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Summary. New approaches for computing tight lower bounds to the eigenval-
ues of a class of semibounded self-adjoint operators are presented that require
comparatively littlea priori spectral information and permit the effective use of
(among others) finite-element trial functions. A variant of the method of inter-
mediate problems making use of operator decompositions having theTfofm

is reviewed and then developed into a new framework based on recent iner-
tia results in the Weinstein-Aronszajn theory. This framework provides greater
flexibility in analysis and permits the formulation of a final computational task
involving sparse, well-structured matrices. Although our derivation is based on
an intermediate problem formulation, our results may be specialized to obtain
either the Temple-Lehmann method or Weinberger's matrix method.
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1. Introduction

Oftentimes the successful analysis of physical phenomena rests on the ability
to closely bound the eigenvalues and eigenfunctions of differential operators.

Frequently encountered examples include the prediction of resonant frequencies,
vibrational mode shapes, and buckling loads of elastic structures; determination
of bound state energy levels and associated electronic configurations for atoms
and molecules; and computation of critical values of Reynolds numbers in viscous
fluid flows. The related Hilbert space operators in such problems typically are
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semibounded below and self-adjoint, having eigenvalues of finite multiplicity
below the lowest point of the essential spectra (if any exist).

Calculation of a bracketing interval that is guaranteed to contain a selected
operator eigenvalue is equivalent to the computation of rigorous upper and
lower bounds to that eigenvalue. While upper bounds are easily obtained by
the Rayleigh-Ritz procedure (often manifested as the finite-element method), the
computation of eigenvalue lower bounds is fundamentally more difficult and it
iS necessary to incorporagepriori spectral information that the Rayleigh-Ritz
procedure does not require.

The Weinstein-Aronszajn intermediate problem methods are among the most
flexible of the available techniques for obtaining these lower bound estimates.
The original method was introduced by Weinstein in 1935 (cf. [36]) and provided
a means of obtaining improvable lower bounds by incrementally tightening con-
straints. With the development of Aronszajn’s extension in 1950 [1], the method
of intermediate problems became much more widely applicable through the use
of monotone sequences of quadratic forms.

The customary approach conceives of the original operator eigenvalue prob-
lem as a perturbation (generally large, possibly even relatively unbounded) of
a simpler, resolvable, self-adjoint eigenvalue problem {thse problem that
provides rough lower bounds. The full perturbation is approximated systemat-
ically by related finite-rank perturbations producing eigenvalue problems that
are intermediate between the base problem and the fully perturbed (unresolv-
able) eigenvalue problem. The associated intermediate eigenvalue estimates are
obtained by computing the spectrum of the base operator summed with a posi-
tive semidefinite finite-rank operator that approximates the full perturbation. In
conventional practice, this requires not only explicit knowledge of the reducing
spaces and spectrum of the base operator but also special choices for the range
space of the approximating finite-rank operator.

The primary computational task arising from the Weinstein-Aronszajn meth-
ods generally is a dense matrix eigenvalue problem that may be difficult to
prepare and ultimately may impose heavy burdens on available computational
resources. These practical obstructions are due primarily to the explicit involve-
ment of the base problem eigenfunctions insofar as these functions have support
throughout the problem domain and may be difficult to handle analytically. This
fundamental difficulty has been effectively eliminated with methods we present
here. Our work has elements in common with the earlier work of Weinberger
[34, 35] and Gay [17], and follows up on a previous report by the second author
[18] using techniques developed by the first author in [7].

After reviewing basic intermediate problem methods and recalling a useful
variant (the method of second projection) in Sect.2, we develop in Sect.3 a
computational approach that requires no eigenvector information from the base
problem and only modest auxiliary information about the base operator spectrum.
We also mention an alternative formulation that may be preferable in some cir-
cumstances. Section 4 contains a discussion of various monotonicity properties
for the newly derived bounds and Sect.5 explores the relationships with previ-
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ously known methods. Section 6 touches upon some computational issues related
to usage and provides illustrative examples.

2. Intermediate problem methods

2.1. Setting

Let $y be a separable complex Hilbert space with ndjafl and inner product
(u,v) (conjugate linear with respect to the first argument). Bebe a self-
adjoint operator on a domain Do) dense inf). We suppose thak is bounded
below with spectrum that begins with isolated eigenvalues of finite multiplicity,
A1 < A < ... < A < 00 and corresponding orthonormal eigenvectaoysu,,
etc. Here\, denotes the lowest limit point of the spectrum&gfthat is, the first
point of the essential spectrum.Afhas compact resolvent then by convention we
setA. = oco. The closure of the quadratic forfiu, u) is denoted bya(u) with
an associated domain Dom)(> Dom (A). One may refer to Kato’s excellent
treatise [23] for basic results on quadratic forms in Hilbert spaces.

To apply the method of intermediate problems, it is necessary to have knowl-
edge of a related eigenvalue problem

(2.2) Aou = Au

where Ay is self-adjoint and bounded below on a domain Ddég)(dense in
$, andag(u) < a(u) for u € Dom @) c Dom (g). The base problem (2.1), is
assumed to have computable eigenvalpdy, such that? < A3 < ... <)% <
oo together with corresponding orthonormal eigenvectgrsi?, etc. Consistent
with previous notation, the lowest point of the essential spectrurdgohas
been denoted? . The variational characterization for eigenvalues of self-adjoint
operators implies that?, < A, and that for each satisfying\i < A2, \?
exists and\{ < )i [cf. 35]. In this way, the base problem provides lower bounds
to the eigenvalues oA.

Unfortunately most suitable base problems (havioghputableeigenvalues
and eigenvectors) produce very poor bounds, that are furthermore fixed and
unimprovable. Intermediate problem methods provide an approach for adding
back incrementally what was lost in passing frémo Ag. This is done in such
a way so as to permit explicit resolution of the intermediate spectral problems —
ultimately producing computable, improvable lower bounds to the eigenvalues of
A. A thorough description of the ideas and techniques surrounding this approach
may be found in [35, 36], and in the earlier review article [16]. We review one
particular technique here — the method of second projection.

We assume in all that follows that(u) admits a decomposition as

a(u) C ag(u) + || Tu||?
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where T is a closed operator fronh to a Hilbert spacef). (equipped with
inner product(., .).) and “C” here signifies that(u) is a closed restriction (not
necessarily proper) of the form sum to the right.

2.2. An illustrative example

Let 2 be the unit cube i3 andu(x) = {uy(x), Ux(x), us(x)} represent a vector-
valued vector function defined fare 2. Foru € (H2(2)NH&(£2))% ando > 0,
define theLamé operator

Au=—Au—ograddivu .

The operato is densely defined i = L?(£2)° and self-adjoint on the domain
of definition Dom @) = [H?(£2) N H(2)]® [24, p.199]. The quadratic forms
a(u) andag(u) are given by

*lou |? * oy ’
a(u) = / St > " dxydxedxe
2 \ij=1 9% i=1 9%
and ,
Bui 2
ao(u) = / dxq dxodx
Q2;1 0% ' ’

respectively foru € H(£2)® = Dom (@) = Dom (a). For u € Dom (a), define
Tou = y/odivu. The operatorT may then be defined as the closure of the
operatorTy with Dom (T) D HZ(£2)3 densely defined iy = L2(£2)*, mapping
into $. = L2(£2). SinceH(£2)* is a core forT, the adjoint of T is directly
computable ag *v = —,/o grad v for v € H(£2). Note that the quadratic form
ap(u) corresponds to the (resolvable) self-adjoint operator

—A 0 0 Uy
A=| 0O —-A O { Uy }
0 0 —-A Uz

with Dom (Ap) = Dom (A) as given aboveA, has computable eigenvalué%k =
(i2+]j2+k?)7? with corresponding reducing subspatgg = [spar{vix }]° where
vk = Sinfmxq) - Sinf mxo) - sinkwxz) fori,j,k=1,2,....

The eigenvalues of the Lamoperator are associated with the resonant fre-
guencies of internal vibration that may be induced in a three-dimensional ho-
mogeneous isotropic elastic body (a cube in this case) having fixed boundary
surfaces [19, Sect. 75]. The parametemay be expressed in terms of the L&am
moduli A and i aso = (A + w)/u. u represents the shear modulus of the ma-
terial while the modulus of compression is given by gﬁ [19, Sect.22]. As
A (and hencer) increases, the material becomes progressively more resistant to
compression. The limiting case — oo corresponds to incompressibility of the
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material and is associated with the Stokes’ eigenvalue problem [19, Sect. 58]: find
nontrivial u € [H2(£2) N HZ(£2)]® such that—Au = \u anddivu = 0. Note that

the quadratic form for this problem is just the restrictioragfu) to the subspace

of divergence-free vector field§)t = {u € 9|div u = 0}. Sinceag|m = a|m,

the first monotonicity principle [35, Sect. 3.7] implies that the eigenvalues of the
Lamé operator are lower bounds to the corresponding eigenvalues of the Stokes
eigenvalue problem for any finite value @f> 0. This is of some practical sig-
nificance itself since the smallest eigenvalue of the Stokes’ eigenvalue problem
plays a role in discerning stability of viscous incompressible fluid flows [22].

2.3. Intermediate problem construction

Returning to our development, we now select vecfgrgk., C Dom (T*) C .
and define the associate&fl-orthogonal projection

k
Pu= > (U,pi).. 2P

i,j=1

where [7;] is the Moore—Penrose generalized matrix inverse to the Gram ma-
trix [(pi, p;)+]. (One may refer to [32] for basic information relating to general-
ized matrix inverses.) In the linear elasticity problem just discussed, any vectors
{pi 1, € HY(£2) would be admissable.

Define the quadratic form

a(u) = ao(u) + ||PTu||2,

for all u in Dom (@) N Dom (T). Since RanR) C Dom (T*), PkT may be
extended by continuity to all ofy and ax(u) may be associated with a self-
adjoint operator given by

k
(2.2) Ac=hPot Z(wT*pﬂ-‘/’?ijT*p,— DA +T T,

i,j=1

with Dom (Ax) = Dom (Ag). The eigenvalues of may be denoted analogously
to those ofAy andA asA{) < Al < .. < A® < 0. Becauseg(u) < ax(u) <
a+1(u) < a(u) for all u € Dom (@), the eigenvalues oAy lie intermediate
between those of\y and those ofA, and are monotone increasing kj the
dimension of the projecting subspace. That is,

)\io < )\i(k) < )\i(k+l) <\

for eachi such that\; < \%..

The finite-rank nature of the perturbation Ag expressed in (2.2) permits
computation of {A\*)} through consideration of the rank and inertia of the
Weinstein-Aronszajn (W-A) matrix
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(2.3) 7N = P B )« + (RTp, Tpp)]

considered as a function of the eigenvalue parametedere R} denotes the
resolvent operatordy — \)~1. We introduce the following notation:

N()) is the number of eigenvalues éfstrictly less than the parametar
Nk(}) is the number of eigenvalues 8§ strictly less than the paramet&r
No(}) is the number of eigenvalues 8§ strictly less than the parametg&r
ID~[.#7] is the negative inertia of a Hermitian matrixZ

(i.e., the number of negative eigenvalues @f), and
null[_#7] is the nullity of a square matrixZz.

The following extension of the spectrum-slicing formulas of [7] is developed
in the appendix.

(24) N < Ne() = No(A) — {null [Z0] + D[ Z4N]} + null (. ). ]

for any A < X% at which Z4()) is defined. Provided that it is possible to
evaluateZz(\) for any such), (2.4) may be used directly to isolate and locate
eigenvalues of\, to any degree of accuracy desired (at least in principle), thus
providing lower bounds to the corresponding eigenvalueA. of

Additional knowledge of Ker{*) may be incorporated to further improve
these bounds. Specifically, suppose we knowvdinearly independent vectors
{z}, C Ker(T*) and consider the effect of removing frofp; }¥., components
lying |n span(z.)

.....

w

(2.5) B =p — Z Pi2)«ZimZm ,

I,m=1
where [Zy] is the matrix inverse to(g, zn).]. Note that relative to the natural
partial ordering of Hermitian matrices,

w

[P R )] = LB B+ D (01 2) e Zim (2, By)] = (B B)-] -

I,m=1

So, defining [/)’,] to be the Moore—Penrose generalized inverse of the Gram
matrix [(fi, §).], we have that [5’,] > [.#3] and

K
(2.6) Z TB) AT <A

The associated W-A matrix may be expressed directly in term{gdt_, as

w

@7) ZZEO) =P P ) — D (0 2)« Zim (Zn, Py ) + (RTPL, TR -

I, m=1
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Augment the projecting vectofg; }¥.; by definingpe.j =z forj =1,...,w and

let Z+.,()\) denote the corresponding W-A matrix obtained from (2.3). Note that
[(z,zn).] is positive definite and appears as the lowex w principal submatrix

of Z:.,(N), so one may see from (2.7) thaw, “()) is the Schur complement
of [(z,zn)«] IN Z+w(N) (cf. [20]). Using the additivity of inertia over Schur
complementation we find

Ul [ e (V)] + D7 [ Zcew (V] = nUIl [ Z402 (V] + D[22 (V)] -

Thus from the spectrum-slicing formula (2.4) we see that the bounds obtained by
reducing the kernel 6T * by span(z) as in (2.7) are identical to what would be

i=1,...,w
obtained by simply augmenting the original projecting §attX.; with {z Hig
While the form of (2.7) may hold some practical advantages in computational
strategies that make direct use of the W-A matrix (e.g., [8]), we may omit any
explicit reference to the reduction of K&r{) with no loss of generality and
henceforth consider only (2.3).

For general choices of projecting vectds }, note that the evaluation of
Z/4()) is very difficult because the action & is rarely accessible in a suffi-
ciently accurate, computationally usable form. Bazley and Fox [5] proposed the
use of a “special choice”, determining vectgps }<_; so thafT *p; = uP. Although
this choice for{p; } makes evaluation o#(\) comparatively straightforward,
one is left with a highly constrained choice of the projecting vecfor$ and also
the (possibly) onerous task of solving the many operator equafions,= u’.

To circumvent some of these difficulties Bazley and Fox introduced the method
of second projection.

Following [5], let us define for some fixedl # 0, By = T*P,T + 62I. The
operatorBy is bounded, self-adjoint, and positive definite. Furthermore, it has an
explicit inverse given by

k

1 ,
[0 = > (0, T*pe) CimT *Pm]

(2.8) B, tv= 52
£,m=1

where [£im] is the Moore—Penrose generalized matrix inversestap(, p; ). +
(T"pi, T*py)]-
Upon choosing a set of vectof$ }[L,, we may define a projection onto
span{f }, orthogonal with respect to the inner product inducedpy
i=1,...,n
n
Pn= (- Bpi) %
ij=1
where now [ ] is the Moore—Penrose generalized matrix inverseBpf , ; )]-
It is easy to see then th&P, is a bounded, symmetric, positive semidefinite
operator, and thaaBklsnu,u> < (Bgu, u) for all u € $. Thus, if we define

(2.9) Acn =Ag — 62+ BPy
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it is clear that the eigenvalues 8§ , form lower bounds to the corresponding
eigenvalues ofA and that they are monotone increasing in bktAndn. The
associatedh x n W-A matrix is given by

(2.10) T\ = [(B + R}, 52BcPi, Bfy)]

This matrix will be pivotal in our later development. The corresponding counting
function, N () satisfies

N(A) < Nen(N)
(211) = No(A+ &%) — {null [ ZAn(N)] + D [Z& (N1} + null [(Br, By)]

for each) < X%, where 4 n(N) is well defined.
Now, if we were to choose the vectof§; }{., so thatp; = B, 1ui", then the
W-A matrix (2.10) would be explicitly computable as

k
/74 — 1 1 1 0 * > * 0
Phin(N) = (52 + A?—(Héz)) 8 = 5 Z%;lwi ,T*Pe) Com(T* P, u?)

(2.12)

(67 denotes the Kronecker delta). Sinkey, as defined in (2.9) would then have

the explicitly known finite-dimensional reducing space sgafi}, the computa-
i=1,...,n
tional task associated with (2.12) could be refashioned into a limean matrix

eigenvalue problem —
[diag (\? — 62) + Z]x = Xx .

Note that& here is the matrix inverse to(U?, B, *u°)] which will in nearly
every case of interestot be sparse because the eigenvectar$} will have
support throughout the problem domain.

It was observed in [4] that the lower bound for thth eigenvalue derived
from (2.9) improves monotonically a$| increases until it reaches the value
A0, — &% at which point the bound begins to deteriorate@sncreases further.
Thus, the optimum value of with which to estimate), is attained wher$? =
22, — AkM “though of course this value is not generally known at the outset.
Borsch-Supan [12] showed that this optimum bound is achieved (simultaneously
for every v < n) with the method of truncatior{3], which makes use of the
same information as the method of second projection but involves instead the
resolution of a (dense) matrix eigenvalue problem of larger dimensibk.

3. Extensions

3.1. An eigenvector-free formulation

In the previous discussion of Weinstein-Aronszajn methods, the strategy implicit
in utilizing the formula (2.10), involveBxing a nonzero constait fixing families
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of projecting vectors{p; }.; or {pi }'L; (generally through a “special choice”)
and thernvarying A to obtaln the best possible lower bound — either by finding a
value for whichZ7”()\) loses rank or by resolving an equivalent (dense) matrix
eigenvalue problem. This approach depends on the availability of base problem
eigenvectors in general since there is little other possibility of adequately treating
the resolvent operatoR}, involved in the W-A matrix. In this section, we remove
the debilitating dependence on eigenvectors and in so doing allow more flexibility
in the selection of projecting vectors.

Returning to the W-A matrix (2.10) associated with the method of second
projection, we defing: = A+ 62 and then consider only thosefor which A < .
Introduce the change of variabig = Rgka)i into (2.10) to get

which may be further simplified with the aid of (2.8) to get

o) = 1@ o= )+ T (o (o~ 1))
k

3.1 — > (Ao — )G, T*Pe) Com(T P, (Po — 1)54)}]

£,m=1

Fix u, {g }L, € Dom (Ag), and {pi }X.; € Dom (T*) and observe tha# n(\)

will be the W-A matrix for an intermediate problem for each (fixedx g,
however as\ changes$? changes{p; } changes, #zm] changes, thus the related
intermediate problem changes as well, and not at all in a monotonic fashion. By
using the spectrum-slicing formula (2.11), we may still interpret eaehy. as a
lower bound to an eigenvalug, of A, with indexp = No(x) — {null [ Zcn(N))]+

D~ [Z4 n(M]} +1. Finding the best lower bound 2 for fixed 1, fixed {q; }, and

fixed {pi } would then involve finding the largest that leaves{null Z4. ,(\)] +

D~ [Zn(M)]} unchanged. At first glance, the computational task one now faces
appears to involve constrained nonlinear programming and so may not be any
more appealing than previous methods. However, a slight reformulation will be
seen to produce a well-structured linear matrix eigenvalue problem. Define the

matrices:
A =[G, (Ao — )] € C
T =[(pi,Bj)«] € Cka
g = [{(Ao — )i, (Ao — pw)g)] € C™"
G =[(T*pi, Tp)] € O,
and

T = [((Ao— w)ai, T*p;)] €
Using “f” to denote a Moore—Penrose generalized inverse, the W-A matrix
/i n(N) of (3.1) may be compactly expressed as

~ T 1 vy *
TaN= At (= H = N T+ 5 )
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Defining the matrix pencil

(3.2) .//zk,n(g)z{% 0} c{ % 7/]

0 % PAN

we find for¢ = (A — )t
(N = [26n(Q) /(72 — (2)]
signifying the (generalized) Schur complement éfy »(¢) with respect to7 —
a9 H
[ 71
(% [15]. Note that the matrl{gg* %

Gram matrix of the vector$§(Ag — 1) }-, and {T*p, }jk:l. Using the additivity
of inertia over Schur complementation [15] we find

] is positive semidefinite, being the

null [%/knm()\)] + Di[y/ﬁn()\)] = null [Q//Zkvn(C)] + 1D [*//Zk,u(C)]

Since A < p implies ¢ < 0, . % — (% is positive semi-definite so that
D~ [% - (%] = 0 and null [ — (%] = null [.%5]. Furthermore, null{;, f;)] =
null [(Bkfi, Bkf; )] = null[%]. Thus from (2.11) we have

(3:3) N(A) < No(1) — {null [ 72 n (O] + D™ [ 4k n(Q)} + nUI [Z] + nUIl[.7Z] .

3.2. A generalized matrix eigenvalue problem

Evidently, the critical points of nulLiZZ »n({)]+D~[.#4 n(¢)] occur at the eigen-
values of the generalized matrix eigenvalue problem

7/71 0 X1 | _ 551 T X1
(3.4) [ 0 72] {xz} =< [7/ :z} {xz}

We recall the following

Definition 3.1. Let.Z and.2 € C™™ be Hermitian matrices with” positive
semidefinite { is called adiscrete eigenvaluef the problem

X = (IBX
if v(¢) > 0 where
v(€) d:‘Efdim{x € CM. 4#x = (.Zx andx*y = 0 for ally € Ker. Z N Ker.2} .
v(¢) is then called thenultiplicity of the eigenvalu&. By convention,
v(oo) = dimKer (2) \ Ker (.2)

is the multiplicity of “the eigenvalue at infinity”.
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Thus the eigenvalues of (3.4) may or may not be discrete, and if discrete, may
be finite or infinite, all depending on the relative orientation of the kernels of the
left- and right-hand matrices, (cf. [31]). Notice there can only be a finite number
of discrete eigenvalues (including the eigenvalue at infinity). However, since
Ker.7 C Ker%, C Ker. 77, Ker & C Ker.72* and Ker&; C Ker.7, one may

observe that Keig, @ Ker. 7% = Ker({f1 0 D mKer<[ 1 ’76}).Any

0 % A
X1 € Ker%; andx; € Ker.7 would trivially satisfy (3.4) for every finite value

of ¢.
Excluding trivial cases, (3.4) will have discrete (finite) eigenvalues which we
label as

QL. <G <0< @<,

(¢ = 0 when all are non-negative or infinite). For a given indexfix yx so
“9  H A 0
0 0 1 1
that \/_; < pu < A7, If Ker ({7& (92D C Ker ({ 0 %D then all
discrete eigenvalues are finite and for any eigenvdjuaith p < ¢ we have
from (3.3)

N (1% 3 ) <1 1 (0L o)+ Ol G
—null[*5] — nullL.ZZ]) } =r — 1 —m(p)

wherem(p) = max{m|¢m = (p}. Thus for any matrix eigenvalug, with p < ¢,
we have a corresponding lower bound to an eigenvalu&: of

1
Bt G < Ar—mp) < Ar—p

: 9 H 7 0
On the other hand, if Ke<[’%,* 592D ¢ Ker ([ 0 75]) then there

will be infinite eigenvalues of (3.4) that may confound the association between
the inertia of 7% n(¢p) and the eigenvalue indgx

We consider this issue in a wider context of generalized Hermitian matrix
eigenvalue problems.

Lemma 3.2.Let. Z and. % € C™™ be Hermitian matrices with’? positive
semidefinite. Choosg € R and let p be the number of discrete eigenvalues of
Ax = (Bx contained in the interva{—oo, n]. Further, let{vi,vs,...,v,} be a
basis forKer (%) and definez” = [¢j] € C"*7Y by g = v’ . 4v; fori,j =1,...4.
Then

null[. 4 —nZ1+ D[4 —nZBl=p+null[€]+D[£]

Proof. Let Z© € C™ have columns{vy,Vy,...,Vv,} and let the columns of
7" e C™(m=) form a basis for [Ker.¢#)]*-. Define the parameterized matrices
Moy = A+ (T —n).B and L, =7 \/17 7). Then Z is nonsingular for each
7> 0 and
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) ) ) 1 T A
M T, = e }

Y7ty 7B L7

If ¢ is nonsingular then dim[Ker{) N Ker(#)] = 0 and, since?” . BT
is positive definite D~[.Z4,] = D~[#], for all = > T, with sufficiently large
T > 0. If # is singular, we are free to pick an orthonormal basis for K& (
that constitute the columns & = [Z1%3], so that? = Z7*. 47" = [8 ﬁ}

&)
and %, = Z,*.¢%5, is nonsingular. This produces a natural partitioning of
ZrE A, Z, as

ZEMZ,
0 0 Yo
= 0 Z AT

W7 AT T AT T RT T (A= BT

For any vectoty € Ker (u7/'*. 471), observe

y y
AT = AT, { 0 } =Ntz n. 2, { 0 } =0.
0 0

Thus Z1 is an injective mapping from Kef%’iﬁé?/ﬁ into Ker (_4) NKer (.72).
Furthermore, for any vector € Ker(_4) N Ker (2), X = Zy + Zz for some
pair of vectorsy andz. But then 0 =Z;*. 4x = %,z which implies thatz = 0.
Thusy € Ker(Z™".47) and Z is a bijection between Ke#{~". 4% and
Ker () NKer (). This in turn implies that nulle’”". 471) = dim (Ker (-4) N
Ker (#)) and rank‘(Z”*.,%%) = null (%) — dim (Ker (-¢) N Ker (#)). Now
define the block Gauss transformations,

| 00 I 0 0
0 I 0] and 5= [O I 1%

, s
s 00l 00 I

)

where#, = — % (1) 17" 4 Z with S (1) = 7 BT+ 1T A —0B) T~

18565, and &, = — €, 1 7, ¢ 7. Notice that' (7) is positive definite for
all - > T with sufficiently largeT > 0, hence /1 and. J5 will be invertible for all
T > T. A straightforward calculation shows that/; *. 4, * (&% 46, Z ;) N N5
= diag[- &, & (1), ¢2, < (7)]. Hence for allr > T with T > 0 sufficiently
large, we find

DTLA] = D75 S ()] + DT[]
=rank[#]+ D7[Z]
=null[Z]+ D[] — dim (Ker (4) NKer (A)) .

Now let 24 be a matrix with orthonormal columns that span [Kef£] N
Ker (#A)]*-. ThenD~[.24,] = D~ [2¢* 74,74 for all T and 26* 76, 7¢ is
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singular if and only ifp — 7 is a discrete eigenvalue oféx = .. Since. % is
positive semidefinite, the eigenvalues4sf*. 74, 7¢ are evidently continuous and
monotone nondecreasing as functionsrofurthermore, since det¢*. 42, 7¢)

is analytic inT and not identically zero, any negative eigenvalueZéf. 7. 7¢

that reaches zero must cross from negative to positive at that point. Hence as
increases in (Ox), there ard values ofr, {r}l_; C (0, 00) where a negative
eigenvalue ofZz*. #¢.7¢ crosses 0 and

L =D [P Myl — D[P Ay 26) = D [ Aby) — D [ Abr]
=D [ A4 —nB] — (null[£]+ D [£]) +dim (Ker (_4) N Ker (7)) .
Thus for each = 1,2,...,1,7n — 7 is a discrete eigenvalue oféx = (.x in
(—o0,n). Conversely, every discrete eigenvalue @ = {.#X in (—oo, ) must
occur at such a zero crossing and so must egqualr for somei =1,... 1.

Now, observe thatp — v(n) is the number of discrete eigenvalues of
X = (.7% in the open interval £co,n). Thusp — v(n) = |. Recall from
Definition (3.1), null[Z — n.72] = v(n) + dim [Ker (_2) N Ker (%2)], hence (3.5)
is established.

This leads us to our main result.

Theorem 3.3.Let  and r be chosen so that < \2. Suppose thafp; }K, C
Dom (T*) and{q }{.; C Dom (Ao). If the generalized matrix eigenvalue problem

%/—]-_ 0 X1 _C »(51 N4 X1
0 A\ x| °|# % Xo

has discrete finite eigenvalues ordered as

Cl§<2§~-~§§z<O§Cg+1...

(¢ = 0 if all discrete eigenvalues are either nonnegative or infinite), then
D~ [7] — d, where d= null[Z] + D [Z] — (null[‘4] + null[.73]) for & =

. . e . A . .
V> AN+ Py  FZs with 77 = {;j} having columns that form a basis for
72

Ker a7 Furthermore, for each eigenvalug with p < ¢ we have
) ’ ) PP

a corresponding lower bound for an eigenvalue of A,

1
pt < Ar—demp) < Ar—d—p < Ar—p
p

where nm{p) = max{m|{m = {p}-

,and? as

7 G
Proof. In Lemma 3.2, considers = ['/1 0 ]ﬁ’ = { a A

0 % T G
given above. Setting = 0 in (3.5) and observing that dim (Ker¢)NKer (.42)) =
null (1) + null (%), we find
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£ =null. 2]+ D7 [.-4] — (null(Z)+ D[] — v(0)

= (v(0) +dim (Ker (-2) N Ker (#2)) + D~ [7A] — (null(Z)+ D~ [£7]) — v(0)

=D [.7a] — (null (Z) — dim (Ker (4) NKer (#2))+D~[Z])

=D [A] —
The last two inequalities of (3.6) follow trivially from the easily verified asser-
tions,d > 0 andp < m(p). To show the remaining inequality, in the hypothesis

of Lemma 3.2, seyy = ¢, = (m(p) for somep < ¢. Then from (3.3) and the
observation thaNo(1) < r — 1, we have for everp < p + 1p

N() < No(i) — {m(p) + null[Z'] + D™ (Z7)} + null (41) + null (%)
<(r—1)—m(p) -
Thus, every such is a lower bound to\; _g_m(p)-

The index parameterd” provides a correction t@a priori information avail-
able for Ay (given in the form of the indexr”). This correction is based
(perhaps somewhat mysteriously) in part on computable information about

NZ A .
Ker e o | In order to better understand the source of this correc-
92

tion, let us now assume thatA, — 1)q L, and {T*p. _, are separately lin-

early independent sets bfi = span(Ao wai N span T*p; is non-trivial.
i 1 i=1 s

This implies that¢;, %, and.7 are nonsingular bu " (% is singular.
76 %

- _ 9 H
Let v = dim9t = null <[7/* %

= [uiM] € €™ and 75 = [v}?] € T such that rankF4] = rank [73] = v

nd
9 H||A -0
g G| ||

Defined; = Y-, vf’q andpg; = 3> vfpi forj = 1.2,...,v. For convenience,
we will assume that is in the resolvent set fok, although this ultimately entails
no loss of generality. ThemA§ — )& + T*f; = 0 and we may compute

D and T = n — v. There exist matrices

A 7 P,
¢ =% ][01 '/2][%}—«7/’ T Ts+ DA

= [{Bi, )« + (G, (Ao — 1)Gj)]
=[5, B+ (ROT*PL TR = Zo(w)
which is the W-A matrix for an intermediate problem that we may write as
A, = A+ T*P,T. Notice now from (2.4),N, (1) = No() — {null[ZZ, ()] +
D[ (W)} =1 —

Thus, computable information about Ker

O
7/* %
wherey lies in the spectrum of the intermediate operapr SinceA,, dominates

is used to determine
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Aq in the sense of quadratic forms, this provides in a certain sense stranger
priori information than was initially available from jugt.

3.3. The EVF method

For clarity we lay out a methodology that Theorem 3.3 suggests for computing
lower bounds to the eigenvaluesAfFor compactness, we refer to the following
as the EVF Eigervector Free method):

(1) Select trial vectorgq; }L; C Dom (Ag) and {p; }J-k:l C Dom (T*).

(2) Pick (or compute) a valug € (\°_,, ] for a selected > 1.

(3) Form and solve the matrix eigenvalue problem defined by (3.4).

(4) The finite negative discrete eigenvalues computed from (3.4) may each be
associated with eigenvalue bounds as given in (3.6).

Although we need only assume< )0 in order to deduce the bounds given
in (3.6), one should seek to choogeandr so thaty € (\°_;, \°]. Otherwise,
No(1) < r — 1 and it will be infeasible to have lower bounds convergent to the
correspondingly indexed eigenvaluesffsee also [9] and [10]).

Notice that if bothA; andT* are local operators and the vectdig }i-, and
{B }}‘:1 are chosen to have local support (as with, for example, finite-element trial
functions), then the resulting matrices will be sparse and (3.4) may be efficiently
handled using sparse matrix techniques, even for quite large valuesaafl
k. Furthermore, the only need far priori spectral information comes through
the selection (or computation) of as a sufficiently good lower bound & to
separate it from\?_,. No eigenvector data foky are necessary nor are “exact”
values for the eigenvalues 8§ needed for appropriate selection jof

3.4. Using B=T*T directly

In some circumstances, it may be more convenient to consider the use of the
operatorB = T*T and avoid the use of* altogether. An alternate devel-
opment usingB is quite straightforward and proceeds in direct analogy with
what has gone before. We provide only an outline here. Pick projecting vec-
tors {p1, P2, . ..} € Dom (B) instead and define th®-orthogonal projection onto

span{p; }
i=1,...k

k
Pu=7 (u.Bp)Zp

ihj=1

where [7}] is the Moore—Penrose generalized inverse(Bp[, p;)]. Now define
B« = BP + 6%I. The operatoBy is bounded, self-adjoint, positive-definite, and
has an explicit inverse given by
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k
1
Bk—lvz 52 |:’U— Z<U Bp ) ZimBpm
|

,m=1

where [£im] is the Moore—Penrose generalized matrix inversestdHp , p;) +
(Bp,Bp)] (instead of (2.8) ). Likewise (3.1) becomes

o) = L o=+ © {0 (o - )
k

— >~ (Ao — 196, BP) Zim (BRin, (Ao — 1)) }

I,m=1

Proceeding in a like manner, we arrive finally to the analog of Theorem 3.3
which we state without proof.

Theorem 3.4. Letu and r be chosen so that < \0. Suppose thafp }¥; C
Dom@B) and{q; }{L; C Dom (Ao).
Define the followmg matrices

(G, (Ro — w)gi)] € C™°

(Ao — )G, (Ao — p)q)] € C™"
(pi,Bp)] € Cka

(Bp,Bp)] € C**,

[
[
[
[

NN

and
TO((Po — 1)qi, BRy)] € T

If the generalized matrix eigenvalue problem

A 0] [al (@ ] x
0 .7’5 X2 - FC* ((72 X2

has discrete finite eigenvalues ordered as

A<@<... <0< <.

(¢ = 0if all discrete eigenvalues are either nonnegative or infinite), then for each
eigenvalue, with p < £ we have a correspronding lower bound for an eigenvalue
of A

1
pt ¢ < Ar—dem(p) £ Mr—d—p < Arp
p

where n{p) = max{m|ém =¢p} and d= null[£ ]+ D~ [£ ] —null[ %] +null [.7])
for & = 7,* AT+7,* B TsWith 7" = |

9 F
forKer({yg* (/[2]>

7 _ _
,71,. having columns that form a basis
)
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4. Parameter selection
4.1. Monotonicity of bounds with respect o

Typically one will have a range of feasiblevalues available within the interval
we discover here is that the best in the intervdl (, \’]. What we discover here
is that the best available lower bound XB in the interval §°_,, \°] produces
the best bound in (3.6).

Theorem 4.1.The lower bound. + Cp%u) in (3.6) is monotone increasing jmon
(A2, 9.

Proof. Fix a nonzero vectox € C", defineq = Zinzlxiqi, and introduce the
function®@(u, A) = X* Z4 (1, A)x where 74 n (11, A), defined by (3.1), now shows
explicitly the dependence on. ¢ is continuously differentiable foh < p and
we have

1
o = (00— [852 ] (o — 1))

—(8,BM(A0 — 1)a) — (Ao — )8, B ta) — (161> -

- OB * 9B
From the definition oBy, ¢ =-B ! { ] B, =B, 2, hence
k Oy k o k K
oD _ A oA
o - —[B (Ao — )@ +G|><0.
Likewise,
oP . |oB.t . _ .
oy = ((Ro—m)a, [ o ] (Ao — 1)a) = |[B H(A0 — 1)G[|* > 0.

This establishes thak is monotone decreasing jnand monotone increasing in
A over the range of values < u. Thus, forA; < A2 < g < ppz we have

(4.1) Pin(p, A1) < Zin(p, A2) for A< <p
and
(4.2) (1, A) < Pn(pz, A) for A< < pa .

For compactness, we now fix the indidesh and suppress them in our notation.
Define for each 6< J < r andu € (\?_;, A%],

() = AU 77 (u ]+ D7 [ 27 (] < 1 — 3}

Then\ € I'3()) implies thath < Aj41 from (3.3). From (4.1), nullyZ" (u, \)] +
D~ [Z (11, V)] is increasing as\ decreases, henceife I'5(u) then (oo, \] C
I'5(p) as well. For 1< p < ¢ andJ =r — m(p) — 1 we have
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1
p+ o €ly(p).
Cp
Furthermoreu + clp =max{Is(u)}. To see this, defina(e) = pu+ ({, — )~ for
e>0and\(0) =p+ <1p‘ Then evidently\(0) < A(¢) and

U 77" (s, NN+ D177 (12, Me))] = NUI[A2(Gy — €] + D[ A(Gy — €)]
< null [_Z4(Cp)] + D™ [ A26(Cp)]
=null [ 7 (1, AO)] + D™ [ 7 (, AO))] =1 — J .

So \(e) & I3(u) for anyc > 0. The proof is completed by observing from (4.2)
that for puy < p2, I3(1) C I3(p2). Thus,

=max{I3(u1} < max{Ij(u2)} = p2 +

N 1 1
HET o (ua) Golta)

4.2. Monotonicity with respect to dimension

For fixed . it is natural to expect the bounds provided by (3.4)—(3.6) to improve
as the dimensions of the approximating subspaces increase. We state this formally
as

Theorem 4.2.Let {q; }}{; € Dom (Ag) and {p; }/<; C Dom (T*) be fixed sets of
vectors. Forl < v < N, 1<k <K, and fixedy, let ({*) be the pth negative
discrete eigenvalue of (3.4) corresponding to the usgopfiZ; and {p; }/;. If
1<y <1 <N andlgnlgﬁggKthen

1
pt CF()VLM) Spt Cr()lfzﬁz) SArp-

Proof. In view of (3.5), it is sufficient to show'2"? < ¢{'**¥), or equivalently
that for eachy, x satisfying 1< v <N — 1 and 1< x < K we have({*") <
¢, and for eachw,r satisfying 1< » < N and 1< x < K we have
¢{m*D < (9. In either case, the Cauchy interlace theorem [cf. 31] provides
the conclusion.

5. Relationship with other methods
5.1. Truncated intermediate problems
The derivation in Sect. 3.1 clearly indicates the close association the EVF method

has with the standard method of intermediate problems. To emphasize this, we
show how to recover the method of truncation [3] by an appropriate choice of
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trial vectors in the EVF method. If we selegt=uP fori = 1,...,n and suppose
=22, > A9, the matrix eigenvalue problem (3.4) reduces to a diagonal scaling
of the matrix eigenvalue problem used for the method of truncation applied
W|th the same prOJectmg vectofg; 1K ;. In particular, setZ = [(T*p, T*p;)],

S = [(T*pi,ud)], .7 =[{pi, )], and/l— dlag (A9). Then explicitly

EZ (A—p)t 0
{ A o-n g0 2

0 9 H
(17 &l 2D~

_ -1
whereZ = /u — A (4 0“) ? .

The left-hand matrix pencil matches equation (5) of [8] giving computable
conditions on\ to be an eigenvalue of the truncated intermediate operator below
the truncation poinj.

5.2. Temple-Lehmann-Maehly methods

One may observe also a close connection with methods that are associated with
Temple, Lehmann, and Maehly. If we talég = A (so thatT = 0), thenp
becomes a separating parameter fpr, and A, and the eigenvalue problem
(3.4) reduces torx = (o1 or explicitly,

(5.1) (o, (A — )g)Ix = (LA — p)ai, (A — p1)5)]X

The bounds given in (3.6)d(= 0 in this case) conform to those originally given
by Lehmann in [26] and [27] and by Maehly in [28]. In the scalar case ()
we recover from (3.6) Temple’s inequality

A= al?
2) YA g SN

The Temple-Lehmann-Maehly methods may be directly linked to the method of
intermediate problems via the analysis of Sects. 3.1-3.2. In fact, the Lehmann-
Maehly eigenvalue problem (5.1) arises spontaneously from the Weinstein-
Aronszajn matrix corresponding to the parameterized intermediate problem

A =A—0+0P,

wherePy, is an orthogonal projection onto spd(A — 1)qg } and the parameter
i n

yeeny

valuesf satisfy the side constrainh, + 6 = .
A broader relationship with the “Temple quotient” appearing on the left-
hand side of (5.2) may be observed by expressing the bgwﬁqlp in terms
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of the Rayleigh quotient for the matrix eigenvalug, Suppose ; is an

eigenvector of the matrix pencil (3.4) associated with the eigenvgluand let
{x }{y:} denote the components &fandy, respectively. Ifqg = >, x ¢ and
p =3 yip then

L_ ., o= pwa+Tp|?

Cp (@, (Ao — a) + [IplI2

Notice that ifp = Ty (which presupposes that Dowy)nDom (T*T) is nontrivial)
then the right-hand side reduces to the Temple quotient in (5.2).

u+t

5.3. Weinberger's method

In 1959, Weinberger [34] introduced a method for computing eigenvalue lower
bounds that was substantially different from either of the previously known meth-
ods of Lehmann and Maehly or of Weinstein and Aronszajn, while in some mea-
sure generalizing them both. A key departure was the forra pfiori spectral
information taken forA. Following Weinberger [35, Sect. 4.9], we will assume
for the moment that a finite dimensional spapeis explicitly known together
with a parametef, such that

(5.3) (Av,v) > pllv))® forall vept

If dim B =k, note that (5.3) implies that < A¢+1. Weinberger's method pro-
ceeds by selecting a basis fa¥, {p1,p2,...,P«}, and a set of trial vectors,
{Q1,02,..-,0,} € Dom (A), and considering the generalized matrix eigenvalue
problem

S Y X1 | _ % % X1
64 {V OHX}C[% 7HX}
where .72 = [(q,(A— p)gj)] € C™",
‘y:[<qlvp]>] Cnka
S =[((A—wa,p)] € T,
[{

A=[((A— @)ai, (A— p)g)] € C™"
and .7 = [(pi,p;)] € CK.

Eigenvalue bounds may be deduced as a consequence of the following the-
orem. This theorem is essentially similar to one originally given by Weinberger
(Chapter 4, Theorem 9.3 of [35]), however ni@l{ = O replaces Weinberger’'s

original hypothesis: rang[!%* 0

Theorem 5.1.Let 3 and i be known so that (5.3) holds. Definer1 +k =

1+dim3 andp = rank (%). Let Z" have columns thapan Ker( { ;/1* 7%2_] > ,
7 )

D = p +n. See the discussion below.
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N J/‘*
and suppose that” = 7 S0

eigenvalues of (5.4) are ordered as

7" is nonsingular. If the finite discrete

A<@R<...<0<0< G-

(I = 0)if all discrete eigenvalues are either nonnegative or infinite) then for each
eigenvalug, with p < | we have a corresponding lower bound for an eigenvalue
of A,

1
w+ o < A_s—p
p

whered =p —|.

Proof. Let P denote an orthogonal projection orfib Fore > 0, defineAg(e) =
A— iP. We first assert that < \0(¢) for anye > 0. If this were not the case then
there would be am-dimensional subspadg, such that(u, Ag(e)u) < pllul|? for
all u € gl.. But since dinil. > dim<3, there exists a nontriviall € £, N P+
and (5.3) impliegU, Ag(€)u) = (U, Au) > p|u]|? which produces a contradiction.
Thusu < M\0(e), as asserted.

We defineT (¢) = ¢1€P and apply Theorem 3.3 with the decompositiare

Ao(e) + T*(e)T(e): L
Tile) =2 — AT LK
€

and. 7 (e) = ;6 {.%’— :Sﬁ} .

1 o1
LA

I
DefineX, =
! [o Jel

] and observe

X, ({-“7{(6) 0 } ¢ { Z1(e) -%’(6)]) X

0 % FC* < €
(55) 7 2 ” (6)7 g2(€)
[ %] [F %
- ’Vl/* 6./7 .,5?* //;
L [z x5 ,_ [ % o [T B s
Let. 4, = [%* 6%.} o= [%* 0 },and.ﬁ’ = [%* 72} Define?, =

7. 4.7  and notice that for alk > 0 sufficiently small, we hav@®~[Z] =
D~[%]and null[£] = 0. Furthermore, since nulff] = O itis clear that KerZn
Ker.72 = {0}. Thus, for anyn not an eigenvalue of (5.4 [. 4. — n.%] =
D~ [.-4 —n.77] for e > 0 sufficiently small. This implies for all such sufficiently
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small e > 0, the matrix pencil (5.5) will have exactly=D"[.4] — D~ [€] =
D~[.4.] — D~[%] negative eigenvalues,

Cle) < Gle) < ... < Ge) <O

Furthermore, sinc®—[. 4, — n.2] <D~ [.¢ — n.7] for any e > 0 and anys,
it follows that (i < ¢j(e) and Iin(’)lgi (e)=¢ foreachi =1 ... 1.

BecauseZi(e) = 2 — L A7 L4 * and rank (4.7, L. *) = rank () =
p, it is clear thatD~[.Z1(e)] > p for all ¢ > 0 sufficiently small. Suppose
D~ [.Zi(e)] > p. Then there must be a nontrivigl € span{q} such that
,n

i=1,...
(q,p)=0fori=1,...,k and

0> (@ (Ao(d) ~ ) = (& (A~ P — p)@) = (@ (A~ 1))

sincePq = 0. But this then contradicts (5.3) and we must have D~ [.7(¢)]
for all e sufficiently small. Now Lemma 3.2 provides for all suehD~[A.] =
D~ [ZA(e)] = p=1 +d. Thusé =d and by Theorem 3.3

JTRs . <A—dep = Ars—p for p=1,...,1.

Since the bounds improve ass decreased further, taking— 0 yields the best
bounds, and we arrive at the eigenvalue problem (5.4).

Although the assumption nul{) = O is natural in the context of our
Theorem 3.3, it is generally a stronger assumption than Weinberger's origi-

: = + +
nal: rank{'yl/* O} p +n. In fact, if rank{yl;* 0] < p+n then
Ker oz 18 nontrivial and?” is necessarily singular. The converse does
7 e

not hold in general without additional hypotheses, such asﬂilﬁl* éD =
7 X
k.

6. Computational aspects
6.1. Some examples

We illustrate our method on two problems from technical mechanics. Return first
to the consideration of the vibration of a fixed elastic solid begun in Sect. 2.

Example 1. (continued from Sect. 2.2). The Hilbert spage= L?(£2)% can be
decomposed into eight mutually orthogonal subspadesi,j,| < {0,1}), each
of which reduces the operatér (cf. [2]). Toward this end, define the following
symmetry classes ol (f2) for i,j,l € {0,1},
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¢'] = {f € L(2) : f(x,y,2) = (-1)'f (1 - x,Y,2)
= (_1)if(X7 1- yvz) = (—1)If(X7y,Z’ 1- Z)}
Then fori,j,| € {0,1},

f
3= { (fz) € (La(2)? : fy e €W ) e @O £y e ¢ »iv“(')} ,
f3

1 1=0
0 I=1"

Now letAl' be the restriction of to ' NDom (A). Bounds to the eigenvalues
of A can now be obtained by computing bounds to the eigenvalua¥ @fj,|
{0,1}). Z. He [21] calculated bounds fe'°! using trial functions built up from
trigonometric functions. The bounds given in Table 1 and Table 2 are based on
her results.

wherev(l) = {

Table 1. Eigenvalue bounds for a linearly elastic cube

Eigenvalue A priori oc=1 o =100

index lower bounds lower bounds upper bounds lower bounds upper bounds
1 59.2176 60.6426 60.6430 62.1412 62.1421

2 59.2176 73.6596 73.6621 128.719 128.728

3 118.435 133.927 133.930 140.670 140.674

10 217.131 237.767 237.775 259.011 259.060

20 296.088 356.169 356.233 413.634 413.909

30 375.044 441.920 442.823 465.986 524.666

Lower bounds were computed with the EVF method of Sect. fer367,

k =64, andu = A3 3 = 8212, A priori lower bounds are obtained from the base
problem. Upper bounds were computed with the Rayleigh-Ritz method with the
same trial functions}; used in the lower bound calculation.

Recall from [12] and the discussion at the end of Sect. 2.3 that the method
of truncation provides eigenvalue bounds that are always at least good as those
from the Bazley-Fox method of second projection. Since the method of second
projection is central to our derivation, one might suspect that the method of
truncation would also provide bounds that are at least as good as our method.
This does not appear to be the general case. Table 2 provides bounds to the first
eigenvalue of the Latoperator £ = 100) using both the method of truncation
and the EVF method. For the method of truncatiangénotes the truncation
order andk denotes the projecting subspace dimension. The same projecting
subspaces were used in both methods. Notice that for higher order problems the
EVF method provides slightly better bounds then does the method of truncation.

Example 2. The second example we consider arises in the modeling of the

transverse free vibrations of a rotating beam which is clamped at the axis of
rotation and free at the other end. This problem has been treated previously with
other methods in [6] and [14]. The governing equation is
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Table 2. Comparison of the Method of Truncation and the EVF method of Sect. 3.3
Lower Bounds by Truncation

(fi,k) (24,8) (82, 64) (196, 125)
61.7852 62.0409 62.0975

Lower Bounds by EVF

(n,k) (24,8) (81,64) (192, 125)
61.7692 62.0815 62.1339

4 2
Eld u_ p°d (I2—x2)du

dx4 2 dx dx
with boundary conditionai(0) = u’(0) = 0 = u”(l) = u”’(l). Here,E is the
modulus of elasticity] is the moment of inertia of the cross section about the
rotation axis,p is the lineal mass density, is the angular velocity of rotation
andl| is the length of the beam.

After introducing the dimensionless variabte= x/I we recast the problem
as an operator eigenvalue problem on the Hilbert space_,(0, 1):

= w?pu

Au=)\u
where . )
_d a‘ d o d
A_dy“f 2dy(17y)dy

with Dom @A) = {u € H#*QO0,1)u(0) = u’(0) = u”’(1) = u”@1) = 0},
A =w?pl4/El, anda? = pl40?/El.
The quadratic form associated wighis given by
du

1 /1d2u 2
W= /o (‘ dy? ay| |V
with Dom @) = {u € H?(0, 1)|u(0) = u’(0) = 0}. We decompose(u) asa(u) =
ap(u) + || Tul|? by defining

2 az
2
+2(1 )

_a? [t o |dul?
W=7 [a-y|gl o

with Dom (ap) = {u € H(0, 1)|u(0) = 0}, and
d?u

~ a4y

with Dom (T){u € H?(0, 1)|u(0) = u’(0) = 0}.

This decomposition corresponds to choosing the base operator to be the fa-
miliar Legendre operator:

Tu=

_azd
2 dy

d

(1-v?) dy

AO:



Methods for computing lower bounds to eigenvalues of self-adjoint operators 167

with Dom (Ao) = {u € H?(0,1)|u(0) = lim¢_1(1 — ¢)u’(€) = 0}. This operator
has explicitly known eigenvalues given bY = a% (2i —1) fori =1,2,3,.... The

adjoint of T is computed to b * = gyzz with Dom (T*) = {u c H?(0,1)|u(1) =

u’(1) = 0}.

We chooseu = 6.5104 = A9, and finite-element bases for the two projecting
subspaces involved. Cubi-splines provide sufficient regularity in each case.
For a mesh size of N we produce subspaces of dimenslosr n = N. Each
submatrix in (3.4) is pentadiagonal, producing a sparse generalized matrix eigen-
value problem. Lower bounds using the EVF method of Sect. 3.3 With 20
andN = 40 were performed by G. Lee [25] and are listed in Table 3. Comple-
mentary Rayleigh-Ritz bounds were computed with ciispline trial functions
with N = 50.

Table 3. Eigenvalue bounds for rotating beaa? = 200

Eigenvalue A priori Lower Bounds by EVF  Rayleigh-Ritz Upper
Index Lower bounds N =20 N =40 Bound N = 50)

1 200 233.79343 233.79344 233.79349

2 1200 1771.6117 1771.6120 1771.6125

3 3000 7305.1301 7305.1611 7305.1685

4 5600 21714.896 21716.250 21716.393

5 9000 36707.188 51978.767 51983.742

6.2 Numerical realization

For the results presented above, we made no effort to exploit either the sparsity
structure or the symmetry of the coefficient matrices and used@thenethod

[29] to resolve the matrix eigenvalue problem (3.4). While extremely stable,
such a direct approach, might be imprudent in larger problems where sparsity is
significant.

A variety of computational approaches for the generalized matrix eigenvalue
problem have been reviewed in [33]. Many of these require factorization of the
Gram matrix{ gl* :76} followed by either an implicit or explicit change of
A
basis to obtain an eigenvalue problem in standard form. While such approaches
may be inexpensive due to extensive sparsitydn .7, and %, numerical

9 H

stability may be at risk since in our experien[;gf* (52 } can be quite poorly
conditioned or singular.

In fact, the matrix pencil (3.4) may not necessarily be diagonalizable (i.e.,
there may not exist any nonsingular matgisuch thaty*. 24 n(€)x is diagonal).
Consider, for a simple exampl&,= (\})~Y/2Ag, g1 = p; = u?, and . = 2)9. For
k=n=1, (3.4) becomes
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[—/\2 0} {xl} =C[ (\9)2 _(Ag)s/z] {xl}

0 1| |x% —(\9)¥/2 A9 X |

which is not diagonalizable. Thus any approach that involves (explicitly or im-
plicitly) a reduction to a matrix eigenvalue problem in standard form must be
used with caution. The spectral transformation Lanczos method as described in
[30] may provide an attractive alternative that remains robust in the face of ill-

conditioning (even singularity) of the Gram matrix, yet is able to produce partial
results that still provide bounding information (cf. [11]).

7. Conclusions

We have introduced here a new approach for computing lower bounds to eigen-
values of self-adjoint operators that has greatly reduced requirements for a pri-
ori information over what is necessary for the Weinstein-Aronszajn methods or
Temple-Lehmann methods, while combining to a great extent, their relative mer-
its.

Our method is likely to be most useful in situations where problem geometry
is complicated or domain dimension is large (e.g., as often occurs in quantum
chemistry). In such situations the class of base problems for which full spectral
information is both available and usable may be quite small (or even empty).
By contrast, we require only a separating parametdrii the base problem
spectrum. No base problem eigenvector information is necessary nor are “exact”
base problem eigenvalues needed. As may be seen from Example 2 of Sect. 6.1, a
potentially important by-product of the elimination of base problem eigenvectors
from the solution process is the possibility of using trial vectors with local sup-
port, producing as a consequence generalized matrix eigenvalue problems with
well-structured sparsity that may then be exploited advantageously.

Appendix: Generalization
of intermediate problem spectrum-slicing formulas

In [7], the following spectrum-slicing formula was shown to hold in general
intermediate problem settings:

Nk(A) = No(A) — D™ [77°(N)]

for all A € p(Ag) N p(Ac), where p(B) denotes the resolvent set of a linear
operatorB. The restriction toA € p(Ag) N p(Ax) was convenient in [7], but
is unduly constraining for the results we develop in the present paper. We will
eliminate the restriction on, and provide generalizations of the spectrum-slicing
formula of [7] for any\ below the first point of the essential spectrum for which
77" (\) is well-defined.

We first establish some continuity properties for inertias of W-A matrices.
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Theorem A.1.Suppose thak* < inf {oesdAo)}, {pi }K., are linearly independent,
and that77"(\) given by (2.3) is bounded at= A\*. Then

(@) D[Z7° ()] = lim D7 [7° (A +e)]
(b) D7 (\)] = lim, D7 (A" — €)]

©) null[77°(\)] + D7 [7°(A)] = lim D7 [77° (" ~ o), and
(d) null[77°(\)] + D°[ 777 ()] = lim D°[77°(\" + )]

Proof. Since Z7°(\*) is bounded and the segments «fA) and o(Ag) within
which A\* lies contain only isolated point spectra, there exists 0 such that
7/”(\) is continuous throughout the interval*(— e, A* +¢€). Furthermore¢ > 0
may be chosen sufficiently small so that foi2 (\* —e, A*) andl, £ (\*, \*+e),
we havel, U l; C p(Ag) N p(Ax).

By Aronszajn’s Rule [1],
p(A") = po(A*) + null [777(A7)]

wherepux(\*) and uo(A*) represent the respective multiplicity af as an eigen-
value of Ay and Ag. Now, pick A, € I, and A, € |, arbitrarily and observe from

[7]
k(A7) = Ne(Ar) = Nk(Ag) = No(Ar) = No(Ae) + D [Z7°(A)] = D™ [Z7(\)] -
Since pp(A*) = No(Ar) — No(A¢), we find
null[77° (V)] = D[ 77" (0)] — D[22 (\)] -

Furthermore, sinceZ"()\) is continuous in X* — e, \* +¢) and null[ZZ"(\)] = 0
for all A\ € I, Ul,, we can guarantee tha@ [Z"(\*)] > D~ [Z(\/)] and
D77 (\*)] > D7 (\,)]. Define the scalac = (D[ 77 (\*)] - D' [Z (\])+
D~ [Z7"(\*)] —D~[Z(\)]) and note that > 0 (being the sum of nonnegative
guantities). Easy manipulation verifies that

¢ =k =D[Z7 ()] =D [Z" ()] — (k = D[7Z7°(\)]) = D™ [7Z7°(\)))
=D [Z (M) =D [Z°(A\)] — null [ 777 (A*)] = 0.
Thus, D™ [Z7(A)] = D™ [Z7°(A*)] and [ 777 (A\)] = D[ 777 (\*)]. Since ),
and )\, were chosen arbitrarily withih, andl,, respectively, conclusions (a) and

(b) are true.
The conclusions (c) and (d) follow immediately upon the observation that

D™ [77"(A)] = null[77° (X)) + D [777(M)]
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and
D [ (\)] = null[ 77 (\9)] + D [Z°(\r)] .

The thrust of Theorem A.1 is that the positive and negative inertias of the W-A
matrix are left- and right-continuous, respectively. Defié)) to be the number

of eigenvalues of\, less than or equal td, with No()\) denoting the analogous
quantity for Ag. We have

Theorem A.2.Suppose\* < inf {oesdAo)}, {pi }¥., are linearly independent, and
that Z7°()\) is given by (2.3) is well defined at= \*. Then

(@) Ne(A*) = Ro(A*) — D~ [77°(\*)] and
(b) N(A*) = No(A*) — {null [77°(\)] + D™ [ 77" (A")]}

Proof. Z7°()\) is continuous in an open interval containing and for alle > 0
sufficiently small, §* + €) € p(Ag) N p(Ax). Observe that

R = lim N(A +¢) and Ro(A*) = lim No(A* +¢)
whereasNg (\*) = E"_% Nk (A* —€) andNg(\*) = 6Ii_)ng+ No(A* —€), in general. The
spectrum-slicing results from [7] yield

Nc(A" £ €) = No(\* £ €) — D [Z(\* +¢€)]
for all e > 0 sufficiently small. Taking — 0 and using A.1(a) and A.1(c) gives
the conclusion.

Notice that A.2(a) may be obtained from A.2(b) (or vice versa) by adding (or
subtracting) the multiplicity oA* as an eigenvalue & as given by Aronszajn’s
Rule. We may relax the hypothesis of linear independencfpgf_, to obtain
finally:

Corollary. If linear independence ofp; }¥_; is removed from the hypotheses of
Theorem A.2 then the conclusion A.2(a) is unaffected and A.2(b) becomes

(0)  Ne(A) =No(A\*) — {null[Z" (A + D [Z7"(A)] } + null [(pi, Py )+] -

Proof. Let o = k — null[{pi, p; ).]. A unitary matrix < = [q;] may be found so
that

: ; s 0
olwmile= g ol

with & € R**“ nonsingular. Definingy™= ", g pi one may immediately ob-

serve thate = [(Bi,0;).], span{fi} = span{p;}, and that{f }/*, are linearly
i=1,...,0 i=1,...k

independent. Furthermore, %77"()\) = (B, By)« + (ROT*Pi, T*[)] then Z7°())
and 77" (\) represent the same intermediate problem (2.2). Sfhte7 " (\*)C =

[%/()\*) 6], we have nullpZ"(A\*)] = null[77°(A\*)] + null[{pi, p;).] and

.....

0 0
D[77° (W = D7 (\))
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