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Summary. Hierarchic plate models are dimensional reductions obtained by
semidiscretization of the three-dimensional plate problem in the transverse di-
rection and energy projection. We derive computable a-posteriori estimators for
the modeling error thus incurred under the assumption that the resulting two-
dimensional plate models are solved exactly. The estimators are valid for homo-
geneous, monoclinic materials, for plates with unsmooth midsurfaces and for a
wide class of variational edge conditions. Computable a-posteriori bounds on the
effectivity indices are also derived and sufficient conditions for the asymptotic
(i.e. as the plate thickness tends to zero) and the spectral (i.e. as the order of the
plate model tends to infinity) exactness of the estimators are given. Numerical
examples are presented.
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1. Introduction

A large part of the boundary value problems in three-dimensional elastostatics
that are solved in current engineering applications are posed on thin domains or on
domains with thin components, such as beams, plates and shells. Classically, such
boundary value problems have beandelledby dimensionally reduced problems

on two- or one-dimensional domains; we mention only the Bernoulli beam, the
Kirchhoff-Love [9, 10] or the Reissner-Mindlin [12, 15, 16] plate models. These
models have been more amenable to analytical solution, for example by Fourier
series, than the fully three dimensional equations. With the advent of the digital
computer and in particular the finite element method (FEM), the widespread use
of these classical, dimensionally reduced models has continued, now however due

* This research was supported in part by the AFOSR under grant No. F49620-J-0100
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to the computational savings achieveable with a lower dimensional model. The
fact that standarti-Version FE-discretizations of three-dimensional problems on
thin domains require excessive mesh refinement and exhibit numerical stiffness
also contributed to this trend.

In recent years increasingly accurate FE solutions of the classical lower di-
mensional models became available and there was a growing awareness that
at finite, positive thickness these models merely constifygproximationsto
the underlying three-dimensional problems (see, for example, [8], [3]). Even if
solved exactly, lower dimensional models consequently incur a corresponding
approximation error, the so-calledodelling errotr Numerous papers have been
devoted to thgustification of lower-dimensional models, i.e. to the proof that
the rescaled modeling error vanishes as the thickness of the structure tends to
zero, by asymptotic methods (see [7], [8], [11] and the references therein). In
practice, however, the thickness of the structure is positive and given, i.e. not
at our disposal. Hence there arises the question for an accurate modeling error
estimation for a positive, given thickness and given load data. Such estimates
which are necessarilp-posteriori were for the KL- and the RM-plate model
given in [20]. With the availability of such modeling-error estimates the question
ariseswhat one should do if the classical models are not found to be sufficiently
accurate

To this end it was proposed in [1, 3, 5, 17, 28, 27] to embed the classical
models into ahierarchy of lower dimensional models of increasing accuracy
and complexity. These hierarchies are obtained by constraining the admissible
displacements in the three-dimensional variational principle to director fields ex-
hibiting a certain prespecified behaviour in the cross section of the structure. For
example, in the case of homogeneous plates and shells, the hierarchy is obtained
by constraining the displacements admissible in the three-dimensional variational
principle to be polynomials in the transverse direction whereas for laminated ma-
terials special, nonpolynomial transverse behaviour must be imposed in order to
ensure certain optimality properties of the lower dimensional models [5], [11].
Thus hierarchic modeling is a special case of the method of constraints [2] and
leads to a singularly perturbed, elliptic system in the two-dimensional midsurface
of the three-dimensional structure. The methodology for constructing a flexible
hierarchy of lower dimensional models is general, i.e. it applies to any variational
problem on a three-dimensional, thin domain. As with any of the classical lower
dimensional models, quantitative, computable modelling error estimatoust
be available in order to assess the accuracy of the members of the hierarchy for
a given boundary value problem.

The present paper is devoted to the derivation and analysis of a-posteriori
modeling error estimators for hierarchic models of homogeneous, elastic plates.
We consider monoclinic materials which are the most general ones for which
bending and membrane effects can be seperated. We derive computable modeling
error estimators which are based on the residual tractions on the faces of the plate.
We demonstrate numerically that the estimators perform well in applications.
The results in the present paper generalize earlier ones [19, 20] by the author.
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In [19], an estimator was derived which is valid only for totally clamped edge
conditions. The constants defining the error estimators were characterized as
smallest eigenvalues of a Steklov eigenvalue problem which had to be solved
numerically. In [20], the basic idea in the derivation of modeling error estimators
for general edge conditions was presented and the estimators were derived for
isotropic materials. In the present paper, we generalize these results to general
monoclinic materials. We prove that they are guaranteed upper estimators and,
under more restrictive assumptions, that they are asymptotically and spectrally
exact. This was previously done only for heat conduction problems in a plate
in [6]. Hierarchic models allow also for the simultaneous use of different model
orders in various subregions of the plate [6, 18, 20]. In conjunction with modeling
error estimators of good quality, this allows fadaptive hierarchic modelingf

thin structures [4]. Here the contributions to the modeling error from different
subdomains of the plate (e.g. the interior and the boundary region) are used as
modelling error indicatorson which the decision where to raise the model order
within the hierarchy is based. Although we treat in the present paper explicitly
only the case of plates, the techniques introduced here for the derivation of the
modelling error estimators, i.e. a covering of the midsurface by a family of
axiparallel squares and the asymptotic analysis of a certain variational problem
to determine the constants in the estimators, are clearly not limited to plates.
The feasibility of hierarchic models for homogeneous shells was demonstrated
in [28] where also the notion ‘hierarchic model’ was first introduced.

The outline of the paper is as follows: in Sect. 2, we introduce notation and
present the three-dimensional plate problem with general edge conditions. We
describe in particular the decoupling into a bending and a membrane problem.
In Sect. 3, we describe the hierarchy of plate models. In Sect. 4, we derive the
modeling error estimators and in Sect.5 we prove its asymptotic exactness and
derive a computable bound for its effectivity index. Section 6 contains some
numerical results obtained with a recent commercial code where hierarchical plate
models and our a-posteriori error estimation are implemented. There each plate
model in the hierarchy is also solved approximately tprgersion finite element
method which is known to be considerably less susceptible to shear locking
than, e.g., lower order finite element methods (see, e.g., [26]). We address briefly
some mesh design principles for thesersion applied to plate models which are
suggested by the analysis [22, 23]. We demonstrate the practical reliability of
our modelling error estimators even for thick, highly anisotropic plates and high
model orders.

2. The three-dimensional plate problem
2.1. Governing equations

The plate problem is a boundary value problem of three-dimensional, linearized
elasticity in the domain
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(2.1) N=wx(-d,d)
of thicknesst = 2d with the lateral boundary
(2.2) I' =~ x (-d,d).

Here w C R?, the mid-surfaceof the plate, denotes a bounded domain with
Lipschitz boundaryy. This implies that(2 is locally Lipschitz, too. Therefore
the exterior unit normah and the unit tangent vectdron v (and hence also on
I') to w (resp. tof?2) are defined almost everywhere (cf. [13]). Pointsfinare
denoted by X, y) wherex = (x, x2) € w and|y| < d. Analogously, points in"
are denoted bys(y) with s denoting the arclength of. We further define the
faces of the plate

(2.3) Ry ={(X,y) | X € w,y =+d}.

Then the plate problem consists in finding a displacement @igldy) : 2 — R3
which satisfies the following governing equations:

1. Equilibrium conditions:
(2.4) Lu=—divo[u]=f in £,

with the symmetric stress tensor

011 012 013
0=\ 012022023 | -
013 023 033

2. Constitutive equations (Hooke’s Law):
(2.5) o = Ae[u]

with a fourth order tensof and the linearized strain tensor

eful = {ej[ulhacij<s qlul= ; (g:i * gi‘ ) :

3. Essential and natural edge boundary conditions:
(2.6) Bou=0 and Bu=0 onI’

(one of the two boundary operators may vanish).
4. Prescribed normal tractions on the faces:

(2.7) oluln=¢g" onR:, ofuln=g~ onR_

wheren denotes the exterior unit normal vectorde..
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It will be useful to write the six essential componentscofand e as column
vectors ink® as

(2.8)  ofu] = (011,022, 033, 012,013, 023) |, €[U] = (€1, €22, €33, €12, €13, €23) -
We admit materials for which Hooke’s law (2.5) can be written in the form

a1 d12 A13 d14
dj2 A2 A3 A2g
(2.9) ofu] = 13 A3 A33 Az4
448844 0 0
0 O O O assasg
0 O O O asgaes

o OO
[oNeNe)

e[u]

with a symmetric, positive definite matriA € ngxrﬁ. In particular, the thir-
teen parametera; in (2.9) characterize homogeneous materials with monoclinic
symmetry.

Isotropic materialsare contained in (2.9) as a special case:

1-v)E
@Q+v)1-2v)’
vE

T (L))

1= ap=ag=A+2u =
(210) ap=az=az=a=ag =azp=A
E
Qs =85=q6=21= ) ., H4=8s=8=a5=0.
1%
Here A andy are the so-called LagconstantsE > 0 is Young’'s modulus and
0 < v < 1/2 the Poisson-coefficient.

Another important special case of (2.9) is arhotropic materialwhere we
have with engineering notation

1/E1 _V12/E2 —1/13/E3 0 0 0
_V21/E1 1/E2 —1/23/E3 0 0 0
Afl — —Vgl/El —V32/E2 1/E3 0 0 0
0 0 0 1@2G) O 0
0 0 0 0 1(2Gy) 0O
0 0 0 0 0 1(2Gs)
(2.11)

and the symmetry ofA implies
vi B =y, 1<i,j <3,

i.e. an orthotropic material has rhombic symmetry and is determined by nine
constants.

To cast the boundary value problem (2.4)—(2.7) into variational form, we use
Green'’s formula
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/vTLudxdy:.Z’(u,v)—/ v'ofulndo Yu e H (2),v e [Hl(Q)]3
2 082
(2.12)

which holds in particular for the mid-surfaces under consideration here. In
(2.12)do denotes the surface measure@f and

HL(2) = [HY{2)]° n {u Lue [LZ(Q)f}.
The bilinear form.2(-, -) is given by
AU, v) = (e[v], o[u])
with the inner producte, o) defined by

(2.13) (e,0) = /Q erodxdy e e [L2(2)]°

where

e[u] : ofu] = Z € [u] oy [u]

1<ij<3
= €11011 + €22022 + €33033 + 2(€12012 + €13013 + €23023) -
For prescribed surface tractiops, g~ € [Lz(w)]3 on the faceR. and volume
forcesf ¢ [LZ(Q)]3 we define the load functiona¥ (u) by
FZ (u) = / u(x,y) ' f (x,y)dydx+/ " () Tu(x, d)ds"
Q R

+/ g~ (x) Tu(x, —d)ds™

(2.14) Jr_

= / u(x,y) T (. y)dydx
2

+ [ o007 utx,d) ~ g0 Tutx. ~a}
sinceds’ = —ds™ = dxdx. Then Green'’s formula (2.12) becomes
A(u,v) = / v' o[ulndsdy+.7 (v) Vv e [H 1((2)]3
r

with ds denoting the surface measure on the boundary cgveThe boundary
integral

(2.15) //d v " o[ulndyds
vy

—d

should vanish according to (2.6).
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2.2. Edge conditions

In practical applications a variety afdge conditionsare used since it is well
known that the overall solution of the plate problem and in particular its edge
behaviour depend strongly on the kind of edge conditions prescribed. We show
therefore next how very general traction and displacement resultants can be pre-
scribed as natural and essential edge conditions, respectively, implying (2.15).
These conditions include in particular the boundary conditions commonly used
in engineering practice. More importantly, any of the edge conditions can be
exactly represented by a hierarchic model of sufficiently high order, as we shall
see below.

To describe the edge conditions we introduce normal- and tangential compo-
nents of the displacements and tractions a.el'on

(216) uUy=n'u, w=t'u, on=n"ofuln, o=t ofu]n.

The basic idea is now to develapando[u]n fiberwise onl” in Legendre series,

ie.
Ut 0 Uw(s)
(2.17) (u) s9=> () (unk(s)),
U3 k=0 Us(s)
ot 0 Tw(s)
(2.18) (Un) GY)=) L (();) (Tnk(s))
03 k=0 Tak(S)

with the Legendre coefficients of the displacements defined for almost every
s € v by

2k+1 [t
Uns) = 2 / (s, zd)L(2)dz,
1

k+1 [t
Un() = %" [ w(s.zaL@)ez
1

1
u%@yzﬂgl/;%@lwu@mz
The traction Legendre coefficients(s), Tnk(S) and T (s) in (2.18) are defined
analogously.

The basic idea in specifying compatible pairs of essential boundary conditions
By and natural one®,; consists in enforcing the vanishing of complementary
sets of Legendre coefficients of the boundary displacements and tractions. More
precisely, with (2.17), (2.18) we obtain the following possibilities. 1£tC Ny,
j € {n,t,3} be index sets. Then we define thssential boundary conditions

d
(2.19) /d Uj (s,y)Lk(Z)dy: 0 vke A, aescr, je{nt,3}.
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Obviously, due to the fiberwise orthogonality of the Legendre polynomials, the
complementannatural boundary condition§in the sense of (2.15)) read

v _ Yoo
(220) oj - Y Tw(s)Lk (d) =y Tk(EL(})=0. j € {nt,3}.
keq kENo\ A

The most important special cases are obtained with the selecijon$ or .4 =
Np, i.e. either the displacement or the traction component vanishes identically on
I'. Some examples follow:

1. Dirichlet conditions (“Hard clamped plate"yf = No,j € {n,t, 3},
(2.21) Bou =ou =0 onrl

2. Neumann conditions (“free plate”q = 0,j € {n,t, 3},
(2.22) Biu=mu=0cfuln=0 onTr,

Since we are considering a system of partial differential equations, we can pose
Dirichlet- or Neumann conditions also for some components of this system.

3. (“soft simply supported plate™%, =.% =0, .73 = Ny,

n'ofuln

tTa[u]n) =0 onI.

(223) Bou = YoUs = 0, Biu = <

Heret = t(s) denotes the unit tangent vector4oWe consider further
4. (“hard simply supported plate”)% =.7% = Ny and.%, = (),

(2.24) Bou = <t$3u) =0, Bu=n"ofuln=0 onI.

5. % =% =Ng and.Z% = (.

I"IT’)/QU

— —al —
Tl > =0, Biu=e;ofuln=0 onI.

(2.25)  Bou = (

Examples of nonclassical boundary conditions are obtained by prescribing only
certain displacement or stregssultantsas it is frequently done in engineering.

6. (“supersoft simply supported plate’}, =.% =0, .% = {0}:

d
mu:/ Us(s, y)dy = 0,
d

(2.26) at(s,Y)
Byu = on(s,Y) =0
7a(s,y) — [, oa(s,y)dy
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7. (“Prescribed resultant forcesF) (s). .74 =N, j € {t,n,3}.

d
Bou = uj(s,y) — / Uj(s,y)dy =0,
(2.27) ¢

d
Biu = /d oj(s,y)dy = F;(s).

8. (“Prescribed edge-moments¥); (s). .Z =No\{1},] € {t,n,3}.

[ S
Bou= [ u(s,y)dy+ » Ui(s)k() =0,
(2.28) —d 2 d

d
Buu = / oi(s.Y)ydy =M (S).

Remark 2.1.We assumed in (2.6) thaine combination of boundary conditions
Bo andB; is posed on all ofl". This is of course not necessary and (2.6) may
also be substituted by a familfBg, By } of piecewise defined conditions. To
keep the notation simple, we will however continue to work with (2.6).

2.3. Existence of weak solutions

A weak (or variational) solution of the plate problem is a displacement field
u: 2 — ®3 minimizing the primal energy

(2.29) S ) = 5 A,0) ~ 7 (W)
over a suitable subset
() c [HY )]

of admissible displacement fields. To discuss the uniqueness of minimizers of
(2.29) we note that

a by — bsx,
ofrf]=0<=recR={u: N =B |uXxy)=|a | +| baxy — by .
as bixo — boxg

(2.30)

The setR is the 6 dimensional set of rigid body motions. We define the set of
homogeneous solutions of (2.4)—(2.7)

(2.31) N = {r € R| rsatisfies (2.4)—(2.7) with = g= = 0} .

For example, for the Dirichlet condition (2.21) we ha\e= {0} and for the Neu-
mann condition (2.22) we havg = R. Thus the set of admissible displacement
fields within which a unique minimizer o can be expected is
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(2.32) #(2)=[H 1((2)]30 {u | Bou=0 and/ rludxdy=0 Vr e N}.
(9

Any minimizer u € .74((2) of (2.29) satisfies the variational Euler-Lagrange
equations

(2.33) uec. () B =7@ Yo .F(0).

Theorem 2.1. 1..7(12) is a closed, linear subspace {fl 1((2)]3.
2. Assume thag™ ¢ [Lz(w)]s, fe [LZ(Q)]3 satisfy thecompatibility condition

(2.34) Z(r)=0 VvreN.
Then there exists a unique weak solutior w7z (12) of (2.33)

Proof. 1. Sincey = dw is Lipschitz, so isDf2 for 0 < d < 1 (see, e.g., [20, Ap-
pendix C]). Consequently, the trace operagr H1(£2) — L?(I") is continuous.
Therefore the constrairBou = 0 on I" in (2.32) is well-defined.

2. Evidently, 7 () c [H 1((2)]3 is a linear subspace. We show that
it is closed. To this end, Ie{u(j)}jojl C .F(£2) be a Cauchy sequence in
[H 1(())}3. SinceH!(£2) is complete, there exists a limit € [H 1((2)]3 such
that[[u() — ullyy g — 0 asj — oco. We claim thatu € .72((2). To show it, we
verify (2.32).

First, for everyr € N, we have due tai(j) € .77(£2) that

/ r Tudx
o

asj — oo whence it follows that

= ’/ r’(u—u())dx
Q

< C(r,d) [lu —u@)ll 2 — O

/ r‘udx=0 Vvr eN.
2

Next, the continuity of the trace operator gives

You), 10(u)) € [LA()]°.

By the density of the Legendre polynomials lif(—1, 1), we can expand the
traces of the component functions efandu(j) on I" into fiberwise Legendre
series:

(o) (59) = 3 U9 =123
Cos @) )= 3 UPEL(). =123

which converge inL?(I") = L?(y) ® L%(—d,d) by Fubini’s theorem. Since
{u@)} c .7Z(12) we have thaBou(j) = 0 for all j which implies that
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Uk(j} =0 (e FH,ke{nt3}

for all j. From the orthogonality properties of the Legendre polynomials we have
for k € {n,t, 3} that

N 2d il2 2d 2
HUK_Uk(J)HLz(F)_z , 2€+1HU”_U” ) / 20+ 1 Wkelliee) -
ENo\ % LeK

(2.35)
By the continuity of the trace operator we have
U= UG) 2y < CO U~ U@)ysy — 0 @S] — o0

and we find from (2.35) thatly, = 0 on~ for £ € %, k € {n,t,3}, i.e that
Bou = 0. Henceu € .72(2) and assertion 1. is proved.

3. Since.7%(12) is a closed, linear subspace 1((2)]3, we have Korn’s
inequality

AU,u) = Ct,w) [ullfg YU €T
(see, e.g., [14, Theorem 2.5]). By our assumptions on the data the continuity of
the trace operator on Lipschitz domains and Korn’s inequality imply that
_ 2 2 _p2 \Y2
|7 (v)] < C(t) (||f e * 19" 12y * 19 |||_2(w)) [Vl
< C(t,f,9M) [vllgcy

for every v € F(£2). As usual, the energy normjv|g, is defined as

(.Z?(v, v))l/z. Existence and uniqueness of a weak solution to (2.33) now follow
from the Fredholm alternative and the Riesz representation theorem applied to
F((2) with the energy inner produc#(-,-). O

Remark 2.2.The assumption that the daj&(x) andf (x, y) are square integrable
can be weakened. In what follows it will be sufficient for our purposes.

2.4. Separation of bending and membrane effects

The variational solutioru € .77 ((2) of the plate problem can be decomposed
into amembrane part I(x, y) and abending part Ul (x,y) as follows:

(236) uloz(xﬂy) = ulOL(X’ 7y)7 Q= 17 23 uCI%(va) = 7UCI’:(X7 7y)7
and
(237) ulolé (va) = _ulolz (Xv _y)a = 13 2; ull’,l (va) = u(|3| (Xv _y)

We denote the corresponding sets of admissible displacement field® y2)
and.72" (£2), respectively. These subsets.@¥(2) are closed and orthogonal



232 C. Schwab

with respect to the inner product induced by the bilinear fom:, -) on.72((2),
ie.

T2 =90 () ®.76" (12) or . AU,v)=0 Yue. 7" (2),ve.7" ().
(2.38)

This is a consequence of the sparsity structure of the constitutive nfatrix
(2.9) and the dependence of the straénpu] on y which is implied by (2.36)
and (2.37).

Remark 2.3.The constitutive matrixA in (2.9) is the most general one for which

this separation of bending and membrane effects in the plate problem can be
achieved. Few materials exist with the still more general, fully anisotropic con-
stitutive relations which are characterized by twenty-one constants. They arise
mainly as “effective”, i.e. homogenized, models of composite sandwich plates
with asymmetric layup. Such materials still appear to be rarely used in practice,
since they exhibit some couterintuitive behaviour due to the bending-membrane
coupling. For example, such platbendunder normal tractions applied to the
edges where one would intuitively expect a pure membrane response, i.e. in-plane
stretching.

Thus,u' andu" can be obtained independently of each other provided that
the load functional7 (u) is also split into bending and membrane parts.

T () =.7"(u)+.7" (u)

:/Qf'(x,y)—rv(x,y)dxdy
o [ 10005 = 1360 + (0% + 1200} o
. / £1(x, y) To(x, y)dxdy
(2.39) /{g (X)(v3+v3 (X)+g (X)(v —v )(X)} dx

where we set®(x) = v(x, £d) and summation over repeated indices is implied.
The membrane and bending loads are given by

00Y) = 5006 Y) + ok, ),
(06y) = H(05(,Y) — fa(x, ),
(2.40) .

50 = 26500+ g5 (),

600 = 6500 0,00, =12

and
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£ 009) = H(aty) Tl )

4 00y) = 5 (0s06,Y) + f5x, ),
(2.41)

09 = 26509 g5 (),

P00 = 000+ 05 (), 0=12

3. Hierarchic plate models

Hierarchic plate models are obtained by semidiscretization of the plate problem
(2.33) in the transverse direction and energy projection.

Since we deal with an elliptic system, we admit different model orders for
the different displacement components. We approximate each compg@ery)
of the displacement field(x,y) by a Legendre series i of degrees less than
or equal ton;. The maximal “transverse” polynomial degress i = 1,23,
are collected in the vectar € NS. Let, more generallyyi = {ti(z)}o<k<n ,
i = 1,2 3, denote vectors ofi + 1 linearly independent basis functions (the
so-calleddirector functiony in H(—1, 1). Then the functioru"(x), the solution
of the dimensionally reduced plate model of oraeris any minimizer of the
total energy< (u) in (2.29) over the subspace”(n) C .74(f2) of admissible
displacement fields of the form

n;
_ Yy _ T y o
(B1)  u'(x.y)= ;xiﬂ(xmk (})=xe0mw () i=123.
Here the coefficient function¥] (x) € H(w) may be interpreted as generalized
rotations and deflections.

Proposition 3.1. .74(n) C .7Z(2) is a closed, linear subspace.

Proof. Let {u(¢)}32, C .7%(n) be a Cauchy sequence in the energy norm. Since
F2(2) c [HY(2)]? is closed by Theorem 2.1, we hawve= lim,_ . u(/) €
F(£2). We claim that in facu € .ZZ(n). To prove it, we note that by Korn's
inequality in. 72 (12)

(3.2) [u(®) — u(@)|lnxe) < Ct,w)ul@) —ul@)llew — 0
as/l, ¢’ — oo. Now u(f) = (uy(£), up(£), uz()) " with
u ) = X0 Tiy/d), XOe HYW)", i=123.

Further, for every vector fuctioX € [H(w)]" andy € [H1(—d,d)]" we have
(summation over repeated indices)

IXT el :d—l/wvxquj vxidx+/wx,- (dB; +d™*Ay) Xidx
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where
1 1
Aj =/ pipidz, By :/ @ipjdz.
1 1

If the vector functiony has linearly independent component functions, the matrix
A is positive definite andB is positive semidefinite. Hence
2 _
IXT2[l1y = A Amin®X [ -
Consequently, from (3.2) we have for 1,2, 3
(3.3)
n112 d
X0 _ x( )‘ <
H ! " llHYw) T Amin(A)

_ dC(t,w)

) = u@ ey < 7\ oy

lu®) — U(f/)Hé(Q)

i.e. that each sequence of coefficient functigg”}52, is Cauchy inH(w).
Consequently,

(3.4) X — X e HY(w) as £ — oo

(and X € HYw,v) if k € .Z, i = 1,2 3). Defineu componentwise via
u(x,y) = Xi(x)T¢i(y/d), i = 1,2,3. Thenu € .7 (n) and, by Korn's in-
equality,

3
[u— U < Ct,w)u—u@|Zg < C(Lw)z X — Xi(l)le-il(w) :
i=1

By (3.4), the upper bound tends to zerofas» oo, henceu = lim,_, ., u(f) €
.72 (n). The proof is complete. O

The hierarchic plate model is obtained by energy projection o#fgn) and

can consequently be split like the three dimensional solution into a membrane
partu' (n) and a bending part" (n). They are obtained independently from each
other by

(35) u(n)e.7(n) WU (N),v)=FI () Ywe. M), je{l, N}

with .771 (n) = .77 (n) N.77 (12) a closed, linear subspace &f {(£2)]° by Propo-
sition 3.1. This implies, as in Theorem 2.1, that for everthere exists a unique,
dimensionally reduced solutiam (n) € .77 (n).

For homogeneous materials with constitutive law (2.4), we select as director
functionsvi (z), as mentioned above, the Legendre polynomig(g) of degree
k. Forn,m ¢ Ng we writen = m<<n >m,i =1 2 3. The relatiomm <m is
defined analogously. We write furthar- m < n > m,i =1 2, 3 etc.

Remark 3.1.The selection of polynomial director functions ftomogeneousa-

terials ensures the asymptotic optimality for the hierarchic modelsaRtnated
places, however, this approach is not optimal and the polynomials are replaced
by other, material dependent director functiofig with better approximation
properties [1, 5, 11, 18, 27].
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Remark 3.2.The hierarchic model and the dimensionally reduced solutior)
depend only on the span of the director functions. The selection of a particular ba-
sis for this span becomes important, however, in connection with iterative solution
techniques for the hierarchic models. It was shown in [21] that for homogeneous
plates the director function&)i(z)}¢-, should be orthogonal ih?(—1,1) and

in H(—1, 1). This can be achieved by solving a generalized eigenvalue problem
in the plate cross section and ensures a convergence rate proportional to the plate
thickness for classical additive and multiplicative Schwarz algorithms.

Equation (3.5) yields, after evaluation of the integrals in the transverse coordinate,
a singularly perturbed elliptic system for the unknown vector functiXh&) =

{XR e, For example, for isotropic material (2.10) we obtain with the Gram-
matrices of the director functions

1 1
Aj =/ gl dz, By :/ Pl Tdz,
-1 —1

1
Gy = [ wfTdz. 1<ij<3.
-1

the following strongly elliptic system i for the vector functions"(x), i =
1,23

A1 1B11
—d pA22 A+d™?t 1B22
1A33 (A +211)Bss

d\ + )A1104  d(\ + )A120%, (ACi3 — uC3)oh X{
— | dO\+)A20%  d(A + p)Az0%, (ACas — uC3p)d2 X3
(uCa1 — AC13)d1 (1C32 — AC33)D2 0 X3

[ 1106 2Dua(§dzenC) )/ g1 09ua(D) - g5 (wa(-1)
(3.6) = | [T falx, 2)¢p2(3)dzea(}) | + | 9200¥2(2) — g5 (X)2(—1)
2 fa(x, 2)a(3)dzeba()) 93(X)¥3(1) — g5 (X)¥3(—1)

with the conditions
X% =0 on v, leZ, ie{nt,3}

where X[ := Xjing + Xjng, X' := Xty + X to.
Generally we have the following relations for the model orders in dependence
on the maximal transverse polynomial degege

n=(20q/2],2|q/2],2|(q - 1)/2] +1) for j=1,
n=(2[(q-1)/2] +1,2[(q - 1)/2] +1,2[q/2]) for j=1I
where|x | denotes the largest integerx. In what follows we shall only consider

these model orders. The following proposition collects some basic properties of
the hierarchic plate models.

(3.7)
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Table 1. Model ordersn for membrane and bending models in dependence on maximal transverse
degreeq

j 9=1 9g=2 9=3 g9g=4 g=5 Q=6

I (001 (@21 (223) (443) (445 (66)5)
@10 (112 (332 (334 (554) (556)

Proposition 3.2. 1. Optimality of the n-model,
(3.8) U —u (N)|le@) < U —vlgy Yo €T ().
2. Letn > m. Then we have

(3.9) W = u M) < U - U (m)lew ,

i.e. an increase of the model order never increases the modeling error.
3. Convergence of the sequencaeahodels towards the three-dimensional prob-
lem at fixed, positive thickness.

(3.10) lim U — W (n)llece) = 0.

Proof. Statement 1. is a consequenceu¢i) being the energy projection of the
three-dimensional solution onto .7 '(n). Therefore it follows from (2.33) and
(3.5) that

AU —un),v) =0 Yue.F(n).

This implies 1.
Assertion 2. follows from 1. and the inclusio#'(n) > .72 (m) for n > m.
The third assertion follows the density of the polynomiald.#—1, 1). This
implies that the sequence of spacgg(n) is dense in7Z({2) which, with 2.,
yields 3. O

Remark 3.3.We remark that the Reissner-Mindlin (RM) plate model for homo-
geneous and isotropic plates is, for> 0, not contained in this hierarchy. This

can be readily verified by comparing (3.6) for= (1,1, 0) with the equations

for the RM model. The RM model can be derived, however, by suitably mod-
ifying the elastic moduli used in the energy minimization, see [20] and [3] for
more. In this case, however, the estimators to be derived below will not allow to
estimate the modeling error. Nevertheless, other estimators based on dual vari-
ational principles can then be used to obtain computable a-posteriori modelling
error estimates [20, Sect. 3.4].
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4. A-posteriori estimation of the modeling error

In the present section we will derive computablgosterioriestimators for the
modeling error

4.1 e(n) =u —u(n)

of the hierarchic plate models in the energy norm.

For the error estimation we will utilize the decomposition of the modeling
error into a membrane pagt(n) and a bending pad' (n) which can be estimated
independently of each other due to their orthogonality in energy, i.e.

gmn)=u —u®), je{l,}, .»E,e)=0

This implies in particular

2 _ 2 2
(4.2) eIz = ||€f (n)HE(Q) + €' (n)HE(Q)'
Our modeling error estimators will be based on the residual tractions
(4.3) ) =g () —gh), je{l, N},

with gL(x) = oful (n)]es ly=d denoting the normal tractions corresponding torthe
plate model obtained directly (i.e. without reference to the equilibrium equations)
from u(n) via Hooke’s law (2.9). We recall further thak| = maxk € Z : k <

x}.

The main result on a-posteriori modeling error estimation is as follows.

Theorem 4.1. Let the material be homogeneous with a positive definite consti-
tutive matrix(2.9) and let the model orden be given in dependence on g as in
(3.7). Assume further that the surface and volume forces are square integrable
and that the volume forces(k, y) are, for almost every x w, polynomials with
respect to y of degrem > n. Let the midsurfacev ¢ 2 be an open, bounded
Lipschitz domain.

Then for any of the variational edge conditions of S2¢here hold the a-
posteriori modeling error estimations:

T -1
e rh ass Asp Mot
e (n)HE(Q) < t{a(Q)/w (rrﬂz) (ase 366) (rr|12> o

b
(4.4) +2$i ) (rhs)? dx}

and

le" M1z < t{b(q)/ (rr|1|1>T (a55 ass)_l (fr'fl) dx
B@) — w \ T2 856 Ap6 M2

(4.5) +2§2 j (r;'g)zdx}
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where gq) and b(q) are defined by

46 a(q):<2m+g’>l, b(q)z(z{qzlri)l

with [x] = max{k € Z : k < x}.

The remainder of the present section is devoted to the proof of Theorem 4.1.
Prior to giving it, however, we mention some special cases of the general bound
where the constants simplify.

Corollary 4.1. Under the assumptions of Theordmi with the additional condi-
tion agg = O there hold the a-posteriori modeling error estimations

1. Membrane part: for g> 1

||el (n)“z <t 1 ||rr|11||ﬁz(w) . ||r,'12||iz(w)
s 20343 as5 ase
2
1 HrrI'I3HL2(w)

2 |:q+1:| + % 2a33

2. Bending part: for o> 2

2 2
1 ||rl|1|1HL2(w) N HrrlwlzuLZ(w)

I 2 <t
||e (n)HE(Q) — 2 |:q;1:| n ;_ ass as6

|2
N 1 Hrn3HL2(w)
2[3]+35 28

Remark 4.1.Corollary 4.1 applies in particular rthotropic materials: the con-
stantsass, ass and agg that are relevant for the error estimate can be expressed
in terms of the engineering moduli (2.11). Obviously,

ass = 26, ae6 = 2G3
and a short calculation yields

1—vovmg

a3 =E3
1 — viov1 — vy (V13 + v1o103) — V32 (V23 + V13v21)

Another important special case of Theorem 4.1 occursidotropic materials.
Here we get

Corollary 4.2. Under the assumptions of Theoreni the a-posteriori error es-
timate for isotropic material$2.10) reads



A-posteriori modeling error estimationfor hierarchic plate models 239

1. Membrane part:

2 2 2
e (n)||2 ot ||rfI11HL2(w)+HrTI’IZHLZ(w) L 1-2 ||rf|'13HL2(cu)
B = 24 219 +3 21 -v) ZnglJ +1 ’
2. Bending part:
IPNIE t Hr|'|1|1Hi2(w) + HrrIIIZHiZ(w) 1-2v HrrIIIEHiZ(w)
" ()], < +
E(2) = 2u 2|t +1 2(1—-v) 2|3 +3

It remains to prove Theorem 4.1. This will be done in several steps in the
remainder of this section. First, we show that the residual tractigm®$ in (4.3)
are always square integrable overand we prove a variational representation
for the modeling error in terms of the residual tractions alone. The modeling
error estimate follows then directly with the Schwarz inequality. The constant in
the estimate will be analyzed by means of a cover#igof w by a family of
small closed, axiparallel squargswith disjoint interior. The contribution to the
constant from each “boxj x (—d, d), g € ¢ is then estimated. This is followed
by an asymptotic analysis of the constants in these local estimates as the size of
g tends to zero.

Remark 4.2.The basic idea of the proof has been first obtained in [20, Chap. 2].
There, however, only orthotropic materials were treated. For orthotropic plates
with totally clamped edgd™ an a-posteriori modeling error estimate with-
merically computed constantas been presented in [19]. Due to #symptotic
exactnessf the estimators in Theorem 4.1, these bounds are generally not sharper
than the ones in Theorem 4.1. This is evidenced by the isotropic case, where the
computed bounds in [19] were very close to those in Corollary 4.2 above.

4.1. Variational characterization of the modeling error

We investigate the regularity of the residual tractiadxx) on which our
modeling-error estimates will be based.

Lemma 4.1. Assume that the given surface tractiogi{x), ¢~ (x) are square
integrable over the faces R Then, for any admissible midsurfaceand any
variational edge condition, the residual tractionisin (4.3)are square integrable.

Proof. Due to our assumptiong! (x) € L?(w). By (4.3) it remains to show that
gh(x) = o[ (n)]es |y=a€ L(w).

This follows from the representation (3.1) with the smoothness of the director
functions ¢ (z) = Lk(z) and the fact that the coefficient functiodg (x) €
Hlw). O
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Remark 4.3.The natural space for the residual tractions is actually larger than
L%(w), namely a suitable subspace ldf~1/2(w). However, the corresponding
norm is more difficult to evaluate which is why our estimators will be based on
the L?(w)-norm of the residual tractions. Lemma 4.1 ensures that the estimators
will be well-defined for all 0< d < 1 and all model orders. It should be borne

in mind, however, that theonvergenc# r,‘1H ) — 0asd — 0 orn — oo may
L (w

fail due to a lack of regularity of the three dimensional solution caused by the
edge and vertex singularities of the plate problem.

We derive next a variational characterizationegf) essential to the devel-
opment of the a-posteriori modeling error estimators.

Lemma 4.2. Let the model orden be uniform and as i3.7). Then the membrane-
and bending part of the modeling error satisfy the residual equation

@7 éme.F W) BEM),V)=20) Yoe I (W), je{l. I}
with
48) W)= / LX) T B [u)(x)dlx + / RUIFI(X, y) Tv(x, y)dydx
w (93
and

d
9 y
[ oy eaapal)ay

(4.9) oh[v] = /

d

o) y
; ayUZ(Xa Y)Lqu/2J+1(d ay |,
d

0
/41 ay v3(X, Y)L2|(g+1)/2) (Z)dy

d 5 y
» ayvl(X7Y)L2L(q+l)/2j(d)dy

(4.10) P[] = /

d 5 y
Loy v2(X, Y)L2| (g+1)/2) (d )dy
d

9 y
/41 ay v3(X, Y)L2|q/2) +1(d )dy

and the residual volume forces are given by

la/2| .
4K +1
ey - > Y0 [ Hzdta@ana ()
a2 N
q/2 1
4k +1 y
l fl= | _ |
SUR TCED S | Hexzdlacza()) ,
L(a-1)/2) 1
4k +3
f3(x,y) — E 5 / f3 (X, zd)Loks1(2)dZLoks1 (zj/)
k=0 -1

(4.11)
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[(a— 1)/ 2]

4k +3
£l (xy) - >3 [ eta@tse (%)
L(q 1)/2J
RN=[ 2oy > "% [t watma@asa (})
LQ/ZJ
4k +1
oy - > % / 2L a2zl ()
k=0 -

(4.12)

Proof. Due to the homogeneity of the material there holds
q

. ; _ j Yy . .
(4.13)  (divold (M)]), (.y) = kzz(‘;/xk(x)Lk (}): =123 jequ}
with certain A\{k € HY(w). To determine them, we employ Green’s identity
(valid sincef? is a Lipschitz domain) as follows:

AE),0) = Ah(w) =7 () = AW (), 0)
= / v (f1 +divelul (n)]) dydx+ / YouT (¢ — oful (n)]n) do
2

R:UR_
+/(70UTa[ui —dm)n)do  jefl,Il}
r

The edge term vanishes fore .771 (n) due toByv = 0 andB;ul = Byui(n) =0
for the boundary operato®; in (2.21), (2.22).
Let nowj =1. Then there holds

AEM),0)=0  YoeH"(Q),0eH 0.

For thesev we have in particular (with summation over repeated indices)

q
o [ y
0=.2(v) = /Q Y <fi' +§k:O:A1-'k(x)Lk (d)) dydx
(4.14) + / [P (S, + 03 )(X) + Fla)(wh — v3)(x)} dix.

We select now (X, y) Vi(x)L¢ (}}) andv, = v3 = O for odd values of and

an arbitraryVy(x) eH (w) This implies

:Lv1<x>{/2f£<x,y>te(Z)dy”"u(x’zf 1}dx

Since/ was assumed odd, is an odd function. According to (2.40), however,
f! (x,y) is an even function of. Thus we find

A,(x)=0 ¢ odd.
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By analogous reasoning we find also
A,(x)=0 (odd, A,(X)=0 (even
and
Al,x)=0 revena=12 AL,(X)=0 ¢ odd.

We consider the remaining cases. Let first I, i = 1 and? even. We obtain
from (4.14) withvy(x,y) = Va(x)L, () and arbitraryV;(x) € H(w, ) that

o:/wvnx)/_z {ff(x,y)u(z) +k§;A'1k(x>Lk (5L (ﬁ)}dxdy
+2/V1(x)rr']1(x)dx

from where we find that

200+1 d
ALy(x) = — 2; {erlu(x) + [d fl (X, y)Le (Z) dy} )

Analogously we obtain fof =1 andi =1,2 orj =1l andi =3
AL(x) = —%J 1 {r,"ﬂ(x) + ;/_C; f1(x,y)Le (Z) dy} , (even,
0 ¢ odd
and forj =1l andi =1,2 orj =1 andi = 3 that
0 ¢ even,
A= pr4q

. d .
d {rﬂ“(x)+;/dfij(x,y)l_g (Z)dy}, ¢ odd.

Forj =1 we arrive at

diveu' (n)]
la/2]

oy 4kd+1 {rh(x)+ ;/dd £ (%, y)Lak (g) dy} Lok (Z)
k=0 -

la/2] d
- 4k +1 1 y y
=1 X 4 {réz(x)+2/dfz'<x,y)L2k(d)dy} Lac ()

k=0
L@-1)/2]

S 4kd+ 3 {r,'ﬁ(x) + ;/_: f3 (¢, y)Lakst (31/) dy} Lace (()j/)

k=0
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Inserting this inta#2! (v) and utilizing
m m
Lomer(2) = > (@K + DLak(2),  Lomea(2) = D (4K + 3)Lasa(2)
k=0 k=0

results in (again with summation over repeated indices)

s [ [ fron- £ 557 e G2
[@- 1)/2] 4k +3/ f3 (x, Z)L2k )dZL2k+1 (d)] }deX

. / {r;a(x) [(v; +07)(X) / dd va(X.y) (;jy (g () dy]

- ’ d
+1500 [(vg o) - [ 09 g (Lga-niae(3) dy] } dx.

An integration by parts with respect §oin the volume integral yields the as-
sertion forj =1 since 2/(q — 1)/2| +2 =2|(q +1)/2|. Forj =1l the proof is
completely analogous.O

+v3 [f3| x.y) -

Remark 4.4.We point out that the densitié®,[f] of the volume residual forces

are the remainders of the (fiberwise) Legendre expansions for the volume forces.
Thus R[] vanishes in particular for volume forcd$(x,y) that are, for every

X € w, polynomials of degreen = n in y. In this case

0= [ T ah000dx
RIfFI(x,y) To(x, y)dydx Vo € .97 (n),
0= /Q ! ()T @ [l
= /;z RTI: [fII ](x,y)Tv(x,y)dydx Vo € . F6" (n).

(4.15)

4.2. Basic error estimate

Based on Lemma 4.2 it is now straightforward to derive the modelling error
estimate.

Lemma 4.3. Let M € 3*3 pe an arbitrary, nonsingular matrix. Assume that
the volume forcesi{x, y) are polynomials of degres > n in the variable y for
a.e. X€ w.

Then we have for evey < d < 1 the modelling error estimate
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(4.16) 1€ (M]|goy < Ci MMl 2,y T {1}

Here the constantsjCare given by

/ IM =Tl [v](x)|” dx

(Gi(d.M))* = sup So0)

0ve. T4 (£2)
and the supremum is taken over the sub%i(!)) C .F61(£2) of admissible

displacement fields for which

‘ y
(4.17) / i (X, YL (d>dy:0a.e. Xj =0,...,n,i =1,2,3
—d

holds.

Proof. Since, by assumption, the volume forces are polynomial over each fiber
with degreem > n the volume residual&,[f] drop out of the error estimate
according to Lemma 4.2 and Remark 4.4. Thus we get from Lemma 4.2 for
j=10

» (e (n), v ZNC
@18)  [éMley= sup TEMD gy A0
OvE. T (R2) ||U||E(Q) 0Fve. T4 (£2) ||U||E(Q)

with
ZNOE / rlx) " @ [v](x)dx = / (M) " @M ~To](x)dx
whereM < R3%3 is arbitrary, nonsingular. By the Schwarz inequality,
() < (M, [ 1700100 o
and we get from (4.18) the a-posteriori estimate
l€(Mllec) < i [[Mrh]| 2,

as asserted.O

It remains therefore to estimate the consta@téd, M) in (4.16). To this end,
we cover the midsurface by families of small, axiparallel squares. They are
defined as follows.

Let ¢ > 0. By .Z4(c) we denote a covering dk? by closed, axiparallel
squareq) of edgelength 2 with the origin being a vertex. Then we define

CE)={qge . Z(E): anw#0}

and
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W, = interior( U q) D w.

e (e)

Due to the wayw. was constructed there exists a constag), independent of
g, such that

(4.19) |we\w| < C(7)e.
By (2. we mean the set
Q2. =w. x (—d,d) 2 .

Forq € & '(¢) we denote byQ the setq x (—d,d). '
We will also need prolongations 6f v € .77.(12) to .77.(£2.).

Lemma 4.4. Assume thad(2 = 9 (v x (—d, d)) is Lipschitz. Let» € [H 1((2)]3
be such thaf4.17)holds. Let furtheto O w be open and bounded and denote by
=& x (—d, d).

Thenv has an extensiofi to [H 1((})]3 satisfying(4.17)

Proof. Since df? is Lipschitz, we can use the extension Theorem of [25]. We
extendv to V in [Hclomp(}R3)]3. Then we define for a.ex(y) € 2

N

1
IOV ED Dil VRO
k=0 -

One verifies thab 'has the desired propertiesd

Remark 4.5.The norm of the extension operatér : v — ¥ in Lemma 4.4 in
general depends on the Lipschitz constantyadind ond. For clamped plates
with homogeneous Dirichlet conditions, the zero extension can be used.

We are now in position to derive an estimate for the const@ye , d) in (4.16).
Let 0 < # < 1 be a parameter and denote, for a giver .72 (£2), by

¥ € .F4L(02q) its extension tof2y as constructed in Lemma 4.4. When dealing

with the bilinear form.%2 with the integration taken over sef¥ # (2, we write

.72(£2";u,v) etc. If no set is specified, the meaning is as before. Then

/]M*Tqﬂn[v”zdxg/ M-TaE [ de= ST [ M dx.
w Weod qez(6d)
(4.20)

Now, for everyg € #(6d)

/|M*T<pin[5]|2dx < D.2(Q:v,v)
Jaq

whereQ :=q x (d, —d) and
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M~ Tl [5]]” dx
D= sup

q
omeri@ Q)

Since the elasticity tensoA in the bilinear form does not depend onthe
supremumD is independent of the particular culie Moreover, scaling the
variables of integration by /d we find thatD = d /Al (M, §) where the constants
A(M, 0) are defined by

/ e[v] : ofv]dxdy
(4.21) A(M, 0) = inf K(9)

/ (@, [v]) "M~ TM I [0]dX
k(6)

with k(0) = (6, 0)?> andK (#) = k(f) x (—1,1). The functionalsﬁL[v] are as in
(4.9), (4.10) withd = 1 and the infimum in (4.21) is taken over alE .77 (K (9)).
Now we have with (4.20) that

i 2 d U ¢ p o
'/w]M Tl o] dngj(Mﬁ) > .K(Q,v,v)—AJ(M79),/J’(di,v,v)

qez (6d)
(4.22)
which implies that
2 d A (£264; 0, V)
4.23 GC) < . su )
(4.23) (G) S AM0) g o A

The objective is now to lefl tend to zero for fixed in the ratio of bilinear forms
in (4.23). To this end we investigate the infid&(M , 6) in (4.21) in detail.

4.3. Analysis oftl (M, )

We investigate the constant (M, §) for § € (0, 1]. Our first result shows that
for 6 € (0,1] the infimum in (4.21) is positive and indeed attained. It also
characterizes the functionson which it is attained.

Since (4.21) is formally a Rayleigh-quotient, we consider the eigenvalue
problem associated with it. To this end, we define the bilinear forms

(4.24) b(u,v) ::/ e[v] : o[u]ldxdy
K(0)
and
(4.25) d"(u,v) = / @ [o]) TM~TM ~L(@ [u])dx.
k(0)

Then we consider the eigenvalue problem: Fing 0 € W and A € Rf such
that
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(4.26) b(u,v) = AJ"(U,v) Yo eW
where the admissible displacemeblitsare given by
W = [HYK@)]° 1 {u | &[] # 0},

Lemma 4.5.Letq> 1in (3.7)and0 < 6 < 1. Then we have for every model
ordern in (3.7)

1°. The spectrum of4.26)is discrete and consists of a sequer{(z%(}ﬁil of real
eigenvalues which accumulate only at infinity,
2°. The eigenfunctions{(@(, y) corresponding t(J/lJk are of the form

U:{k(X)QZLq/zﬁl(y)
ue(X,y) = | UL()Qzq/21) | .
U?I,k(X)QZL(qﬂ)/Zj )
U1l ()Q2|(g+1)/2) (¥)
u (6 Y) = [ Uz ()Qz gr1y2) ()
U (X)Q2[q,2)+1(Y)

where Q(y) := (Lk+1 — Lk—1)/(2k + 1) is an antiderivative of the Legendre-
polynomial of degree k and thel\x) are certain functions in H(k(9)).

(4.27)

Proof. Since the bilinear formb(u, v) andc!"(u, v) are both real and symmetric,
it follows that the eigenvalued in (4.26) are real, too.

To show 2. we prove that the bilinear formsi"(u,v) are compact on
[HYK@)]® x [HYK(#))]3. To this end we integrate the expression (4.9) by
parts with respect tg thus rewriting it in the form

d
- d y
(v1 v )(X) — [d Ul(X7Y)dyL2Lq/2J+1(d)dy

d
@28) A= | 03000 — [ o) g LaigeaCyay

d
) d y
05 =13)60 = [ us003) g Lot ()

wherev® (x) = vi(x, +d), i = 1,2,3.
Now we apply the Schwarz inequality and obtain

|c'"(u, )] < ["(u, u)|M3|c! (v, v) Y2,

Let v € .77' (£2). Then we estimate as follows:

c'"(v,v)| < C(M) / (@}[v]) (@ [v])dx
k(0)

2 . 1 d 2
=C(M) ; /k(e) {(Ua +0,)(X) — /1Ua(X,y)dyLqu/zyl(y)dy} dx
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2
_ ! d
« [ {(vg—vs 00~ [ eaty) Lo )3y | x
k(6) 1 y

< 2C(M)/k(0) {(1}1L +111_)2 + (vy +’U2_)2 + (v — v;)z} dx

+Cyq / v T vdxdy
K(0)
3

=CM) 8]0 Dllzzay + Crallvi ooy
i=1

3
<C(M,0,d) Z [|vj ||E|1/2+s(|<(9))
=1

for 0 < e < 1/2 due to the continuity of the trace operator. The assertion follows
now from the compactness of the embedding

HYK(@@) — H3K(@®), O0<s<Ll

The proof forj =1l is analogous. '

To show 2 we consider the function@’n in the form (4.9), (4.10). A nec-
essary condition for the existence of eigenvaldgss thatc!"(u, u) # 0 for the
corresponding eigenfunction. Now/(u, u) = 0 happens if and only i%‘;; equals
the product of the Legendre polynomials in the definition of the functi@h{azb]
and of a functionUi (x) € H(k(0)), whence we arrive at (4.27).

Evidently we haved}, > 0. To verify thatA} > 0, we assume the contrary
which implies thatb(uf(, uli() = 0 for the eigenfunction correspondingnﬁ. This
implies thate[ujk] = 0 which is the case if and only iijk is a rigid body motion.
Since, howeveru{; is of the form (4.27), this is not possible fgr> 1 and we
arrive at a contradiction taflL =0. O

The constantst! (M, 6) could now, for fixed 0< # < 1, be approximated
numerically in the usual way, i.e. by discretizing the eigenvalue problem (4.26)
via restriction of both forms to a finite dimensional subspace and numerically
solving the resulting finite dimensional, generalized eigenvalue problem. This
suffices in certain cases to obtain a modeling error estimator. For details, see
[19].

Since AI(M, ) is a continuous and positive function éfc (0,1] due to
Lemma 4.5, we investigate whether Jimg- A1 (M, §) exists and, if so, whether
it is positive. This is the purpose of the following Lemma.

Lemma 4.6. Under the assumptions of Theoréni, and with

—1/2
my as5 Asp 0 /
(429) M = ase Aep
Mpaza

0
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for arbitrary my, mp > 0 the limits
A(M,0) :enn(}/ﬂ (M, 0)

exist and are equal to

(4.30) 4M.0)= mm{ 2mya(q)’ mzb(q)}
and

I =mi 1 !
(4.31) AT(M,0) = m'”{ 2myb(q)’ mza(q)}

respectively, where(@) and b(q) are as in(4.6).

Proof. Letj =1 and set = 2[ 3] +1, m = 2| %*|. Further, throughout this proof
we set

(4.32) A= (a55 a56>
' as6 As6 )

Finally, for 0 < § < 1 let u'(X,y) be the eigenfunction corresponding to the
smallest eigenvalue of the spectral problem (4.26). Then, according to Lemma

4.5,
B U1(3)Qe(y)
u' (. y) = [ U203)Qe(y)
Us(X)Qm(Y)
and
1= (010 22001, Uy 5

U1Q) + 31UsQm UQ) + azust) !
2 ’ 2 ’

Thus, using that

€jj [UI loij [Ul 1= €11011 + €200 + €33033 + 2(€12012 + €13013 + €23023)

the form of u' (x,y) and performing the scaling = x/6, dx = 6~2dx we get
with U = (Ul7 Uy, U3)T that

(4.33) . ZK(O);u',u')=.Bo(k;U,U)+0.7:(k;U,U) + 02 2(k; U, U).

Here the bilinear formsZ, (k; U, U) are independent af and explicitly given
by
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1
Z’o(k, U s U) = / (Qg)de/ {all(alul)z + 2a1281U162U2 + a22(82U2)2
_1 K
3 g 2
s (01U2 + 92U7) (81401U1 + @2402U>) + N (02Ug + 01Up)" »dx
1
a
"‘/ (Qm)zdz/{ 35(<91U3)2 +ase01U30,Usz + a§6(32U3)2} dx,
1 K
A(k;U,U) =
! 3
/ Q@Qr/ndz/ Us {231351U1 + 2a030,U; + o84 (01Uz + 52U1)} dx
1 K
1
"‘/ QédeZ/ {a55U101U3 + @56 (U102U3 + U201 U3) + ageU20,U3 } dX,
_1 K
74U, U) = acab(@) [ (Us)
K
a
+ (2(1) / {as5(U1)? + 2a56U1 U2 + aes(Uz)? } dx
K
with a(q) = [*,(Q))?dz, b(q) = [*,(Q})2dz. Further, we find with
| a(g)U(x)
Po[u']= | a(g)Uz(x)
b(q)Uz(X)
andU = (Uy, U,) " that

d"(u',u") =¢?Z(U,U)
with the form Z°(-, -) given by

7(U,U) = my(a(q))® /k { 07 (Rv?) A } dx + Mpasab(@) /k (Us)2dx.

Hence
0728k U, U)+ 07 LA (k; U, U) +. 2k U, U)
| —- 0 1 bl 1 ’ ’ 2 ) I
A(M,e)—lﬂf 7(U.U)

For the uniform boundedness df (M, 6) as# — 0 we must have necessarily
Fo(k;U,U) — 0. Therefore in the limi# = 0 the minimization is constrained
to

oo () com{(3):(2)-(52) e

ForU € .47 we have alsozi(k;U,U) = 0 as is easily verified. Thus, since
dim./~ =4, we get in the limity =0

l — -
AM.0)=Inf = u.u)
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which is a symmetric, generalized eigenvalue problerfinSince

A=A (L), = span{ ( é) , <2> , (_X)l‘z> } ,

we get, setting/ = (my)/2AY20 and V3 = (mpags)'/? U, that

| . 1 1
4M.0)= m'”{ 2mya(q)’ mzb(Q)} '

as claimed.
The proof forj = Il is analogous and yields the same expression for
A" (M, 0), with a(q) andb(q) exchanged. O

4.4. Proof of Theorem 4.1

We are now in position to give the proof of Theorem 4.1. We recall that we have
(4.16) with the constant; (M, §) bounded by (4.23).

Let the matrixM be as in (4.29). We will show that for fixed € .77 (12)
andd > 0 we have

(204 0,70) _ A(82;0,0)

(4.34) Jm T A0

To see it, we use that [,= v and write

A (24, 0,7) (20, 0)

A(M, 6) A(M,0) | 4
_ A(2a\12;7,7) +-%)(Q;U7U)AJ M,0) - A (M., 0)
A(M, 0) A(M,0)A (M, 6)

By (4.19) we have 2,4\ 2| < 2C(y)0d?. Therefore. 7 (£294\12;7,7) — 0 as
6 — 0 for fixed v andd. The statement (4.34) follows then with Lemma 4.6.
We can now pass to the limit in (4.23) and get in (4.16) that

i 2 d 2 .
Hé(n)HE(Q) S Al (I\/I,O) HMrr]1||L2(u) = {I 3 }

where the constantdi (M, 0) are defined in (4.30), (4.31). Thus we obtain for
j =1 the estimate

| 2
le' M|z

T —1
L) () (7)o o, [0
My Jo, \ 2 As6 A6 M2 Mpags /o, * "

<d
min{ 1 1 }
2ma(q)’ mpb(q)
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This estimate holds foany m,m, > 0. We can therefore minimize the bound
with respect tam. With the estimate

. a/m +b/mp a b
nert { min{a/ml,ﬂ/mz}} =at g

(which follows with the choicem, = m;3/a) we obtain (4.4). This completes
the proof of Theorem 4.1 fgr=1. The proof forj = Il is analogous, witta(q)
andb(q) interchanged.

5. Asymptotic exactness of the estimator

In this section we will prove that the modelling error estimator obtained in
Theorem 4.1 is asymptotically, i.e. as— 0, and spectrally, i.e. ag — oo,
exact provided some extra conditions on the data are met. A similar result for
the heat conduction problem in a plate was first obtained in [6].

To state the result, we denote BT a computable quantity constituting the
estimator for the modeling err@ (n) in energy norm, i.e. the right hand sides

of (4.4), (4.5) are equal t&EST)?,j = 1,1l . Then we define theffectivity index
of the estimatoEST in the usual way
i EST
= je{l,ll}.
R (D] o

Theorem 5.1. Let the assumptions of Theoretrl hold and assume in addition
that

071, € [Hw)]®.

—1
1 ( 955 Ase 0
D=1 2\aseaes
azs

Then there holds with

0
and the bilinear forms7, defined in(4.33)that

. 2
1< (Qgﬁ)
g Dr), Dr)) + d. Zo(w; Drl, Drd)
Ay(w; Dry, Drh)
Proof. The lower bound for the effectivity index is evident from Theorem 4.1.
It remains therefore to prove the upper bound.
To this end we assume that | and omit in this proof the indekx. We set,

as in the proof of Theorem 4.2,= 2| +1, m=2|%"| and use agai as in
(4.32). Since the volume forces are assumed to be polynomials of degrea

(5.1) <1 je{l,n.



A-posteriori modeling error estimationfor hierarchic plate models 253

in the transverse variable we have the variational characterization (4.7) of the
modeling error with

Son(v) = / (0T Balul(X)dlx.

Now we selectv = v* such that.#2,(v*) = (EST)?> with EST denoting the
computable modelling error estimator in Theorem 4.1. One verifies that this is
the case for the selection

Qe () rna(x)
v*(X,y) =dD [ Q¢ () rna(x) | .
Qm (é/) I'n3(X)

This implies that
() @alv*10x) = d {2(Q) (o) A Fa(x) + b(@) (Tna(X))? /a3

with a(q) andb(q) as in (4.6) and ;"= (rn1, 'n2) ' . Comparison with (4.4) shows
that.22(v*) = (EST)>. Now we estimate for any > 0

7 * O * € 1 *
Sin(v) = (ESTY =.22(e(), v) < , ez *+ 5 10" ey

Selectinge = ¢¢ such that
1 *12 1 2
220 v HE(Q) < Z(ESD )
we arrive at

(EST)? < co ()2 -

It remains therefore to estimatg. Due to the way™* was chosen, we get

%12
_ [|v HE(Q)
Ten(v*)
Now
071 ) =A@, v") = d° Fo(w; Dry, Dry)
+d2. 7, (w; Dry, Dry) + d.25(w; Dryy, Dryy)
and we find with the definition of4,(w; U, U), i.e. with

.
Fr(w; U, U) = agah(q) / (Ug)*x + a(zq) / (33 A <31> w

that
d.25(w; Dry, Dry) = 22, (v*) = (EST).

From this follows the assertion fgr= 1. The proof forj = Il is completely
analogous. O
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The main significance of this result lies in that it gives a computable upper bound
on the effectivity index of the modeling error estimator. The explicitly given
bilinear forms.#; (w; U,U) allow moreover to formulate sufficient conditions
for the spectral exactness of the estimator.

To this end, we define the class

T(Ae)={(g".g7): eitherr)=0or
(52) Fhls /Il sy < A/}
for someA > 0 ande > 0 independent ofl. Then we have

Corollary 5.1. Let (g*,97) € T(A ¢) for someA > 0 ande > 0. Then the
modelling error estimator in Theorer1is asymptotically and spectrally exact.

If (¢7,97) € T(A,0) for someA > 0 the estimator in Theorerh.1is asymp-
totically and spectrally uniform, i.e. its effectivity index is uniformly bounded with
respecttot and g.

Proof. Throughout the proofC denotes a generic, positive constant depending
only on the elastic modulhy. We observe that

1
4
2 —_—
[1(Qe) dz = 20+ 1)((20 + 17 — 4)’
1 .
/l QQndz = (20+1) (2 £1) fm=£+£1,
A 0 else.

Thus we find with

P2

o) < g s

oz
that

So(w; Dr}, Dr}) < Cq~° |f%\i1<w>
< CA2q- 3222+ ||r21Hi2(w)
and that
A1(w; Drl, Dr}) < Cq_z{ h L2(w) Folsc * IRl ey [ Hl(w)}
< CAq 2t |rh1%,, -

. ) SN T
Here we have sat,= (rﬁu, r,’wz) . Furthermore, there also holds
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) ; ; _ 2
So(w; Drl . Drl) > Cq? ||r,11|]|_2(w).
Consequently, we find that
d.Zﬁ(w; Dr}}, Drﬂ,) N dz.Z’o(w; Dr#}, Dr#})
Io(w; Dr#}, Drﬂ}) Io(w; Dr#}, Dr%)

from where the assertion follows.CO

< CA(1 +A)(t/q)

Let us comment on the assumptiogi (¢~) € T(A, ¢). It implies in particular
that the residual tractions, € [H 1(w)]3. This assumption holds whenever the
coefficient functionsX"(x) are inH2(w). This is so, for example, if the given
data ¢*, g~) belong toH '(w) componentwise and the ed@e is smooth. Nev-
ertheless, in this case ti'(x) contain boundary layers, i.e. solution components
which behave like expfadist(x, dw)/t). Here the constara > 0 is independent
of t but depends on the model order and the elastic moduli [24]. Owing to the
form of the boundary layers, we get

Corollary 5.2. Assume thabw is smooth and that the surface tractiog%&x) €

[H l(cu)]e'. Then for fixed model order q the data belong {&\J0) for someA > 0
independent of t.

6. A-posteriori control of discretization and modelling error

Our purpose in the present section is to investigate the computational perfor-
mance of the modeling error estimators derived above. Since the estimators were
derived under the assumption that the plate models in the hierarchy are solved
exactly, the question arises how well they will perform in the case that only
an approximate solution of the plate models, for example by finite elements, is
available. Therefore we will also address the approximate finite element solution
of the models in the hierarchy Hdyp-FEM.

Owing to the elliptic systems constituting the plate models being singularly
perturbed, their solutions exhibit boundary layers, i.e. solution components that
are exponentially decaying oftv which, together with the phenomenon of shear
locking, renders the accurate numerical solution of the plate models nontrivial.
Nevertheless, the boundary layers can be resolved [22] and the shear locking
overcome by the use of high ordesFEM discretizations [23, 26]. In [22] it was
shown that in the context of tHep-FEM a single element of widtl®(tp) near
the edge of the plate suffices to resolve the boundary layer with an exponential
rate of convergencaniformly in t.

In the present section we will we consider the following example: consider the
pure bending of a clamped square plate with midsurface(—a/2,a/2)*\{x :
x| < 0.1a} and thicknesgs which is subject to uniform unit normal loads
on the faces. The@ models withn as in Table 1 were discretized usingpa
hierarchic finite element method @ p < 8) based on the mesh depicted in
Fig. 1 (forq = 1 the modification mentioned in Remark 3.2 was made, i.e. model



256 C. Schwab

¢
A

[

Fig. 1. Finite element mesh for the plate with central hole (not drawn to scale).

1 is the Reissner-Mindlin model). These capabilities are available in the finite
element code STRESSCHEEWKvith which the computations in this section
were done. This software allows for separate computation of the bending and
membrane models and also contains a unified implementation for homogeneous
and laminated plates (see [1, 27]). Let us also mention that in STRESSCHECK all
element mappings are done exactly using transfinite blending maps, an essential
feature ofp-hierarchic finite element methods in curvilinear geometries.
Specifically, we considered a plate where 2,d = 0.05 and henca/t = 20.
The material was orthotropic with the constitutive parameters in (2.11) given by

E;=25-10°,E,=E3=1f,G; =G3 =0.5-1(F, G, = 0.2- 1¢°
(6.1)
V12 = V23 = 0257 V31 = 0.01.

Due to material symmetry, it suffices to discretize only the quarter of the plate
located in the first quadrant; all data below refer to this discretization.

Since boundary layers will occur near the (free) perimeter of the hole and
the (clamped) outer edge of the plate, thin elements parallel to these boundaries
were inserted (elements 1 and 3 near the clamped edge and 4 and 5 near the
perimeter of the hole). We denote the normal distance of the mesh lines defining
elements 1 and 3, respectively 4 and 5 from the nearest edgé. fyhe discrete

1 STRESSCHECK is a registered trademark of ESRD Inc., St. Louis, Mo, USA
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potential energies corresponding to (uniform) polynomial degrea the mesh

in Fig. 1 and the model of ordey (in the sense of (3.7)) will be denoted by
“q,p and the finite element approximation of by ug in what follows. Table

2 shows a solution run wherg increases hierarchically from 1 to 8 for the
(3,3,2) model (i.e.q = 3 in (3.7)). Due to the symmetry of the problem, only
one quarter of the plate was discretized in these calculations. Correspondingly,
the potential energies refer only to this subdomain. The discretization error was
estimated from the discrete total potential enerdigs, by extrapolation, i.e.

by fitting them to the asymptotic convergence estiméatg, — 93, = Cp~*.

The unknowns%; ., C and the convergence rateare determined froni
corresponding to three successpievels. Throughout, the mesh in Fig. 1 was

Table 2. p-hierarchic solution of the (3, 2) model.r1 = 0.04a

p DOF Gip o Jup =g, /Ul %]
1 42 -4.3338026E-6 0.00 53.60

2 168 -5.7561015E-6  0.61 23.12

3 378 -6.0150995E-6  0.98 10.42

4 672 -6.0691653E-6 1.49 4.43

5 1050 -6.0774790E-6 1.34 2.44

6 1512 -6.0793402E-6  0.99 1.70

7 2058 -6.0802827E-6 1.24 1.16

8 2688 -6.0806806E-6 1.24 0.84

00 -6.0811048023E-6

used withp = 8 at each stage and the full tensor product polynomial set was
used (this proved to be advantageous for anisotropic materials).

Let us now turn to the a-posteriori estimation of the modelling error based on
the residual tractions on the fac®s. The element contributions to the estimator
can be used amodelling error indicatorsfor a local adaptive selection of the
model orders [4] and are listed in Table 3. Due to symmetry, only elements
located in the first quadrant are shown.

Table 3. Elemental contributions to the error estimape<8, a/t = 20)

w1 w2 w3 wq ws we w7
1.9526E-7 4.2715E-10 8.9515E-8 4.8366E-10 3.0273E-09 5.3390E-7 1.1288E-7
1.9306E-7 3.1999E-10 4.6037E-8 2.5070E-10 2.1393E-09 5.0902E-7 8.2697E-8
4.4595E-8 1.0706E-10 1.0795E-8 4.8627E-11 1.7647E-10 2.9366E-9 2.0092E-10
4.2741E-8 1.0068E-10 8.4492E-9 4.3075E-11 1.7199E-10 2.6772E-9 1.2776E-11
1.4035E-8 4.2413E-11 4.3844E-9 9.0109E-13 1.8191E-11 3.6851E-11 6.0261E-13
1.3733E-8 4.0699E-11 3.9150E-9 6.1306E-13 1.7534E-11 2.5526E-11 6.4987E-13

o wWNRERO

The convergence as the model ordes increased is clearly visible. We also
observe the different rates of convergence in the interior, i.ewfcandw; and
near the clamped edge of the plate. The failure of the error corresponding to
the edge elements to decrease sufficiently fast is due tedbe singularitieof
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the three dimensional problem near the sets {d} which are approximated
poorly by (3.1). In this respect, it is important to note that the hierarchic plate
models inwg andw; can be coupled conformingly to a fully three dimensional
hp finite element discretization in the boundary layer subregigns (—d, d),
j=1234,5][18].

Finally, we compare the residual modelling error estimates according to The-
orem 4.1 with the ones obtained by extrapolation in Table 4 where we used
that

0<2(5(U") — Z W)= #(u) - #u"
= JJull = flu"? = fju" = ul|* = [le"]*

Table 4. Residual and extrapolation based estimation of the modelling error

q 2 3 4

EST/ [|ullgq 6.8428E-2 4.8321E-3 4.4481E-3

[u§ — ulZ)/ IullE ~ 5:5944E-2 1.6210E-3 1.3192E-3
Oeff = EST/||ug —Uulle@) 1.1059 1.7265 1.8363

We see that the residual based estimators are guaranteed upper estimators
which follow the modelling error accurately as the model order increases.
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