing equations

The plate problem is a boundary value problem of three-dimensional, linearized
elasticity in the domain
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Ω = ω × (−d, d)(2.1)

of thicknesst = 2d with the lateral boundary

Γ = γ × (−d, d).(2.2)

Here ω ⊂ R
2, the mid-surfaceof the plate, denotes a bounded domain with

Lipschitz boundaryγ. This implies thatΩ is locally Lipschitz, too. Therefore
the exterior unit normaln and the unit tangent vectort on γ (and hence also on
Γ ) to ω (resp. toΩ) are defined almost everywhere (cf. [13]). Points inΩ are
denoted by (x, y) wherex = (x1, x2) ∈ ω and |y| < d. Analogously, points inΓ
are denoted by (s, y) with s denoting the arclength onγ. We further define the
faces of the plate

R± = {(x, y) | x ∈ ω, y = ±d} .(2.3)

Then the plate problem consists in finding a displacement fieldu(x, y) : Ω → R
3

which satisfies the following governing equations:

1. Equilibrium conditions:

Lu = −divσ[u] = f in Ω,(2.4)

with the symmetric stress tensor

σ =

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

 .

2. Constitutive equations (Hooke’s Law):

σ = Aε[u](2.5)

with a fourth order tensorA and the linearized strain tensor

ε[u] = {εij [u]}1≤i ,j≤3, εij [u] =
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
.

3. Essential and natural edge boundary conditions:

B0u = 0 and B1u = 0 onΓ(2.6)

(one of the two boundary operators may vanish).
4. Prescribed normal tractions on the faces:

σ[u]n = g+ on R+, σ[u]n = g− on R−(2.7)

wheren denotes the exterior unit normal vector to∂Ω.
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It will be useful to write the six essential components ofσ and ε as column
vectors inR6 as

σ[u] = (σ11, σ22, σ33, σ12, σ13, σ23)>, ε[u] = (ε11, ε22, ε33, ε12, ε13, ε23)>.(2.8)

We admit materials for which Hooke’s law (2.5) can be written in the form

σ[u] =



a11 a12 a13 a14 0 0
a12 a22 a23 a24 0 0
a13 a23 a33 a34 0 0
a14 a24 a34 a44 0 0
0 0 0 0 a55 a56

0 0 0 0 a56 a66

 ε[u](2.9)

with a symmetric, positive definite matrixA ∈ R
6×6
sym. In particular, the thir-

teen parametersaij in (2.9) characterize homogeneous materials with monoclinic
symmetry.

Isotropic materialsare contained in (2.9) as a special case:

a11 = a22 = a33 = λ + 2µ =
(1− ν)E

(1 +ν)(1− 2ν)
,

a12 = a13 = a23 = a21 = a31 = a32 = λ =
νE

(1 +ν)(1− 2ν)
,

a44 = a55 = a66 = 2µ =
E

1 +ν
, a14 = a24 = a34 = a56 = 0.

(2.10)

Hereλ andµ are the so-called Laḿe-constants,E > 0 is Young’s modulus and
0≤ ν < 1/2 the Poisson-coefficient.

Another important special case of (2.9) is anorthotropic materialwhere we
have with engineering notation

A−1 =



1/E1 −ν12/E2 −ν13/E3 0 0 0
−ν21/E1 1/E2 −ν23/E3 0 0 0
−ν31/E1 −ν32/E2 1/E3 0 0 0

0 0 0 1/(2G1) 0 0
0 0 0 0 1/(2G2) 0
0 0 0 0 0 1/(2G3)


(2.11)

and the symmetry ofA implies

νij Ei = νji Ej , 1≤ i , j ≤ 3,

i.e. an orthotropic material has rhombic symmetry and is determined by nine
constants.

To cast the boundary value problem (2.4)–(2.7) into variational form, we use
Green’s formula
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v>Ludxdy= B (u, v)−
∫
∂Ω

v>σ[u]ndo ∀u ∈ HL (Ω), v ∈ [H 1(Ω)
]3

(2.12)

which holds in particular for the mid-surfacesω under consideration here. In
(2.12) do denotes the surface measure on∂Ω and

HL (Ω) =
[
H 1(Ω)

]3 ∩ {u : Lu ∈ [L2(Ω)
]3}

.

The bilinear formB (·, ·) is given by

B (u, v) = (ε[v], σ[u])

with the inner product(ε, σ) defined by

(ε, σ) =
∫
Ω

ε : σdxdy σ, ε ∈ [L2(Ω)
]3×3

(2.13)

where

ε[u] : σ[u] =
∑

1≤i ,j≤3

εij [u]σij [u]

= ε11σ11 + ε22σ22 + ε33σ33 + 2(ε12σ12 + ε13σ13 + ε23σ23) .

For prescribed surface tractionsg+, g− ∈ [L2(ω)
]3

on the facesR± and volume

forcesf ∈ [L2(Ω)
]3

we define the load functionalF (u) by

F (u) =
∫
Ω

u(x, y)>f (x, y)dydx+
∫

R+

g+(x)>u(x, d)ds+

+
∫

R−
g−(x)>u(x,−d)ds−

=
∫
Ω

u(x, y)>f (x, y)dydx

+
∫
ω

{
g+(x)>u(x, d)− g−(x)>u(x,−d)

}
dx

(2.14)

sinceds+ = −ds− = dx1dx2. Then Green’s formula (2.12) becomes

B (u, v) =
∫
Γ

v>σ[u]ndsdy+ F (v) ∀v ∈ [H 1(Ω)
]3

with ds denoting the surface measure on the boundary curve∂ω. The boundary
integral ∫

γ

∫ d

−d
v>σ[u]ndyds(2.15)

should vanish according to (2.6).
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2.2. Edge conditions

In practical applications a variety ofedge conditionsare used since it is well
known that the overall solution of the plate problem and in particular its edge
behaviour depend strongly on the kind of edge conditions prescribed. We show
therefore next how very general traction and displacement resultants can be pre-
scribed as natural and essential edge conditions, respectively, implying (2.15).
These conditions include in particular the boundary conditions commonly used
in engineering practice. More importantly, any of the edge conditions can be
exactly represented by a hierarchic model of sufficiently high order, as we shall
see below.

To describe the edge conditions we introduce normal- and tangential compo-
nents of the displacements and tractions a.e. onΓ :

un = n>u, ut = t>u, σn = n>σ[u]n, σt = t>σ[u]n.(2.16)

The basic idea is now to developu andσ[u]n fiberwise onΓ in Legendre series,
i.e.  ut

un

u3

 (s, y) =
∞∑
k=0

Lk

( y
d

) Utk(s)
Unk(s)
U3k(s)

 ,(2.17)

 σt

σn

σ3

 (s, y) =
∞∑
k=0

Lk

( y
d

) Ttk(s)
Tnk(s)
T3k(s)

(2.18)

with the Legendre coefficients of the displacements defined for almost every
s ∈ γ by

Utk(s) =
2k + 1

2

∫ 1

−1
ut (s, zd)Lk(z)dz,

Unk(s) =
2k + 1

2

∫ 1

−1
un(s, zd)Lk(z)dz,

U3k(s) =
2k + 1

2

∫ 1

−1
u3(s, zd)Lk(z)dz.

The traction Legendre coefficientsTtk(s),Tnk(s) andT3k(s) in (2.18) are defined
analogously.

The basic idea in specifying compatible pairs of essential boundary conditions
B0 and natural onesB1 consists in enforcing the vanishing of complementary
sets of Legendre coefficients of the boundary displacements and tractions. More
precisely, with (2.17), (2.18) we obtain the following possibilities. LetIj ⊆ N0,
j ∈ {n, t , 3} be index sets. Then we define theessential boundary conditions∫ d

−d
uj (s, y)Lk(

y
d

)dy = 0 ∀k ∈ Ij , a.e.s ∈ γ, j ∈ {n, t , 3} .(2.19)
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Obviously, due to the fiberwise orthogonality of the Legendre polynomials, the
complementarynatural boundary conditions(in the sense of (2.15)) read

σj −
∑
k∈Ij

Tjk (s)Lk

( y
d

)
=
∑

k∈N0\Ij

Tjk (s)Lk(
y
d

) = 0, j ∈ {n, t , 3}.(2.20)

The most important special cases are obtained with the selectionsIj = ∅ or Ij =
N0, i.e. either the displacement or the traction component vanishes identically on
Γ . Some examples follow:

1. Dirichlet conditions (“Hard clamped plate”):Ij = N0, j ∈ {n, t , 3},

B0u = γ0u = 0 onΓ,(2.21)

2. Neumann conditions (“free plate”):Ij = ∅, j ∈ {n, t , 3},

B1u = γ1u = σ[u]n = 0 onΓ,(2.22)

Since we are considering a system of partial differential equations, we can pose
Dirichlet- or Neumann conditions also for some components of this system.

3. (“soft simply supported plate”):In = It = ∅, I3 = N0,

B0u = γ0u3 = 0, B1u =

(
n>σ[u]n
t>σ[u]n

)
= 0 onΓ.(2.23)

Here t = t(s) denotes the unit tangent vector toγ. We consider further
4. (“hard simply supported plate”):It = I3 = N0 andIn = ∅,

B0u =

(
u3

t>u

)
= 0, B1u = n>σ[u]n = 0 onΓ.(2.24)

5. In = It = N0 andI3 = ∅.

B0u =

(
n>γ0u
t>γ0u

)
= 0, B1u = e>3 σ[u]n = 0 onΓ.(2.25)

Examples of nonclassical boundary conditions are obtained by prescribing only
certain displacement or stressresultantsas it is frequently done in engineering.

6. (“supersoft simply supported plate”)In = It = ∅, I3 = {0}:

B0u =
∫ d

−d
u3(s, y)dy = 0,

B1u =

 σt (s, y)
σn(s, y)

σ3(s, y)− ∫ d
−d σ3(s, y)dy

 = 0
(2.26)
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7. (“Prescribed resultant forces”)Fj (s). Ij = N, j ∈ {t , n, 3}.

B0u = uj (s, y)−
∫ d

−d
uj (s, y)dy = 0,

B1u =
∫ d

−d
σj (s, y)dy = Fj (s).

(2.27)

8. (“Prescribed edge-moments”)Mj (s). Ij = N0\{1}, j ∈ {t , n, 3}.

B0u =
∫ d

−d
uj (s, y)dy +

∞∑
2

Ujk (s)Lk(
y
d

) = 0,

B1u =
∫ d

−d
σj (s, y)ydy = Mj (s).

(2.28)

Remark 2.1.We assumed in (2.6) thatone combination of boundary conditions
B0 and B1 is posed on all ofΓ . This is of course not necessary and (2.6) may
also be substituted by a family{B0j ,B1j } of piecewise defined conditions. To
keep the notation simple, we will however continue to work with (2.6).

2.3. Existence of weak solutions

A weak (or variational) solution of the plate problem is a displacement field
u : Ω → R

3 minimizing the primal energy

G (u) =
1
2

B (u, u)−F (u)(2.29)

over a suitable subset

H (Ω) ⊂ [H 1(Ω)
]3

of admissible displacement fields. To discuss the uniqueness of minimizers of
(2.29) we note that

σ[r ] = 0 ⇐⇒ r ∈ R =

u : Ω → R
3 | u(x, y) =

 a1

a2

a3

 +

 b2y − b3x2

b3x1 − b1y
b1x2 − b2x1

 .

(2.30)

The setR is the 6 dimensional set of rigid body motions. We define the set of
homogeneous solutions of (2.4)–(2.7)

N = {r ∈ R | r satisfies (2.4)–(2.7) withf = g± = 0} .(2.31)

For example, for the Dirichlet condition (2.21) we haveN = {0} and for the Neu-
mann condition (2.22) we haveN = R. Thus the set of admissible displacement
fields within which a unique minimizer ofG can be expected is
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H (Ω) =
[
H 1(Ω)

]3 ∩{u | B0u = 0 and
∫
Ω

r>udxdy= 0 ∀r ∈ N
}
.(2.32)

Any minimizer u ∈ H (Ω) of (2.29) satisfies the variational Euler-Lagrange
equations

u ∈ H (Ω) B(u, v) = F (v) ∀v ∈ H (Ω).(2.33)

Theorem 2.1. 1. H (Ω) is a closed, linear subspace of
[
H 1(Ω)

]3
.

2. Assume thatg± ∈ [L2(ω)
]3

, f ∈ [L2(Ω)
]3

satisfy thecompatibility condition

F (r ) = 0 ∀r ∈ N.(2.34)

Then there exists a unique weak solution u∈ H (Ω) of (2.33).

Proof. 1. Sinceγ = ∂ω is Lipschitz, so is∂Ω for 0< d ≤ 1 (see, e.g., [20, Ap-
pendix C]). Consequently, the trace operatorγ0 : H 1(Ω) → L2(Γ ) is continuous.
Therefore the constraintB0u = 0 onΓ in (2.32) is well-defined.

2. Evidently, H (Ω) ⊂ [
H 1(Ω)

]3
is a linear subspace. We show that

it is closed. To this end, let{u(j )}∞j =1 ⊂ H (Ω) be a Cauchy sequence in[
H 1(Ω)

]3
. SinceH 1(Ω) is complete, there exists a limitu ∈ [H 1(Ω)

]3
such

that‖u(j )− u‖H 1(Ω) → 0 asj →∞. We claim thatu ∈ H (Ω). To show it, we
verify (2.32).

First, for everyr ∈ N, we have due tou(j ) ∈ H (Ω) that∣∣∣∣∫
Ω

r>udx

∣∣∣∣ =

∣∣∣∣∫
Ω

r> (u − u(j )) dx

∣∣∣∣ ≤ C(r , d) ‖u − u(j )‖L2(Ω) → 0,

as j →∞ whence it follows that∫
Ω

r>udx = 0 ∀r ∈ N.

Next, the continuity of the trace operator gives

γ0(u), γ0(u(j )) ∈ [L2(Γ )
]3
.

By the density of the Legendre polynomials inL2(−1, 1), we can expand the
traces of the component functions ofu and u(j ) on Γ into fiberwise Legendre
series:

(γ0ui ) (s, y) =
∞∑
`=0

Ui `(s)L`(
y
d

), i = 1, 2, 3,

(γ0ui (j )) (s, y) =
∞∑
`=0

U (j )
i ` (s)Ll (

y
d

), i = 1, 2, 3

which converge inL2(Γ ) = L2(γ) ⊗ L2(−d, d) by Fubini’s theorem. Since
{u(j )} ⊂ H (Ω) we have thatB0u(j ) = 0 for all j which implies that
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U (j )
k` = 0 ` ∈ Ik , k ∈ {n, t , 3}

for all j . From the orthogonality properties of the Legendre polynomials we have
for k ∈ {n, t , 3} that

‖uk − uk(j )‖2
L2(Γ ) =

∑
`∈N0\Ik

2d
2` + 1

∥∥∥Uk` − U (j )
k`

∥∥∥2

L2(γ)
+
∑
`∈Ik

2d
2` + 1

‖Uk`‖2
L2(γ) .

(2.35)

By the continuity of the trace operator we have

‖u − u(j )‖L2(Γ ) ≤ C(t) ‖u − u(j )‖H 1(Ω) → 0 asj →∞
and we find from (2.35) thatUk` = 0 on γ for ` ∈ Ik , k ∈ {n, t , 3}, i.e that
B0u = 0. Henceu ∈ H (Ω) and assertion 1. is proved.

3. SinceH (Ω) is a closed, linear subspace of
[
H 1(Ω)

]3
, we have Korn’s

inequality

B (u, u) ≥ C(t , ω) ‖u‖2
H 1(Ω) ∀u ∈ H (Ω)

(see, e.g., [14, Theorem 2.5]). By our assumptions on the data the continuity of
the trace operator on Lipschitz domains and Korn’s inequality imply that

|F (v)| ≤ C(t)
(
‖f ‖2

L2(Ω) + ‖g+‖2
L2(ω) +

∥∥g−∥∥2

L2(ω)

)1/2
‖v‖H 1(Ω)

≤ C(t , f , g±) ‖v‖E(Ω)

for every v ∈ H (Ω). As usual, the energy norm‖v‖E(Ω) is defined as(
B (v, v)

)1/2
. Existence and uniqueness of a weak solution to (2.33) now follow

from the Fredholm alternative and the Riesz representation theorem applied to
H (Ω) with the energy inner productB (·, ·). ut
Remark 2.2.The assumption that the datag±(x) andf (x, y) are square integrable
can be weakened. In what follows it will be sufficient for our purposes.

2.4. Separation of bending and membrane effects

The variational solutionu ∈ H (Ω) of the plate problem can be decomposed
into a membrane part uI (x, y) and abending part uII (x, y) as follows:

uI
α(x, y) = uI

α(x,−y), α = 1, 2, uI
3(x, y) = −uI

3(x,−y),(2.36)

and

uII
α (x, y) = −uII

α (x,−y), α = 1, 2, uII
3 (x, y) = uII

3 (x,−y).(2.37)

We denote the corresponding sets of admissible displacement fields byH I (Ω)
and H II (Ω), respectively. These subsets ofH (Ω) are closed and orthogonal
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with respect to the inner product induced by the bilinear formB (·, ·) on H (Ω),
i.e.

H (Ω) = H I (Ω)⊕H II (Ω) or B (u, v) = 0 ∀u ∈ H I (Ω), v ∈ H II (Ω).

(2.38)

This is a consequence of the sparsity structure of the constitutive matrixA in
(2.9) and the dependence of the strainsεij [u] on y which is implied by (2.36)
and (2.37).

Remark 2.3.The constitutive matrixA in (2.9) is the most general one for which
this separation of bending and membrane effects in the plate problem can be
achieved. Few materials exist with the still more general, fully anisotropic con-
stitutive relations which are characterized by twenty-one constants. They arise
mainly as “effective”, i.e. homogenized, models of composite sandwich plates
with asymmetric layup. Such materials still appear to be rarely used in practice,
since they exhibit some couterintuitive behaviour due to the bending-membrane
coupling. For example, such platesbendunder normal tractions applied to the
edges where one would intuitively expect a pure membrane response, i.e. in-plane
stretching.

Thus,uI anduII can be obtained independently of each other provided that
the load functionalF (u) is also split into bending and membrane parts.

F (u) = F I (u) + F II (u)

=
∫
Ω

f I (x, y)>v(x, y)dxdy

+
∫
ω

{
gI

3(x)(v+
3 − v−3 )(x) + gI

α(v+
α + v−α )(x)

}
dx

+
∫
Ω

f II (x, y)>v(x, y)dxdy

+
∫
ω

{
gII

3 (x)(v+
3 + v−3 )(x) + gII

α (x)(v+
α − v−α )(x)

}
dx(2.39)

where we setv±(x) = v(x,±d) and summation over repeated indices is implied.
The membrane and bending loads are given by

f I
α(x, y) =

1
2

(fα(x, y) + fα(x,−y)),

f I
3 (x, y) =

1
2

(f3(x, y)− f3(x,−y)),

gI
3(x) =

1
2

(g+
3(x) + g−3 (x)),

gI
α(x) =

1
2

(g+
α(x)− g−α (x)), α = 1, 2

(2.40)

and
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f II
α (x, y) =

1
2

(fα(x, y)− fα(x,−y)),

f II
3 (x, y) =

1
2

(f3(x, y) + f3(x,−y)),

gII
3 (x) =

1
2

(g+
3(x)− g−3 (x)),

gII
α (x) =

1
2

(g+
α(x) + g−α (x)), α = 1, 2.

(2.41)

3. Hierarchic plate models

Hierarchic plate models are obtained by semidiscretization of the plate problem
(2.33) in the transverse direction and energy projection.

Since we deal with an elliptic system, we admit different model orders for
the different displacement components. We approximate each componentui (x, y)
of the displacement fieldu(x, y) by a Legendre series iny of degrees less than
or equal toni . The maximal “transverse” polynomial degreesni , i = 1, 2, 3,
are collected in the vectorn ∈ N

3
0. Let, more generally,ψi = {ψik (z)}0≤k≤ni ,

i = 1, 2, 3, denote vectors ofni + 1 linearly independent basis functions (the
so-calleddirector functions) in H 1(−1, 1). Then the functionun(x), the solution
of the dimensionally reduced plate model of ordern, is any minimizer of the
total energyG (u) in (2.29) over the subspaceH (n) ⊂ H (Ω) of admissible
displacement fields of the form

(3.1) un
i (x, y) =

ni∑
k=0

Xn
ik (x)ψik

( y
d

)
= Xn

i (x)>ψi

( y
d

)
i = 1, 2, 3 .

Here the coefficient functionsXn
ik (x) ∈ H 1(ω) may be interpreted as generalized

rotations and deflections.

Proposition 3.1. H (n) ⊂ H (Ω) is a closed, linear subspace.

Proof. Let {u(`)}∞`=1 ⊂ H (n) be a Cauchy sequence in the energy norm. Since
H (Ω) ⊂ [H 1(Ω)]3 is closed by Theorem 2.1, we haveu = lim`→∞ u(`) ∈
H (Ω). We claim that in factu ∈ H (n). To prove it, we note that by Korn’s
inequality inH (Ω)

(3.2) ‖u(`)− u(`′)‖H 1(Ω) ≤ C(t , ω)‖u(`)− u(`′)‖E(Ω) → 0

as`, `′ →∞. Now u(`) = (u1(`), u2(`), u3(`))> with

ui (`) = X (`)
i (x)>ψi (y/d) , X (`)

i ∈ [H 1(ω)
]ni +1

, i = 1, 2, 3 .

Further, for every vector fuctionX ∈ [H 1(ω)]n andϕ ∈ [H 1(−d, d)]n we have
(summation over repeated indices)∥∥X>ϕ

∥∥2

H 1(ω)
= d−1

∫
ω

∇Xj Aij∇Xi dx +
∫
ω

Xj
(
dBij + d−1Aij

)
Xi dx
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where

Aij =
∫ 1

−1
ϕiϕj dz , Bij =

∫ 1

−1
ϕ′iϕ

′
j dz .

If the vector functionϕ has linearly independent component functions, the matrix
A is positive definite andB is positive semidefinite. Hence∥∥X>ϕ

∥∥2

H 1(ω)
≥ d−1λmin(A)‖X‖2

H 1(ω) .

Consequently, from (3.2) we have fori = 1, 2, 3
(3.3)∥∥∥X (`)

i − X (`′)
i

∥∥∥2

H 1(ω)
≤ d
λmin(A)

‖u(`)− u(`′)‖2
H 1(Ω) ≤

dC(t , ω)
λmin(A)

‖u(`)− u(`′)‖2
E(Ω)

i.e. that each sequence of coefficient functions{X (`)
ik }∞`=1 is Cauchy inH 1(ω).

Consequently,

(3.4) X (`)
ik → Xik ∈ H 1(ω) as `→∞

(and Xik ∈ H 1(ω, γ) if k ∈ Ii , i = 1, 2, 3). Define u componentwise via
ui (x, y) := Xi (x)>ψi (y/d), i = 1, 2, 3. Then u ∈ H (n) and, by Korn’s in-
equality,

‖u − u(`)‖2
E(Ω) ≤ C(t , ω)‖u − u(`)‖2

H 1(Ω) ≤ C(t , ω)
3∑

i =1

‖Xi − X (`)
i ‖2

H 1(ω) .

By (3.4), the upper bound tends to zero as` → ∞, henceu = lim`→∞ u(`) ∈
H (n). The proof is complete. ut
The hierarchic plate model is obtained by energy projection ontoH (n) and
can consequently be split like the three dimensional solution into a membrane
partuI (n) and a bending partuII (n). They are obtained independently from each
other by

(3.5) uj (n) ∈ H j (n) B (uj (n), v) = F j (v) ∀v ∈ H j (n) , j ∈ {I , II }
with H j (n) = H (n)∩H j (Ω) a closed, linear subspace of [H 1(Ω)]3 by Propo-
sition 3.1. This implies, as in Theorem 2.1, that for everyn there exists a unique,
dimensionally reduced solutionuj (n) ∈ H j (n).

For homogeneous materials with constitutive law (2.4), we select as director
functionsψik (z), as mentioned above, the Legendre polynomialsLk(z) of degree
k. For n,m ∈ N3

0 we write n � m ⇔ ni ≥ mi , i = 1, 2, 3. The relationn � m is
defined analogously. We write furthern � m ⇔ ni > mi , i = 1, 2, 3 etc.

Remark 3.1.The selection of polynomial director functions forhomogeneousma-
terials ensures the asymptotic optimality for the hierarchic models. Forlaminated
places, however, this approach is not optimal and the polynomials are replaced
by other, material dependent director functionsψik with better approximation
properties [1, 5, 11, 18, 27].
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Remark 3.2.The hierarchic model and the dimensionally reduced solutionu(n)
depend only on the span of the director functions. The selection of a particular ba-
sis for this span becomes important, however, in connection with iterative solution
techniques for the hierarchic models. It was shown in [21] that for homogeneous
plates the director functions{ψik (z)}ni

k=0 should be orthogonal inL2(−1, 1) and
in H 1(−1, 1). This can be achieved by solving a generalized eigenvalue problem
in the plate cross section and ensures a convergence rate proportional to the plate
thickness for classical additive and multiplicative Schwarz algorithms.

Equation (3.5) yields, after evaluation of the integrals in the transverse coordinate,
a singularly perturbed elliptic system for the unknown vector functionsXn

i (x) =
{Xn

ik}ni
k=0. For example, for isotropic material (2.10) we obtain with the Gram-

matrices of the director functions

A ij =
∫ 1

−1
ψiψ

>
j dz , Bij =

∫ 1

−1
ψ′iψ

′>
j dz ,

Cij =
∫ 1

−1
ψiψ

′>
j dz , 1≤ i , j ≤ 3 .

the following strongly elliptic system inω for the vector functionsXn
i (x), i =

1, 2, 3−d

µA11

µA22

µA33

∆ + d−1

µB11

µB22

(λ + 2µ)B33


−
 d(λ + µ)A11∂

2
11 d(λ + µ)A12∂

2
12 (λC13− µC>31)∂1

d(λ + µ)A21∂
2
21 d(λ + µ)A22∂

2
22 (λC23− µC>32)∂2

(µC31− λC>13)∂1 (µC32− λC>23)∂2 0


Xn

1

Xn
2

Xn
3



=


∫ d
−d f1(x, z)ψ1( z

d )dzψ1( y
d )∫ d

−d f2(x, z)ψ2( z
d )dzψ2( y

d )∫ d
−d f3(x, z)ψ3( z

d )dzψ3( y
d )

 +

 g+
1(x)ψ1(1)− g−1 (x)ψ1(−1)
g+

2(x)ψ2(1)− g−2 (x)ψ2(−1)
g+

3(x)ψ3(1)− g−3 (x)ψ3(−1)

(3.6)

with the conditions

γ0(Xn
il ) = 0 on γ , l ∈ Ii , i ∈ {n, t , 3}

whereXn
nl := Xn

1l n1 + Xn
2l n2, Xn

tl := Xn
1l t1 + Xn

2l t2.
Generally we have the following relations for the model orders in dependence

on the maximal transverse polynomial degreeq.

(3.7)
n = (2bq/2c, 2bq/2c, 2b(q − 1)/2c + 1) for j = I ,

n = (2b(q − 1)/2c + 1, 2b(q − 1)/2c + 1, 2bq/2c) for j = II

wherebxc denotes the largest integer≤ x. In what follows we shall only consider
these model orders. The following proposition collects some basic properties of
the hierarchic plate models.
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Table 1. Model ordersn for membrane and bending models in dependence on maximal transverse
degreeq

j q = 1 q = 2 q = 3 q = 4 q = 5 q = 6

I (0,0,1) (2,2,1) (2.2.3) (4,4,3) (4,4,5) (6,6,5)
II (1,1,0) (1,1,2) (3,3,2) (3,3,4) (5,5,4) (5,5,6)

Proposition 3.2. 1. Optimality of the n-model,

(3.8) ‖uj − uj (n)‖E(Ω) ≤ ‖uj − v‖E(Ω) ∀v ∈ H j (n) .

2. Letn � m. Then we have

(3.9) ‖uj − uj (n)‖E(Ω) ≤ ‖uj − uj (m)‖E(Ω) ,

i.e. an increase of the model order never increases the modeling error.
3. Convergence of the sequence ofn-models towards the three-dimensional prob-

lem at fixed, positive thickness.

(3.10) lim
n→∞ ‖uj − uj (n)‖E(Ω) = 0 .

Proof. Statement 1. is a consequence ofu(n) being the energy projection of the
three-dimensional solutionu onto H (n). Therefore it follows from (2.33) and
(3.5) that

B (u − u(n), v) = 0 ∀v ∈ H (n) .

This implies 1.
Assertion 2. follows from 1. and the inclusionH (n) ⊇ H (m) for n � m.
The third assertion follows the density of the polynomials inL2(−1, 1). This

implies that the sequence of spacesH (n) is dense inH (Ω) which, with 2.,
yields 3. ut

Remark 3.3.We remark that the Reissner-Mindlin (RM) plate model for homo-
geneous and isotropic plates is, forν > 0, not contained in this hierarchy. This
can be readily verified by comparing (3.6) forn = (1, 1, 0) with the equations
for the RM model. The RM model can be derived, however, by suitably mod-
ifying the elastic moduli used in the energy minimization, see [20] and [3] for
more. In this case, however, the estimators to be derived below will not allow to
estimate the modeling error. Nevertheless, other estimators based on dual vari-
ational principles can then be used to obtain computable a-posteriori modelling
error estimates [20, Sect. 3.4].
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4. A-posteriori estimation of the modeling error

In the present section we will derive computablea-posterioriestimators for the
modeling error

e(n) = u − u(n)(4.1)

of the hierarchic plate models in the energy norm.
For the error estimation we will utilize the decomposition of the modeling

error into a membrane parteI (n) and a bending parteII (n) which can be estimated
independently of each other due to their orthogonality in energy, i.e.

ej (n) = uj − uj (n), j ∈ {I , II }, B (eI , eII ) = 0.

This implies in particular

‖e(n)‖2
E(Ω) =

∥∥eI (n)
∥∥2

E(Ω)
+
∥∥eII (n)

∥∥2

E(Ω)
.(4.2)

Our modeling error estimators will be based on the residual tractions

r j
n(x) := gj (x)− gj

n(x), j ∈ {I , II },(4.3)

with gj
n(x) = σ[uj (n)]e3 |y=d denoting the normal tractions corresponding to then-

plate model obtained directly (i.e. without reference to the equilibrium equations)
from u(n) via Hooke’s law (2.9). We recall further thatbxc = max{k ∈ Z : k ≤
x}.

The main result on a-posteriori modeling error estimation is as follows.

Theorem 4.1. Let the material be homogeneous with a positive definite consti-
tutive matrix(2.9) and let the model ordern be given in dependence on q as in
(3.7). Assume further that the surface and volume forces are square integrable
and that the volume forces fj (x, y) are, for almost every x∈ ω, polynomials with
respect to y of degreem � n. Let the midsurfaceω ⊂ R

2 be an open, bounded
Lipschitz domain.

Then for any of the variational edge conditions of Sect.2 there hold the a-
posteriori modeling error estimations:

∥∥eI (n)
∥∥2

E(Ω)
≤ t

{
a(q)

∫
ω

(
r I

n1
r I

n2

)>(
a55 a56

a56 a66

)−1(
r I

n1
r I

n2

)
dx

+
b(q)
2a33

∫
ω

(
r I

n3

)2
dx

}
(4.4)

and ∥∥eII (n)
∥∥2

E(Ω)
≤ t

{
b(q)

∫
ω

(
r II

n1
r II

n2

)>(
a55 a56

a56 a66

)−1(
r II

n1
r II

n2

)
dx

+
a(q)
2a33

∫
ω

(
r II

n3

)2
dx

}
(4.5)
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where a(q) and b(q) are defined by

a(q) =

(
2
⌊q

2

⌋
+

3
2

)−1

, b(q) =

(
2

⌊
q + 1

2

⌋
+

1
2

)−1

(4.6)

with bxc = max{k ∈ Z : k ≤ x}.

The remainder of the present section is devoted to the proof of Theorem 4.1.
Prior to giving it, however, we mention some special cases of the general bound
where the constants simplify.

Corollary 4.1. Under the assumptions of Theorem4.1with the additional condi-
tion a56 = 0 there hold the a-posteriori modeling error estimations

1. Membrane part: for q≥ 1

∥∥eI (n)
∥∥2

E(Ω)
≤ t

 1

2
[ q

2

]
+ 3

2

∥∥r I
n1

∥∥2

L2(ω)

a55
+

∥∥r I
n2

∥∥2

L2(ω)

a66


+

1

2
[

q+1
2

]
+ 1

2

∥∥r I
n3

∥∥2

L2(ω)

2a33

 ,

2. Bending part: for q≥ 2

∥∥eII (n)
∥∥2

E(Ω)
≤ t

 1

2
[

q+1
2

]
+ 1

2

∥∥r II
n1

∥∥2

L2(ω)

a55
+

∥∥r II
n2

∥∥2

L2(ω)

a66


+

1

2
[ q

2

]
+ 3

2

∥∥r II
n3

∥∥2

L2(ω)

2a33

 .

Remark 4.1.Corollary 4.1 applies in particular toorthotropicmaterials: the con-
stantsa33, a55 and a66 that are relevant for the error estimate can be expressed
in terms of the engineering moduli (2.11). Obviously,

a55 = 2G2, a66 = 2G3

and a short calculation yields

a33 = E3
1− ν12ν21

1− ν12ν21− ν31 (ν13 + ν12ν23)− ν32 (ν23 + ν13ν21)
.

Another important special case of Theorem 4.1 occurs forisotropic materials.
Here we get

Corollary 4.2. Under the assumptions of Theorem4.1 the a-posteriori error es-
timate for isotropic materials(2.10)reads
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1. Membrane part:

∥∥eI (n)
∥∥2

E(Ω)
≤ t

2µ


∥∥r I

n1

∥∥2

L2(ω)
+
∥∥r I

n2

∥∥2

L2(ω)

2b q
2c + 3

2

+
1− 2ν

2(1− ν)

∥∥r I
n3

∥∥2

L2(ω)

2b q+1
2 c + 1

2

 ,

2. Bending part:

∥∥eII (n)
∥∥2

E(Ω)
≤ t

2µ


∥∥r II

n1

∥∥2

L2(ω)
+
∥∥r II

n2

∥∥2

L2(ω)

2b q+1
2 c + 1

2

+
1− 2ν

2(1− ν)

∥∥r II
n3

∥∥2

L2(ω)

2b q
2c + 3

2

 .

It remains to prove Theorem 4.1. This will be done in several steps in the
remainder of this section. First, we show that the residual tractionsr j

n(x) in (4.3)
are always square integrable overω and we prove a variational representation
for the modeling error in terms of the residual tractions alone. The modeling
error estimate follows then directly with the Schwarz inequality. The constant in
the estimate will be analyzed by means of a coveringC of ω by a family of
small closed, axiparallel squaresq with disjoint interior. The contribution to the
constant from each “box”q× (−d, d), q ∈ C is then estimated. This is followed
by an asymptotic analysis of the constants in these local estimates as the size of
q tends to zero.

Remark 4.2.The basic idea of the proof has been first obtained in [20, Chap. 2].
There, however, only orthotropic materials were treated. For orthotropic plates
with totally clamped edgeΓ an a-posteriori modeling error estimate withnu-
merically computed constantshas been presented in [19]. Due to theasymptotic
exactnessof the estimators in Theorem 4.1, these bounds are generally not sharper
than the ones in Theorem 4.1. This is evidenced by the isotropic case, where the
computed bounds in [19] were very close to those in Corollary 4.2 above.

4.1. Variational characterization of the modeling error

We investigate the regularity of the residual tractionsr j
n(x) on which our

modeling-error estimates will be based.

Lemma 4.1. Assume that the given surface tractionsg+(x), g−(x) are square
integrable over the faces R±. Then, for any admissible midsurfaceω and any
variational edge condition, the residual tractions rj

n in (4.3)are square integrable.

Proof. Due to our assumptions,gj (x) ∈ L2(ω). By (4.3) it remains to show that

gj
n(x) = σ[uj (n)]e3 |y=d∈ L2(ω).

This follows from the representation (3.1) with the smoothness of the director
functions ψik (z) = Lk(z) and the fact that the coefficient functionsXn

ik (x) ∈
H 1(ω). ut
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Remark 4.3.The natural space for the residual tractions is actually larger than
L2(ω), namely a suitable subspace ofH−1/2(ω). However, the corresponding
norm is more difficult to evaluate which is why our estimators will be based on
the L2(ω)-norm of the residual tractions. Lemma 4.1 ensures that the estimators
will be well-defined for all 0< d ≤ 1 and all model ordersn. It should be borne
in mind, however, that theconvergence

∥∥∥r j
n

∥∥∥
L2(ω)

→ 0 asd → 0 or n →∞ may

fail due to a lack of regularity of the three dimensional solution caused by the
edge and vertex singularities of the plate problem.

We derive next a variational characterization ofe(n) essential to the devel-
opment of the a-posteriori modeling error estimators.

Lemma 4.2. Let the model ordern be uniform and as in(3.7). Then the membrane-
and bending part of the modeling error satisfy the residual equation

ej (n) ∈ H j (Ω) B (ej (n), v) = Rj
n(v) ∀v ∈ H j (ω), j ∈ {I , II }(4.7)

with

Rj
n(v) =

∫
ω

r j
n(x)>Φj

n[v](x)dx +
∫
Ω

Rj
n[f ](x, y)>v(x, y)dydx(4.8)

and

ΦI
n[v] =



∫ d

−d

∂

∂y
v1(x, y)L2bq/2c+1(

y
d

)dy∫ d

−d

∂

∂y
v2(x, y)L2bq/2c+1(

y
d

)dy∫ d

−d

∂

∂y
v3(x, y)L2b(q+1)/2c(

y
d

)dy


,(4.9)

ΦII
n [v] =



∫ d

−d

∂

∂y
v1(x, y)L2b(q+1)/2c(

y
d

)dy∫ d

−d

∂

∂y
v2(x, y)L2b(q+1)/2c(

y
d

)dy∫ d

−d

∂

∂y
v3(x, y)L2bq/2c+1(

y
d

)dy


(4.10)

and the residual volume forces are given by

RI
n[f ] =



f I
1 (x, y)−

bq/2c∑
k=0

4k + 1
2

∫ 1

−1
f I
1 (x, zd)L2k(z)dzL2k

( y
d

)
f I
2 (x, y)−

bq/2c∑
k=0

4k + 1
2

∫ 1

−1
f I
2 (x, zd)L2k(z)dzL2k

( y
d

)
f I
3 (x, y)−

b(q−1)/2c∑
k=0

4k + 3
2

∫ 1

−1
f I
3 (x, zd)L2k+1(z)dzL2k+1

( y
d

)


,

(4.11)
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RII
n [f ] =



f II
1 (x, y)−

b(q−1)/2c∑
k=0

4k + 3
2

∫ 1

−1
f II
1 (x, zd)L2k+1(z)dzL2k+1

( y
d

)
f II
2 (x, y)−

b(q−1)/2c∑
k=0

4k + 3
2

∫ 1

−1
f II
2 (x, zd)L2k+1(z)dzL2k+1

( y
d

)
f II
3 (x, y)−

bq/2c∑
k=0

4k + 1
2

∫ 1

−1
f II
3 (x, zd)L2k(z)dzL2k

( y
d

)


.

(4.12)

Proof. Due to the homogeneity of the material there holds

(
divσ[uj (n)]

)
i
(x, y) =

q∑
k=0

Aj
ik (x)Lk

( y
d

)
, i = 1, 2, 3, j ∈ {I , II }(4.13)

with certain Aj
ik ∈ H−1(ω). To determine them, we employ Green’s identity

(valid sinceΩ is a Lipschitz domain) as follows:

B (ej (n), v) = Rj
n(v) := F j (v)−B (uj (n), v)

=
∫
Ω

v>
(
f j + divσ[uj (n)]

)
dydx+

∫
R+∪R−

γ0v
> (gj − σ[uj (n)]n

)
do

+
∫
Γ

(γ0v
>σ[uj − uj (n)]n)do j ∈ {I , II }.

The edge term vanishes forv ∈ H j (n) due toB0v = 0 andB1uj = B1uj (n) = 0
for the boundary operatorsBi in (2.21), (2.22).

Let now j = I . Then there holds

B (eI (n), v) = 0 ∀v ∈ H II (Ω), v ∈ H I (n).

For thesev we have in particular (with summation over repeated indices)

0 = RI
n(v) =

∫
Ω

vi

(
f I
i +

q∑
k=0

AI
ik (x)Lk

( y
d

))
dydx

+
∫
ω

{
r I

nα(x)(v+
α + v−α )(x) + r I

n3(x)(v+
3 − v−3 )(x)

}
dx.(4.14)

We select nowv1(x, y) = V1(x)L`
( y

d

)
andv2 = v3 ≡ 0 for odd values of̀ and

an arbitraryV1(x) ∈ ◦
H

1
(ω). This implies

0 =
∫
ω

V1(x)

{∫ d

−d
f I
1 (x, y)L`

( y
d

)
dy + AI

1`(x)
2d

2` + 1

}
dx.

Since` was assumed odd,L` is an odd function. According to (2.40), however,
f I
1 (x, y) is an even function ofy. Thus we find

AI
1`(x) ≡ 0 ` odd.
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By analogous reasoning we find also

AI
2`(x) ≡ 0 ` odd, AI

3`(x) ≡ 0 ` even

and

AII
α`(x) ≡ 0 ` even, α = 1, 2 AII

3`(x) ≡ 0 ` odd.

We consider the remaining cases. Let firstj = I , i = 1 and` even. We obtain
from (4.14) withv1(x, y) = V1(x)L`

( y
d

)
and arbitraryV1(x) ∈ H 1(ω, γ) that

0 =
∫
ω

V1(x)
∫ d

−d

{
f I
1 (x, y)L`

( y
d

)
+

q∑
k=0

AI
1k(x)Lk

( y
d

)
L`
( y

d

)}
dxdy

+2
∫
ω

V1(x)r I
n1(x)dx

from where we find that

AI
1`(x) = −2` + 1

2d

{
2r I

n1(x) +
∫ d

−d
f I
1 (x, y)L`

( y
d

)
dy

}
.

Analogously we obtain forj = I and i = 1, 2 or j = II and i = 3

Aj
i `(x) =

−
2` + 1

d

{
r j

ni (x) +
1
2

∫ d

−d
f j
i (x, y)L`

( y
d

)
dy

}
, ` even,

0 ` odd

and for j = II and i = 1, 2 or j = I and i = 3 that

Aj
i `(x) =


0 ` even,

−2` + 1
d

{
r j

ni (x) +
1
2

∫ d

−d
f j
i (x, y)L`

( y
d

)
dy

}
, ` odd.

For j = I we arrive at

divσ[uI (n)]

=



−
bq/2c∑

k=0

4k + 1
d

{
r I

n1(x) +
1
2

∫ d

−d
f I
1 (x, y)L2k

( y
d

)
dy

}
L2k

( y
d

)

−
bq/2c∑

k=0

4k + 1
d

{
r I

n2(x) +
1
2

∫ d

−d
f I
2 (x, y)L2k

( y
d

)
dy

}
L2k

( y
d

)

−
b(q−1)/2c∑

k=0

4k + 3
d

{
r I

n3(x) +
1
2

∫ d

−d
f I
3 (x, y)L2k+1

( y
d

)
dy

}
L2k+1

( y
d

)
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Inserting this intoRI
n(v) and utilizing

L′2m+1(z) =
m∑

k=0

(4k + 1)L2k(z), L′2m+2(z) =
m∑

k=0

(4k + 3)L2k+1(z)

results in (again with summation over repeated indices)

RI
n(v) =

∫
Ω

vα
f I

α(x, y)−
[q/2]∑

k=0

4k + 1
2d

∫ d

−d
f I
α(x, z)L2k

( z
d

)
dzL2k

( y
d

)
+v3

f I
3 (x, y)−

[(q−1)/2]∑
k=0

4k + 3
2d

∫ d

−d
f I
3 (x, z)L2k

( z
d

)
dzL2k+1

( y
d

) dydx

+
∫
ω

{
r I

nα(x)

[
(v+
α + v−α )(x)−

∫ d

−d
vα(x, y)

d
dy

(
L2[q/2]+1

( y
d

))
dy

]

+r II
n3(x)

[
(v+

3 − v−3 )(x)−
∫ d

−d
v3(x, y)

d
dy

(
L2[(q−1)/2]+2

( y
d

))
dy

]}
dx.

An integration by parts with respect toy in the volume integral yields the as-
sertion forj = I since 2b(q − 1)/2c + 2 = 2b(q + 1)/2c. For j = II the proof is
completely analogous.ut
Remark 4.4.We point out that the densitiesRj

n[f ] of the volume residual forces
are the remainders of the (fiberwise) Legendre expansions for the volume forces.
Thus Rj

n[f ] vanishes in particular for volume forcesf j (x, y) that are, for every
x ∈ ω, polynomials of degreem � n in y. In this case

0 =
∫
ω

r I
n(x)>ΦI

n[v](x)dx

=
∫
Ω

RI
n[f I ](x, y)>v(x, y)dydx ∀v ∈ H I (n),

0 =
∫
ω

r II
n (x)>ΦII

n [v](x)dx

=
∫
Ω

RII
n [f II ](x, y)>v(x, y)dydx ∀v ∈ H II (n).

(4.15)

4.2. Basic error estimate

Based on Lemma 4.2 it is now straightforward to derive the modelling error
estimate.

Lemma 4.3. Let M ∈ R
3×3 be an arbitrary, nonsingular matrix. Assume that

the volume forces fj (x, y) are polynomials of degreem � n in the variable y for
a.e. x∈ ω.

Then we have for every0< d ≤ 1 the modelling error estimate
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∥∥ej (n)
∥∥

E(Ω)
≤ Cj

∥∥Mr j
n

∥∥
L2(ω)

j ∈ {I , II }.(4.16)

Here the constants Cj are given by

(
Cj (d,M )

)2
= sup

0/=v∈H j
∗(Ω)

∫
ω

∣∣M−>Φj
n[v](x)

∣∣2 dx

B (v, v)

and the supremum is taken over the subsetH j
∗(Ω) ⊂ H j (Ω) of admissible

displacement fields for which∫ d

−d
vi (x, y)Lj

( y
d

)
dy = 0 a.e. x, j = 0, ..., ni , i = 1, 2, 3(4.17)

holds.

Proof. Since, by assumption, the volume forces are polynomial over each fiber
with degreem � n the volume residualsRj

n[f ] drop out of the error estimate
according to Lemma 4.2 and Remark 4.4. Thus we get from Lemma 4.2 for
j = I , II

‖ej (n)‖E(Ω) = sup
0/=v∈H j (Ω)

B (ej (n), v)
‖v‖E(Ω)

= sup
0/=v∈H j (Ω)

Rj
n(v)

‖v‖E(Ω)
(4.18)

with

Rj
n(v) =

∫
ω

r j
n(x)>Φj

n[v](x)dx =
∫
ω

(
Mr j

n(x)
)>
Φj

n[M−>v](x)dx

whereM ∈ R3×3 is arbitrary, nonsingular. By the Schwarz inequality,(
Rj

n(v)
)2 ≤ ∥∥Mr j

n

∥∥2

L2(ω)

∫
ω

∣∣Φj
n[M−>v](x)

∣∣2 dx

and we get from (4.18) the a-posteriori estimate

‖ej (n)‖E(Ω) ≤ Cj

∥∥Mr j
n

∥∥
L2(ω)

as asserted.ut
It remains therefore to estimate the constantsCj (d,M ) in (4.16). To this end,
we cover the midsurfaceω by families of small, axiparallel squares. They are
defined as follows.

Let ε > 0. By M(ε) we denote a covering ofR2 by closed, axiparallel
squaresq of edgelength 2ε with the origin being a vertex. Then we define

C (ε) = {q ∈ M(ε) : q ∩ ω /= ∅}

and
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ωε := interior

 ⋃
q∈C (ε)

q

 ⊇ ω.

Due to the wayωε was constructed there exists a constantC(γ), independent of
ε, such that

|ωε\ω| ≤ C(γ)ε.(4.19)

By Ωε we mean the set

Ωε := ωε × (−d, d) ⊇ Ω.

For q ∈ C (ε) we denote byQ the setq× (−d, d).
We will also need prolongations ˜v of v ∈ H j

∗(Ω) to H j
∗(Ωε).

Lemma 4.4. Assume that∂Ω = ∂ (ω × (−d, d)) is Lipschitz. Letv ∈ [H 1(Ω)
]3

be such that(4.17)holds. Let furtherω̃ ⊇ ω be open and bounded and denote by
Ω̃ := ω̃ × (−d, d).

Thenv has an extensioñv to
[
H 1(Ω̃)

]3
satisfying(4.17).

Proof. Since∂Ω is Lipschitz, we can use the extension Theorem of [25]. We

extendv to V in
[
H 1

comp(R
3)
]3

. Then we define for a.e. (x, y) ∈ Ω̃

ṽi (x, y) := Vi (x, y)−
ni∑

k=0

2k + 1
2

∫ 1

−1
Vi (x, zd)Lk(z)dzLk(

y
d

).

One verifies that ˜v has the desired properties.ut
Remark 4.5.The norm of the extension operatorE : v → ṽ in Lemma 4.4 in
general depends on the Lipschitz constant ofγ and ond. For clamped plates
with homogeneous Dirichlet conditions, the zero extension can be used.

We are now in position to derive an estimate for the constantsCj (M , d) in (4.16).
Let 0 < θ ≤ 1 be a parameter and denote, for a givenv ∈ H j (Ω), by

ṽ ∈ H j
∗(Ωd) its extension toΩd as constructed in Lemma 4.4. When dealing

with the bilinear formB with the integration taken over setsΩ′ /= Ω, we write
B (Ω′; u, v) etc. If no set is specified, the meaning is as before. Then∫

ω

∣∣M−>Φj
n[v]

∣∣2 dx ≤
∫
ωθd

∣∣M−>Φj
n[ṽ]

∣∣2 dx =
∑

q∈C (θd)

∫
q

∣∣M−>Φj
n[ṽ]

∣∣2 dx.

(4.20)

Now, for everyq ∈ C (θd)∫
q

∣∣M−>Φj
n[ṽ]

∣∣2 dx ≤ DB (Q; v, v)

whereQ := q× (d,−d) and
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D = sup
0/=v∈H j

∗(Q)

∫
q

∣∣M−>Φj
n[ṽ]

∣∣2 dx

B (Q; v, v)
.

Since the elasticity tensorA in the bilinear form does not depend onx the
supremumD is independent of the particular cubeq. Moreover, scaling the
variables of integration by 1/d we find thatD = d/Λj (M , θ) where the constants
Λj (M , θ) are defined by

Λj (M , θ) = inf
v

∫
K (θ)

ε[v] : σ[v]dx̄dȳ∫
k(θ)

(Φ
j
n[v])>M−>M−1Φ

j
n[v]dx̄

(4.21)

with k(θ) = (−θ, θ)2 andK (θ) = k(θ)× (−1, 1). The functionalsΦ
j
n[v] are as in

(4.9), (4.10) withd = 1 and the infimum in (4.21) is taken over allv ∈ H j
∗(K (θ)).

Now we have with (4.20) that∫
ω

∣∣M−>Φj
n[v]

∣∣2 dx ≤ d
Λj (M , θ)

∑
q∈C (θd)

B (Q; ṽ, ṽ) =
d

Λj (M , θ)
B (Ωθd; ṽ, ṽ)

(4.22)

which implies that(
Cj
)2 ≤ d

Λj (M , θ)
sup

0/=v∈H j
∗(Ω)

B (Ωθd; ṽ, ṽ)
B (v, v)

.(4.23)

The objective is now to letθ tend to zero for fixedv in the ratio of bilinear forms
in (4.23). To this end we investigate the infimaΛj (M , θ) in (4.21) in detail.

4.3. Analysis ofΛj (M , θ)

We investigate the constantsΛj (M , θ) for θ ∈ (0, 1]. Our first result shows that
for θ ∈ (0, 1] the infimum in (4.21) is positive and indeed attained. It also
characterizes the functionsv on which it is attained.

Since (4.21) is formally a Rayleigh-quotient, we consider the eigenvalue
problem associated with it. To this end, we define the bilinear forms

b(u, v) :=
∫

K (θ)
ε[v] : σ[u]dxdy(4.24)

and

cj n(u, v) :=
∫

k(θ)
(Φ

j
n[v])>M−>M−1(Φ

j
n[u])dx.(4.25)

Then we consider the eigenvalue problem: Find 0/= u ∈ W andΛ ∈ R+
0 such

that
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b(u, v) = Λcj n(u, v) ∀v ∈ W(4.26)

where the admissible displacementsW are given by

W = [H 1(K (θ))]3 ∩ {u | Φj
n[u] /= 0}.

Lemma 4.5. Let q ≥ 1 in (3.7) and 0 < θ ≤ 1. Then we have for every model
order n in (3.7)

1◦. The spectrum of(4.26) is discrete and consists of a sequence{Λj
k}∞k=1 of real

eigenvalues which accumulate only at infinity,
2◦. The eigenfunctions ujk(x, y) corresponding toΛj

k are of the form

uI
k (x, y) =

 U I
1k(x)Q2bq/2c+1(y)

U I
2k(x)Q2bq/2c+1(y)

U I
3k(x)Q2b(q+1)/2c(y)

 ,

(4.27)

uII
k (x, y) =

U II
1k(x)Q2b(q+1)/2c(y)

U II
2k(x)Q2b(q+1)/2c(y)

U II
3k(x)Q2bq/2c+1(y)


where Qk(y) := (Lk+1 − Lk−1)/(2k + 1) is an antiderivative of the Legendre-
polynomial of degree k and the Ujik (x) are certain functions in H1(k(θ)).

Proof. Since the bilinear formsb(u, v) andcj n(u, v) are both real and symmetric,
it follows that the eigenvaluesΛ in (4.26) are real, too.

To show 1◦. we prove that the bilinear formscj n(u, v) are compact on
[H 1(K (θ))]3 × [H 1(K (θ))]3. To this end we integrate the expression (4.9) by
parts with respect toy thus rewriting it in the form

ΦI
n[v] =


(v+

1 + v−1 )(x) −
∫ d

−d
v1(x, y)

d
dy

L2bq/2c+1(
y
d

)dy

(v+
2 + v−2 )(x) −

∫ d

−d
v2(x, y)

d
dy

L2bq/2c+1(
y
d

)dy

(v+
3 − v−3 )(x) −

∫ d

−d
v3(x, y)

d
dy

L2b(q+1)/2c(
y
d

)dy


(4.28)

wherev±i (x) = vi (x,±d), i = 1, 2, 3.
Now we apply the Schwarz inequality and obtain

|cI n(u, v)| ≤ |cI n(u, u)|1/2|cI n(v, v)|1/2.

Let v ∈ H I (Ω). Then we estimate as follows:

|cI n(v, v)| ≤ C(M )
∫

k(θ)
(Φ̄I

n[v])>(Φ̄I
n[v])dx

= C(M )
2∑

α=1

∫
k(θ)

{
(v+
α + v−α )(x)−

∫ 1

−1
vα(x, y)

d
dy

L2bq/2c+1(y)dy

}2

dx
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+
∫

k(θ)

{
(v+

3 − v−3 )(x)−
∫ 1

−1
v3(x, y)

d
dy

L2b(q+1)/2c(y)dy

}2

dx

≤ 2C(M )
∫

k(θ)

{
(v+

1 + v−1 )2 + (v+
2 + v−2 )2 + (v+

3 − v−3 )2
}

dx

+C1q

∫
K (θ)

v>vdxdy

= C(M )
3∑

j =1

8‖vj (·, 1)‖2
L2(k(θ)) + C1q‖vj ‖2

L2(K (θ))

≤ C(M , θ, d)
3∑

j =1

‖vj ‖2
H 1/2+ε(K (θ))

for 0< ε ≤ 1/2 due to the continuity of the trace operator. The assertion follows
now from the compactness of the embedding

H 1(K (θ)) ↪→ H s(K (θ)), 0≤ s < 1.

The proof forj = II is analogous.

To show 2◦ we consider the functionsΦ
j
n in the form (4.9), (4.10). A nec-

essary condition for the existence of eigenvaluesΛj
k is thatcj n(u, u) /= 0 for the

corresponding eigenfunction. Nowcj n(u, u) = 0 happens if and only if∂ui
∂y equals

the product of the Legendre polynomials in the definition of the functionalΦ
j
n[v]

and of a functionUik (x) ∈ H 1(k(θ)), whence we arrive at (4.27).
Evidently we haveΛj

k ≥ 0. To verify thatΛj
k > 0, we assume the contrary

which implies thatb(uj
k , u

j
k) = 0 for the eigenfunction corresponding toΛj

k . This
implies thatε[uj

k ] = 0 which is the case if and only ifuj
k is a rigid body motion.

Since, however,uj
k is of the form (4.27), this is not possible forq ≥ 1 and we

arrive at a contradiction toΛj
k = 0. ut

The constantsΛj (M , θ) could now, for fixed 0< θ ≤ 1, be approximated
numerically in the usual way, i.e. by discretizing the eigenvalue problem (4.26)
via restriction of both forms to a finite dimensional subspace and numerically
solving the resulting finite dimensional, generalized eigenvalue problem. This
suffices in certain cases to obtain a modeling error estimator. For details, see
[19].

SinceΛj (M , θ) is a continuous and positive function ofθ ∈ (0, 1] due to
Lemma 4.5, we investigate whether limθ→0+ Λj (M , θ) exists and, if so, whether
it is positive. This is the purpose of the following Lemma.

Lemma 4.6. Under the assumptions of Theorem4.1, and with

M =

m1

(
a55 a56

a56 a66

)
0

0 m2a33

−1/2

(4.29)
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for arbitrary m1,m2 > 0 the limits

Λj (M , 0) = lim
θ→0+

Λj (M , θ)

exist and are equal to

ΛI (M , 0) = min

{
1

2m1a(q)
,

1
m2b(q)

}
(4.30)

and

ΛII (M , 0) = min

{
1

2m1b(q)
,

1
m2a(q)

}
(4.31)

respectively, where a(q) and b(q) are as in(4.6).

Proof. Let j = I and set̀ = 2b q
2c+1, m = 2b q+1

2 c. Further, throughout this proof
we set

Ã =

(
a55 a56

a56 a66

)
.(4.32)

Finally, for 0 < θ ≤ 1 let uI (x̄, ȳ) be the eigenfunction corresponding to the
smallest eigenvalue of the spectral problem (4.26). Then, according to Lemma
4.5,

uI (x̄, ȳ) =

 U1(x̄)Q`(ȳ)
U2(x̄)Q`(ȳ)
U3(x̄)Qm(ȳ)


and

ε[uI ] =

(
∂1U1Q`, ∂2U2Q`,U3Q′

m,
∂2U1 + ∂1U2

2
Q`,

U1Q′
` + ∂1U3Qm

2
,

U2Q′
` + ∂2U3Qm

2

)>
.

Thus, using that

εij [uI ]σij [uI ] = ε11σ11 + ε22σ22 + ε33σ33 + 2(ε12σ12 + ε13σ13 + ε23σ23) ,

the form of uI (x̄, ȳ) and performing the scalingx = x̄/θ, dx = θ−2dx̄ we get
with U = (U1,U2,U3)> that

B (k(θ); uI , uI ) = B0(k; U ,U ) + θB1(k; U ,U ) + θ2B2(k; U ,U ).(4.33)

Here the bilinear formsBi (k; U ,U ) are independent ofθ and explicitly given
by
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B0(k; U ,U ) =
∫ 1

−1
(Q`)

2dz
∫

k

{
a11(∂1U1)2 + 2a12∂1U1∂2U2 + a22(∂2U2)2

+
3
2

(∂1U2 + ∂2U1) (a14∂1U1 + a24∂2U2) +
a44

2
(∂2U1 + ∂1U2)2

}
dx

+
∫ 1

−1
(Qm)2dz

∫
k

{a55

2
(∂1U3)2 + a56∂1U3∂2U3 +

a66

2
(∂2U3)2

}
dx,

B1(k; U ,U ) =∫ 1

−1
Q`Q

′
mdz

∫
k

U3

{
2a13∂1U1 + 2a23∂2U2 +

3
2

a34 (∂1U2 + ∂2U1)

}
dx

+
∫ 1

−1
Q′
`Qmdz

∫
k
{a55U1∂1U3 + a56 (U1∂2U3 + U2∂1U3) + a66U2∂2U3} dx,

B2(k; U ,U ) = a33b(q)
∫

k
(U3)2dx

+
a(q)

2

∫
k

{
a55(U1)2 + 2a56U1U2 + a66(U2)2

}
dx

with a(q) =
∫ 1
−1(Q′

`)
2dz, b(q) =

∫ 1
−1(Q′

m)2dz. Further, we find with

Φ
I
n[uI ] =

a(q)U1(x̄)
a(q)U2(x̄)
b(q)U3(x̄)


and Ũ = (U1,U2)> that

cj n(uI , uI ) = θ2C (U ,U )

with the formC (·, ·) given by

C (U ,U ) = m1(a(q))2
∫

k

{
Ũ>

(
Ã1/2

)>
Ã1/2Ũ

}
dx + m2a33b(q)

∫
k
(U3)2dx.

Hence

ΛI (M , θ) = inf
U

θ−2B0(k; U ,U ) + θ−1B1(k; U ,U ) + B2(k; U ,U )
C (U ,U )

.

For the uniform boundedness ofΛj (M , θ) as θ → 0 we must have necessarily
B0(k; U ,U ) → 0. Therefore in the limitθ = 0 the minimization is constrained
to

U ∈ N :=

{
U :

(
U1

U2

)
∈ span

{(
1
0

)
,

(
0
1

)
,

(−x2

x1

)}
,U3 = const.

}
For U ∈ N we have alsoB1(k; U ,U ) = 0 as is easily verified. Thus, since
dimN = 4, we get in the limitθ = 0

ΛI (M , 0) = inf
U∈N

B2(k; U ,U )
C (U ,U )
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which is a symmetric, generalized eigenvalue problem inR
4. Since

N = N1 × {1}, N1 = span

{(
1
0

)
,

(
0
1

)
,

(−x2

x1

)}
,

we get, settingṼ = (m1)1/2 Ã1/2Ũ andV3 = (m2a33)1/2 U3, that

ΛI (M , 0) = min

{
1

2m1a(q)
,

1
m2b(q)

}
.

as claimed.
The proof for j = II is analogous and yields the same expression for

ΛII (M , 0), with a(q) andb(q) exchanged. ut

4.4. Proof of Theorem 4.1

We are now in position to give the proof of Theorem 4.1. We recall that we have
(4.16) with the constantCj (M , θ) bounded by (4.23).

Let the matrixM be as in (4.29). We will show that for fixedv ∈ H j (Ω)
andd > 0 we have

lim
θ→0+

B (Ωθd; ṽ, ṽ)

Λj (M , θ)
=

B (Ω; v, v)

Λj (M , 0)
.(4.34)

To see it, we use that ˜v |Ω= v and write

B (Ωθd; ṽ, ṽ)

Λj (M , θ)
− B (Ω; v, v)

Λj (M , 0)

=
B (Ωθd\Ω; ṽ, ṽ)

Λj (M , θ)
+ B (Ω; v, v)

Λj (M , 0)− Λj (M , θ)

Λj (M , 0)Λj (M , θ)
.

By (4.19) we have|Ωθd\Ω| ≤ 2C(γ)θd2. ThereforeB (Ωθd\Ω; ṽ, ṽ) → 0 as
θ → 0 for fixed v and d. The statement (4.34) follows then with Lemma 4.6.
We can now pass to the limit in (4.23) and get in (4.16) that∥∥ej (n)

∥∥2

E(Ω)
≤ d
Λj (M , 0)

∥∥Mr j
n

∥∥2

L2(ω)
j ∈ {I , II }

where the constantsΛj (M , 0) are defined in (4.30), (4.31). Thus we obtain for
j = I the estimate∥∥eI (n)

∥∥2

E(Ω)

≤ d

1
m1

∫
ω

(
r I

n1
r I

n2

)>(
a55 a56

a56 a66

)−1(
r I

n1
r I

n2

)
dx +

1
m2a33

∫
ω

(
r I

n3

)2
dx

min

{
1

2m1a(q)
,

1
m2b(q)

} .
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This estimate holds forany m1,m2 > 0. We can therefore minimize the bound
with respect tomi . With the estimate

min
m∈R2

+

{
a/m1 + b/m2

min{α/m1, β/m2}
}
≤ a
α

+
b
β
.

(which follows with the choicem2 = m1β/α) we obtain (4.4). This completes
the proof of Theorem 4.1 forj = I . The proof forj = II is analogous, witha(q)
andb(q) interchanged.

5. Asymptotic exactness of the estimator

In this section we will prove that the modelling error estimator obtained in
Theorem 4.1 is asymptotically, i.e. ast → 0, and spectrally, i.e. asq → ∞,
exact provided some extra conditions on the data are met. A similar result for
the heat conduction problem in a plate was first obtained in [6].

To state the result, we denote byESTj a computable quantity constituting the
estimator for the modeling errorej (n) in energy norm, i.e. the right hand sides
of (4.4), (4.5) are equal to (ESTj )2, j = I , II . Then we define theeffectivity index
of the estimatorESTj in the usual way

Θj
eff =

ESTj

‖ej (n)‖E(Ω)

j ∈ {I , II }.

Theorem 5.1. Let the assumptions of Theorem4.1 hold and assume in addition
that

0 /= r j
n(x) ∈ [H 1(ω)

]3
.

Then there holds with

D =

 1
2

(
a55 a56

a56 a66

)
0

0 a33

−1

and the bilinear formsBi defined in(4.33) that

1 ≤
(
Θj

eff

)2

≤ 1 + d
B1(ω; Dr j

n,Dr j
n) + dB0(ω; Dr j

n,Dr j
n)

B2(ω; Dr j
n,Dr j

n)
j ∈ {I , II }.(5.1)

Proof. The lower bound for the effectivity index is evident from Theorem 4.1.
It remains therefore to prove the upper bound.

To this end we assume thatj = I and omit in this proof the indexj . We set,
as in the proof of Theorem 4.1,` = 2b q

2c + 1, m = 2b q+1
2 c and use agaiñA as in

(4.32). Since the volume forces are assumed to be polynomials of degreem � n
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in the transverse variabley, we have the variational characterization (4.7) of the
modeling error with

Rn(v) =
∫
ω

rn(x)>Φn[v](x)dx.

Now we selectv = v∗ such thatRn(v∗) = (EST)2 with EST denoting the
computable modelling error estimator in Theorem 4.1. One verifies that this is
the case for the selection

v∗(x, y) = dD

 Q`

( y
d

)
rn1(x)

Q`

( y
d

)
rn2(x)

Qm
( y

d

)
rn3(x)

 .

This implies that

rn(x)>Φn[v∗](x) = d
{

2a(q) (r̃n(x))> Ã−1r̃n(x) + b(q) (rn3(x))2 /a33

}
with a(q) andb(q) as in (4.6) and ˜rn = (rn1, rn2)>. Comparison with (4.4) shows
that R(v∗) = (EST)2. Now we estimate for anyε > 0

Rn(v∗) = (EST)2 = B (e(n), v∗) ≤ ε

2
‖e(n)‖2

E(Ω) +
1
2ε
‖v∗‖2

E(Ω) .

Selectingε = ε0 such that

1
2ε0

‖v∗‖2
E(Ω) ≤

1
2

(EST)2,

we arrive at

(EST)2 ≤ ε0 ‖e(n)‖2
E(Ω) .

It remains therefore to estimateε0. Due to the wayv∗ was chosen, we get

ε0 =
‖v∗‖2

E(Ω)

Rn(v∗)
.

Now

‖v∗‖2
E(Ω) = B (v∗, v∗) = d3B0(ω; Drn,Drn)

+d2B1(ω; Drn,Drn) + dB2(ω; Drn,Drn)

and we find with the definition ofB2(ω; U ,U ), i.e. with

B2(ω; U ,U ) = a33b(q)
∫
ω

(U3)2 dx +
a(q)

2

∫
ω

(
U1

U2

)>
Ã

(
U1

U2

)
dx,

that

dB2(ω; Drn,Drn) = Rn(v∗) = (EST)2.

From this follows the assertion forj = I . The proof for j = II is completely
analogous. ut
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The main significance of this result lies in that it gives a computable upper bound
on the effectivity index of the modeling error estimator. The explicitly given
bilinear formsBi (ω; U ,U ) allow moreover to formulate sufficient conditions
for the spectral exactness of the estimator.

To this end, we define the class

T(Ā, ε) =
{

(g+, g−) : either r j
n = 0 or∣∣r j

n

∣∣
H 1(ω)

/
∥∥r j

n

∥∥
L2(ω)

≤ Ā(q/t)1−ε
}

(5.2)

for someA> 0 andε ≥ 0 independent ofd. Then we have

Corollary 5.1. Let (g+, g−) ∈ T(Ā, ε) for someĀ > 0 and ε > 0. Then the
modelling error estimator in Theorem4.1 is asymptotically and spectrally exact.

If (g+, g−) ∈ T(Ā, 0) for someĀ > 0 the estimator in Theorem4.1 is asymp-
totically and spectrally uniform, i.e. its effectivity index is uniformly bounded with
respect to t and q.

Proof. Throughout the proof,C denotes a generic, positive constant depending
only on the elastic moduliaik . We observe that∫ 1

−1
(Q`)

2 dz =
4

(2` + 1)((2̀ + 1)2 − 4)
,

∫ 1

−1
Q`Q

′
mdz =


1

(2` + 1)(2̀ ± 1)
if m = `± 1,

0 else.

Thus we find with ∣∣r j
n

∣∣2
H 1(ω)∥∥r j

n

∥∥2

L2(ω)

≤ Ā2(q/t)2−2ε

that

B0(ω; Dr j
n,Dr j

n) ≤ Cq−3
∣∣r j

n

∣∣2
H 1(ω)

≤ CĀ2q−3+2−2εt−2+2ε
∥∥r j

n

∥∥2

L2(ω)

and that

B1(ω; Dr j
n,Dr j

n) ≤ Cq−2

{∥∥∥r j
n3

∥∥∥
L2(ω)

∣∣r̃ j
n

∣∣
H 1(ω)

+
∥∥r̃ j

n

∥∥
L2(ω)

∣∣∣r j
n3

∣∣∣
H 1(ω)

}

≤ CĀq−2+1−εt−1+ε
∥∥r j

n

∥∥2

L2(ω)
.

Here we have set ˜r j
n =
(

r j
n1, r

j
n2

)>
. Furthermore, there also holds
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B2(ω; Dr j
n,Dr j

n) ≥ Cq−1
∥∥r j

n

∥∥2

L2(ω)
.

Consequently, we find that

d
B1(ω; Dr j

n,Dr j
n)

B2(ω; Dr j
n,Dr j

n)
+ d2 B0(ω; Dr j

n,Dr j
n)

B2(ω; Dr j
n,Dr j

n)
≤ CĀ(1 + Ā)(t/q)ε

from where the assertion follows.ut
Let us comment on the assumption (g+, g−) ∈ T(Ā, ε). It implies in particular

that the residual tractionsr j
n ∈

[
H 1(ω)

]3
. This assumption holds whenever the

coefficient functionsXn
i (x) are in H 2(ω). This is so, for example, if the given

data (g+, g−) belong toH 1(ω) componentwise and the edge∂ω is smooth. Nev-
ertheless, in this case theXn

i (x) contain boundary layers, i.e. solution components
which behave like exp(−adist(x, ∂ω)/t). Here the constanta > 0 is independent
of t but depends on the model order and the elastic moduli [24]. Owing to the
form of the boundary layers, we get

Corollary 5.2. Assume that∂ω is smooth and that the surface tractionsg±(x) ∈[
H 1(ω)

]3
. Then for fixed model order q the data belong to T(Ā, 0) for someĀ> 0

independent of t .

6. A-posteriori control of discretization and modelling error

Our purpose in the present section is to investigate the computational perfor-
mance of the modeling error estimators derived above. Since the estimators were
derived under the assumption that the plate models in the hierarchy are solved
exactly, the question arises how well they will perform in the case that only
an approximate solution of the plate models, for example by finite elements, is
available. Therefore we will also address the approximate finite element solution
of the models in the hierarchy byhp-FEM.

Owing to the elliptic systems constituting the plate models being singularly
perturbed, their solutions exhibit boundary layers, i.e. solution components that
are exponentially decaying off∂ω which, together with the phenomenon of shear
locking, renders the accurate numerical solution of the plate models nontrivial.
Nevertheless, the boundary layers can be resolved [22] and the shear locking
overcome by the use of high orderp-FEM discretizations [23, 26]. In [22] it was
shown that in the context of thehp-FEM a single element of widthO(tp) near
the edge of the plate suffices to resolve the boundary layer with an exponential
rate of convergenceuniformly in t.

In the present section we will we consider the following example: consider the
pure bending of a clamped square plate with midsurfaceω = (−a/2, a/2)2\{x :
|x| ≤ 0.1a} and thicknesst which is subject to uniform unit normal loads
on the faces. Then models withn as in Table 1 were discretized using ap-
hierarchic finite element method (1≤ p ≤ 8) based on the mesh depicted in
Fig. 1 (for q = 1 the modification mentioned in Remark 3.2 was made, i.e. model
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Fig. 1. Finite element mesh for the plate with central hole (not drawn to scale).

1 is the Reissner-Mindlin model). These capabilities are available in the finite
element code STRESSCHECK1 with which the computations in this section
were done. This software allows for separate computation of the bending and
membrane models and also contains a unified implementation for homogeneous
and laminated plates (see [1, 27]). Let us also mention that in STRESSCHECK all
element mappings are done exactly using transfinite blending maps, an essential
feature ofp-hierarchic finite element methods in curvilinear geometries.

Specifically, we considered a plate wherea = 2, d = 0.05 and hencea/t = 20.
The material was orthotropic with the constitutive parameters in (2.11) given by

E1 = 25 · 106,E2 = E3 = 106,G1 = G3 = 0.5 · 106,G2 = 0.2 · 106

ν12 = ν23 = 0.25, ν31 = 0.01.
(6.1)

Due to material symmetry, it suffices to discretize only the quarter of the plate
located in the first quadrant; all data below refer to this discretization.

Since boundary layers will occur near the (free) perimeter of the hole and
the (clamped) outer edge of the plate, thin elements parallel to these boundaries
were inserted (elements 1 and 3 near the clamped edge and 4 and 5 near the
perimeter of the hole). We denote the normal distance of the mesh lines defining
elements 1 and 3, respectively 4 and 5 from the nearest edge byr 1. The discrete

1 STRESSCHECK is a registered trademark of ESRD Inc., St. Louis, Mo, USA
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potential energies corresponding to (uniform) polynomial degreep on the mesh
in Fig. 1 and the model of orderq (in the sense of (3.7)) will be denoted by
Gq,p and the finite element approximation ofun by un

p in what follows. Table
2 shows a solution run wherep increases hierarchically from 1 to 8 for the
(3, 3, 2) model (i.e.q = 3 in (3.7)). Due to the symmetry of the problem, only
one quarter of the plate was discretized in these calculations. Correspondingly,
the potential energies refer only to this subdomain. The discretization error was
estimated from the discrete total potential energiesG3,p by extrapolation, i.e.
by fitting them to the asymptotic convergence estimateG3,p − G3,∞ = Cp−α.
The unknownsG3,∞, C and the convergence rateα are determined fromGq,p

corresponding to three successivep-levels. Throughout, the mesh in Fig. 1 was

Table 2. p-hierarchic solution of the (3, 3, 2) model.r 1 = 0.04a

p DOF G3,p α
∥∥un

p − un
∥∥

E(Ω)
/ ‖un‖E(Ω) [% ]

1 42 -4.3338026E-6 0.00 53.60
2 168 -5.7561015E-6 0.61 23.12
3 378 -6.0150995E-6 0.98 10.42
4 672 -6.0691653E-6 1.49 4.43
5 1050 -6.0774790E-6 1.34 2.44
6 1512 -6.0793402E-6 0.99 1.70
7 2058 -6.0802827E-6 1.24 1.16
8 2688 -6.0806806E-6 1.24 0.84
∞ -6.0811048023E-6

used withp = 8 at each stage and the full tensor product polynomial set was
used (this proved to be advantageous for anisotropic materials).

Let us now turn to the a-posteriori estimation of the modelling error based on
the residual tractions on the facesR±. The element contributions to the estimator
can be used asmodelling error indicatorsfor a local adaptive selection of the
model orders [4] and are listed in Table 3. Due to symmetry, only elements
located in the first quadrant are shown.

Table 3. Elemental contributions to the error estimate (p = 8, a/t = 20)

q ω1 ω2 ω3 ω4 ω5 ω6 ω7

1 1.9526E-7 4.2715E-10 8.9515E-8 4.8366E-10 3.0273E-09 5.3390E-7 1.1288E-7
2 1.9306E-7 3.1999E-10 4.6037E-8 2.5070E-10 2.1393E-09 5.0902E-7 8.2697E-8
3 4.4595E-8 1.0706E-10 1.0795E-8 4.8627E-11 1.7647E-10 2.9366E-9 2.0092E-10
4 4.2741E-8 1.0068E-10 8.4492E-9 4.3075E-11 1.7199E-10 2.6772E-9 1.2776E-11
5 1.4035E-8 4.2413E-11 4.3844E-9 9.0109E-13 1.8191E-11 3.6851E-11 6.0261E-13
6 1.3733E-8 4.0699E-11 3.9150E-9 6.1306E-13 1.7534E-11 2.5526E-11 6.4987E-13

The convergence as the model orderq is increased is clearly visible. We also
observe the different rates of convergence in the interior, i.e. forω6 andω7 and
near the clamped edge of the plate. The failure of the error corresponding to
the edge elements to decrease sufficiently fast is due to theedge singularitiesof
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the three dimensional problem near the setsγ × {±d} which are approximated
poorly by (3.1). In this respect, it is important to note that the hierarchic plate
models inω6 andω7 can be coupled conformingly to a fully three dimensional
hp finite element discretization in the boundary layer subregionsωj × (−d, d),
j = 1, 2, 3, 4, 5 [18].

Finally, we compare the residual modelling error estimates according to The-
orem 4.1 with the ones obtained by extrapolation in Table 4 where we used
that

0< 2(G (un)−G (u)) = E (u)− E (un)

= ‖u‖2 − ‖un‖2 = ‖un − u‖2 = ‖en‖2.

Table 4. Residual and extrapolation based estimation of the modelling error

q 2 3 4
EST2/ ‖u‖2

E(Ω) 6.8428E-2 4.8321E-3 4.4481E-3

‖un
8 − u‖2

E(Ω)/ ‖u‖2
E(Ω) 5.5944E-2 1.6210E-3 1.3192E-3

Θeff = EST/‖u n
8 − u‖E(Ω) 1.1059 1.7265 1.8363

We see that the residual based estimators are guaranteed upper estimators
which follow the modelling error accurately as the model order increases.
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plaques eńelasticit́e, RAIRO Anal. Nuḿerique15, 331-369



A-posteriori modeling error estimationfor hierarchic plate models 259

9. Germain, S., (1821) Entry submitted to the first class of the French Academy in 1816, published
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