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Summary. We consider the mixed formulation for the elasticity problem and the
limiting Stokes problem %, d = 2,3. We derive a set of sufficient conditions
under which families of mixed finite element spaces are simultaneously stable
with respect to the mesh sikeand, subject to a maximum loss @f(kdEl), with
respect to the polynomial degré&e We obtain asymptotic rates of convergence
that are optimal up t®(k€) in the displacement/velocity and up @J(kd51+5) in

the “pressure”, withe > O arbitrary (both rates being optimal with respechjo
Several choices of elements are discussed with reference to properties desirable
in the context of théhp-version.
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1. Introduction

We consider the equations of linear elasticity, givef by
(1.1)  2u(e(u), e(v)) + M(divu, dive) = (f, v) Yo € V=[HI()]C,

wherew is the unknown displacement apg A are the Laré parameters. Here,

2 c kY, d =2 3, is a polygonal or polyhedral domain. For the two-dimensional

case, this is the plain strain problem. For notational simplicity, we consider only
homogeneous Dirichlet boundary conditions, which is the “worst case” with
respect to the stability and convergence of the methods to be analyzed.

* The work of this author was supported in part by the Air Force Office of Scientific Research, Air
Force Systems Command, USAF, under Grant F49620-92-J-0100. It was performed while visiting
the Helsinki University of Technology

1 We will use the standard notatidh*(S), HX(S) for Sobolev spaces on §.- ||x,s will denote

the norm ofH¥(S) and (, -)s the L2(S) inner product. The subscrif will be dropped whers = 2
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The finite element analysis of problem (1.1) is complicated by the fact that
when the second Lainparameter is near the incompressible limit-¢ oo), one
observes so-called “locking” phenomena. This occurs due to an inability of the
finite element subspace far to satisfy the limiting constraint of incompressibil-
ity,

(1.2) divu =0,

and still retain the required approximability properties. As a result, there can
be a marked decrease in accuracy in computed values of interest such as the
displacement: and the “pressure”

(1.3) p=-Adivu.

This loss will be particularly evident when the standard formulation (1.1) is
discretized using polynomials of low degrkesayk = 1,2 (see e.g. [4]).

There are two main strategies for overcoming the effects of locking. The
first is to reduce the severity of the constraint (1.2) by having it satisfied only
approximately, using a mixed method. For this, (1.1) is written in the Herrmann
variational form by taking the pressuge (given by (1.3)) as an independent
unknown:

(1.4) 21(e(u), e(v)) — (p, divv)
A7Y(p, q) + (divu, q)

Here,W = L2(£2) is the subset of2(2) consisting of functions with zero
mean value. (The pressure will have zero mean value due to Dirichlet boundary
conditions.) Using an appropriate combinatiorstdblefinite element spaces for
w andp can then lead to approximations farandp that are uniformly optimal
with respect to\, even for low degree polynomials.

In the limit A — oo, we obtain from (1.4) the equations

(1.5) 2u(e(u), e(v)) — (p, divo)
(divu,q)

(fiv) YweV,
0 VqeW.

(f,v) YveV,
0 Vg eW.

For applications in fluid flow, this is the Stokes problem and theirs the
viscosity, u the velocity andp the pressure of the fluid. A locking-free method
for (1.4) then automatically yields a corresponding method for (1.5) with the
same convergence properties (and vice versa), so that our results in this paper
will hold for Stokes flow as well.

An alternate method to avoid locking is to retain the standard formulation
(1.1), but in conjunction witthigher-order elements. For instance, in [15] it is
shown that using thl-version on a class of triangular meshes with polynomial
degreek > 4 completely eliminates locking for both and p. (We will usek
instead ofp for the degrees, to avoid confusion with the pressure). For rectangular
meshes, however, it has been shown in [2] that iheersion can never be
made fully free of locking (as\ — oo), no matter how higtk is chosen. The
best uniform rate of convergence faris always at leasO(h—1) worse than
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the optimal rate. Note that using a higher degkeaot only increases, the
asymptotic order of convergence in the error bo@l, but also leads to a
reduction in the “constantC = C(k) (which is generally a decreasing function
of k).

The use of high order elements can also be realized in terms @ftleesion
of the finite element method, where a fixed mesh is usedopstant) ank is
increased to obtain accuracy. It was shown in [2, 19] thaptiersion eliminates
locking in u, with an asymptotic rate of convergence which is optimal. However,
the results in those papers do not guarantee that the pressures, when calculated
by formula (1.3), will be free of locking. In fact, some locking could occur, due
to the inf-sup condition for the underlying limit problem (1.5) being dependent
on k. Such lack of stability has been investigated in [12] for certain polynomial
spaces. To a large extent, however (for problems with smooth input data), this
loss in convergence for the pressures is compensated for by the enhanced rates
of convergence possible with higher order elements.

Let us mention that several mixgdtype elements have been studied for the
Stokes problem in the context of the spectral element method [6]. In this regard,
the “[Pc]N x P¢_," element (Method 5 below) is of particular interest since it is
optimal for« and quite close to optimal (with the loss of or(k'/?)) for p in
two dimensions. The three-dimensional version of this element has been analyzed
in [14]. (Our analysis here gives alternate proofs of the results in [6, 14] for this
element.)

In this paper, we consider families of mixed methods for the elasticity and
Stokes problems which are defined for each dedree 2. We obtain bounds
for the stability and asymptotic convergence of such methods which are uniform
in h and k.This allows us to precisely characterize the dependende afnthe
constantC (k) when theh-version is used, thereby providing a better picture
of the possible advantages of using a higher-order element from the family.
Similarly, in the case of th@-version, our analysis characterizes the effect of
using a more refined mesh.

We will be particularly interested in mixeldp-versions using such families
of elements. Our estimates will then show the effect of simultaneously increasing
the polynomial degre& and decreasing the mesh widthIn terms of locking,
both the use of a mixed method and of high-order elements will help in decreasing
such effects.

We will restrict our analysis to parallelogram and parallelepiped elements.
This is because of the technical difficulty in establishing prepisgability re-
sults over elements like triangles and tetrahedra, which lack suitable tensor prod-
uct bases. The best result for triangles available in the literature is from 1983
(see [19]) and says that the stability of tpeversion over a triangular mesh
deteriorates no worse th&r” for some (unknown.

Our goal will be to formulate families of mixed methods which possess a
set of desirable properties in the contexthgFextensions. More specifically, we
will, among various elements defined on parallelograms (and parallelepipeds),
characterize those that satisfy a stability condition in terms of hathdk, and
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that possess the correct approximability for both the velocities and the pressures
(again in terms oh and R. A further consideration, if minimal degrees of freedom
are desired, will be to limit the number of “internal” degrees of freedom. (We
will only consider elements that can be defined in terms of external and internal
shape functions fohp-codes described e.g. in [18].)

Let us note that thép-version can, with proper mesh-degree selection, lead
to exponentialrates of convergence. We have not addressed issues related to
such mesh refinement here. However, we do not assume quasiuniform meshes
and our results hold in particular for implementations involving “hanging nodes”
(see e.g. [10]), by which non-quasiuniform meshes can be constructed (for ap-
propriate domains) using only parallelogram elements. Our results then establish
exponential convergend®r such implementations (see Remark 5.4). (A fully
adaptivehp implementation has, in fact, been tested with excellent results, using
our elements with hanging nodes, by A. Patra and J. T. Oden at TICAM, Austin,
TX.)

The plan of our paper is as follows. In the next section we introduce our
notation on polynomial subspaces. In Sect. 3 we first define the finite element
method. Next, we give a general set of sufficient conditions to be satisfied by
the finite element subspaces. Then we discuss various alternatives. Among these,
we give an element (Method 1) which is the minimal covered by our analysis.
We also discuss why the Y x Px_, combination mentioned above (which is
a good choice in terms gé-refinement), is not as suitable for tig-version.
Section 4 is devoted to a projection operator central for our analysis. In the
last section we derive stability and convergence results in ternmsasfd k for
the methods satisfying the sufficient conditions introduced earlier. The stability
constant is shown to behave no worse ti&inz" . The velocities and pressures
are shown to converge optimally for al] simultaneously in both andk, except
for a possible loss ok€ in the velocity andk 'z *¢ in the pressure, for arbitrary
e€>0.

There is a close connection between mixed elements for the Stokes problem
and the so-called MITC elements for the Reissner-Mindlin plate equations, cf.
[7, 8]. In [17] we utilize this connection and give ap-error analysis for several
rectangular MITC plate methods. Our results have been presented in [16].

2. Polynomial spaces

Let us recall that in théh-version, the shape functions used are generally of
the nodal (Lagrangian) type, cf. e.g. [9]. However, in fheand hp-versions,

it is more advantageous to ukeérarchical shape functions that aron-nodal
Defining the hierarchical shape functions in terms of the integrals of Legendre
polynomials (cf. (2.1) below) helps in controlling the accumulation of round-off
error. Also, separating the basis into two setternal shape functions that vanish

on the element boundary amxternal shape functions that are non-zero on at
least part of it, allows continuity requirements to be imposed in a natural way,
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purely through the external functions. Moreover, the internal shape functions
may be condensed out at the local element level, so that they do not appear
in the global stiffness matrix. Note that imversion terminology the internal
shape functions are the so-called “bubble” functions. See [18] for further details
regarding basis functions fdp-codes. In this paper the stability of the methods

is studied locally on each element, and in this, only the internal shape functions
enter.

We denote byx, Iy andl, the reference intervals in the y andz variables
respectively, V|zlX {X| =1 <x < 1}. We will use the same notatidf for the
reference square( X Iy and cubd, x Iy x 1,. As usual, forS c R 1=123,
we let P«(S) denote the set of polynomials tdtal degreek and Qk(S) denote
the set of polynomials of degréein each variableMoreover,Q;(S) will denote
the “trunk” or “serendipity” space [9] of polynomials (defined below).

By Li(x), i > 0, we denote the Legendre polynomial of degreand for
i >1, we let

X
2.1) Ui(x) = / Li (t)dt.

-1
Let us define foi >0, ~ = (2 +1)"1. Then we have

+l . . .
‘ ‘ [ 2y if 0=,

(2:2) /_1 Li oL () dx = { 0  otherwise.
Also,
(2.3) Ui (X) = i (Li+1(x) — Li—1(x))
from which it follows that
(2.4) Ui(x1)=0

and (using (2.2)),

. V(2yisa+ 2vi-1) i =],
ivio(—=2vi—1) ifi=j+2
25 U: (X)U: (x) dx = YiYi 2( Yi—1 n J 3
@9 [ veueac i TRAE Y oS
0 otherwise.

That the internal basis functions can be expressed by the integrals of the
Legendre polynomials is a consequence of (2.4). Hencek ford, we let

(2.6) W(K)={ovlo=" > aUiU(y), & € R}
2<i+ <k—2

be the internal shape functionstotal degreek for the reference square, and for
k > 6,
@7 KK)={oo= > Ui )Ui(©2), a € R}

3<i+j+<k—3
be the internal shape functions tital degreek for the reference cube. The
internal shape functions of degr&ein each variablewe denote byk(K), i.e,
for k > 2,



372 R. Stenberg, M. Suri

k—1
(2.8) K(K) = {vfv =1 & Uix)Uj(y), & € R},
ij=1
A c
(2.9) K(K) = o= agUixUjy)Ui(2), ay € R}.

ihj,l=1
We point out that

(2.10) Ik(R) = {bgvlv € Pc_2a(K)},
(2.11) I(K) = {bgv|v € Qe_2(K)},

whereby is the usual basic “bubble function,”

_ [ Ui(x)Ua(y), for K C 1R,
(212) b = { Ui(X)U1(y)U1(z), for K c R3.

Next, let us define the sets of external basis functions we will use. For the
reference square, we define these as

(2.13) Ex(K) = Pa(ix)Px(iy) U Pc(ix)P1(ly).

For the unit squardﬁ € 22, we then have the following decomposition into
external and internal shape functions

(214)  Q(K) =E(K) ® k(K) and Q(K) = E(K) & Ik(K).

In the reference cube, we will use two alternatives for the set of external
shape functions, depending on whether the functions are of Qper Q; on
each face:

(2.15) Ex(K) = Py(i)Qk(ly x I7) + Pa(ly)Qe(ix x 1) + Pa(iz)Qu(ix x Iy).

(2.16) E((K) = P1(1)Qu(ly x 1) + Pu(ly)Qu(ix x I) + Pa(i7)Qu(ix x iy),

Then, for the unit cub&k c R3, we have the following decomposition into
external and internal shape functions

217)  Q(K) =Ex(K) ® k(K) and Q(K) = E/(K) @ Ik(K).

Let us finally remark that external degrees of freedom are groupechodal
edgeandface (in &%) shape functions, cf. [18].
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3. The finite element methods

The finite element methods are of the form: fingd, (p,) € V4, x W, C Vx W
such that

(3.1) 211(e(un), €(v)) — (Pn, divv)
A7 (pn, ) + (divu,, )

(f,v) Yve Vy,
0 Vq € W,.

By eliminating the discrete pressure, one can express the above in tenms of
as the only unknown,

(3.2)  2u(e(un), (W) + Aln divun, IIndive) = (f,v) Yo € W,

wherelI, is theL? projection ontowW,. The spacéV, consists of functions dis-
continuous across element boundaries and hence the projéétigs calculated
locally on each element.

We will define the finite element spac&% and W, as follows. LetZ;, be
a parallelogram or parallelepiped mesh @nnot necessarily quasiuniform. We
assume that;, satisfies the usual compatibility conditions andédgular in the
sense of [9]. FOK € @, let Fx be the affine mapping from the reference square
or cubeK ontoK .

Let Vk(R) ande(R) be families of polynomial spaces for the velocity and
pressure ofK , with the parametek related to the degree. Ofy,, we then define

(3.3) ViK) = {v=20F'| % e ViK) },
(3.4) Wk(K) = {p=poF " | peW(K) }.

Then, withn = n(h, k), the finite element spaces are defined as

(3.5) Va = {ve V]| vk € Vi(K) VK € %},
(3.6) Wy = {peW | plk € Wk(K) VK € & }.

Note thatV;, will consist of functions continuous of?.

Let us next state the set of sufficient conditions under which our analysis is
valid. We first assume that identical subspaces are used for all components of
the velocity, i.e.,

(A1)  Vi(K) = [Vi(K)]® ford=23.

Let VI(K) = Vi(K)NHZ(K) denote the set of internal shape functions used for all
components of the displacement, so thgl(K ) = Vi (K)N[Hg(K)]? = [VI(K)]“.

We note that there exists a spa¥gK) such that

(3.7) VkO(K) ={v|lv=brw, we Xk(R)}7

whereby is as in (2.12). Then we assume that the space for the pressure satisfies
the following condition.

(A2) Vg e [X(K)? Vg e Wi(K).
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Due to the definitions of the spgc\a’é’(lﬁ) and Xk(K), we can define a weighted
L2 projection.’% : H(K) — VI(K) by

(3.8) (w—TFv,w)g =0 Yuw € X(K).

We assume the following.

(A3) The projection operatogf satisfies

d—1
AUl g < Ck 2 lu

The local stability condition we will prove is a consequence of the above assump-
tions (Al) - (A3). To have a global condition we need the additional assumption,
(A4)  [Ex(K)]" € W(K).

Finally, we will assume that the spac®&(K) and Wi (K) contain polynomials
of degreek andk — 1, respectively, in order to get the optimal convergence rate
in both h andk. More precisely, we assume the following.

(A5)  [QUK)I® C Vi(K).
(AB)  Py_1(K) C Wi(K).

1K-

The method is then defined by specifying the spabe&), Wi(K), and
below we will discuss various alternatives. As we shall see, the selection of
admissible spaces essentially reduces to ensuring that (A2) is satisfied. For all
methods we will assume thit> 2, i.e. we exclude the case with with piecewise
constant pressures. (A low order stable method with this pressure space may be
found in [11, p.134].)

Method 1. We first consider the case when we chowégK ) to be the minimal
possible space satisfying (A6), i.e.

Wi (K) = Pi_1(K).

Since Vg € [Pc_2(K)]? for all g € Wi(K), (A2) is satisfied if we choose
Xk(K) = Pe_o(K), i.e. VO(K) = {v|v = bgw, w € Px_2(K)}. From (2.10) we
then see thaW2(K) = Is24_2(K). For the two dimensional case = 2) the
assumptions (A4) and (A5) then give the following space for the deflection

Vi(K) = [Ex(K) @ lks2(R)).

(Note that this is the spac®f(K) N P:2(K)]%)

Since our aim is to choose the spa‘z’@(lﬁ) as small as possible it would be
natural to choose external degrees of freedom of the E;m&) in the three
dimensional case. Fdr= 2, 3, this is not sufficient to ensure the condition (A4),
so we actually taked = 3)

oy = J [(EUR) UEA(K)) @ lra(R)]® for k =2,3,
3.9 Vk(K) = { [EI:k(IZ) @ |kf4(R)]3 o for k > 4.
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With this choice for\/ko(R) and XK(K) we denote the projection operateg by
2. In the next section we prove that (A3) holds for this projection.

Obviously, any combinatioi(K) x Px_1(K) for which the displacement
spacer(R) contains the one of Method 1 above is stable, but with more than
the minimal number of functions. We could, for instance, choose the following
alternatives.

Method 2. . A . .
(3.10) Vi(K) = [Q(K)]Y, Wk(K) = Pe_1(K).

This combination is well known to be stable in theversion [11, pp. 156-157].
Note that for largek this choice will lead toO(k?) more degrees of freedom

for the displacement than for the previous method. However, since the pressure
space is unchanged, there is no reason to expect better accuracy.

Method 3. A A A A
(3.11) Vi(K) = [Qlazg oK%, Wk(K) = Pe_1(K).

A possible advantage of this choice is that the basis functions are of a standard
type used irhp-codes. The number of degrees of freedom for the displacement is
now a fixed number higher than than those of Method 1dfer2 this number is

16). The approximability for the displacement (in termhgfis much better now,

being 21 — 2 orders higher. However, since the pressure space is unchanged, this
additional approximability will not, in general, translate into better computational
results, so again no advantage over Method 1 can be guaranteed (in terms of the
asymptotic rate of convergence).

Next, we will discuss alternatives in which the pressure iQjn.

Method 4. We choose A A
(3.12) Wk(K) = Qk—1(K).

The smallest choice foX,(K) for which (A2) holds, i.e. for whichvq e

[X(K)]9 for all g € Wi (K), is now X (K) = Qc_1(K). Hence, (3.7) and (2.11)
show that we should choo3¢’(K) = J.1(K). A natural choice is then to take
the external shape functions Bg(K ). The displacement space we get is then

(3.13) Vi(K) = [Ex(K) @ Jaa(K)]".

With this choice forvV2(K) andX(K) we denote the projection operatag by
A+1- (This convention for the indices will be convenient in the analysis.) In the
next section we will prove (A3) for this projection.

Again, we note that we can increase the displacement space from that of the
above method. By this we get the following convenient alternative.
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Method 5. A A A A
(3.14) Vi(K) = [Qea(K)]?, Wi (K) = Qe_1(K).

This choice has previously been analyzed for the case of theguezsion on

a single square element in [6, 14] (the {¥ x P¢_," spectral element). Our
general proof leads to the same estimates when applied to this case. Note that
in terms ofh-approximability the velocity and pressure spaces are not correctly
matched, since th®(h¥*1) approximablity in theH ! norm for the displacement

will be dominated by the error in pressures, which are dd{¥) accurate in

L,. Hence, for thenp-version, this space is once again not as suitable as Method
1, in terms of approximability.

Our final alternative will be the following.

Method 6.
(3.15) Vi(K) = [Qu(K)I?, Wi(K) = Qu—2(K) U P_1(K).

We note that it now holds thafq € [Qx_2(K)]9, and hence the analysis of this
method follows from that of the previous one (with a change in the indices).

This alternative appears to be quite useful. It uses standard basis functions for
the displacement, the only variable which enters into the calculation after con-
densing the pressure. Also, with respect to ltheonvergence, it has a correct
matching of polynomial degrees for the displacement and pressure. The differ-
ence from the previous method is that we now haweaximal pressure space
corresponding to the space selected for the velocities.

Note that this choice gives theaximalpressure space satisfying the assump-
tions, whenVi(K) is chosen to beQy(K)]¢.

Remark 3.1.If the elements are allectangular(as opposed to parallelogram or
parallelepiped), condition (Al) is not necessary. For such purely rectangular (or
brick) elementsV,(K) can be different for each of the different components.
This allows one to further reduce the number of degrees of freedom for the min-
imal velocity space given by (3.13) (Method 4) for the case when the pressures
are inQx_1. Ford = 2 (rectangular elements), we may define

(3.16) Vi(K) = [Ec(K) & M(K)] x [Ec(K) & MA(K)]
where
M (K)
MZ(K)

{bgvjv =x"y*, 0<r <k-2,0<s<k-—1}
{bgvlv=x"y%, 0<r<k-1 0<s<k-2}

Ford = 3 (brick elements), (3.16) will now have three components, with
MI(K) = {bgojv =x"y%z!, 0<r <k—-2,0<s<k-1,0<t<k-1}

andM2, M2 defined analogously.
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Remark 3.2.0ur definition of the methods also covers the case of a general mesh
where the mapping#k are not assumed to be affine. The analysis is, however,
only valid for the affine case. We would like to point out here that there is an
alternative way of defining elements in which the pressures are assumed to be
polynomials in the “global coordinates” and not in the “local coordinates” as
above. We could, for example, in Method 2 let

(3.17) Wk(K) = Px-1(K)
and then define the pressure space by (3.6). By this we get the method that has

been traditionally considered, and for which thestability has been established
for meshes with bi- and trilinear mappind&, cf. [11, pp. 156-57].

4. The projection operator

In this section we will analyze the projection operatay, defined by (3.8), for
the two different cases:

T = S for VIR) =z o(R) and Xe(K) = Pe_5(K),

and
T =S for VIK) = Jea(K) and X (K) = Qe_1(K).
For the second case this means thfit H1(K) — J((K) is defined through
(4.1) (v —Sv,w)g =0 Yuw € Q_a(K).
By I (K) we denote the set of all polynomials that vanishas. Then it is

easy to see that fat=2 (d=3) the functionsJ; (x)U; (y) (Ui (x)U; (y)Ui(z)) form
a basis for (K). We therefore have for any € | (K),

(4.2) ux,y) = a; Ui (x)U; (y)
i,j=1
and
(4.3) u(x,y,z)= > ay Ui(x)U;(y)Ui (2),

ij,l=1

in ®? and IR3, respectively, wherey; # 0 anday # O for only a finite number
of indicesi,j andl.

Next, we observe that when the projection operators are restricted to act in
I (R), they have the following simple characterizations.
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Lemma 4.1. For the projection operators/ : 1(K) — lkszd_2(K) and . :
I (K) — J(K) it holds that:

(4.4) SuUX,y) = Z a; Ui (X)U; (y),

2<i+ <k

k—1

ij=1

(4.5) Au(x,y)

for K c ®2, and

(4.6) Su(x,y,z) = > ag Uiy (Ui (@),

3<i+j + <k+1

k-1
Z g Ui (x)U; (y)Ui(2),

ihj,1=1

(4.7) Aux,y,2)

for K c 3, where ue | (K) is given by (4.2) and (4.3), respectively.
Proof. Consider the case?y for d = 2. Letu € I(R) be given by (4.2), and let

Z2u(X,y) = Z by Ui (X)U; (y)-

2<i+j <k

Due to the linear independence of the derivatives of the Legendre polynomials,
we have the characterization

(4.8) P 2(K)={vjv=">" cmU/"(X)Un(y), cm € R}, for d=2

2<l+m<k

Let w be one of the basis functions EL,Z(R) from the above characterization,
i.e., w=U/"(x)Ur(y), with 2 <1 +m < k. Integrating by parts and using (2.1)
- (2.4) we get

e’} 1 1

@9) () = 3y [ UGV dx [ YOIy = 41w
i,j=1 - -

A similar calculation shows that

(4.10) (#2Uu, w)g = 4y1ymbim

and hence by the definition o2y,

(4.11) bm =am, for 2<1+m<k.

The other cases are treated in exactly the same manner by using the fact that

Pk_g(R) = {v|v= Z Gijl Ui”(x)UJ-”(y)U(’(z), Cj € R},
3<i++ <k
(4.12) for d =3,
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and
. k—1
(413) Qc2(K)={vlv=>_ cU/()U/(y), ¢j € B}, for d=2,
ij=1
. k—1
Q-2(K) = {olv=>" cuU"()U" V" (@), cj € R},
ijl=1
(4.14) for d=3 O

Let us defineg; ,ay =0, fori,j orl =0,—1. Then we have the following
result in&? (with ux = du/0x anduy = du/dy).

Lemma 4.2. For u € | (K) given by (4.2),

oo oo

(4.15) ucllsg =D 4n% (518 -1 — 7j+18 j+2)°
j=0 i=1

and

(4.16) luylog =D 4nv (i1 -1 — visadie)>
j=1 i=0

(The summations in (4.15) and (4.16) are obviously finite.)
Proof. Using (4.2) and the definition df; (x), we have
U= > ai Ly (y),
j=1 i=1
so that, using (2.2), (2.5),

[eS) 1 oo
S 2y / > & Uj (v)2dy
i=1

-1 i1

o0 o0 +1
S Y@ [ty 2agae [
i=1 =1 -1

2

+1
. U; (Y)Uj+2(y)dy)

Z 2, (Z af V(20 -1+ 29j+1) + 235 & j+27) Y +2(— 27 41))-

i=1 j=1

Rearranging the terms in the inner sum, (4.15) follows from this. The expression
for HuyHéK is obtained analogously.O

The three-dimensional analog of Lemma 4.2, given below, may be established
by similar methods.
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Lemma 4.3. For u € | (K) given by (4.3),

oo o0 oo

HUXHSJZ = ZZZ8’Yi7ﬂ|((7]—17|—134,j71,|71—’Yj717|+1a+',j71,|+1)

=0 j=0 i-1
(4.17) — (YN 18 1l 1 — Y1418 41 +1))

Also, ||uy||§7,2, HqugK are given by corresponding permutations of (4.17).

Then we have the following result.

Thegrem 4.1. There exists a constant C independent of k such that for aay u
Hg (K),

d—1 . -
(4.18) | AUl g < CK'2 Jlullyg, for JF =%, Fan.

Proof. Suppose that we first prove the estimate for the operafatefined only
in 1(K). Sincel (K) is dense inHA(K), an elementary theorem (cf. e.g. [1,
pp. 13-14]) states that this operator has a unique norm-preserving extension to
Hol(R). It is now easily seen that this extension coincides wifhas defined by
(3.8) over the whole OH(}(R). Hence, it is sufficient to prove the estimate for
u e l(K).
For this, we first consideff in the two-dimensional case, with given by
(4.2)..4u is then given by (4.5). We write the sum in (4.15) as

k
>
=k—

i=1

|
N

Kk—

=

k—

=

[S'SIINC) k

j=0 i=1 1i=1

1l
o

(all other terms being zero). From this,

k—2 k-1

Kl = D0 4% (18 j -1 — i 1)
=0 i=1
k—1

+ > (A1 (28 k-2)* + i k(-18i k-1)?)
i=1
(4.19) < uli5g +B-

To boundB, letk be odd (say). Then for eaéh=1,... k — 1,

k—3

2
(4.20) Vk—2& k-2 = — Z(VZm—lai 2m—1 — Yom+18 2m+1)

m=0
(whereg; _; = 0). Hence,
k—3

k—1¢
(k28 x_2)* < 5 Z(’Yzm—lai 2m_1 — Yom+18i om+1)’
m=0

so that, using the fact thak_, <~; forj <k —1,
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k—3

k-1
(4210 W—1(k—28i k—2)? < 5 Z Ay yam(Yom—18 2m—1— Yam+18i 2me1)’-

m=0
Using a similar argument for#y(—_1ai k—1)%, we have

k—1k-2

< CkY Y A (i -1dij -1 — Yjeadi 1)

i=1 j=0
Ck|lux 2 ¢
0,K>

o}
N

(4.22)

IN

by (4.15). Hence, combining (4.19), (4.22), we have
(4.23) - Auxlg ¢ < CKllux|l5 ¢

An analogous bound holds forkuy |,z , from which the theorem follows for

For the other case”y, we may again obtain an estimate of the form

(4.24) - 72uxl? g < lluxllf ¢ +B-

5%
Here,B is now the sum oD(k) terms of the form 4; v« _; (yk,i,lai,k,i,l)z and
Ay yk_iﬂ(yk_iai_,k_i)z. It can be seen that each of these terms will again satisfy
the bound in (4.21). Hence, (4.23) will hold forg, as well, and the theorem
follows for d = 2.

Let us now prove the theorem fax, for the cased = 3. Analogously to
the preceding proof, we first note that the sum in (4.17)|rf(3’vyfux||§R may be
decomposed as ’

k k k-1 k—2k—-2k-1 k k—2k-1 k-2 k k-1
22> = 2+ X 3D
1=0 j=0 i=1 1=0 j=0 i=1 I=k—1j=0 i=1 1=0 j=k—1 i=1
k k k-1
[ 23 =avs0
I=k—1j=k—1 i=1
where, using (4.17), it is easy to see that
A< udlPg

Let us now bound a typical term frol, say

k

|
N

k—

|_\

8% Yk—1((V —17k—28 j —1k—2) — (Y+17k—28 j+1k—2))*
i=1

I
o

j

Then, analogously to (4.21), we have (foodd e.g.), foreach=1,... k — 1,
j=01,....k—2,
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Y —17k—28 j—1k—2 — Vj+1Vk—28 j+1k—2 =
k—3

2
=) ((-172m-180 j1.2m-1 — % —1V2m18 j —1,2m+1)

m=0

(4.25) — (Yj+1Y2m—18 j+1,2m—1 — Y +1Y2m+18i j+1,2m+1))

from which, using the same arguments as those leading to (4.22), we may again
establish

B < CKlluy |24

Finally, consider a term fronb, e.qg.

k—1

Z 87 Tk—17k—1(Tk—2Vk— 284 k—2,k—2)-
i=1

We have fori =1,2,...,k — 1, k odd,

Yk—2Vk—28§ k—2,k—2 =
k—3 k—3

2 2
- Z Z(('Vanl'Vmelai 2n—1,2m—1 — Y2n—172m+18i 2n—1,2m+1)

n=0 m=0
— (Yon+172m—18i 2n+1,2m—1 — Y2n+1Y2om+18 2n+1,2m+1)) -
Note that unlike (4.21) or (4.25), there aB&k?) (not O(k)) terms in the above

sum. We may now use a similar argument as that leading to (4.22), except that
due to theO(k?) terms, we now get

D < CK¥ux2¢.-

The result follows for.4, and, by similar arguments, for the cag@, as well.
(]

Remark 4.1.For A, the estimate (4.18) isharp i.e. there exists a sequence
u® e H}M(K), [[u®]|, g =1, such that

| Au®lly ¢ = Ck
This follows from the results in [6, 14], as explained in Remark 5.1 ahead.

Remark 4.2.1t may be easily seen that defining one-dimensional analoggpf
the estimate (4.18) in Theorem 4.1 will hold for the calse 1 as well.
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5. The stability and error analysis
5.1. The inf-sup condition

As is well known [7], the convergence of mixed methods depends not only on
the approximability of the spacég,, W,, but also on the satisfaction of an inf-
sup or stability condition between them. In this section, we establish such an
inf-sup condition in terms of both andk, for a general FEM that satisfies the
conditions (Al) - (A6). The main theorem is the following.

Theorem 5.1. Let the spaced;, W, satisfy assumptions (Al)—(A4). Then for

d=23 |
(5.1) sup VD S gl Vg € W,
veva(or vl

where the constant C is independent okhand q.

This stability estimate follows from the corresponding local estimate on each
element:

Lemma 5.1. Let the spacedi(K), Wi (K) satisfy assumptions (A1)-(A3). Then
for every g € Wk(K) N L3(K) there exista* € Vi(K) N [HE(K)]® such that

(52) (dive',q) > Cik 2|7 |3 and [v*|ik < Colla*[lok

where G, C, are positive constants independent oftKk and ¢'.

Proof. Let g* € Wi (K) NL3(K) be arbitrary and defing*"c Wi(K) N L3(K) by

4" =qg* o F (9" is in L§(K) since Fi is affine).
On the reference elemekt, the continuous inf-sup condition holds. Hence,
there isv'€ [H3(K)]® such that

and |9, <107

0K

(53) (dive, )z > Cl§

“lox
with C independent 0f* andv.

Define v* € Vko(K) by * = .%v. By (A2), the definition of.%, (5.3) and
(A3), we then obtain (integrating by parts)

@ive", 47 = —(@", V8" ) = —(F. V4 )
(5.4) = —(8,V4") = (dvd,q°)
> Clg° |2,
and d—1 d—1
(5.5) 071k = [ FBlig < CK'2 Bk < CK"2 (167 [0k

This proves the discrete inf-sup condition on the reference element.
Next, we let

(5.6) v =Py @)k @V 2nd = |3 |7k D" o F k—@D/2RS
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whereJk is the Jacobian matrix aFx and|J k| is the determinant o . Pk
is the Piola transformation, and by assumption (82" € Vi(K) N[HZ(K)]4.
Using the basic property of the Piola transform (c.f. e.g. [7, pp. 97-98]), we have

(5.7) (dive*, q*) = (dive®, §*)gk~@-D/2hg,
By the assumption of the regularity of the elements, we have
(6:8) [la"llox ~ Ch/*la"llog and|v*ak < Ck@=D/2h 27 ¢

The assertion then follows from (5.7) and (5.8), and the local conditions (5.4)
and (5.5). O

We now use the local stability result above to prove the main theorem, using a
standard argument, cf. e.g. [11].

Proof of Theorem 5.1Let q € W, be arbitrary and writg] = q+q* with q being
the L? projection ofq onto the space of piecewise constants:

VT/n ={geW, | gk € Po(K) VK € #n}.

It is well known (cf. e.g. [11]) that the paiftf,, W,) is stable, provided (A4) is
satisfied. Hence, there is< V;, such that

(5.9) (divw,d) > Cs[ql§ and|v]1 < Ca[lqllo,

with the positive constant§; and C,4 independent ot andq.
For eachK € 7y, we haveq™x € Wk(K)N L3(K) and hence by Lemma 5.1
we can findv* € V; such thatv*x € [Hg(K)] and

(5.10)  (dive*,g*) > Cik~@/2)|g* |2 with |v*|1 < Cal|q*|o.
Sincev* | € [HZ(K)]¢, it holds that
(5.11) (divv*,q) = 0.

Let now v = év + v*. Using (5.9)-(5.11), the Schwarz inequality and the
arithmetic-geometric mean inequality we get
6(divo, Q) + 6(dive, g*) + (dive*, q) + (dive*, q)
6C3|l§ — élvlalla*flo + Cok =2 g I3
8C3|d13 — (6/26)|a* 1§ — (6e/2)|v]f + Cik =@~ D/2|lg*|§
5(Cs — (CFe/2))all5 + (Cok /2 —(5/2e)) 19”3
Csk = “@=72(jq)1 + lla™ )
Csk @72 qI3,

(divw,q)

v v v v

where we first choose= C3/CZ and thens = ¢C;k~@~1/2_ Since we then also
have
[v]1 < 6[v1 + [v™]1 < 6Callq]lo + C2l|q™[lo < C|lqlo,

the assertion is proved.
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Remark 5.1.It is clear that an improved version of (A3) would imply an im-
proved stability estimate in Theorem 5.1. In [6] and Sect. 3 of [14], it is proved
by means of counterexamples that the stability estimate of Theorem &harig
when Method 5 is used over a single square. This implies that (A3) is the best
estimate that can hold fagf = .44, in this case (Remark 4.1). We remark
though, that numerical experiments in [14] indicate that the effect of the loss of
O(kdEl) in the stability may not be fully apparent til is quite high k > 20 in

two dimensions).

5.2. Convergence estimates

We now use Theorem 5.1 to derive estimates that give asymptotic rates of con-
vergence in terms of both and k. Suppose the regularity of the solution is
expressed in terms of Sobolev spaces, then lo#nd p converge at an opti-

mal rate in terms oh, while the rate in terms ok is optimal up toO(k¢) for

lw — un||1 and up toO(K "z *) for ||p — pnllo. Similar optimality holds for the

L2 estimate||u — un||o provided the following shift theorem holds,

(5.12) [[wll2 + [[pllx < Cl[fllo-
We will require the following interpolation result.

Lemma 5.2. Forany r > 1, let Y' = X" x Z", where X = [H"(£2) N H}(£2)]¢
and Z' = H"=}(£2) N L3(£2). Then using the K-method of interpolation [5], for
q=r1+0(r2—r1), r2>r; >1,0<60<1,

[Y™, Y]y =Y9
Proof. We note that
Z"={p|pe H" ), I(p) € {0}}

wherel (p) = [, p dx satisfiesl € £ (H =1(12),R) for r > 1. This is easy then
to verify the conditions of Theorem 14.3 of [13] and thereby deduce that

(2,27, = Z°.

Using the fact that a similar relation holds for thé spaces, we may then use
a standard result on the interpolation of products of spaces (equation (6.42),
Chapter 2 of [13]) to get the lemmaQO

Theorem 5.2. Let assumptions (A1) - (A6) be valid and suppose that the solution
to (1.1) satisfiequ, p) € [H™(2)]¢ x H™1(£2). For everye > 0 there is a
positive constant Csuch that

(5.13)[[u — wnlls +k~@"Y2p — pollo < Ch'k ™™ (|fwlm + [P Im-1),

with | = min{m — 1,k}. When the shift theorem (5.12) is valid, we additionally
have
(5.14) lu — anlo < Ch™ k™™ (|l m + [[Pllm-2).
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Proof. It is well known that it is sufficient to perform the error analysis for
the completely incompressible case, i.e. for the approximation of (1.5) (see [7]).
This case is covered by the classical theory for the approximation of saddle point
problems (cf. [7, 11]). Using this theory, the Korn inequality and the stability
condition (5.1) give the two estimates

lle = wnls + k= @=H2)p — pollo
1 < CKOY2{inf |ju —v|j1+ inf |p—
(5.15) =C {inf llw—vfa+ inf llp —allo}

and

(5.16)  flu—unl+k"“Y/2[p—pylo <C inf u—v|s+ inf p—allo}

whereZ,, = {v € V;| (divev,q) = 0Vq € W, }. From the second estimate (5.16),
we directly get (by takingy = 0 andq = 0)

(617) llw — unlz + k=2 )Ip —puflo < C(lully + [Ipllo)-

On the other hand, for any> 1, the first estimate (5.15) gives, using (A5) and
(A6) (for w, p smooth enough),

[ — wn [l + K“=D2[p — palo
(5.18) S C(S)hmln(sfl,k)kfs+1+(d71)/2(||u||s + ||pHsfl)~

Lets—1> (d—1)(m—1)/2e. Fork > s—1, we may now interpolate between
(5.17) and (5.18), using Lemma 5.2 with= ’;‘:11 to get (5.13) (see Theorem
4.2 of [3] for details). Fok < s — 1, we may assumk < (d — 1)(m — 1)/2e.
Then choosingC. to be (4~1)MD)@-1/2 (5.13) follows by takings = m in
(5.18).

To prove thelL?-estimate for the deflection we have to slightly modify the
usual duality argument. As usual, we first consider the solutign)(e V' x W
to

(5.19) 2u(e(z), e(v)) — (r,divov)
(div z,q)

(w —up,v) Y€V,
0 Vg eW.

With the regularity assumption (5.12) we have
(5.20) [zl + [[rfl2 < Cllw — unllo.
In the usual way it now follows that
(5.21) lu —unll§ = 2u(e(z — 2), e(u — un))
—(r =7, div(u — un)) — (div(z — 2),p — pn)

foranyz € V, andr € W,.
Next, we denote by, rn) € V, x W, the “Stokes projection” of4,r), i.e.
the solution to
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(5.22) 2u(e(z — zn),e(v)) — (r —rp,diveo) = 0 Yo € V;,
(div(z — zn),Q) 0 Vq € W,.

From the estimate (5.13) already proven we have
(5.23) 12 — znlls < Cchk (|22 + [IF[|2)-

We now choose
(5.24) zZ=zy, and T = Il,r,

whereIl,, denotes thé&? projection ontow,,. From the second equation in (5.22)
we then have

(5.25) (div(z — 2), pn) = (div(z — zn), IInp) (= 0),
and thus (5.21) and (5.23) give

u— un”(z) = 2u(e(z — zn), e(u — un))

—(r — Inr, div(u — up)) — (div(z — 2q), p — 1Inp)

< C{llz = zllallu — walla + lIr = Tar lollu = wals + 12 = zall2llp — Mapllo}
< {Chk 2| 2llo(|ju — wnl1 +[Ip — Hnpllo) + ChK|r g]|u — wnll1 }.

Hence, the asserted estimate follows from (5.20), (5.13) and the interpolation
estimate (cf. [3]) for||p — ITnpllo. O

Remark 5.2.For the approximation of the stress tensor = 2ue(un) + pnI we
thus get the estimate

(5.26) lo — onllo < Cch'k ™™ @ D/2% (|l |y + [ p]|m—1).

Remark 5.3.For thep-version of the two dimensional problem it was shown in
[2] that for w with divu = 0 there is an approximation' € V;, such that
dive' =0 and ||u —u'|j1 < CKk™™|w|m.

By using this in (5.16), one gets the estimate
(5.27)  |lu—un|ls + k%P — pnllo < Ck™(|[et[|m + |[Plm-1).

However, since we have a parallelogram mesh, the results in Sect. 5 of [2] show
that with respect to the mesh sitg |u —u'[ly > Ch'~* for any u' which
satisfies diw' = 0 exactly. Based on (5.27), though, we expect thatay be
taken to e 0 ( andC. = C) in Theorem 5.2.
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Remark 5.4The factorh'k—™1 in (5.13) represents the asymptotic rate of best
approximation wherhp spaces over quasiuniform meshes are used and the so-
lution (w, p) is in [HM(£2)]9 x HM1(1).

Note that in general (5.15) above guarantees that the rate of convergence
for the finite element solution will be no worse than the best approximation
rate modulo a maximum possible loss @tk9-1) for p and O(kdEl) for w. It
is well-known that for properly constructdtp spaces, the asymptotic rate of
best approximation igxponentialsee e.g. [3]). The meshes required are highly
refined near the corners of the domain (non-quasiuniform). Such meshes can still
be constructed over various domains of interest using only the parallelogram
elements we have analyzed here (by the use of hanging nodes — see e.g. [10]).
Then, since the loss due to the lack of stability is at malgebraic (5.15)
establishegxponentialconvergence for suchp methods.
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