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Summary. New approaches for computing tight lower bounds to the eigenval-
ues of a class of semibounded self-adjoint operators are presented that require
comparatively littlea priori spectral information and permit the effective use of
(among others) finite-element trial functions. A variant of the method of inter-
mediate problems making use of operator decompositions having the formT∗T
is reviewed and then developed into a new framework based on recent iner-
tia results in the Weinstein-Aronszajn theory. This framework provides greater
flexibility in analysis and permits the formulation of a final computational task
involving sparse, well-structured matrices. Although our derivation is based on
an intermediate problem formulation, our results may be specialized to obtain
either the Temple-Lehmann method or Weinberger’s matrix method.

Mathematics Subject Classification (1991):35P15, 65N25

1. Introduction

Oftentimes the successful analysis of physical phenomena rests on the ability
to closely bound the eigenvalues and eigenfunctions of differential operators.
Frequently encountered examples include the prediction of resonant frequencies,
vibrational mode shapes, and buckling loads of elastic structures; determination
of bound state energy levels and associated electronic configurations for atoms
and molecules; and computation of critical values of Reynolds numbers in viscous
fluid flows. The related Hilbert space operators in such problems typically are
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semibounded below and self-adjoint, having eigenvalues of finite multiplicity
below the lowest point of the essential spectra (if any exist).

Calculation of a bracketing interval that is guaranteed to contain a selected
operator eigenvalue is equivalent to the computation of rigorous upper and
lower bounds to that eigenvalue. While upper bounds are easily obtained by
the Rayleigh-Ritz procedure (often manifested as the finite-element method), the
computation of eigenvalue lower bounds is fundamentally more difficult and it
is necessary to incorporatea priori spectral information that the Rayleigh-Ritz
procedure does not require.

The Weinstein-Aronszajn intermediate problem methods are among the most
flexible of the available techniques for obtaining these lower bound estimates.
The original method was introduced by Weinstein in 1935 (cf. [36]) and provided
a means of obtaining improvable lower bounds by incrementally tightening con-
straints. With the development of Aronszajn’s extension in 1950 [1], the method
of intermediate problems became much more widely applicable through the use
of monotone sequences of quadratic forms.

The customary approach conceives of the original operator eigenvalue prob-
lem as a perturbation (generally large, possibly even relatively unbounded) of
a simpler, resolvable, self-adjoint eigenvalue problem (thebase problem) that
provides rough lower bounds. The full perturbation is approximated systemat-
ically by related finite-rank perturbations producing eigenvalue problems that
are intermediate between the base problem and the fully perturbed (unresolv-
able) eigenvalue problem. The associated intermediate eigenvalue estimates are
obtained by computing the spectrum of the base operator summed with a posi-
tive semidefinite finite-rank operator that approximates the full perturbation. In
conventional practice, this requires not only explicit knowledge of the reducing
spaces and spectrum of the base operator but also special choices for the range
space of the approximating finite-rank operator.

The primary computational task arising from the Weinstein-Aronszajn meth-
ods generally is a dense matrix eigenvalue problem that may be difficult to
prepare and ultimately may impose heavy burdens on available computational
resources. These practical obstructions are due primarily to the explicit involve-
ment of the base problem eigenfunctions insofar as these functions have support
throughout the problem domain and may be difficult to handle analytically. This
fundamental difficulty has been effectively eliminated with methods we present
here. Our work has elements in common with the earlier work of Weinberger
[34, 35] and Gay [17], and follows up on a previous report by the second author
[18] using techniques developed by the first author in [7].

After reviewing basic intermediate problem methods and recalling a useful
variant (the method of second projection) in Sect. 2, we develop in Sect. 3 a
computational approach that requires no eigenvector information from the base
problem and only modest auxiliary information about the base operator spectrum.
We also mention an alternative formulation that may be preferable in some cir-
cumstances. Section 4 contains a discussion of various monotonicity properties
for the newly derived bounds and Sect. 5 explores the relationships with previ-
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ously known methods. Section 6 touches upon some computational issues related
to usage and provides illustrative examples.

2. Intermediate problem methods

2.1. Setting

Let H be a separable complex Hilbert space with norm‖u‖ and inner product
〈u, v〉 (conjugate linear with respect to the first argument). LetA be a self-
adjoint operator on a domain Dom (A) dense inH. We suppose thatA is bounded
below with spectrum that begins with isolated eigenvalues of finite multiplicity,
λ1 ≤ λ2 ≤ . . . ≤ λ∞ ≤ ∞ and corresponding orthonormal eigenvectorsu1, u2,
etc. Hereλ∞ denotes the lowest limit point of the spectrum ofA, that is, the first
point of the essential spectrum. IfA has compact resolvent then by convention we
setλ∞ = ∞. The closure of the quadratic form〈Au, u〉 is denoted bya(u) with
an associated domain Dom (a) ⊃ Dom (A). One may refer to Kato’s excellent
treatise [23] for basic results on quadratic forms in Hilbert spaces.

To apply the method of intermediate problems, it is necessary to have knowl-
edge of a related eigenvalue problem

(2.1) A0u = λu

where A0 is self-adjoint and bounded below on a domain Dom (A0) dense in
H, and a0(u) ≤ a(u) for u ∈ Dom (a) ⊂ Dom (a0). The base problem (2.1), is
assumed to have computable eigenvalues{λ0

i }, such thatλ0
1 ≤ λ0

2 ≤ . . . ≤ λ0
∞ ≤

∞ together with corresponding orthonormal eigenvectorsu0
1 , u

0
2, etc. Consistent

with previous notation, the lowest point of the essential spectrum ofA0 has
been denotedλ0

∞. The variational characterization for eigenvalues of self-adjoint
operators implies thatλ0

∞ ≤ λ∞ and that for eachi satisfyingλi < λ0
∞, λ0

i
exists andλ0

i ≤ λi [cf. 35]. In this way, the base problem provides lower bounds
to the eigenvalues ofA.

Unfortunately most suitable base problems (havingcomputableeigenvalues
and eigenvectors) produce very poor bounds, that are furthermore fixed and
unimprovable. Intermediate problem methods provide an approach for adding
back incrementally what was lost in passing fromA to A0. This is done in such
a way so as to permit explicit resolution of the intermediate spectral problems –
ultimately producing computable, improvable lower bounds to the eigenvalues of
A. A thorough description of the ideas and techniques surrounding this approach
may be found in [35, 36], and in the earlier review article [16]. We review one
particular technique here – the method of second projection.

We assume in all that follows thata(u) admits a decomposition as

a(u) ⊂ a0(u) + ‖Tu‖2
∗
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where T is a closed operator fromH to a Hilbert spaceH∗ (equipped with
inner product〈., .〉∗) and “⊂” here signifies thata(u) is a closed restriction (not
necessarily proper) of the form sum to the right.

2.2. An illustrative example

Let Ω be the unit cube inR3 andu(x) = {u1(x), u2(x), u3(x)} represent a vector-
valued vector function defined forx ∈ Ω. For u ∈ (H 2(Ω)∩H 1

0 (Ω))3 andσ > 0,
define theLamé operator

Au = −∆u− σ grad div u .

The operatorA is densely defined inH = L2(Ω)3 and self-adjoint on the domain
of definition Dom (A) = [H 2(Ω) ∩ H 1

0 (Ω)]3 [24, p. 199]. The quadratic forms
a(u) anda0(u) are given by

a(u) =
∫
Ω

 3∑
i ,j =1

∣∣∣∣∂ui

∂xj

∣∣∣∣2 + σ

∣∣∣∣∣
3∑

i =1

∂ui

∂xi

∣∣∣∣∣
2
 dx1dx2dx3

and

a0(u) =
∫
Ω

3∑
i ,j =1

∣∣∣∣∂ui

∂xj

∣∣∣∣2 dx1dx2dx3

respectively foru ∈ H 1
0 (Ω)3 = Dom (a) = Dom (a0). For u ∈ Dom (a0), define

T0u =
√
σ div u. The operatorT may then be defined as the closure of the

operatorT0 with Dom (T) ⊃ H 1
0 (Ω)3 densely defined inH = L2(Ω)3, mapping

into H∗ = L2(Ω). Since H 1
0 (Ω)3 is a core forT, the adjoint ofT is directly

computable asT∗v = −√σ grad v for v ∈ H 1(Ω). Note that the quadratic form
a0(u) corresponds to the (resolvable) self-adjoint operator

A0 =

[−∆ 0 0
0 −∆ 0
0 0 −∆

]{ u1

u2

u3

}

with Dom (A0) = Dom (A) as given above.A0 has computable eigenvaluesλ0
ijk =

(i 2 + j 2 +k2)π2 with corresponding reducing subspacesUijk = [span{vijk }]3 where
vijk = sin(iπx1) · sin(j πx2) · sin(kπx3) for i , j , k = 1, 2, . . ..

The eigenvalues of the Laḿe operator are associated with the resonant fre-
quencies of internal vibration that may be induced in a three-dimensional ho-
mogeneous isotropic elastic body (a cube in this case) having fixed boundary
surfaces [19, Sect. 75]. The parameterσ may be expressed in terms of the Lamé
moduli λ̄ and µ̄ as σ = (λ̄ + µ̄)/µ̄. µ̄ represents the shear modulus of the ma-
terial while the modulus of compression is given byλ̄ + 2

3µ̄ [19, Sect. 22]. As
λ̄ (and henceσ) increases, the material becomes progressively more resistant to
compression. The limiting casēλ → ∞ corresponds to incompressibility of the
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material and is associated with the Stokes’ eigenvalue problem [19, Sect. 58]: find
nontrivial u ∈ [H 2(Ω) ∩ H 1

0 (Ω)]3 such that−∆u = λu anddiv u = 0. Note that
the quadratic form for this problem is just the restriction ofa0(u) to the subspace
of divergence-free vector fields,M = {u ∈ H|div u = 0}. Sincea0|M = a|M ,
the first monotonicity principle [35, Sect. 3.7] implies that the eigenvalues of the
Lamé operator are lower bounds to the corresponding eigenvalues of the Stokes’
eigenvalue problem for any finite value ofσ > 0. This is of some practical sig-
nificance itself since the smallest eigenvalue of the Stokes’ eigenvalue problem
plays a role in discerning stability of viscous incompressible fluid flows [22].

2.3. Intermediate problem construction

Returning to our development, we now select vectors{pi }k
i =1 ⊂ Dom (T∗) ⊂ H∗

and define the associatedH∗-orthogonal projection

Pku =
k∑

i , j =1

〈u, pi 〉∗Bij pj

where [Bij ] is the Moore–Penrose generalized matrix inverse to the Gram ma-
trix [〈pi , pj 〉∗]. (One may refer to [32] for basic information relating to general-
ized matrix inverses.) In the linear elasticity problem just discussed, any vectors
{pi }k

i =1 ⊂ H 1(Ω) would be admissable.
Define the quadratic form

ak(u) = a0(u) + ‖PkTu‖2
∗ ,

for all u in Dom (a0) ∩ Dom (T). Since Ran (Pk) ⊂ Dom (T∗), PkT may be
extended by continuity to all ofH and ak(u) may be associated with a self-
adjoint operator given by

(2.2) Ak = A0 +
k∑

i ,j =1

〈·,T∗pi 〉Bij T∗pj ⊃ A0 + T∗PkT ,

with Dom (Ak) = Dom (A0). The eigenvalues ofAk may be denoted analogously
to those ofA0 andA asλ(k)

1 ≤ λ(k)
2 ≤ . . . ≤ λ(k)

∞ ≤ ∞. Becausea0(u) ≤ ak(u) ≤
ak+1(u) ≤ a(u) for all u ∈ Dom (a), the eigenvalues ofAk lie intermediate
between those ofA0 and those ofA, and are monotone increasing ink, the
dimension of the projecting subspace. That is,

λ0
i ≤ λ(k)

i ≤ λ(k+1)
i ≤ λi

for eachi such thatλi < λ0
∞.

The finite-rank nature of the perturbation toA0 expressed in (2.2) permits
computation of{λ(k)

i } through consideration of the rank and inertia of the
Weinstein-Aronszajn (W-A) matrix,
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(2.3) Wk(λ) = [〈pi , pj 〉∗ + 〈R0
λT∗pi ,T

∗pj 〉] ,

considered as a function of the eigenvalue parameterλ. Here R0
λ denotes the

resolvent operator (A0 − λ)−1. We introduce the following notation:

N (λ) is the number of eigenvalues ofA strictly less than the parameterλ,
Nk(λ) is the number of eigenvalues ofAk strictly less than the parameterλ,
N0(λ) is the number of eigenvalues ofA0 strictly less than the parameterλ,
D
−[M] is the negative inertia of a Hermitian matrixM

(i.e., the number of negative eigenvalues ofM), and
null [M] is the nullity of a square matrixM.

The following extension of the spectrum-slicing formulas of [7] is developed
in the appendix.

(2.4) N (λ) ≤ Nk(λ) = N0(λ)− {null [Wk(λ)] + D−[Wk(λ)]} + null [〈pi , pj 〉∗]

for any λ ≤ λ0
∞ at which Wk(λ) is defined. Provided that it is possible to

evaluateWk(λ) for any suchλ, (2.4) may be used directly to isolate and locate
eigenvalues ofAk to any degree of accuracy desired (at least in principle), thus
providing lower bounds to the corresponding eigenvalues ofA.

Additional knowledge of Ker (T∗) may be incorporated to further improve
these bounds. Specifically, suppose we know ofω linearly independent vectors
{zi }ωi =1 ⊂ Ker (T∗) and consider the effect of removing from{pi }k

i =1 components
lying in span

i =1,...,ω
(zi ):

(2.5) p̃i = pi −
ω∑

l ,m=1

〈pi , zl 〉∗Zlmzm ,

where [Zlm] is the matrix inverse to [〈zl , zm〉∗]. Note that relative to the natural
partial ordering of Hermitian matrices,

[〈pi , pj 〉∗] = [〈p̃i , p̃j 〉∗ +
ω∑

l ,m=1

〈pi , zl 〉∗Zlm〈zm, pj 〉∗] ≥ [〈p̃i , p̃j 〉∗] .

So, defining [B̃ij ] to be the Moore–Penrose generalized inverse of the Gram
matrix [〈p̃i , p̃j 〉∗], we have that [B̃ij ] ≥ [Bij ] and

(2.6) Ak ≤ A0 +
k∑

i ,j =1

〈·,T∗p̃i 〉B̃ij T∗p̃j ≤ A .

The associated W-A matrix may be expressed directly in terms of{pi }k
i =1 as

(2.7) W ω
k (λ) = [〈pi , pj 〉∗ −

ω∑
l ,m=1

〈pi , zl 〉∗Zlm〈zm, pj 〉∗ + 〈R0
λT∗pi ,T

∗pj 〉] .
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Augment the projecting vectors{pi }k
i =1 by definingpk+j = zj for j = 1, . . . , ω and

let Wk+ω(λ) denote the corresponding W-A matrix obtained from (2.3). Note that
[〈zl , zm〉∗] is positive definite and appears as the lowerω×ω principal submatrix
of Wk+ω(λ), so one may see from (2.7) thatW ω

k (λ) is the Schur complement
of [〈zl , zm〉∗] in Wk+ω(λ) (cf. [20]). Using the additivity of inertia over Schur
complementation we find

null [Wk+ω(λ)] + D−[Wk+ω(λ)] = null [W ω
k (λ)] + D−[W ω

k (λ)] .

Thus from the spectrum-slicing formula (2.4) we see that the bounds obtained by
reducing the kernel ofT∗ by span

i =1,...,ω
(zi ) as in (2.7) are identical to what would be

obtained by simply augmenting the original projecting set{pi }k
i =1 with {zj }ωj =1.

While the form of (2.7) may hold some practical advantages in computational
strategies that make direct use of the W-A matrix (e.g., [8]), we may omit any
explicit reference to the reduction of Ker (T∗) with no loss of generality and
henceforth consider only (2.3).

For general choices of projecting vectors{pi }, note that the evaluation of
Wk(λ) is very difficult because the action ofR0

λ is rarely accessible in a suffi-
ciently accurate, computationally usable form. Bazley and Fox [5] proposed the
use of a “special choice”, determining vectors{pi }k

i =1 so thatT∗pi = u0
i . Although

this choice for{pi } makes evaluation ofWk(λ) comparatively straightforward,
one is left with a highly constrained choice of the projecting vectors{pi } and also
the (possibly) onerous task of solving the many operator equations,T∗pi = u0

i .
To circumvent some of these difficulties Bazley and Fox introduced the method
of second projection.

Following [5], let us define for some fixedδ /= 0, Bk = T∗PkT + δ2I . The
operatorBk is bounded, self-adjoint, and positive definite. Furthermore, it has an
explicit inverse given by

(2.8) B−1
k v =

1
δ2

[v −
k∑

`,m=1

〈v,T∗p`〉C`mT∗pm]

where [C`m] is the Moore–Penrose generalized matrix inverse to [δ2〈pi , pj 〉∗ +
〈T∗pi ,T∗pj 〉].

Upon choosing a set of vectors{p̂i }n
i =1, we may define a projection onto

span
i =1,...,n

{p̂i }, orthogonal with respect to the inner product induced byBk :

P̂n =
n∑

i ,j =1

〈·,Bkp̂i 〉)Dij p̂j

where now [Dij ] is the Moore–Penrose generalized matrix inverse to [〈Bkp̂i , p̂j 〉].
lt is easy to see then thatBkP̂n is a bounded, symmetric, positive semidefinite
operator, and that〈BkP̂nu, u〉 ≤ 〈Bku, u〉 for all u ∈ H. Thus, if we define

(2.9) Ak,n = A0 − δ2 + BkP̂n ,
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it is clear that the eigenvalues ofAk,n form lower bounds to the corresponding
eigenvalues ofA and that they are monotone increasing in bothk and n. The
associatedn × n W-A matrix is given by

(2.10) Wk,n(λ) = [〈p̂i + R0
λ+δ2Bkp̂i ,Bkp̂j 〉]

This matrix will be pivotal in our later development. The corresponding counting
function, Nk,n(λ) satisfies

N (λ) ≤ Nk,n(λ)

= N0(λ + δ2)− {null [Wk,n(λ)] + D−[Wk,n(λ)]} + null [〈p̂i , p̂j )](2.11)

for eachλ < λ0
∞ whereWk,n(λ) is well defined.

Now, if we were to choose the vectors{p̂i }n
i =1 so thatp̂i = B−1

k u0
i , then the

W-A matrix (2.10) would be explicitly computable as

Wk,n(λ) =

( 1
δ2

+
1

λ0
i − (λ + δ2)

)
δij − 1

δ2

k∑
`,m=1

〈u0
i ,T

∗p`〉C`m〈T∗pm, u
0
j 〉


(2.12)

(δij denotes the Kronecker delta). SinceAk,n as defined in (2.9) would then have
the explicitly known finite-dimensional reducing space span

i =1,...,n
{u0

i }, the computa-

tional task associated with (2.12) could be refashioned into a linearn×n matrix
eigenvalue problem –

[diag (λ0
i − δ2) + D ]x = λx .

Note thatD here is the matrix inverse to [〈u0
i ,B

−1
k u0

j 〉] which will in nearly
every case of interestnot be sparse because the eigenvectors{u0

i } will have
support throughout the problem domain.

It was observed in [4] that the lower bound for theνth eigenvalue derived
from (2.9) improves monotonically as|δ| increases until it reaches the value
λ0

n+1− δ2 at which point the bound begins to deteriorate as|δ| increases further.
Thus, the optimum value ofδ with which to estimateλν is attained whenδ2 =
λ0

n+1 − λ(k,n)
ν , though of course this value is not generally known at the outset.

Börsch-Supan [12] showed that this optimum bound is achieved (simultaneously
for every ν ≤ n) with the method of truncation[3], which makes use of the
same information as the method of second projection but involves instead the
resolution of a (dense) matrix eigenvalue problem of larger dimensionn + k.

3. Extensions

3.1. An eigenvector-free formulation

In the previous discussion of Weinstein-Aronszajn methods, the strategy implicit
in utilizing the formula (2.10), involvesfixinga nonzero constantδ, fixing families
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of projecting vectors{pi }k
i =1 or {p̂i }n

i =1 (generally through a “special choice”)
and thenvaryingλ to obtain the best possible lower bound – either by finding a
value for whichW (λ) loses rank or by resolving an equivalent (dense) matrix
eigenvalue problem. This approach depends on the availability of base problem
eigenvectors in general since there is little other possibility of adequately treating
the resolvent operator,R0

λ, involved in the W-A matrix. In this section, we remove
the debilitating dependence on eigenvectors and in so doing allow more flexibility
in the selection of projecting vectors.

Returning to the W-A matrix (2.10) associated with the method of second
projection, we defineµ = λ+δ2 and then consider only thoseλ for whichλ < µ.
Introduce the change of variableqi = R0

µBkp̂i into (2.10) to get

Wk,n(λ) = [〈B−1
k (A0 − µ)qi , (A0 − µ)qj 〉 + 〈qi , (A0 − µ)qj 〉] ,

which may be further simplified with the aid of (2.8) to get

Wk,n(λ) = [〈qi , (A0 − µ)qj 〉 +
1

µ− λ
{〈(A0 − µ)qi , (A0 − µ)qj 〉

−
k∑

`,m=1

〈(A0 − µ)qi ,T
∗p`〉C`m〈T∗pm, (A0 − µ)qj 〉}](3.1)

Fix µ, {qi }n
i =1 ⊂ Dom (A0), and{pi }k

i =1 ⊂ Dom (T∗) and observe thatWk,n(λ)
will be the W-A matrix for an intermediate problem for each (fixed)λ < µ,
however asλ changes,δ2 changes,{p̂i } changes, [C`m] changes, thus the related
intermediate problem changes as well, and not at all in a monotonic fashion. By
using the spectrum-slicing formula (2.11), we may still interpret eachλ < µ as a
lower bound to an eigenvalueλp of A, with indexp = N0(µ)−{null [Wk,n(λ)〉]+
D
−[Wk,n(λ)]}+1. Finding the best lower bound toλp for fixedµ, fixed{qi }, and

fixed {pi } would then involve finding the largestλ that leaves{null Wk,n(λ)] +
D
−[Wk,n(λ)]} unchanged. At first glance, the computational task one now faces

appears to involve constrained nonlinear programming and so may not be any
more appealing than previous methods. However, a slight reformulation will be
seen to produce a well-structured linear matrix eigenvalue problem. Define the
matrices:

F1 = [〈qi , (A0 − µ)qj 〉] ∈ Cn×n ,

F2 = [〈pi , pj 〉∗] ∈ Ck×k ,

G1 = [〈(A0 − µ)qi , (A0 − µ)qj 〉] ∈ Cn×n ,

G2 = [〈T∗pi ,T
∗pj 〉] ∈ Ck×k ,

and
H = [〈(A0 − µ)qi ,T

∗pj 〉] ∈ Cn×k .

Using “†” to denote a Moore–Penrose generalized inverse, the W-A matrix
Wk,n(λ) of (3.1) may be compactly expressed as

Wk,n(λ) = F1 +
1

µ− λ
{G1 −H [(µ− λ)F2 + G2]†H ∗} .



152 C. Beattie and F. Goerisch

Defining the matrix pencil

(3.2) Mk,n(ζ) =

[
F1 0
0 F2

]
− ζ

[
G1 H

H ∗ G2

]
,

we find for ζ = (λ− µ)−1

Wk,n(λ) = [Mk,n(ζ)/(F2 − ζG2)] ,

signifying the (generalized) Schur complement ofMk,n(ζ) with respect toF2−
ζG2 [15]. Note that the matrix

[
G1 H

H ∗ G2

]
is positive semidefinite, being the

Gram matrix of the vectors{(A0 − µ)qi }n
i =1 and{T∗pj }k

j =1. Using the additivity
of inertia over Schur complementation [15] we find

null [Wk,n(λ)] + D−[Wk,n(λ)] = null [Mk,n(ζ)] + D−[Mk,u(ζ)]

− {null [F2 − ζG2] + D−[F2 − ζG2]} .
Since λ < µ implies ζ < 0, F2 − ζG2 is positive semi-definite so that
D
−[F2−ζG2] = 0 and null [F2−ζG2] = null [F2]. Furthermore, null [〈p̂i , p̂j 〉] =

null [〈Bkp̂i ,Bkp̂j 〉] = null [G1]. Thus from (2.11) we have

(3.3) N (λ) ≤ N0(µ)−{null [Mk,n(ζ)] +D−[Mk,n(ζ)}+ null [G1] + null [F2] .

3.2. A generalized matrix eigenvalue problem

Evidently, the critical points of null [Mk,n(ζ)]+D−[Mk,n(ζ)] occur at the eigen-
values of the generalized matrix eigenvalue problem

(3.4)

[
F1 0
0 F2

]{
x1

x2

}
= ζ

[
G1 H

H ∗ G2

]{
x1

x2

}
We recall the following

Definition 3.1. Let A andB ∈ Cm×m be Hermitian matrices withB positive
semidefinite.ζ is called adiscrete eigenvalueof the problem

Ax = ζB x

if ν(ζ) > 0 where

ν(ζ)
def
= dim{x ∈ Cm|Ax = ζB x andx∗y = 0 for all y ∈ KerA ∩ KerB } .

ν(ζ) is then called themultiplicity of the eigenvalueζ. By convention,

ν(∞) = dim Ker (B ) \ Ker (A)

is the multiplicity of “the eigenvalue at infinity”.
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Thus the eigenvalues of (3.4) may or may not be discrete, and if discrete, may
be finite or infinite, all depending on the relative orientation of the kernels of the
left- and right-hand matrices, (cf. [31]). Notice there can only be a finite number
of discrete eigenvalues (including the eigenvalue at infinity). However, since
KerF2 ⊂ KerG2 ⊂ KerH ,KerG1 ⊂ KerH ∗ and KerG1 ⊂ KerF1, one may

observe that KerG1⊕KerF2 = Ker

([
F1 0
0 F2

])
∩Ker

([
G1 H

H ∗ G2

])
. Any

x1 ∈ KerG1 and x2 ∈ KerF2 would trivially satisfy (3.4) for every finite value
of ζ.

Excluding trivial cases, (3.4) will have discrete (finite) eigenvalues which we
label as

ζ1 ≤ ζ2 ≤ . . . ≤ ζ` < 0≤ ζ`+1 ≤ . . . ,

(` = 0 when all are non-negative or infinite). For a given indexr , fix µ so

that λ0
r−1 < µ ≤ λ0

r . If Ker

([
G1 H

H ∗ G2

])
⊂ Ker

([
F1 0
0 F2

])
, then all

discrete eigenvalues are finite and for any eigenvalueζp with p ≤ ` we have
from (3.3)

N

(
µ +

1
ζp

)
≤ r − 1− {D−[Mk,n(ζp)] + (null[Mk,n(ζp)]

− null[G1] − null[F2])} = r − 1−m(p)

wherem(p) = max{m|ζm = ζp}. Thus for any matrix eigenvalueζp with p ≤ `,
we have a corresponding lower bound to an eigenvalue ofA:

µ +
1
ζp
≤ λr−m(p) ≤ λr−p

On the other hand, if Ker

([
G1 H

H ∗ G2

])
6⊂ Ker

([
F1 0
0 F2

])
, then there

will be infinite eigenvalues of (3.4) that may confound the association between
the inertia ofMk,n(ζp) and the eigenvalue indexp.

We consider this issue in a wider context of generalized Hermitian matrix
eigenvalue problems.

Lemma 3.2. Let A and B ∈ C
m×m be Hermitian matrices withB positive

semidefinite. Chooseη ∈ R and let p be the number of discrete eigenvalues of
Ax = ζBx contained in the interval(−∞, η]. Further, let{v1, v2, . . . , vγ} be a
basis forKer (B ) and defineC = [cij ] ∈ Cγ×γ by cij = v∗i Avj for i , j = 1, . . . γ.
Then

null [A− ηB ] + D−[A− ηB ] = p + null [C ] + D−[C ]

Proof. Let V ∈ C
m×γ have columns{v1, v2, . . . , vγ} and let the columns of

¯V ∈ Cm×(m−γ) form a basis for [Ker (B )]⊥. Define the parameterized matrices
Mτ = A + (τ − η)B andZτ = [V 1√

τ
V ]. ThenZτ is nonsingular for each

τ > 0 and
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Z∗
τMτZτ =

[ C 1√
τ
V ∗AV

1√
τ
V

∗
AV V

∗
B V + 1√

τ
V

∗
(A− ηB )V

]
.

If C is nonsingular then dim [Ker (A) ∩ Ker (B )] = 0 and, sinceV
∗
B V

is positive definite,D−[Mτ ] = D
−[C ], for all τ > T, with sufficiently large

T > 0. If C is singular, we are free to pick an orthonormal basis for Ker (B )

that constitute the columns ofV = [V1V2], so thatC = V ∗AV =

[
0 0
0 C2

]
,

and C2 = V ∗
2 AV2, is nonsingular. This produces a natural partitioning of

Z∗
τMτZτ as

Z∗
τMτZτ

=

 0 0 1√
τ
V ∗

1 AV

0 C2
1√
τ
V ∗

2 AV
1√
τ
V

∗
AV1

1√
τ
V

∗
AV2 V

∗
B V + 1

τ V
∗
(A− ηB )V

 .
For any vectory ∈ Ker (V

∗
AV1), observe

AV1y = MτZτ

{ y
0
0

}
= (Z∗

τ )−1Z∗
τMτZτ

{ y
0
0

}
= 0 .

ThusV1 is an injective mapping from Ker (V
∗
AV1) into Ker (A)∩Ker (B ).

Furthermore, for any vectorx ∈ Ker (A) ∩ Ker (B ), x = V1y + V2z for some
pair of vectorsy and z. But then 0 =V ∗

2 Ax = C2z which implies thatz = 0.
Thus y ∈ Ker (V

∗
AV1) and V1 is a bijection between Ker (V

∗
AV1) and

Ker (A)∩Ker (B ). This in turn implies that null(V
∗
AV1) = dim (Ker (A)∩

Ker (B )) and rank (V
∗
AV1) = null (C ) − dim (Ker (A) ∩ Ker (B )). Now

define the block Gauss transformations,

N1 =

[ I 0 0
0 I 0

1√
τ
E1 0 I

]
and N2 =

[ I 0 0
0 I 1√

τ
E2

0 0 I

]
,

whereE1 = −G (τ )−1V
∗
AV1 with G (τ ) = V

∗
B V + 1

τ V ∗(A−ηB )V −
1
τ E ∗

2 C2E2, andE2 = −C −1
2 V ∗

2 AV . Notice thatG (τ ) is positive definite for
all τ > T with sufficiently largeT > 0, henceN1 andN2 will be invertible for all
τ > T. A straightforward calculation shows that,N ∗

1 N ∗
2 (Z∗

τMτZτ )N1N2

= diag[−E ∗
1 G (τ )E1,C2,G (τ )]. Hence for allτ > T with T > 0 sufficiently

large, we find

D
−[Mτ ] = D−[−E ∗

1 G (τ )E1] + D−[C2]

= rank [E1] + D−[C ]

= null [C ] + D−[C ] − dim (Ker (A) ∩ Ker (B )) .

Now let U be a matrix with orthonormal columns that span [Ker (A) ∩
Ker (B )]⊥. ThenD−[Mτ ] = D

−[U∗MτU ] for all τ and U∗MτU is
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singular if and only ifη− τ is a discrete eigenvalue ofAx = ζB x. SinceB is
positive semidefinite, the eigenvalues ofU∗MτU are evidently continuous and
monotone nondecreasing as functions ofτ . Furthermore, since det (U∗MτU )
is analytic inτ and not identically zero, any negative eigenvalue ofU∗MτU
that reaches zero must cross from negative to positive at that point. Hence asτ
increases in (0,∞), there arel values ofτ , {τi }l

i =1 ⊂ (0,∞) where a negative
eigenvalue ofU∗MτU crosses 0 and

` = D−[U∗M0U ] − D−[U∗MTU ] = D−[M0] − D−[MT ]

= D−[A− ηB ] − (null [C ] + D−[C ]) + dim (Ker (A) ∩ Ker (B )) .

Thus for eachi = 1, 2, . . . , l , η − τi is a discrete eigenvalue ofAx = ζB x in
(−∞, η). Conversely, every discrete eigenvalue ofAx = ζB x in (−∞, η) must
occur at such a zero crossing and so must equalη − τi for somei = 1, . . . , l .

Now, observe thatp − ν(η) is the number of discrete eigenvalues of
Ax = ζB x in the open interval (−∞, η). Thus p − ν(η) = l . Recall from
Definition (3.1), null [A− ηB ] = ν(η) + dim [Ker (A)∩Ker (B )], hence (3.5)
is established.

This leads us to our main result.

Theorem 3.3. Let µ and r be chosen so thatµ ≤ λ0
r . Suppose that{pi }k

i =1 ⊂
Dom (T∗) and{qi }n

i =1 ⊂ Dom (A0). If the generalized matrix eigenvalue problem[
F1 0
0 F2

]{
x1

x2

}
= ζ

[
G1 H

H ∗ G2

]{
x1

x2

}
has discrete finite eigenvalues ordered as

ζ1 ≤ ζ2 ≤ . . . ≤ ζ` < 0≤ ζ`+1 . . .

(` = 0 if all discrete eigenvalues are either nonnegative or infinite), then` =
D
−[F1] − d, where d = null [C ] + D−[C ] − (null [G1] + null [F2]) for C =

V ∗F1V1 + V ∗
2 F2V2 with V =

[
V1

V2

]
having columns that form a basis for

Ker

([
G1 H

H ∗ G2

])
. Furthermore, for each eigenvalueζp with p ≤ ` we have

a corresponding lower bound for an eigenvalue of A,

µ +
1
ζp
≤ λr−d−m(p) ≤ λr−d−p ≤ λr−p

where m(p) = max{m|ζm = ζp}.

Proof. In Lemma 3.2, considerA =

[
F1 0
0 F2

]
, B =

[
G1 H

H ∗ G2

]
, andC as

given above. Settingη = 0 in (3.5) and observing that dim (Ker (A)∩Ker (B )) =
null (G1) + null (F2), we find
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` = null [A] + D−[A] − (null (C ) +D−[C ]) − ν(0)

= (ν(0) + dim (Ker (A) ∩ Ker (B )) +D−[F1] − (null (C ) +D−[C ]) − ν(0)

= D−[F1] − (null (C )− dim (Ker (A) ∩ Ker (B )) +D−[C ])

= D−[F1] − d .

The last two inequalities of (3.6) follow trivially from the easily verified asser-
tions, d ≥ 0 andp ≤ m(p). To show the remaining inequality, in the hypothesis
of Lemma 3.2, setη = ζp = ζm(p) for somep ≤ `. Then from (3.3) and the
observation thatN0(µ) ≤ r − 1, we have for everyλ ≤ µ + 1

ζp
,

N (λ) ≤ N0(µ)− {m(p) + null [C ] + D−(C )} + null (G1) + null (F2)

≤ (r − 1)−m(p)− d .

Thus, every suchλ is a lower bound toλr−d−m(p).

The index parameter “d” provides a correction toa priori information avail-
able for A0 (given in the form of the index “r ”). This correction is based
(perhaps somewhat mysteriously) in part on computable information about

Ker

([
G1 H

H ∗ G2

])
. In order to better understand the source of this correc-

tion, let us now assume that{(A0 − µ)qi }n
i =1 and {T∗pi }k

i =1 are separately lin-
early independent sets butM = span

i =1,...,n
(A0 − µ)qi ∩ span

i =1,...,k
T∗pi is non-trivial.

This implies thatG1, G2, andF2 are nonsingular but

[
G1 H

H ∗ G2

]
is singular.

Let ν = dimM = null

([
G1 H

H ∗ G2

])
and τ = n − ν. There exist matrices

V1 = [v(1)
ij ] ∈ Cn×ν andV2 = [v(2)

ij ] ∈ Ck×ν such that rank [V1] = rank [V2] = ν
and [

G1 H
H ∗ G2

] [
V1

V2

]
= 0 .

Defineq̃j =
∑n

i =1 v
(1)
ij qi andp̃j =

∑k
i =1 v

(2)
ij pi for j = 1, 2, . . . , ν. For convenience,

we will assume thatµ is in the resolvent set forA0, although this ultimately entails
no loss of generality. Then (A0 − µ)q̃j + T∗p̃j = 0 and we may compute

C = [V ∗
1 V ∗

2 ]

[
F1 0
0 F2

] [
V1

V2

]
= V ∗

2 F2V2 + V1F1V1

= [〈p̃i , p̃j 〉∗ + 〈q̃i , (A0 − µ)q̃j 〉]
= [〈p̃i , p̃j 〉∗ + 〈R0

µT∗p̃i ,T
∗p̃j 〉] = Wν(µ) ,

which is the W-A matrix for an intermediate problem that we may write as
Aν = A0 + T∗P̃νT. Notice now from (2.4),Nν(µ) = N0(µ) − {null [Wν(µ)] +
D
−[Wν(µ)]} = r − d.

Thus, computable information about Ker

[
G1 H

H ∗ G2

]
is used to determine

whereµ lies in the spectrum of the intermediate operatorAν . SinceAν dominates
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A0 in the sense of quadratic forms, this provides in a certain sense strongera
priori information than was initially available from justA0.

3.3. The EVF method

For clarity we lay out a methodology that Theorem 3.3 suggests for computing
lower bounds to the eigenvalues ofA. For compactness, we refer to the following
as the EVF (EigenvectorFree method):

(1) Select trial vectors{qi }n
i =1 ⊂ Dom (A0) and{pj }k

j =1 ⊂ Dom (T∗).

(2) Pick (or compute) a valueµ ∈ (λ0
r−1, λ

0
r ] for a selectedr > 1.

(3) Form and solve the matrix eigenvalue problem defined by (3.4).
(4) The finite negative discrete eigenvalues computed from (3.4) may each be

associated with eigenvalue bounds as given in (3.6).

Although we need only assumeµ ≤ λ0
r in order to deduce the bounds given

in (3.6), one should seek to chooseµ and r so thatµ ∈ (λ0
r−1, λ

0
r ]. Otherwise,

N0(µ) ≤ r − 1 and it will be infeasible to have lower bounds convergent to the
correspondingly indexed eigenvalues ofA (see also [9] and [10]).

Notice that if bothA0 andT∗ are local operators and the vectors{qi }n
i =1 and

{pj }k
j =1 are chosen to have local support (as with, for example, finite-element trial

functions), then the resulting matrices will be sparse and (3.4) may be efficiently
handled using sparse matrix techniques, even for quite large values ofn and
k. Furthermore, the only need fora priori spectral information comes through
the selection (or computation) ofµ as a sufficiently good lower bound toλ0

r to
separate it fromλ0

r−1. No eigenvector data forA0 are necessary nor are “exact”
values for the eigenvalues ofA0 needed for appropriate selection ofµ.

3.4. Using B= T∗T directly

In some circumstances, it may be more convenient to consider the use of the
operatorB = T∗T and avoid the use ofT∗ altogether. An alternate devel-
opment usingB is quite straightforward and proceeds in direct analogy with
what has gone before. We provide only an outline here. Pick projecting vec-
tors{p1, p2, . . .} ⊂ Dom (B) instead and define theB-orthogonal projection onto
span

i =1,...,k
{pi }

Pku =
k∑

i ,j =1

〈u,Bpi 〉Bij pi

where [Bij ] is the Moore–Penrose generalized inverse to [〈Bpi , pi 〉]. Now define
Bk = BPk + δ2I . The operatorBk is bounded, self-adjoint, positive-definite, and
has an explicit inverse given by
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B−1
k v =

1
δ2

v − k∑
l ,m=1

〈v,Bpl 〉ClmBpm


where [Clm] is the Moore–Penrose generalized matrix inverse to [δ2〈Bpi , pj 〉 +
〈Bpi ,Bpj 〉] (instead of (2.8) ). Likewise (3.1) becomes

Wk,n(λ) = [〈qi , (A0 − µ)qi 〉] +
1

µ− λ

{
〈(A0 − µ)qi , (A0 − µ)qj 〉

−
k∑

l ,m=1

〈(A0 − µ)qi ,Bpl 〉Clm〈Bpm, (A0 − µ)qj 〉
}

Proceeding in a like manner, we arrive finally to the analog of Theorem 3.3
which we state without proof.

Theorem 3.4. Let µ and r be chosen so thatµ ≤ λ0
r . Suppose that{pi }k

i =1 ⊂
Dom (B) and{qi }n

i =1 ⊂ Dom (A0).
Define the following matrices

F1 = [〈qi , (A0 − µ)qi 〉] ∈ Cn×n

G1 = [〈(A0 − µ)qi , (A0 − µ)qj 〉] ∈ Cn×n ,

F2 = [〈pi ,Bpj 〉] ∈ Ck×k ,

G2 = [〈Bpi ,Bpj 〉] ∈ Ck×k ,

and

H [〈(A0 − µ)qi ,Bpj 〉] ∈ Cn×k .

If the generalized matrix eigenvalue problem[
F1 0
0 F2

]{
x1

x2

}
= ζ

[
G1 H

H ∗ G2

]{
x1

x2

}
has discrete finite eigenvalues ordered as

ζ1 ≤ ζ2 ≤ . . . ζ` < 0≤ ζ`+1 ≤ . . .

(` = 0 if all discrete eigenvalues are either nonnegative or infinite), then for each
eigenvalueζp with p ≤ ` we have a correspronding lower bound for an eigenvalue
of A

µ +
1
ξp
≤ λr−d−m(p) ≤ λr−d−p ≤ λr−p

where m(p) = max{m|ξm = ξp} and d = null [C ]+D−[C ]−null [G1]+null [F2])

for C = V ∗
1 F1V1+V ∗

2 F2V2 with V =

[
V1

V2

]
having columns that form a basis

for Ker

([
G1 H

H ∗ G2

])
.
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4. Parameter selection

4.1. Monotonicity of bounds with respect toµ

Typically one will have a range of feasibleµ values available within the interval
we discover here is that the best in the interval (λ0

r−1, λ
0
r ]. What we discover here

is that the best available lower bound toλ0
r in the interval (λ0

r−1, λ
0
r ] produces

the best bound in (3.6).

Theorem 4.1.The lower boundµ + 1
ζp(µ) in (3.6) is monotone increasing inµ on

(λ0
r−1, λ

0
r ].

Proof. Fix a nonzero vectorx ∈ C
n, define q̂ =

∑n
i =1 xi qi , and introduce the

functionΦ(µ, λ) = x∗Wk,n(µ, λ)x whereWk,n(µ, λ), defined by (3.1), now shows
explicitly the dependence onµ. Φ is continuously differentiable forλ < µ and
we have

∂Φ

∂µ
= 〈(A0 − µ)q̂,

[
∂B−1

k

∂µ

]
(A0 − µ)q̂〉

− 〈q̂,B−1
k (A0 − µ)q̂〉 − 〈(A0 − µ)q̂,B−1

k q̂〉 − ‖q̂‖2 .

From the definition ofBk ,
∂B−1

k

∂µ
= −B−1

k

[
∂Bk

∂µ

]
B−1

k = B−2
k , hence

∂Φ

∂µ
= −‖B−1

k (A0 − µ)q̂ + q̂‖2 ≤ 0 .

Likewise,

∂Φ

∂λ
= 〈(A0 − µ)q̂,

[
∂B−1

k

∂λ

]
(A0 − µ)q̂〉 = ‖B−1

k (A0 − µ)q̂‖2 ≥ 0 .

This establishes thatΦ is monotone decreasing inµ and monotone increasing in
λ over the range of valuesλ < µ. Thus, forλ1 < λ2 < µ1 < µ2 we have

(4.1) Wk,n(µ, λ1) ≤ Wk,n(µ, λ2) for λ1 < λ2 < µ

and

(4.2) Wk,n(µ1, λ) ≤ Wk,n(µ2, λ) for λ < µ1 < µ2 .

For compactness, we now fix the indicesk, n and suppress them in our notation.
Define for each 0≤ J < r andµ ∈ (λ0

r−1, λ
0
r ],

ΓJ (µ) = {λ|null [W (µ, λ)] + D−[W (µ, λ)] ≤ r − J} .
Thenλ ∈ ΓJ (λ) implies thatλ ≤ λJ+1 from (3.3). From (4.1), null [W (µ, λ)] +
D
−[W (µ, λ)] is increasing asλ decreases, hence ifλ ∈ ΓJ (µ) then (−∞, λ] ⊂

ΓJ (µ) as well. For 1≤ p < ` andJ = r −m(p)− 1 we have
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µ +
1
ζp
∈ ΓJ (µ) .

Furthermoreµ + 1
ζp

= max{ΓJ (µ)}. To see this, defineλ(ε) = µ + (ζp − ε)−1 for

ε > 0 andλ(0) = µ + 1
ζp

. Then evidentlyλ(0) < λ(ε) and

null [W (µ, λ(ε))] + D−[W (µ, λ(ε))] = null [M(ζp − ε)] + D−[M(ζp − ε)]

< null [M(ζp)] + D−[M(ζp)]

= null [W (µ, λ(0))] +D−[W (µ, λ(0))] = r − J .

Soλ(ε) 6∈ ΓJ (µ) for any c > 0. The proof is completed by observing from (4.2)
that forµ1 < µ2, ΓJ (µ1) ⊂ ΓJ (µ2). Thus,

µ1 +
1

ζp(µ1)
= max{ΓJ (µ1} ≤ max{ΓJ (µ2)} = µ2 +

1
ζp(µ2)

.

4.2. Monotonicity with respect to dimension

For fixedµ it is natural to expect the bounds provided by (3.4)–(3.6) to improve
as the dimensions of the approximating subspaces increase. We state this formally
as

Theorem 4.2.Let {qi }N
i =1 ⊂ Dom (A0) and {pj }K

j =1 ⊂ Dom (T∗) be fixed sets of
vectors. For1 ≤ ν ≤ N , 1 ≤ κ ≤ K , and fixedµ, let ζ (ν,κ)

p be the pth negative
discrete eigenvalue of (3.4) corresponding to the use of{qi }νi =1 and {pj }κj =1. If
1≤ ν1 ≤ ν2 ≤ N and1≤ κ1 ≤ κ2 ≤ K then

µ +
1

ζ
(ν1,κ1)
p

≤ µ +
1

ζ
(ν2,κ2)
p

≤ λr−p .

Proof. In view of (3.5), it is sufficient to showζ (ν2,κ2)
p ≤ ζ

(ν1,κ1)
p , or equivalently

that for eachν, κ satisfying 1≤ ν ≤ N − 1 and 1≤ κ ≤ K we haveζ (ν+1,κ)
p ≤

ζ (ν,κ)
p , and for eachν, κ satisfying 1≤ ν ≤ N and 1 ≤ κ ≤ K we have
ζ (ν,κ+1)

p ≤ ζ (ν,κ)
p . In either case, the Cauchy interlace theorem [cf. 31] provides

the conclusion.

5. Relationship with other methods

5.1. Truncated intermediate problems

The derivation in Sect. 3.1 clearly indicates the close association the EVF method
has with the standard method of intermediate problems. To emphasize this, we
show how to recover the method of truncation [3] by an appropriate choice of



Methods for computing lower bounds to eigenvalues of self-adjoint operators 161

trial vectors in the EVF method. If we selectqi = u0
i for i = 1, . . . , n and suppose

µ = λ0
n+1 > λ0

n, the matrix eigenvalue problem (3.4) reduces to a diagonal scaling
of the matrix eigenvalue problem used for the method of truncation applied
with the same projecting vectors{pi }k

i =1. In particular, setR̂ = [〈T∗pi ,T∗pj 〉],
ˆS = [〈T∗pi , u0

ν〉], ˆT = [〈pi , pj 〉∗], andΛ = diag
i =1,...,n

(λ0
i ). Then explicitly

[
I ˆS
ˆS ∗ R̂

]
− (λ− µ)

[
(Λ− µI )−1 0

0 ˆT

]
= −D

([
F1 0
0 F2

]
− ζ

[
G1 H

H ∗ G2

])
D

whereD =
√
µ− λ

[
(Λ− µ)−1 0

0 I

]
.

The left-hand matrix pencil matches equation (5) of [8] giving computable
conditions onλ to be an eigenvalue of the truncated intermediate operator below
the truncation pointµ.

5.2. Temple-Lehmann-Maehly methods

One may observe also a close connection with methods that are associated with
Temple, Lehmann, and Maehly. If we takeA0 = A (so that T = 0), thenµ
becomes a separating parameter forλr−1 and λr and the eigenvalue problem
(3.4) reduces toF1x = ζG1x or explicitly,

(5.1) [〈qi , (A− µ)qj 〉]x = ζ[〈(A− µ)qi , (A− µ)qj 〉]x .

The bounds given in (3.6) (d = 0 in this case) conform to those originally given
by Lehmann in [26] and [27] and by Maehly in [28]. In the scalar case (n = 1)
we recover from (3.6) Temple’s inequality

(5.2) µ +
‖(A− µ)q‖2

〈q, (A− µ)q〉 ≤ λr−1 .

The Temple-Lehmann-Maehly methods may be directly linked to the method of
intermediate problems via the analysis of Sects. 3.1–3.2. In fact, the Lehmann-
Maehly eigenvalue problem (5.1) arises spontaneously from the Weinstein-
Aronszajn matrix corresponding to the parameterized intermediate problem

Aθ
n = A− θ + θPn

wherePn is an orthogonal projection onto span
i =1,...,n

{(A− µ)qi } and the parameter

valuesθ satisfy the side constraint,λ + θ = µ.
A broader relationship with the “Temple quotient” appearing on the left-

hand side of (5.2) may be observed by expressing the boundµ + 1
ζp

in terms
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of the Rayleigh quotient for the matrix eigenvalue,ζp. Suppose

{
x
y

}
is an

eigenvector of the matrix pencil (3.4) associated with the eigenvalueζp, and let
{xi }{yi } denote the components ofx and y, respectively. Ifq =

∑n
i =1 xi qi and

p =
∑k

i =1 yi pi then

µ +
1
ζp

= µ +
‖(A0 − µ)q + T∗p‖2

〈q, (A0 − µ)q〉 + ‖p‖2∗

Notice that ifp = Tq (which presupposes that Dom (A0)∩Dom (T∗T) is nontrivial)
then the right-hand side reduces to the Temple quotient in (5.2).

5.3. Weinberger’s method

In 1959, Weinberger [34] introduced a method for computing eigenvalue lower
bounds that was substantially different from either of the previously known meth-
ods of Lehmann and Maehly or of Weinstein and Aronszajn, while in some mea-
sure generalizing them both. A key departure was the form ofa priori spectral
information taken forA. Following Weinberger [35, Sect. 4.9], we will assume
for the moment that a finite dimensional spaceP is explicitly known together
with a parameterµ such that

(5.3) 〈Av, v〉 ≥ µ‖v‖2 for all v ∈ P⊥

If dimP = k, note that (5.3) implies thatµ ≤ λk+1. Weinberger’s method pro-
ceeds by selecting a basis forP, {p1, p2, . . . , pk}, and a set of trial vectors,
{q1, q2, . . . , qn} ⊂ Dom (A), and considering the generalized matrix eigenvalue
problem

(5.4)

[
R S1

S ∗
1 0

]{
x1

x2

}
= ζ

[
T1 S2

S ∗
2 T2

]{
x1

x2

}
where R = [〈qi , (A− µ)qj 〉] ∈ Cn×n ,

S1 = [〈qi , pj 〉] ∈ Cn×k ,

S2 = [〈(A− µ)qi , pj 〉] ∈ Cn×k ,

T1 = [〈(A− µ)qi , (A− µ)qj 〉] ∈ Cn×n

and T2 = [〈pi , pj 〉] ∈ Ck×k .

Eigenvalue bounds may be deduced as a consequence of the following the-
orem. This theorem is essentially similar to one originally given by Weinberger
(Chapter 4, Theorem 9.3 of [35]), however null (C ) = 0 replaces Weinberger’s

original hypothesis: rank

([
R S1

S ∗
1 0

])
= ρ + n. See the discussion below.

Theorem 5.1. Let P and µ be known so that (5.3) holds. Define r= 1 + k =

1 + dimP andρ = rank (S1). LetV have columns thatspan Ker

([
T1 S2

S ∗
2 T2

])
,
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and suppose thatC = V ∗
[

R S1

S ∗
1 0

]
V is nonsingular. If the finite discrete

eigenvalues of (5.4) are ordered as

ζ1 ≤ ζ2 ≤ . . . ≤ ζl < 0≤ ζl +1 . . .

(l = 0) if all discrete eigenvalues are either nonnegative or infinite) then for each
eigenvalueζp with p ≤ l we have a corresponding lower bound for an eigenvalue
of A,

µ +
1
ζp
≤ λr−δ−p

whereδ = ρ− l .

Proof. Let P denote an orthogonal projection ontoP. For ε > 0, defineA0(ε) =
A− 1

εP. We first assert thatµ ≤ λ0
r (ε) for anyε > 0. If this were not the case then

there would be anr -dimensional subspaceUε such that〈u,A0(ε)u〉 < µ‖u‖2 for
all u ∈ Uε. But since dimUε > dimP, there exists a nontrivial ¯u ∈ Uε ∩ P⊥
and (5.3) implies〈ū,A0(ε)ū〉 = 〈ū,Aū〉 ≥ µ‖ū‖2 which produces a contradiction.
Thusµ ≤ λ0

r (ε), as asserted.
We defineT(ε) = 1√

ε
P and apply Theorem 3.3 with the decompositionA =

A0(ε) + T∗(ε)T(ε):

F1(ε) = R− 1
ε
S1T −1

2 S ∗
1

F2 = T2

G1(ε) = T1 − 1
ε
S1T −1

2 S ∗
2 − 1

ε
S2T −1

2 S ∗
1 +

1
ε2

S1T −1
2 S ∗

1

G2(ε) =
1
ε
T2

andH (ε) =
1√
ε

[
S1 − 1

ε
S2

]
.

DefineXε =

[
I 1√

ε
S1T −1

2

0
√
εI

]
and observe

(5.5)

Xε

([
F1(ε) 0

0 F2

]
− ζ

[
G1(ε) H (ε)

H ∗(ε) G2(ε)

])
X∗ε

=

[
R S1

S ∗
1 εT2

]
− ζ

[
T1 S2

S ∗
2 T2

]

Let Aε =

[
R S1

S ∗
1 εT2

]
, A =

[
R S1

S ∗
1 0

]
, andB =

[
T1 S2

S ∗
2 T2

]
. DefineCε =

V ∗AεV and notice that for allε > 0 sufficiently small, we haveD−[Cε] =
D
−[C ] and null [Cε] = 0. Furthermore, since null [C ] = 0 it is clear that KerA∩

KerB = {0}. Thus, for anyη not an eigenvalue of (5.4),D−[Aε − ηB ] =
D
−[A− ηB ] for ε > 0 sufficiently small. This implies for all such sufficiently
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small ε > 0, the matrix pencil (5.5) will have exactlyl = D−[A] − D−[C ] =
D
−[Aε] − D−[Cε] negative eigenvalues,

ζ1(ε) ≤ ζ2(ε) ≤ . . . ≤ ζl (ε) < 0

Furthermore, sinceD−[Aε − ηB ] ≤ D−[A− ηB ] for any ε > 0 and anyη,
it follows that ζi ≤ ζi (ε) and lim

ε→0
ζi (ε) = ζi for eachi = 1, . . . , l .

BecauseF1(ε) = R − 1
εS1T −1

2 S ∗
1 and rank (S1T −1

2 S ∗
1 ) = rank (S1) =

ρ, it is clear thatD−[F1(ε)] ≥ ρ for all ε > 0 sufficiently small. Suppose
D
−[F1(ε)] > ρ. Then there must be a nontrivial ¯q ∈ span

i =1,...,n
{qi } such that

〈q̄i , pi 〉 = 0 for i = 1, . . . , k and

0 > 〈q̄, (A0(ε)− µ)q̄〉 = 〈q̄, (A− 1
ε

P − µ)q̄〉 = 〈q̄, (A− µ)q̄〉 ,

sincePq̄ = 0. But this then contradicts (5.3) and we must haveρ = D−[F1(ε)]
for all ε sufficiently small. Now Lemma 3.2 provides for all suchε, D−[Aε] =
D
−[F1(ε)] = ρ = l + d. Thusδ = d and by Theorem 3.3

µ +
1

ζp(ε)
≤ λr−d−p = λr−δ−p for p = 1, . . . , l .

Since the bounds improve asε is decreased further, takingε→ 0 yields the best
bounds, and we arrive at the eigenvalue problem (5.4).

Although the assumption null (C ) = 0 is natural in the context of our
Theorem 3.3, it is generally a stronger assumption than Weinberger’s origi-

nal: rank

[
R S1

S ∗
1 0

]
= ρ + n. In fact, if rank

[
R S1

S ∗
1 0

]
< ρ + n then

Ker

[
T1 S2

S ∗
2 T2

]
is nontrivial andC is necessarily singular. The converse does

not hold in general without additional hypotheses, such as null

([
T1 S2

S ∗
2 T2

])
=

k.

6. Computational aspects

6.1. Some examples

We illustrate our method on two problems from technical mechanics. Return first
to the consideration of the vibration of a fixed elastic solid begun in Sect. 2.

Example 1. (continued from Sect. 2.2). The Hilbert spaceH = L2(Ω)3 can be
decomposed into eight mutually orthogonal subspacesFijl (i , j , l ∈ {0, 1}), each
of which reduces the operatorA (cf. [2]). Toward this end, define the following
symmetry classes onL2(Ω) for i , j , l ∈ {0, 1},
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Eijl ] = {f ∈ L2(Ω) : f (x, y, z) = (−1)i f (1− x, y, z)

= (−1)j f (x, 1− y, z) = (−1)l f (x, y, z, 1− z)}
Then for i , j , l ∈ {0, 1},

Fijl =

{( f1
f2
f3

)
∈ (L2(Ω))3 : f1 ∈ Ev(i ),j ,l , f2 ∈ Ei ,v(j ),l , f3 ∈ Ei ,j ,v(l )

}
,

wherev(l ) =
{

1 l = 0
0 l = 1

.

Now letAijl be the restriction ofA toFijl ∩Dom (A). Bounds to the eigenvalues
of A can now be obtained by computing bounds to the eigenvalues ofAijl (i , j , l ∈
{0, 1}). Z. He [21] calculated bounds forA101 using trial functions built up from
trigonometric functions. The bounds given in Table 1 and Table 2 are based on
her results.

Table 1. Eigenvalue bounds for a linearly elastic cube

Eigenvalue A priori σ = 1 σ = 100
index lower bounds lower bounds upper bounds lower bounds upper bounds

1 59.2176 60.6426 60.6430 62.1412 62.1421
2 59.2176 73.6596 73.6621 128.719 128.728
3 118.435 133.927 133.930 140.670 140.674
10 217.131 237.767 237.775 259.011 259.060
20 296.088 356.169 356.233 413.634 413.909
30 375.044 441.920 442.823 465.986 524.666

Lower bounds were computed with the EVF method of Sect. 3 forn = 367,
k = 64, andµ = λ0

3,3,8 = 82π2. A priori lower bounds are obtained from the base
problem. Upper bounds were computed with the Rayleigh-Ritz method with the
same trial functionsqi used in the lower bound calculation.

Recall from [12] and the discussion at the end of Sect. 2.3 that the method
of truncation provides eigenvalue bounds that are always at least good as those
from the Bazley-Fox method of second projection. Since the method of second
projection is central to our derivation, one might suspect that the method of
truncation would also provide bounds that are at least as good as our method.
This does not appear to be the general case. Table 2 provides bounds to the first
eigenvalue of the Laḿe operator (σ = 100) using both the method of truncation
and the EVF method. For the method of truncation, ˜n denotes the truncation
order andk̃ denotes the projecting subspace dimension. The same projecting
subspaces were used in both methods. Notice that for higher order problems the
EVF method provides slightly better bounds then does the method of truncation.

Example 2. The second example we consider arises in the modeling of the
transverse free vibrations of a rotating beam which is clamped at the axis of
rotation and free at the other end. This problem has been treated previously with
other methods in [6] and [14]. The governing equation is
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Table 2. Comparison of the Method of Truncation and the EVF method of Sect. 3.3

Lower Bounds by Truncation

(ñ, k̃) (24, 8) (82, 64) (196, 125)
61.7852 62.0409 62.0975

Lower Bounds by EVF

(n, k) (24, 8) (81, 64) (192, 125)
61.7692 62.0815 62.1339

EI
d4u
dx4

− ρΩ2

2
d
dx

(l 2 − x2)
du
dx

= ω2ρu

with boundary conditionsu(0) = u′(0) = 0 = u′′(l ) = u′′′(l ). Here, E is the
modulus of elasticity,I is the moment of inertia of the cross section about the
rotation axis,ρ is the lineal mass density,ρ is the angular velocity of rotation
and l is the length of the beam.

After introducing the dimensionless variabley = x/l we recast the problem
as an operator eigenvalue problem on the Hilbert spaceH = L2(0, 1):

Au = λu

where

A =
d4

dy4
− a2

2
d
dy

(1− y2)
d
dy

with Dom (A) = {u ∈ H 4(0, 1)|u(0) = u′(0) = u′′(1) = u′′′(1) = 0},
λ = ω2ρl 4/EI , anda2 = ρl 4Ω2/EI .

The quadratic form associated withA is given by

a(u) =
∫ 1

0

(∣∣∣∣d2u
dy2

∣∣∣∣2 +
a2

2
(1− y2)

∣∣∣∣du
dy

∣∣∣∣2
)

dy

with Dom (a) = {u ∈ H 2(0, 1)|u(0) = u′(0) = 0}. We decomposea(u) asa(u) =
a0(u) + ‖Tu‖2 by defining

a0(u) =
a2

2

∫ 1

0
(1− y2)

∣∣∣∣du
dy

∣∣∣∣2 dy

with Dom (a0) = {u ∈ H 1(0, 1)|u(0) = 0}, and

Tu = −d2u
dy2

with Dom (T){u ∈ H 2(0, 1)|u(0) = u′(0) = 0}.
This decomposition corresponds to choosing the base operator to be the fa-

miliar Legendre operator:

A0 = −a2

2
d
dy

(1− y2)
d
dy
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with Dom (A0) = {u ∈ H 2(0, 1)|u(0) = limξ→1(1− ζ)u′(ξ) = 0}. This operator
has explicitly known eigenvalues given byλ0

i = a2i (2i−1) for i = 1, 2, 3, . . .. The

adjoint of T is computed to beT∗ = d2

dy2 with Dom (T∗) = {u ⊂ H 2(0, 1)|u(1) =

u′(1) = 0}.
We chooseµ = 6.5104 = λ0

13 and finite-element bases for the two projecting
subspaces involved. CubicB-splines provide sufficient regularity in each case.
For a mesh size of 1/N we produce subspaces of dimensionk = n = N . Each
submatrix in (3.4) is pentadiagonal, producing a sparse generalized matrix eigen-
value problem. Lower bounds using the EVF method of Sect. 3.3 withN = 20
and N = 40 were performed by G. Lee [25] and are listed in Table 3. Comple-
mentary Rayleigh-Ritz bounds were computed with cubicB-spline trial functions
with N = 50.

Table 3. Eigenvalue bounds for rotating beam:a2 = 200

Eigenvalue A priori Lower Bounds by EVF Rayleigh-Ritz Upper
Index Lower bounds N = 20 N = 40 Bound (N = 50)

1 200 233.79343 233.79344 233.79349
2 1200 1771.6117 1771.6120 1771.6125
3 3000 7305.1301 7305.1611 7305.1685
4 5600 21714.896 21716.250 21716.393
5 9000 36707.188 51978.767 51983.742

6.2 Numerical realization

For the results presented above, we made no effort to exploit either the sparsity
structure or the symmetry of the coefficient matrices and used theQZ method
[29] to resolve the matrix eigenvalue problem (3.4). While extremely stable,
such a direct approach, might be imprudent in larger problems where sparsity is
significant.

A variety of computational approaches for the generalized matrix eigenvalue
problem have been reviewed in [33]. Many of these require factorization of the

Gram matrix

[
G1 H

H ∗ G2

]
followed by either an implicit or explicit change of

basis to obtain an eigenvalue problem in standard form. While such approaches
may be inexpensive due to extensive sparsity inG1, H , and G2, numerical

stability may be at risk since in our experience

[
G1 H

H ∗ G2

]
can be quite poorly

conditioned or singular.
In fact, the matrix pencil (3.4) may not necessarily be diagonalizable (i.e.,

there may not exist any nonsingular matrixχ such thatχ∗Mk,n(ξ)χ is diagonal).
Consider, for a simple example,T = (λ0

1)−1/2A0, q1 = p1 = u0
1, andµ = 2λ0

1. For
k = n = 1, (3.4) becomes
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1 0

0 1

] [
x1

x2

]
= ζ

[
(λ0

1)2 −(λ0
1)3/2

−(λ0
1)3/2 λ0

1

] [
x1

x2

]
,

which is not diagonalizable. Thus any approach that involves (explicitly or im-
plicitly) a reduction to a matrix eigenvalue problem in standard form must be
used with caution. The spectral transformation Lanczos method as described in
[30] may provide an attractive alternative that remains robust in the face of ill-
conditioning (even singularity) of the Gram matrix, yet is able to produce partial
results that still provide bounding information (cf. [11]).

7. Conclusions

We have introduced here a new approach for computing lower bounds to eigen-
values of self-adjoint operators that has greatly reduced requirements for a pri-
ori information over what is necessary for the Weinstein-Aronszajn methods or
Temple-Lehmann methods, while combining to a great extent, their relative mer-
its.

Our method is likely to be most useful in situations where problem geometry
is complicated or domain dimension is large (e.g., as often occurs in quantum
chemistry). In such situations the class of base problems for which full spectral
information is both available and usable may be quite small (or even empty).
By contrast, we require only a separating parameter (µ) in the base problem
spectrum. No base problem eigenvector information is necessary nor are “exact”
base problem eigenvalues needed. As may be seen from Example 2 of Sect. 6.1, a
potentially important by-product of the elimination of base problem eigenvectors
from the solution process is the possibility of using trial vectors with local sup-
port, producing as a consequence generalized matrix eigenvalue problems with
well-structured sparsity that may then be exploited advantageously.

Appendix: Generalization
of intermediate problem spectrum-slicing formulas

In [7], the following spectrum-slicing formula was shown to hold in general
intermediate problem settings:

Nk(λ) = N0(λ)− D−[W (λ)]

for all λ ∈ ρ(A0) ∩ ρ(Ak), where ρ(B) denotes the resolvent set of a linear
operatorB. The restriction toλ ∈ ρ(A0) ∩ ρ(Ak) was convenient in [7], but
is unduly constraining for the results we develop in the present paper. We will
eliminate the restriction onλ, and provide generalizations of the spectrum-slicing
formula of [7] for anyλ below the first point of the essential spectrum for which
W (λ) is well-defined.

We first establish some continuity properties for inertias of W-A matrices.
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Theorem A.1.Suppose thatλ∗ < inf {σess(A0)}, {pi }k
i =1 are linearly independent,

and thatW (λ) given by (2.3) is bounded atλ = λ∗. Then

(a) D
−[W (λ∗)] = lim

ε→0+
D
−[W (λ∗ + ε)]

(b) D
+[W (λ∗)] = lim

ε→0+
D

+[W (λ∗ − ε)]

(c) null [W (λ∗)] + D−[W (λ∗)] = lim
ε→0+

D
−[W (λ∗ − ε)], and

(d) null [W (λ∗)] + D+[W (λ∗)] = lim
ε→0+

D
+[W (λ∗ + ε)] .

Proof. SinceW (λ∗) is bounded and the segments ofσ(Ak) and σ(A0) within
which λ∗ lies contain only isolated point spectra, there existsε > 0 such that
W (λ) is continuous throughout the interval (λ∗− ε, λ∗ + ε). Furthermore,ε > 0
may be chosen sufficiently small so that forI` , (λ∗−ε, λ∗) andIr , (λ∗, λ∗+ε),
we haveI` ∪ Ir ⊂ ρ(A0) ∩ ρ(Ak).

By Aronszajn’s Rule [1],

µk(λ∗) = µ0(λ∗) + null [W (λ∗)] ,

whereµk(λ∗) andµ0(λ∗) represent the respective multiplicity ofλ∗ as an eigen-
value ofAk andA0. Now, pickλ` ∈ I` andλr ∈ Ir arbitrarily and observe from
[7]

µk(λ∗) = Nk(λr)− Nk(λ`) = N0(λr)− N0(λ`) +D−[W (λ`)] − D−[W (λr)] .

Sinceµ0(λ∗) = N0(λr)− N0(λ`), we find

null [W (λ∗)] = D−[W (λ`)] − D−[W (λr)] .

Furthermore, sinceW (λ) is continuous in (λ∗− ε, λ∗ + ε) and null [W (λ)] = 0
for all λ ∈ I` ∪ Ir, we can guarantee thatD−[W (λ∗)] ≥ D

−[W (λr)] and
D

+[W (λ∗)] ≥ D+[W (λ`)]. Define the scalarc = (D+[W (λ∗)]−D+[W (λ`])+
(D−[W (λ∗)]−D−[W (λr)]) and note thatc ≥ 0 (being the sum of nonnegative
quantities). Easy manipulation verifies that

c = k − D+[W (λ`)] − D−[W (λr)] − (k − D+[W (λ∗)]) − D−[W (λ∗)])

= D−[W (λ`)] − D−[W (λr)] − null [W (λ∗)] = 0 .

Thus,D−[W (λr)] = D
−[W (λ∗)] and D+[W (λ`)] = D

+[W (λ∗)]. Sinceλ`
andλr were chosen arbitrarily withinI` and Ir, respectively, conclusions (a) and
(b) are true.

The conclusions (c) and (d) follow immediately upon the observation that

D
−[W (λ`)] = null [W (λ∗)] + D−[W (λr)]
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and
D

+[W (λr)] = null [W (λ∗)] + D+[W (λ`)] .

The thrust of Theorem A.1 is that the positive and negative inertias of the W-A
matrix are left- and right-continuous, respectively. DefineÑk(λ) to be the number
of eigenvalues ofAk less than or equal toλ, with Ñ0(λ) denoting the analogous
quantity forA0. We have

Theorem A.2.Supposeλ∗ < inf {σess(A0)}, {pi }k
i =1 are linearly independent, and

that W (λ) is given by (2.3) is well defined atλ = λ∗. Then

(a) Ñk(λ∗) = Ñ0(λ∗)− D−[W (λ∗)] and

(b) Nk(λ∗) = N0(λ∗)− {null [W (λ∗)] + D−[W (λ∗)]}

Proof. W (λ) is continuous in an open interval containingλ∗ and for allε > 0
sufficiently small, (λ∗ ± ε) ∈ ρ(A0) ∩ ρ(Ak). Observe that

Ñk(λ∗) = lim
ε→0+

Nk(λ∗ + ε) and Ñ0(λ∗) = lim
ε→0+

N0(λ∗ + ε)

whereasNk(λ∗) = lim
ε→0+

Nk(λ∗− ε) andN0(λ∗) = lim
ε→0+

N0(λ∗− ε), in general. The

spectrum-slicing results from [7] yield

Nk(λ∗ ± ε) = N0(λ∗ ± ε)− D−[W (λ∗ ± ε)]

for all ε > 0 sufficiently small. Takingε→ 0 and using A.1(a) and A.1(c) gives
the conclusion.

Notice that A.2(a) may be obtained from A.2(b) (or vice versa) by adding (or
subtracting) the multiplicity ofλ∗ as an eigenvalue ofAk as given by Aronszajn’s
Rule. We may relax the hypothesis of linear independence of{pi }k

i =1 to obtain
finally:

Corollary. If linear independence of{pi }k
i =1 is removed from the hypotheses of

Theorem A.2 then the conclusion A.2(a) is unaffected and A.2(b) becomes

(b′) Nk(λ∗) = N0(λ∗)− {null [W (λ∗)] + D−[W (λ∗)]} + null [〈pi , pj 〉∗] .

Proof. Let α = k − null [〈pi , pj 〉∗]. A unitary matrix Q = [qij ] may be found so
that

Q ∗[〈pi , pj 〉∗]Q =

[
G 0
0 0

]
with G ∈ Rα×α nonsingular. Defining ˜pj =

∑α
i =1 qij pi one may immediately ob-

serve thatG = [〈p̃i , p̃j 〉∗], span
i =1,...,α

{p̃i } = span
i =1,...,k

{pi }, and that{p̃i }αi =1 are linearly

independent. Furthermore, if ˜W (λ) = [〈p̃i , p̃j 〉∗ + 〈R0
λT∗p̃i ,T∗p̃j 〉] then W (λ)

and ˜W (λ) represent the same intermediate problem (2.2). SinceQ ∗W (λ∗)Q =[ ˜W (λ∗) θ
0 0

]
, we have null [W (λ∗)] = null [ ˜W (λ∗)] + null [〈pi , pj 〉∗] and

D
−[W (λ∗)] = D−[ ˜W (λ∗)].
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