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Summary. The eigenvalue problem describing the frequencies of a fluid vibrat-

ing in a rigid cavity or within moving boundaries is considered. Based on the

method of Lagrange multipliers, a three field mixed formulation is introduced in

order to avoid the spurious circulating modes. Stability and optimal error bounds
are proved for two choices of finite element spaces.
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1. Introduction

The interaction between fluids and structures can, in many practical engineering
problems, significantly affect the response of the structures and hence must be
considered properly in the analysis.

Here we study mixed finite element methods to calculate the frequencies of
a fluid vibrating in a rigid cavity or within moving boundaries. Mathematically
the problem is an eigenvalue problem with irrotational eigenfunctions.

In the literature (see [12], [7]), standard finite element methods based on
the displacement formulation have received considerable attention due to its
simplicity and to the potential applicability to the resolution of a broad range
of problems (specifically nonlinear problems). Unfortunately, these methods ex-
hibit spurious rotational modes with nonzero frequencies. Since, in the frequency
analysis, only the irrotational modes are to be considered, Bathe, Nitikitpaiboon
and Wang proposed, in [11], a modified formulation such that these spurious
circulation modes are suppressed from the solution. Namely, they developed a
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three-field mixed displacement-pressure formulation based on the method of La-
grange multipliers, to enforce the irrotationality condition. Then they tested the
finite element discretization of such formulation into various fluid-structure prob-
lems, with different choices for the finite element spaces, obtaining satisfactory
results in some cases.

In this paper, we present a new mixed variational formulation of the con-
strained problem and analyze theoretically the corresponding finite element dis-
cretization. We consider two categories of fluid-structure interaction problems:
natural frequencies of fluids in rigid cavities and fluids vibrating in moving
boundaries (see Fig. 1 and 2). The corresponding mathematical formulations dif-
fer only for the boundary conditions. Applying known results on the eigenvalues
approximation by mixed finite element methods (see [10]), we obtain the error
estimates for the methods under consideration. More precisely, the fundamental
ingredients in the proof ar¥ -ellipticity and the inf-sup condition. While the
V -ellipticity is an easy task for our problem, provid&ds suitably chosen, the
discrete inf-sup condition can give some troubles. In fact, we have that the triple
(Q2, P1, Po) satisfy this latter condition, but the three spaces do not provide the
same accuracy. Enriching the third space with piecewise linear functions, we
obtain a triple for which we are not able to obtain the inf-sup condition. We cir-
cumvent this difficulty by presenting an augmented formulation via a stabilization
procedure.

Therefore we obtain optimal error estimates for the eigenvalues for both the
categories of problem and both the finite element methods considered.

An outline of the paper follows: in Sect. 2 we describe the problem and we
present the constrained variational formulation and its discretization; in Sect. 3
the error estimates are stated under quite general abstract assumptions on the
bilinear form and on the finite element spaces; the validity of these assumptions
is checked in Sects. 4 and 5 for the two choices of finite element spaces and for
the two categories of problems.

We end this section with the list of the basic notation used in the paper.

Let A be a bounded open set i&F. For any real numbes > 0, H3(A) will
denote the usual?-based Sobolev spacesiY(A) = L2(A)) and || ||s.a will stand
for their norms. Moreoverf( g)a = fAfg is the inner product i %(A). When no
confusion may arise we drop the subscrptHereafter we shall denote vector
valued functions and operators in bold face.

Letter C stands for constants which are not necessarily the same in any two
occurrences.

Finally, we recall the following standard differential operators for any scalar
functionr and any vector valued functiam= (uy, Up):

?r 7{%
gradr = <§>,< ) , rotr = <ardy> ,
oy Ax

0w Owp _ 0w Ou
divu = % + oy rotu = % ay
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Fig. 1. The rigid cavity Fig. 2. The piston container
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2. Statement of the problem

This section is devoted to the mathematical formulation of the problem and
to its discretization. We consider two categories of fluid-structure interaction
problems: natural frequencies of fluids in rigid cavities (see Fig. 1) and fluid
vibrating within moving boundaries. As an example for the second category we
chose the piston/container/spring arrangement shown in Fig. 2. We shall present
the two problems under a common formulation, which takes into account of the
differences in the boundary conditions.

Let us denote by? the open, bounded, simply-connected regioi®éfoccu-
pied by the fluid. We assume that the boundary2of C%! or piecewise smooth
with no reentrant corners.

The partial differential equations governing the motion of the fluid in the
cavity are the same in the two situations. They can be derived using the clas-
sical acoustic approximation for small amplitude motions of an ideal inviscid
barotropic fluid contained in the cavit§. Then the basic equations written in
Lagrangian form are

(2.1) pU+ gradP = 0 in 12,
(2.2) fdivU+P =0 inf2,

whereU is the displacement of the fluid afdis the fluid pressure. The densjty
and the bulk modulug are given constants. The superposed dots indicate partial
time derivative of second order.

In order to write the boundary conditions we distinguish between the two
cases we are considering.

In the case depicted in Fig.1, where the natural frequencies of a fluid in a
rigid cavity are studied, we denote by the boundary off? and we suppose
that the fluid is constrained to move only tangentially to the boundary, that is:

(2.3) U-n=0 onlIxy,
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wheren is the outward normal.

In Fig. 2 we have a rectangular container fulfilled by a fluid and closed at
the top by a plate. The plate moves in a rigid way in the vertical direction and
it is fixed through a spring which produces a traction proportional to the vertical
displacement with oppposite direction. Then denotinglhythe fixed walls of
the container? and by I, the surface of the plate at the top of the container,
we have the following boundary conditions

(2.4) U-n=0 only,
(2.5) mU~n=fKU-n+/ Pdy onlb.
I3

The first condition expresses the fact that the fluid can move only tangentially
along the fixed walls[;. Instead, alongl, we impose the continuity of the
normal displacements of the fluid and of the rigid piston and the equilibrium of
the surface forces. The term in the left hand side stands for the internal forces,
wherem is the mass of the piston. The two terms in the right hand side represent
the external forces: the traction force exerted by the spring, with stifideasd

the resultant of the pressure forces exerted by the fluid on the plate, given by
fFZ P dv. Moreover, since the motion of the piston takes place in a rigid way,
the displacement of the fluid along its surface results constant.

In order to study the vibration frequencies, we write problem (2.1), (2.2), (2.3)
and problem (2.1), (2.2), (2.4), (2.5) in the frequency domain. Putting together
the two situations, with the convention that in the first cAsés empty, we have
the following eigenvalue problem:

(2.6) pw?u — gradp = 0 in 02,
2.7) gdivu+p =0 ing,
(2.8) u-n=0 onlIly,
(2.9) K—-mwdu-n= [ pdy only.

I3

The unknowns are the real numbersthe vibration frequenciesi the amplitude
of the vibrations andg the pressure. We recall that 5, K and m are given
positive constants. We remark also that the boundary condition (2.9) implies that
u-n is constant alondy.

It is easy to obtain from (2.6)

(2.10) pw?rotu=0 in £,

hence we have two types of solutions: one corresponding to the vortex motions
(rotu # 0), for which the frequencies are zero and another one corresponding to
the irrotational motions (rat = 0) for which the frequencies are not zero. Since
in the frequency analysis, only the irrotational modes are interesting, we require
that rotu = 0. To enforce this constraint, we consider the following modified
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formulation, which can be obtained as the Euler equations associated to the
stationarity conditions of the augmented Lagrangian functional:dind, p, A
such that

(2.11) pw?u — gradp — rotA = 0 in £,

(2.12) Gdivu+p =0 in 2,

(2.13) arotu+A =0 in {2,

(2.14) u-n=0 only,

(2.15) K—-mw?u-n= [ pdy onlIy,
I3

(2.16) A=0 onlyUIy,

where) is the Lagrange multiplier associated to the irrotationality constraint and
« is a penalization parameter which has to be chosen sufficiently largesthan

Remark 2.1.We observe that if, u, p) is an eigensolution of problem (2.6)—
(2.9), with the irrotationality constraint, thew (u, p, A = 0) is an eigensolution
of problem (2.11)-(2.16).

Viceversa, in order to show that an eigensolutienu; p, A) of (2.11)-(2.16)
is an eigensolution of (2.6)-(2.9), it is necessary to prove imat0.
Let us take the divergence of (2.11) and eliminatghen we have

2

(2.17) ~Ap = 'OZ p in,
(2.18) gﬁ =0 onl,
20P _ 5
(2.19) (K—mw)a —pw/ pdy onI3.
n e

Similarly, let us apply the rotational to (2.11) and eliminatewve obtain

2
(2.20) ="\ ing,
«

(2.21) A=0 onlyjuly.

For a much bigger tharg, the first eigenvalues of (2.11)-(2.16) are eigenvalues
of (2.17)-(2.19), but not of (2.20)-(2.21); hence for such values df results
A=0.

In particular, it is easy to prove that far > ( the first eigenvalue of (2.11)-
(2.16) is the first eigenvalue of (2.17)-(2.19) and that for such value, dhe
unique solution of (2.20)-(2.21) i = 0.

In order to discretize problem (2.11)-(2.16), by means of a finite element
method, let us introduce a variational formulation. We shall obtain it formally in
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the present section and we shall specify the functional framework in Sect. 4 and
5 below.

Let Q andM be two subspaces &f?(£2), we multiply (2.12) byq € Q and
(2.13) by € M and integrate ovef?, so we have:

(2.22) p(divu,q) +(p,q) =0 Vg eQ,
(2.23) a(rotu, )+ (\,u) =0 Vi e M.

Due to (2.14) and (2.15), we consider the sp¥cef sufficiently regular vector
valued functionss such thatv - n =0 on I3 andv - n is constant alond?; then
multiply (2.11) byv € V, integrate by parts, use (2.16) and obtain

—(divv7p)+/ pV-ndy — (rotv, \) = pw?(u, v).
I3

Sincev - n is constant alond?» we can easily substitute the condition (2.15) and
we arrive at

Ku-n,Vv-np—(divv,p) — (rotv, A)
(2.24) = pw?(u,V) + mw?u-nipv-np WeV.

In view of the numerical discretization, it is convenient to take the following
linear combination of (2.24), (2.22) with = divv and (2.23) withy = rotv:

~v1(divu, divv) + (;1 — 1)(divv, p) +~2(rotu, rotv) + (12 — 1)(rotv, A)

+Ku - nip,venn, =w?p(u,v) +mu-npv-ongl We vV,

where~; and~y, are positive numbers such thatly; < g and 1< v, < a.
Summarizing, let

a(u,v) =y1(divu, divv) +~(rotu, rotv) + Ku-nip, v-np,
(2.25) Vu,vevV,
then we have the following problem:

Problem 2.2 Findw e R,ueV,p e Q and) € M such that

a(u,v) + (’761 — 1)(divv, p) + (12 — 1) (rotv, \)

= pw?(u,V) + mw?u-nip, VN

(2.26) wWev,
(2.27) p(divu,q)+(p,9) =0 VgeQ,
(2.28) a(rotu, )+ (A, ) =0 VueM.

Now let us briefly introduce the finite element discretization of Problem 2.2.
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Let us consider a family/, of regular and quasi-uniform meshes @f (h
is the meshsize). Le¥V, C V, Qy, € Q and My, € M be finite dimensional
spaces, which will be defined more precisely later. Then the discrete counterpart
of Problem 2.2 reads:

Problem 2.3 Findwy € R, up € Vy, ph € Qn and )\, € My, such that

a(un,vh) + (21 — 1>(divvh,ph) + (70[2 — 1) (rotvp, An)

— 2 2
= pwi(Un, Vh) + MwiUn - Ny, Vhs Ny,

(2.29) YVh € Vp,
(2.30) B(divun, gn) + (Ph,0h) =0 Von € Qn,
(2.31) a(rotun, un) + (An, pn) =0 Vun € M.

In the next sections we shall study the stability and the convergence properties
of this method for suitable choices ¥f,, Q,, andM,.

3. Abstract results

In this section we recall some basic results on the approximation of eigenvalue
problems (see for example [10]). Let us consider the eigenvalue problem of the
form: find y € R, U € H satisfying

(3.1) A(U,V)=yRU,V) YV cH,

whereH is a Hilbert space and: HxH — R andR : HxH — R are symmetric
continuous bilinear forms. We assume that there exists a positive cokstanth
that

AU, V)|

3.2 inf su >k VYU,V eH
52 OS2 U alve =

and that

(3.3) T:H+— H is compact,

whereT satisfies
(3.4) A(TF,V)=R(F,V) VV eH.

Assumptions (3.2) and (3.3) give that the eigenvalues of (3.1) exi&t ginceA
andR are symmetric; in addition, iR is positive definite the eigenvalues are all
strictly positive. Lety be an eigenvalue of geometric multiplicity we denote
by E the corresponding eigenspace with dihéE n.

To approximate problem (3.1), we consider a family of finite dimensional
subspace#i, C H, 0 < h < 1. Then the approximate eigenvalue problem is:
find xn € R, Uy € Hy, satisfying
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(3.5) A(Un, Vh) = xnR(Un, V) V Vi € Hp.
Concerning (3.5) we assume that

(3.6) A@O Vh|re1thHU —W|lu=0 VU e€eH,
and that there exists a positive constinindependent oh, such that

: |A(Uh,Vh)|
3.7 inf  su >k, VYV Un, Vhe€Hy.
3.7) 0 S U Vil = K2 U Vo € Hn

Then let us consider the operator

(3.8) Th:iH—H

defined as follows: for alF € H, TsF € H;, C H and satisfies
(3.9 A(ThF,Vh) =R(F, V) VYV VWV, € Hy.

Clearly Ty, is compact, since its range is containedHipn which is a finite dimen-
sional subspace dfl. Moreover, the assumptions (3.6) and (3.7) imply that
converges tdr uniformly in H ash — 0. Hence the following theorem holds:

Theorem 3.1 The eigenvalues of proble(8.5) exist inIR and, if R is positive
definite, they are strictly positive, bounded away from zero independently of h.

As a consequence of that, there are exactygenvalues;, i =1,...,n, of
problem (3.5) converging tg ash — 0 and the direct surig, of the eigenspaces
corresponding togn, | = 1,...,n, has dimensiom.

Let us set
(3.10) € = SUP vee Jnf [U — Vhlln,

and forN, M two subspaces dfl, let us defineg(N ,M), the gap betweeN and
M with respect to the norm dfl, by

(3.11) 5(N,M) = maxp(N,M),5(M,N)],
where
6(N,M) = Sup yen Jof U = Vlu.
Then we have the following error estimates, see [10]:
Theorem 3.2 There are constants C ang b- 0 such that, for0 < h < hg

(312) |X_th| §C6ﬁ7 I :17"'7n7
(3.13) 5(E, Ep) < Cep.

We state now the fundamental results on the approximation of the eigenvalues
and of the eigenvectors of Problem 2.2. These results are based on the theory



Mixed finite element methods in fluid structure systems 161

developped in [10]on the eigenvalue approximation by mixed finite element
methods.

LetH =V x Q x M be the space of the triplés = (v, q, 1), endowed with
the graph normi|V [l = (|V[}% + |all3 + [l1%)?. Then setting

AU,V) = a(u,v) + (;, - 1)(divv, D) + (1 — 1>(rotv7 )

+(75 — 1)(divu,q)+ g(g - 1)(p,q)

(3.14) +(vaz . 1)(rotu,u) +1 (jy - 1)()\,u)
and
(3.15) RU,V)=p(u,v)+mu-nnV-np,

Problem 2.2 can be reduced in the form (3.1).

In order to apply Theorem 3.1, we introduce the following assumptions on
the forma, the Hilbert space¥, Q andM and the finite dimensional subspaces
Vi, Qn and My, which imply thatA and R given by (3.14) and (3.15), satisfy
(3.2)-(3.7).

LetB : V — Q' x M’ be the operator given bBv = (divv, rotv) for all
veVandBT:Q x M — V/ its transpose, then set

(3.16) KerB={veV:(divv,q)=0Vq € Q, (rotv,u) =0Vup e M}

and

(3.17) KerB" ={(q,1) € Q x M : (divv,q)+(rotv, ) =0W € V}.

Let By be the discrete operator correspondingdtand B/ its tranpose, then

(3.18)
KerBn = {vn € V}, : (divvy, 0h) =0 Van € Qn, (rotvy, un) =0 Vup € Mp}

and

(3.19)
KerBJ = {(qh,uh) € Qn x My @ (divvy, gp) + (rotvy, up) = 0 Vv, € Vh}.

Let 41,72 € R such that
(3.20) 1<m<fB 1<m<aq,
then we assume:

(A1)- The bilinear forma is symmetric and continuous dhx V and there exists
k1 > 0 such that

(3.21) a(v,v) > mallv[[§ Wev,
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(A2)- There exists a constart > 0 such that

|(1— ;;)(divu,q)+ (1_ g)(rotu,m

Su
sy lully
1
Y1\ 2 Y2\ 2 2
> e (1= 7)1 s+ (1= ) e )
(3.22) Y(g, 1) € Q x M /KerB.

(A3)- There exists a positive constag such that
(3:23)  p(u,v)+mu-nip,v-nip, < kslullv(lvlly Yu,veV

(A4)- There exists:4 > 0, independent of, such that

(1= %) (v, aw) + (2= 72 ) rotun, )

su
e lunv
1
2 2 2
Z Rq ((1_ ’g) th”(z?/KerBJ + (1_ 142) /’LthA/KerBJ)
(3.24) ¥(Gh, 1in) € Qn X Mn/KerBy.

(A5)- The finite element spaces enjoy the following approximation property

(3:25) fim inf (v =Vllv+[d —anllq+lx — umlu) =0
Vi X Qp XMy

foreach ¥,q, ) € V x Q x M.

Notice that (A4) is the classical discrete inf-sup condition, which together
with (A1)-(A3) and (A5) ensure the stability and the optimal error estimates for
the source problem associated to Problem 2.3 (see for example [1]).

We can now prove the main theorems:

Theorem 3.3 Under assumptiongAl)-(A3), and (3.3) with A and R defined
by (3.14) and (3.15) the eigenvalues of Problem 2.2 existlinand are strictly
positive.

Proof. From (Al) and (A2), one deduces that the bilinear fondefined in
(3.14) satisfies (3.2); while, from (A3), one gets the continuityRofiiven by
(3.15). SinceA and R are symmetric and is compact, Problem 2.2 admits a
sequence of real eigenvalues diverging to plus infinity. Let us prove that they

are strictly positive: let us take = u in (2.26),q = é(l— ”g)p in (2.27) and

uw= i(l — 12))\ in (2.28) and sum the equations, then we have

1 1
a.u)+ (1= )em+ (1= 72) 00N =wPlplul+ miu -]
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From which, we obtain the following bound for the eigenvalues, using also
(3.21) and (3.23):
2 k1

we > . O
R3

We end this section with the following theorem regarding the eigenvalues of the
discrete problem and their approximation properties.

Theorem 3.4 Under assumption@\1)-(A5) and(3.3), the eigenvalues of Prob-
lem 2.3 exist inR and are strictly positive, bounded away from zero uniformly
with respect to h. Moreover, there exist constants C and-h0 such that the
following error estimates hold fod < h < hy

(3.26) lw—wn| <Ce, i=1...,n,
(3.27) 6(E, En) < Cen,

where$, defined in(3.11) is the gap between E and, Bvith respect to the norm
ofVxQxM and

(3.28)
=su », inf u-—v +|lp — + |\ — .
n=sup  wenee (U= Vallv +ip = dnlle 1A = pnlim)
Vi X Qp XMy

Proof. The existence is an obvious consequence of Theorem 3.1, since assump-
tions (Al)-(A5) imply that (3.6) and (3.7) are satisfied. Let us show that the
eigenvalues of Problem 2.3 are strictly positive. We take in (2\29F up,

in (2.30) gy = é(l— ”};)ph and in (2.31)un = i(l— V;))\h, sum the three
equations and we get

a(un, up) + ;(1— fg)(phvph) + i(l— Z)(Ah,Ah)

= wh[pl|unllg +miun - 017
Then (3.21) and (3.23) give

K1
wh? >
K3

At the end, using (A5) and Theorem 3.2, we obtain also (3.26) and (3.27).

In the next sections we shall specify some finite element spaces and check
the validity of (A1)-(A5) and of (3.3).
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4. The rigid cavity problem

Throughout this section, we consider the problem of natural frequencies of a
fluid in a rigid cavity (see Fig.1), hence the part of boundary denoted>big
empty. Therefore we define

(4.1)
Vo ={ve[L%)]?: divv € L%), rotve L%2)andv-n=0onIl}}

endowed with the norm

(4.2) v o= (| divv]3+] rotv][3):

and

(4.3) L2(£2) = {q € L¥()| / q dx = 0}.
(9]

Remark 4.1 Due to the assumptions a@ and to the boundary constraint in the
definition (4.1), the elements &fy belong to H(£2)]? and the norm (4.2) is
equivalent to the norm oH{(£2)]?, see [5] Sect. 3.1. Moreover the analogous of
the Poincag inequality holds, that is

(4.4) IME<Co v 5 O

Since I, is empty in the case at the hand, we have some simplifications: the
bilinear forma becomes

(4.5) ao(u, v) = y1(divu, divv) +~,(rotu, rotv) Vu,v € Vo,
so that
(4.6) a(V,v) > min(,72) v §  WE Vo

Moreover from (2.7) we have that € EZ(Q). Hence Problem 2.2 takes the
following form:

Problem 4.2 Findw € B, u € Vo, p € L2(£2) and A € L%(£2) such that

ao(U, V) + (71 — 1>(divv, p) + (12 — 1) (rotv, \)

3
(4.7) = pwd(u,v) Y e Vo,

(4.8) A(divu,q)+(p,g) =0 Vg e LA(1),
(4.9) afrotu, ) + (A, 1) =0 Vu e LA12).

Due to (4.1)-(4.6), it can be easily seen that (3.21) and (3.23) are satisfied.
The decomposition theorem for two dimensional vector fields belongingyto
(see e.g. [5] Sect. 3.1) gives that K&r {0}. Moreover it is clear that KB =
{(0,0)}. On the other hand we have that Br {(q, 1) € [L2(£2)]?: [, q = 0}.
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HenceB possesses a continuous lifting and the inf-sup condition can be written
as follows for every fixedy; and~, satisfying (3.20)

su|D|(1_ y)(divu,q)+ (1— 7;)(rotu,u)|

UEVo U o
2 2 .
> wa((1= ) allg+ (1= 72) Ilp)?
(4.10) V(q, p) € L2(02) x LA(2).

In order to apply Theorem 3.3, it remains to show that the opefatovq x
L2(£2) x L2(£2) — Vo x L2(£2) x L2(£2), defined by (3.4), (3.14), (3.15) and (4.5),
is compact. Due to the compactness of the inclusignx EZ(Q) x L2(£2) —
[L2(2)]? x [H1(£2)]?, it is enough to prove the continuity @ffrom [L2(£2)]? x
[H=1(£2)]2 into Vo x L2(£2) x L2(£2). For this, let us consider the source problem
associated to Problem (4.2): for everg [L2(£2)]?, find uf € Vo, p' € L2(12),

A e L2(£2), such that

ag(u’,v) + (E — 1)(divv,pf)+ (12 — 1) (rotv, ")

(4.11) =p(f,v) W e Vo,
(4.12) A(divu’,q)+(p.a)=0 Vg e LA(1),
(4.13) afrotu’, )+ (N, ) =0 Ve L3().

We need a priori estimates faf, p* and\f in term of the norm of in [L2(£2)]2.

Lemma 4.3 Letuf € Vo, p' € L4(2) and A" € L%(£2) be the solution of
(4.11)-(4.13) then for everyy; and -, satisfying(3.20) the following a priori
estimate holds

u o+ [P o+ 1A lo < ClIf[lo,

where C is a positive constant depending onlycqrs, p and {2 and not ony;
and ;.

Proof. For the sake of brevity, we drop the superscfiptl along the proof.
Let us takev = u in (4.11) and substitute (4.12) witlh = divu and (4.13)
with ¢ = rotu, so we obtain

(4.14) Bl div ulfg + o] rotulfg = p(f, u) < pllfllo]lullo.
and, thanks to (4.4), we arrive at

(4.15) u o< C|fflo.

Then we takeg = p in (4.12) andy = X in (4.13) and we get

Ipllo < €l divullo,  [[Allo < Caf|rotulle
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which together with (4.14) and (4.15) gives the desired a priori estimalte.
So we have proved:

Proposition 4.4 Problem4.2 has a countable set of real and strictly positive
eigenvalues.

Remark 4.5 The result of Proposition 4.4 can be extended to the case of a gen-
eral polygonal domaiif2. The crucial point is the compactness of the imbedding
of Vo into [L%(£2)]?. This can be obtained following the outline of the proof
of Proposition 3.1 in [5]. The main idea consists in applying a decomposition
theorem. Every element of Vo can be split as follows (see also the proof of
Lemma 5.1 below)v = gradr + rot¢, wherer and¢ are the solutions of a homo-
geneous Neumann’s problem and of a non-homogeneous Dirichlet’s problem for
the Laplace operator, respectively. Whenis a polygon with reentrant corners
the solutionsr and ¢ of these second order elliptic problems are noHif{((2),

but they still belong to somél*¢(£2) with ¢ > 0, depending on the width of
the angles off2, (see [6]). Therefore belongs to H¢(£2)]? for ¢ > 0, which is
compactly embedded intd.f(£2)]2. See also [14]for an analogous result in the
framework of Maxwell's equations. O

Let us consider a finite element approximation of Problem 4.2.
Let us suppose thailf is built by rectangles, then set

(4.16) Von = {Vi € [HY()]?] vnjc € [QK)]? VK € .77},
(4.17) h = {0h € LX(2)] thy € P1(K) VK € F},
(4.18) M@ = {1n € LA(9)| pink € Po(K) VK € T},

wherePy (K) is the set of polynomials of degrdeon K and Q,(K) is the set of
the polynomials which are quadratic separately with respect each variable.

In addition we shall denote b@h the subset of the elements @f, with null
mean value, that is

(4.19) Qn = {ah € Qn /QQh dx =0} .

The spaces defined above enjoy the following approximation properties:

(4.20) inf  v—vy o < Ch?||v|js WV e Von[H}N)?
VhEVon
(4.21) inf [lg —dnllo < Ch?|lall2 Vg € H3(92),
gh€Qn
(4.22) inf [lu— pnllo < Chllpls Vi € HY().
pheMP

Problem 2.3 becomes in this case:

Problem 4.6 Findwy € R, Uy € Von, pr € Qh and )\, € Mg’ such that
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ao(un,vn) + (73 — 1) (divn, pr) + (72 — 1) (rotvn, an)

3
(4.23) = pwh(Un,Vh)  YWh € Von,
(4.24) A(divun, oh) + (Ph,Gn) =0 Van € Qn,
(4.25) a(rotun, ) + (An, i) =0 Vpun € M.

The approximation assumption (A5) is satisfied. Hence it remains to verify
the discrete inf-sup condition (A4). To this aim, we can prove the following
equivalent Fortin condition (see [1]):

Lemma 4.7 There exists an operatdtl : Vo — Vg such that for every € Vg

(4.26) (div(v — IIv),0n) = O Vah € Qn,
(4.27) (rot(v — ITv), jun) = 0 Yup € M2,
(428) IIv ¢ < C v o

where C is a positive constant independent of h.

Proof. We observe that the paiv(, @h) is stable for the Stokes problem, hence
we can consider the operatdf : Vo — Vo, introduced in that framework, see
[1], Ex. 11.4.2.

Let us denote byB,(K) the subset 0Q,(K) containing the bubble functions,
that is the elements d,(K) which vanish alon@K. Then we define

(4.29) IIv = IIhv + IIh(v — I11V),
where for allK € .9,

{ v € [Qa(K)\Ba(K)I,
(4.30) IIv(M) =v(M) VM vertex ofK,

Jo v = [,v Ve edge ofK,

and, forv € Vg such thatfI< divv=0VK € .94, IIvi € [B4(K)]? and satisfies

(4.31) /K div(v — IIV)gh =0 Vah € P1(K).

We intend that the second condition in (4.30), which has no meaning for
belonging only toVy, is modified via the interpolation operator of Clement,
[2], in order to become meaningful. The operai@rdefined in (4.29)-(4.31),
satisfies obviously (4.26). Moreover, sinfgv vanishes along the boundaries of
the elements, we obtain from (4.30) for &lle .7

/K rot(v—Hv):/aK(v—Hv)-T:O,
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where 7 is the counterclockwise oriented tangential vector to the edgds. of
Finally, (4.28) can be achieved via a standard scaling argumeft.

Concluding, due to Lemma 4.7, we can apply Theorem 3.4 and we get the
following results:

Proposition 4.8 Problem4.6 has real and positive eigenvalues bounded away
from zero independently of h. Moreover, there exist constants C @addh that
for all 0 < h < hy it results

(4.32) lw—win| < C(h?+h)? Vi=1...n,
(4.33) S(E,En) < C(h?+h),

where E is the eigenspace corresponding to the eigenvalés is the direct sum
of the eigenspaces corresponding to the eigenvalygs = 1,...,n andd is the
gap between E andiEwith respect to the norm &fg x L?(£2) x L2(£2).

Notice that whenv is a simple eigenvalue (4.33) means
U= o+Ip—pnllo+IIA = Anllo < C(h?+h).

These results are optimal with respect to the choice of the spaces, but due to the
poorness oM?, they are not very appealing because there is a sort of loss of
accuracy with respect to the approximation propertie¥ gf and Q. Therefore

let us examine what happens whigtf is substituted by

(4.34) Mp = {1n € LA(9)| ik € Pu(K) VK € 7},
The spaceM,! has the following approximation property:
(4.35) inf [l — pnllo < Ch?||ull2 Vi € H¥(92).
pnEM}
As a drawback, the operatdi defined in (4.29)-(4.31) does no longer satisfy
(4.27) and (4.28). To circumvent this difficulty, we propose a stabilization proce-

dure following the main ideas of the method by Hughes and Franca, introduced
in connection with Stokes flow (see [8]and [9]).

Problem 4.9 Findwp € R, Uy € Von, pn € Qh and\ € Mh1 such that

ap(Un, Vh) + (;1 — 1)(divvh, ph)+(7a2 — 1)(rotvh, An)

(4.36) = pwi(Un,Vh)  WWh € Von,

(4.37) B(divUn, Gn) + (Pr,Gn) =0 Vo € Qn,

(4.38) a(rotun, i) + (A, 1) + ah®> " (rotAn, rotun)k =0
Kem

Yun € Mh]Z
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We remark that the solutions of the continuous problem (2.11)-(2.16) still satisfy
this new formulation because the term added in (4.38) is the irrotational constraint
A=—arotu=0.

Defining Hy, = Von X Qh X Mhl, whose elements are the triplég =
(Vh, Gh, tn), the Problem 4.9 can be written in the form (3.5) with

A(Un, Vi) = ag(un, vp) + (;}l - 1)(diVVh7 Pn) + (Zf - 1)(rotvh, An)

+(7y = 1) (aivun.an) + ;; (7~ Denaw+ (77— 1) (rotun, m)

(4.39) +i (7% = )+ (72 - 1)h2r<§z( (Ot An, 1Ot in)k .

and
(4.40) R(Un, V) = p(Un, Vn).

Hence we must check (3.7). To this aim we use an argument introduced by Franca
and Stenberg in [4].
As a first step let us prove the following lemma:

Lemma 4.10 There exist two positive constantg &d G which do not depend
on h, such that it results:

(1= %) (divn,an) + (1= ) (rotvi, un)

Su
VhEVF:h Vh o
1
71\? 72\2 ?
> ¢ (1= 72) IonlB + (1= 72) enlB) " - Cahl ol
(4.41) 7(h- n) € Qn X M,

1
where|| rot zinln = (g ez | Ot |3 ) 2.

Proof. The proof is quite simple. In fact, we have for all € Von, 0h € @h
andun € M3

(1— ?)(divvh,qh) + (1— Zéz)(rotvh,uh)

= (1_ E)(divvh,qh) + (l— Z)(rOchy Potin)

+(1 - Zj)(rOch’Mh — Popin),
wherePoup is theL2-projection of un onto M.

Now using the fact that the tripIeVG,@h,MhO) satisfies the discrete inf-
sup condition (3.24) (see Lemma 4.7) and that the interpolation error estimate
l|ltn — Popn|lo < Chl| rotun|/n holds for allun € M\, we arrive at (4.41). O

Let us define the norm il as follows
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1
2 Y1\ 112 2\%, 2\’
= + — + _
@4z alho= (v 5 (1 02) Tl (2 72) nl)
then we have (see [13]):
Lemma 4.11 There exists a positive constantikdependent of h, such that for

all U, € Hj, it results

(4.43) sup |A(Un, Vi)|

> Ko||Un||n-
VoeHn  [VallH

Proof. It is enough to prove that for a properly chos®h, the inequal-

ity in (4.43) is valid. GivenU, = (un,pn, An), let us considen, = (up —

OWh, —Pn, —An), Wherew, realizes the supremum in (4.41) and is such that
1

2 2 2 2

Wh o= ((1— };) lpn |3 + (1— 7&2) ||)\h0) . Then we have

(4.44)
A(Un, Vi) = A((Un, Pn; An); (U, —Ph, —An)) + OA((Un, Pn, An); (—Wh, 0, 0)).

It is easy to see that

A((un, ph, An); (Un, —Pn, —An))

_ 2 1/ m 2 1 2 72\ 2 2

= un G (1= )il (1= Il (1 7 )RRl rotanl
(4.45)
Moreover due to the definition of,, we have

A((Uh, ph7 )‘h)1 (_Wha 07 0))
= A((un, 0,0); (—whn, 0,0)) + A((O, pn, An); (—wn, 0, 0))

= —ag(Un, Wh) + (17 E)(divwh, Pn) + (l - Zf))(rotwh,kh)-
Then the continuity oy and (4.41) give

A((Un, Pn, An); (—Wh,0,0)) > — Up 0 Wh o

2 2 2
e (1= ) Il + (1= ) Iwi) —czh|rouh|h] W o

2 712 72\ 2
> ~Cs un g+ Cal(1- 1) g+ (2 7) Il

+

(4.46)—Csh?|| rot Ay ||2.
Substituting the inequalities (4.45) and (4.46) in (4.44) we obtain

2 2
A(Un,Vh) > (1-6C3) un §+5c4<(1—75) ||Ph||é+(1—f) ||/\h||%>

1 ol 2, 1 V2 2 V2 2 2
_ _ +(1 — _ -
+ 5 (1=T)ImlBe E(1= )l - 72 — oo rorul;
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so that choosing = ;min(l/Cg, (1-7)/Cs), we arrive at
(4.47) A(Un, Vi) > Cg||UnlIf-

On the other hand we have

2 _ _ 2 n 2 2 2 2 2
Vil = un = dwn G (1= 70 ) mnlig+ (1 %) wlig
2 2 Y1\2 . 12 2 Y2\2,\ |2
< _ _
<2 G+ 2)(1- 7)) mmlig+ @+ 29)(1- ) Ianlg
< Crl|Unlld

which combined with (4.47) yields the desired estimatel

Concluding, Lemma 4.11 implies that the assumptions of Theorem 3.2 are
satisfied, so that we have:

Proposition 4.12 Problem4.9has real and positive eigenvalues, bounded away
from zero uniformly with respect to h. Moreover, the following error estimates hold

(4.48) lw—wn| < Ch* Vi=1...n,
(4.49) 8(E,En) < CH?,

wheres is the gap between E and, Bvith respect to the norrt¢.42)

Remark 4.13 Let us take a triangular mesh and, instead of the spiggelefined
in (4.16), let us consider the space

Vi = {Vh € Vo| Vhc € [P2(K) +Bs(K)]? VK € 77},

whereB3(K) is the set of the bubble functions of degree 3kan

Then the results of Propositions 4.8 and 4.12 can be easily extended to the
approximation of Problem 2.2 by means &f}(, Qn, M) and §,, Qn, MQ).
In fact, the couple \(g,, Qh) is the well-known Crouzeix-Raviart element to
approximate the Stokes problem (see [3]). Moreover, we recall that the proofs
of Propositions 4.8 and 4.12 are based on the fact that the cougle @h)
is stable for the Stokes problem and that the triplg,{ Qn, MQ) is stable for
Problem 2.2.

5. The piston container problem

Let us discuss the second category of problems we have introduced in Sect. 2:
fluids vibrating in moving boundaries, (see Fig. 2). Without loss of generality
we takef? = (0,1) x (0,1). Hencel» = {(x,1);x € (0,1)}. In the present case,
sincel? is not empty, we set

Vi ={ve[L¥)]?: divv € L3(), rotv € L3(1),
(5.1) v-n=0onI; and v-n constant along>}.
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Lemma 5.1 There exists a positive constang Gepending only on the domain
{2 such that for allv € V;
(5.2) VI3 < Co(| divv|[3+ || rotv]j3 + v - 0y, ).
Proof. We apply a decomposition theorem ib?[£2)]? (see [5] Th.3.2), hence
every element of V; can be written as the sum
(5.3) v = gradr + rotg,
wherer € HY(£2) is the unique solution of
(5.4) (gradr, grads) = (v, grads) Vs e HY(2), (r,1)=0
and ¢ € H3(£?) is the only solution of
(5.5) (rotg, rotey) = (v — gradr, roty)) Ve € HE(02).
Takings =r in (5.4) and integrating by parts, we have
(5.6)
Iarack 3= (—divv.r) +vonir, | vy < CQldvvlo+ vyl grack o
P
To obtain the last inequality, we used also the Poiadaequality (for functions

with null mean value) and a trace theoremHA(f2).
Next, let us take) = ¢ in (5.5) and integrate by parts, then we get

(5.7) Irote |3 = |(rotv, ¢)| < C||rotv]lo] rotg|lo.

The inequalities (5.6) and (5.7) give (5.2), therefore the proof of the lemma is
completed. O

By Lemma (5.1) we endow the spa¥g with the following norm
(5.8) v 1= (| divv]+ | rotv+ v ny )z
TakingV = V; in Problem 2.2 we obtain the following Problem:

Problem 5.2 Findw € R, u € Vq, p € L2(£2) and X € L2(£2) such that

a(u,v) + (71 — 1)(divv, p) + (12 — 1)(rotv, A)

B
= pw?(U,V) + Mw?u - N, V- Nip,

(5.9) W e Vi,
(5.10) B(divu,q) +(p,q) =0 Vq € L%(2),
(5.11) afrotu, p) + (A, 1) =0 Vu € L3(2).

We recall thata is defined by (2.25).
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In order to deal with the constraint that n|, is constant introduced in the
definition of the spac#/,, we characteriz&/; as follows:

Lemma 5.3 Letw =(0,y), then

(5.12) V1 = Vo P spar{w}
whereVy is given by(4.1).

Proof. It is easy to see that belongs toV,, withw-n =1 onI. Then if we
take an element of the direct sum in the right hand side of (5.12), it is contained
in Vy. Viceversa, levv € V;. We setv; = V- njp, thenvp = v — ucW is in Vo.
In fact it is sufficiently regularyp - n vanishes alondy sincev - n andw - n are
both zero there; along, we havevy-n =v-n—uvc = 0, by definition ofv,. O

Then, since diw =1 and rotw = 0 Problem 5.2 reduces to:

Problem 5.4 Findw € R, Up € Vg, Uc € IR, p € L2(£2) and X € L2(£2) such
that

ap(Uo, V) + (E — 1)(divv, p)+ (12 — 1)(rotv, A)

(5.13) = pw?(Up + UwW, V) YV e Vo,
(5:14)  (K+amte+ (7 = T)(AP) = o+ uew, w) + moue
(5.15) fB(divuo,q) +Buc(1,q) +(p,q) = 0 Vg e L*(12),

(5.16) a(rotug, ) + (\, ) = 0 Vu € L3(1).

Problems 5.2 and 5.4 are equivalent.
Let us check if the assumptions (A1)-(A3) are verified for Problem 5.4: the
ellipticity (A1) corresponds to

(5.17)

a0(V, V) + vcX(K +71) > min(y, 72, K +72)( v 5+vcd) W e Vo, 1c € R
analogously the continuity (A3) is given by
(5.18)

p(Uo + UgW, V) + p(Up + UcW, veW) + MUve < kao( U 2+ UD)2( vV 2+ud)? .

The operatorB becomesé(uQ, Uc) = (div(ug + ucw), rotug). Hence we have
that KeBT = {(0,0)} and InB = [L2(£2)]?, which is equivalent to the inf-sup
condition (3.22), that is

(1= ) (v v+ vew), @) + (1= ) (rotv, )

supev, ) 1
veek (Vv o+ud)z

> (1= 1) Nl + (1= 72)

(5.19) v(g, 1) € [L2(2)]%
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Moreover, the operatofl associated to Problem 5.4 defined as in (3.4) with
(3.14) and (3.15) is compact. For the proof one can apply the same argument
used in sect. 4; namely is the composition of the compact inclusion 6§ x
R x [L2(£2)]? into [L2(£2)]?> x R x [H~(£2)]? and the continuous operator which
associates to each functiofi §) € [L2(£2)]? x R the solution of the source
problem corresponding to Problem 5.4.

Therefore we can apply Theorem 3.3 and we have that Problem 5.4 admits a
countable set of diverging eigenvalues which are strictly positive bounded away
from zero as follows:

min(3, K + 1)
(5.20) w? > .
max(2Co, 20| W/[3 +m)

To obtain this inequality it is enough to take= divug in (5.15) andu = rotug
in (5.16) and to substitute properly into (5.13) withs ug plus (5.14) multiplied
by uc.
Let us turn to the discretization of Problem 5.4. We use ayairQn, M,? and
M/ defined in (4.16), (4.17), (4.18) and (4.34) respectively to approxinigte
andL?(£2) (see also (4.21), (4.22) and (4.35) for the approximation estimates).
Hence the discretization of Problem 5.4 is:

Problem 5.5 Findwp € R, Uoh € Von, Ush € R, pr € Qn and A\, € My, such
that

ao(Uon, V) + (;}1 - 1)(divvh,ph) + (Zf - 1)(r0ch7)\h)
(5.21) = pwi(Uon + UchW, V) YVh € Von,

(5.22) (K +vy1)Uch + (E — 1) (1, Pn) = pw(Uoh + UchW, W) + MwiUch
(5.23)  B(divUuon,ah) + BUcn(1,0h) + (Pn,dh) =0V, € Qn,

(5.24)  a(rotuon, pun) + (An, n) =0 Vun € M.

It is evident that the assumption (A5) is satisfied.
Let us consideMy, = M2. The discrete inf-sup condition (A4) can be obtained
easily, in fact

(1= 7 ) (v (v + venw), an) + (1= 22 ) (rotva, pn)]

Supy, ev
Sciegg ( Vh (2)+U§h)5
(1= ) (divvn,an = fan)+ (1= 77 )(rotvi, )|
> sup
2Vh€V0h Vh 0

(5.25) +;<1—E)|/ﬂ%‘»

where fq stands for the mean value qf over (2.
Then using Lemma 4.7 and the fact thigh |3 = [[an — fanll3+ (| fanll3
we obtain the desired inequality: there exisisindependent of such that
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(1 7)) (v (v + veaw). ) + (1 ) (r0tvi, )
Su
P (W g+ og)}

71?2 72\ ? 1
> (175 ) lenllg+ (1 7)ol
(5.26)  V(0h, 1) € Qn x MY

Therefore we can extend to the present case the results of Proposition 4.8, that
is:

Proposition 5.6 Problem 5.5 has real, positive eigenvalues bounded away from
zero, independently of h and the following error estimates hold

(5.27) lw—win] <C(h2+h)? Vi=1,....n,
(5.28) 5(E,En) < C(h2+h),

whered is the gap between E and, Bith respect to the norm &fox R x [L2(£2)]2.

Let us now discretize Problem 5.2 by means of the triplg,(Qn, M?). Then
we can apply the argument of Sect. 4 and introduce the augmented formulation
analogous to Problem 4.9:

Problem 5.7 Findwh € R, Uy € Vin, Uch € R, prh € Qn and Ay € Mh1 such
that

ao(uon, o) + ( 17— 1) (divun, pn) + (17 1) (r0tvn, )

(5.29) = pwi(Uon + UchW, Vi) Vi € Von,

(5.30) (K +91)uen + (76’1 - 1) (L, pn) = pwi(Uon + UchW, W) + Mwilcn

(5.31)  B(divuon, dh) + B Uch(1,0h) + (Ph,Gn) =0 Vah € Qn,

a(rotuon, pin) + (An, iin) + ah? >~ (Yot An, rotun)k =0
Kem

(5.32) Yun € M{-

It is possible to define suitable bilinear formdsand R, see (4.39) and (4.40),
in order to see that this problem fits into the setting of the discrete eigenvalue
Problem (3.5). Hence we have:

Proposition 5.8 The eigenvalues of Problef7 are real, positive and bounded
away from zero independently of h and the following error estimates are valid:

(5.33) lw—win| < Ch* Vi=1,...,n,
(5.34) 5(E,Ep) < Ch?,

whered is the gap between E ang, &ith respect to the norm &fo xR x [L2(£2)]2.
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Remark 5.9 A remark analogous to Remark 4.13 can be done also for the
category of problems considered in this section.
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