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1. Introduction

Let Ω be a bounded domain inRd, d ≤ 3, with a Lipschitz boundary∂Ω. We
consider the Cahn-Hilliard equation with logarithmic free energy:
Find {u(x, t), w(x, t)} such that

∂u
∂t

= ∆w in ΩT := Ω × (0,T),

w = Ψ ′(u)− γ∆u in ΩT ,

u(x, 0) = u0(x) ∀ x ∈ Ω,
∂u
∂ν

=
∂w

∂ν
= 0 on ∂Ω × (0,T);

whereν is normal to∂Ω, the free energyΨ : [−1, 1] → R is given by

Ψ (s) := ψ(s) +
θc

2
(1−s2) :=

θ

2

[
(1 + s) ln[

1 + s
2

] + (1− s) ln[
1− s

2
]

]
+
θc

2
(1−s2)

and γ, θ and θc are positive constants withθ < θc. We define the monotone
functionφ : (−1, 1)→ R to be

φ(s) := ψ′(s) ≡ θ
2 [ln(1 + s)− ln(1− s)].

The above problem was proposed by Cahn (1961) and Cahn and Hilliard
(1958) to model phase separation of a binary mixture, which is quenched into
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an unstable state. Hereu := XB − XA ∈ [−1, 1], whereXA, XB ∈ [0, 1] are the
mass fractions of the two componentsA and B. When the quench is shallow,
that is θ is close toθc, then the free energy,Ψ , is usually approximated by a
quartic polynomial. The majority of the mathematics literature has concentrated
on this case. However, this approximation is invalid if the quench is deep, i.e.
θ � θc. For a fuller discussion of the model, see Copetti and Elliott (1992) and
the references therein.

We introduce a weak formulation of the above problem:
(P) Find {u, w} such thatu(·, 0) = u0(·) and for a.e.t ∈ (0,T)

〈∂u
∂t , η〉 + (∇w,∇η) = 0 ∀ η ∈ H 1(Ω),(1.1a)

γ(∇u,∇η) + (Ψ ′(u), η) = (w, η) ∀ η ∈ H 1(Ω).(1.1b)

We have adopted the standard notation for Sobolev spaces, denoting the norm of
H m(Ω) (m ∈ N) by ‖·‖m and the semi-norm by|·|m. Throughout (·, ·) denotes the
standardL2 inner product overΩ and 〈·, ·〉 denotes the duality pairing between(
H 1(Ω)

)′
andH 1(Ω); In addition we define∫− η := 1

|Ω| (η, 1) ∀ η ∈ L2(Ω).

The major difficulty in problem (P) is thatψ′(s) is singular ats = ±1 and
therefore has no meaning ifu = ±1 in an open set of non-zero measure. By
studying a regularized problem, see (Pε) in the next section, Elliott and Luckhaus
(1991) proved the following result; see also Copetti and Elliott (1992):

Theorem 1.1. Given u0 ∈ H 1(Ω) and δ ∈ (0, 1) such that‖u0‖L∞(Ω) ≤ 1 and
| ∫− u0| < 1− δ, then there exists a unique solution{u, w} to (P) such that

u ∈ L∞(0,T; H 1(Ω)) ∩ H 1(0,T; (H 1(Ω))′),

w − ∫− w ∈ L2(0,T; H 1(Ω)),(1.2)
√

t ∂u
∂t ∈ L2(0,T; H 1(Ω)),

√
tφ(u) ∈ L∞(0,T; L2(Ω)),√

tw ∈ L∞(0,T; H 1(Ω))(1.3)

and

|u| < 1 a.e. in ΩT .(1.4)

We note that the integral assumption on the initial data only excludes the physi-
cally uninteresting case ofu0 ≡ ±1, when only one component is present.

In addition to the above, Elliott and Luckhaus (1991) proved that asθ/θc → 0
the solution{u, w} of (P) converges to the free boundary limit problem studied
by Blowey and Elliott (1991) and Blowey and Elliott (1992).

The finite element approximation of (P) has been considered by Copetti and
Elliott (1992) under the following assumptions:
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(A) Let Ω be convex polyhedral. LetT h be a quasi-uniform partitioning ofΩ
into disjoint open simplicesκ with hκ := diam(κ) andh := maxκ∈T h hκ, so
thatΩ = ∪κ∈T hκ. In addition, it is assumed thatT h is an acute partitioning;
that is for (i) d = 2 the angle of any triangle does not exceedπ/2, (ii) d = 3
the angle between any two faces of the same tetrahedron does not exceed
π/2. In fact the cased = 2 can be relaxed to weakly acute, see Nochetto
(1991); that is, the sum of opposite angles relative to any side does not exceed
π.

Associated withT h is the finite element space

Sh := {χ ∈ C(Ω) : χ |κ is linear∀ κ ∈ T h} ⊂ H 1(Ω).

Let πh : C(Ω) → Sh be the interpolation operator such thatπhη(xj ) = η(xj )
(j = 1→ J ), where{xj }J

j =1 is the set of nodes ofT h. A discrete inner product

on C(Ω), is then defined by

(η1, η2)h :=
∫
Ω

πh(η1(x)η2(x))dx ≡
J∑

j =1

Mj η1(xj )η2(xj ),(1.5)

whereMj > 0.
Given N , a positive integer, let∆t := T/N denote the time step andtn :=

n∆t , n = 1→ N . Then Copetti and Elliott (1992) considered the following fully
practical finite element approximation of (P):

(Ph,∆t ) For n = 1→ N find {U n,Wn} ∈ Sh × Sh such that(
U n−U n−1

∆t , χ
)h

+ (∇Wn,∇χ) = 0 ∀ χ ∈ Sh,(1.6a)

γ(∇U n,∇χ) + (Ψ ′(U n), χ)h = (Wn, χ)h ∀ χ ∈ Sh,(1.6b)

where (
U 0, χ

)h
= (u0, χ) ∀ χ ∈ Sh.(1.7)

By studying a regularized problem, similar to (Ph,∆t
ε ) in Sect. 4, Copetti and

Elliott (1992) proved the following result:

Theorem 1.2. Let the assumptions on u0 of Theorem 1.1 and the assumptions
(A) hold. Let∆t < 4γ/θ2

c. Then there exists a unique solution{U n,Wn}N
n=1 to

(Ph,∆t ) such that for n= 1→ N

|U n|21 +
n∑

k=1

|U k − U k−1|21 +∆t
n∑

k=1

|Wk |21

+∆t
n∑

k=1

tk |U k−U k−1

∆t |21 + tn|πhφ(U n)|20 + tn|Wn|21 ≤ C(1.8)

and
‖U n‖L∞(Ω) < 1.(1.9)
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Furthermore, (Ph,∆t ) → (P) and U → u in L2(τ,T; L2(Ω)) for all τ > 0 as
h, ∆t → 0; where

U (t) := t−tn−1

∆t U n + tn−t
∆t U n−1 t ∈ [tn−1, tn] n ≥ 1.(1.10)

In addition, Copetti and Elliott (1992) discuss two iterative methods for solving
the resulting nonlinear algebraic equations at each time level in (Ph,∆t ) and report
on some numerical results ford = 1.

It is the main purpose of this paper to prove the following error bound for
the approximation (Ph,∆t ):

Theorem 1.3. Let the assumptions on u0 of Theorem 1.1 and the assumptions
(A) hold. Let∆t ≡ Ch for any fixed constant C . Then for all h> 0 such that
∆t ≤ 4γ/θ2

c, we have that

‖u − Û ‖2
L2(0,T;H 1(Ω)) + ‖u − U ‖2

L∞(0,T;(H 1(Ω))′) ≤ Ch,(1.11)

where U(t) is defined by (1.10) and̂U (t) := U n t ∈ (tn−1, tn) n ≥ 1.

Throughout we assume the same assumptions on the partitioningT h as Copetti
and Elliott (1992), see (A) above. The layout of this paper is as follows. In
the next section we study the regularized problem (Pε), introduced by Elliott
and Luckhaus (1991). Firstly we prove someε independent stability bounds for
the solution{uε, wε}, extending on those given by Elliott and Luckhaus (1991).
We then use these to infer more regularity for{u, w} and to prove an error
bound for this regularization procedure. In Sect. 3 we prove an error bound for
a continuous in time finite element approximation (Ph

ε) of (Pε). In Sect. 4 we
take time discretization into account and prove an error bound between (Ph

ε) and
(Ph,∆t
ε ), a regularized version of (Ph,∆t ). In addition we prove an error bound for

this discrete regularization procedure. By combining all the above error bounds
and choosing the regularization parameter,ε, and the time step,∆t , in terms
of the mesh spacing,h, we obtain the error bound Theorem 1.3. Throughout
C denotes a generic constant independent of these three parameters. Finally in
Sect. 5 we present a numerical experiment.

We end this section by noting that the results in Theorem 1.1 above have
been proved in Elliott and Luckhaus (1991) for a multicomponent version of
(P). Recently, results similar to those of Copetti and Elliott (1992) in Theorem
1.2 above have been proved by Blowey et al. (1995) for this multi-component
problem. In a forthcoming paper we intend to extend the error bound in this
paper to this case.

2. A regularized problem

We use the Elliott and Luckhaus (1991) regularization for problem (P) with the
logarithmic free energyΨ (u) replaced by the twice continuously differentiable
functionΨε(s) := ψε(s) + θc

2 (1− s2) whereε ∈ (0, 1) and
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ψε(s) :=


θ
2 (1 + s) ln

[
1+s

2

]
+ θ

4ε (1− s)2 + θ
2 (1− s) ln

[
ε
2

]− θε
4 s ≥ 1− ε

ψ(s) |s| ≤ 1− ε
θ
2 (1− s) ln

[
1−s

2

]
+ θ

4ε (1 + s)2 + θ
2 (1 + s) ln

[
ε
2

]− θε
4 s ≤ −1 + ε

.

(2.1)
The monotone function

φε(s) := ψ′ε(s) =


θ
2 (1 + ln(1 +s))− θ

2ε (1− s)− θ
2 ln ε s ≥ 1− ε

φ(s) |s| ≤ 1− ε
− θ

2 (1 + ln(1− s)) + θ
2ε (1 + s) + θ

2 ln ε s ≤ −1 + ε

(2.2)

has the properties: For allε > 0

φ(s) ≥ φε(s) if 1 > s ≥ 1− ε
φε(s) ≥ φ(s) if − 1 + ε ≥ s > −1

.(2.3)

For all r , s

Ψ ′ε(s)(r − s) = ψ′ε(s)(r − s)− θcs(r − s) ≤ ψε(r )− ψε(s) + θcs(s− r )

= Ψε(r )− Ψε(s) + θc
2 (r − s)2(2.4)

where we have used the identity

2s(s− r ) = s2 − r 2 + (s− r )2 ∀ r , s.(2.5)

For ε ≤ 1/2 and for allr , s

θ(r − s)2 ≤ (φε(r )− φε(s))(r − s)(2.6)

and
ε

θ
(φε(r )− φε(s))2 ≤ (φε(r )− φε(s))(r − s).(2.7)

In addition, if r , s > 1− ε or r , s < −1 + ε then

θ
2ε (r − s)2 ≤ (φε(r )− φε(s))(r − s).(2.8)

Furthermore, it is a simple matter to show thatΨε is bounded below forε
sufficiently small; e.g. ifε ≤ ε0 := θ/(8θc) then

Ψε(s) ≥ θ
8ε

(
[s− 1]2+ + [−1− s]2

+

)− θc ≥ −θc ∀ s,(2.9)

where [·]+ := max{·, 0}. To see this, we note firstly for|s| ≤ 1 that Ψε(s) ≥
ψε(s) ≥ ψε(0) ≡ −θ ln 2 ≥ −θc. Secondly, fors ≥ 1 we have under the stated
assumption onε thatΨε(s) ≥ θ

4ε (s− 1)2− θε
4 + θc

2 (1− s2) ≡ [ θ4ε − θc
2 ](s− 1)2−

θε
4 + θc(1− s) ≥ [ θ4ε − θc](s− 1)2 − θε

4 − θc
2 , where we have applied a Young’s

inequality. Applying a similar bound fors ≤ −1 yields the desired result (2.9).
We now study the corresponding regularized version of (P) as introduced by

Elliott and Luckhaus (1991):
(Pε) Find {uε, wε} such thatuε(·, 0) = u0(·) and for a.e.t ∈ (0,T)

〈∂uε
∂t , η〉 + (∇wε,∇η) = 0 ∀ η ∈ H 1(Ω),(2.10a)
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γ(∇uε,∇η) + (Ψ ′ε(uε), η) = (wε, η) ∀ η ∈ H 1(Ω).(2.10b)

It is convenient to introduce the “inverse Laplacian” operatorG : F → V
such that

(∇G v,∇η) = 〈v, η〉 ∀ η ∈ H 1(Ω) ,(2.11)

whereF :=
{
v ∈ (H 1(Ω))′ : 〈v, 1〉 = 0

}
and V := {v ∈ H 1(Ω) : (v, 1) = 0}.

One can then define a norm onF by

‖v‖−1 := |G v|1 ≡ 〈v,G v〉1/2 ∀ v ∈ F .(2.12)

We note also for future reference that using a Young’s inequality yields for all
α > 0 that

|v|20 ≡ (∇G v,∇v) ≤ 1
2α‖v‖2

−1 + α
2 |v|21 ∀ v ∈ V .(2.13)

Choosingη ≡ 1 in (2.10a) yields that〈∂uε
∂t , 1〉 = 0, i.e. (uε(t), 1) = (u0, 1) for

all t . Hence it follows from the Poincaré inequality

|η|0 ≤ CP(|η|1 + |(η, 1)|) ∀ η ∈ H 1(Ω)(2.14)

that
wε ≡ −G ∂uε

∂t +
∫− Ψ ′ε(uε).(2.15)

Therefore (Pε) can be rewritten as:
Find uε such thatuε(·, 0) = u0(·) and for a.e.t ∈ (0,T), (uε(t), 1) = (u0, 1) and

γ(∇uε,∇η) + (Ψ ′ε(uε), η − ∫− η) + (G ∂uε
∂t , η) = 0 ∀ η ∈ H 1(Ω).(2.16)

Similarly, (P) can be rewritten as:
Find u such thatu(·, 0) = u0(·) and for a.e.t ∈ (0,T), (u(t), 1) = (u0, 1) and

γ(∇u,∇η) + (Ψ ′(u), η − ∫− η) + (G ∂u
∂t , η) = 0 ∀ η ∈ H 1(Ω);(2.17)

with
w ≡ −G ∂u

∂t +
∫− Ψ ′(u).(2.18)

Lemma 2.1. Let the assumptions of Theorem 1.1 hold. Then for allε ≤ ε0 there
exists a unique solution{uε, wε} to (Pε) such that the following stability bounds
hold independently ofε

uε ∈ L∞(0,T; H 1(Ω)) ∩ H 1(0,T; (H 1(Ω))′),(2.19)

wε ∈ L2(0,T; H 1(Ω)) and φε(uε) ∈ L2(ΩT );(2.20)

and ifΩ is convex polyhedral or∂Ω ∈ C1,1

uε ∈ L2(0,T; H 2(Ω)).(2.21)

Furthermore

‖[uε − 1]+‖L∞(0,T;L2(Ω)) + ‖[−uε − 1]+‖L∞(0,T;L2(Ω)) ≤ Cε1/2.(2.22)
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Proof. Assuming that (2.16) has two solutionsu1
ε , u

2
ε , it follows that for a.e.

t ∈ (0,T) d := u1
ε − u2

ε ∈ V satisfies

γ|d|21 + (φε(u1
ε)− φε(u2

ε), d) + 1
2

d
dt‖d‖2

−1 = θc|d|20.(2.23)

Uniqueness then follows from noting (2.13), (2.6), a Grönwall inequality, (2.14)
and (2.15).

Existence follows from standard arguments using Galerkin approximations
and then passing to the limit. The choices ofη below can be justified in a similar
way.

Choosingη ≡ ∂uε/∂t in (2.16) and integrating over (0, t) yields for all
t ∈ (0,T) that

γ

2
|uε(t)|21 + (Ψε(uε(t)), 1) +

∫ t

0
‖∂uε
∂s (s)‖2

−1ds

=
γ

2
|u0|21 + (Ψε(u0), 1)≤ C ,(2.24)

where we used the assumptions onu0. Hence theε independent bounds in (2.19)
follow from noting (2.9) and (2.14). Noting (2.15), (2.14) and (2.19) yields that

‖(I − ∫− )wε‖L2(0,T;H 1(Ω)) ≤ C .(2.25)

The bound (2.22) follows immediately from the bound on (Ψε(uε(t)), 1) in (2.24)
and (2.9).

Choosingη ≡ φε(uε) in (2.16), noting thatφ′ε(·) ≥ θ and (2.14) yields for
a.e. t ∈ (0,T) that

2γθ|uε|21 + |(I − ∫− )φε(uε)|20 ≤ |θcuε −G
∂uε
∂t

|20

≤ C [ |uε|20 + ‖∂uε
∂t

‖2
−1 ].(2.26)

Integrating the above overt ∈ (0,T) and noting (2.19) yields that

‖(I − ∫− )φε(uε)‖L2(ΩT ) ≤ C .(2.27)

Choosingη ≡ uε in (2.16) yields for any constantλ and for a.e. t ∈ (0,T)
that

(Ψ ′ε(uε), λ− ∫− uε) = (Ψ ′ε(uε), λ− uε)− γ|uε|21 − (G ∂uε
∂t , uε)

≤ (Ψε(λ)− Ψε(uε), 1) + θc
2 |uε − λ|20 + C‖∂uε

∂t ‖−1|uε|0,
where we have noted (2.4) and (2.14). Hence it follows on choosingλ = ±1 and
noting (2.9) that

δ|Ω|| ∫− Ψ ′ε(uε)| ≤ C [ 1 + |uε|20 + ‖∂uε
∂t ‖−1|uε|0 ].(2.28)

Integrating the above overt ∈ (0,T) and noting (2.19) yields that

‖ ∫− Ψ ′ε(uε)‖L2(ΩT ) ≤ C .(2.29)
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Combining (2.29), (2.25) and (2.27) yields the desired result (2.20). Finally
(2.21) follows from (2.10b), (2.19), (2.20) and standard elliptic regularity theory.

ut
Theorem 2.1. Let the assumptions of Theorem 1.1 hold. Then there exists a
unique solution{u, w} to (P) such that

u ∈ L∞(0,T; H 1(Ω)) ∩ H 1(0,T; (H 1(Ω))′),(2.30)

w ∈ L2(0,T; H 1(Ω)) and φ(u) ∈ L2(ΩT );(2.31)

and ifΩ is convex polyhedral or∂Ω ∈ C1,1

u ∈ L2(0,T; H 2(Ω)).(2.32)

In addition (1.4) holds. Furthermore, we have that

‖u − uε‖2
L2(0,T;H 1(Ω)) + ‖u − uε‖2

L∞(0,T;(H 1(Ω))′) ≤ Cε.(2.33)

Proof. As the bounds (2.19) and (2.20) are independent ofε, it follows that
there existsu ∈ L∞(0,T; H 1(Ω)) ∩ H 1(0,T; (H 1(Ω))′), φ? ∈ L2(ΩT ) and a
subsequence{uε′} such that asε′ → 0

uε′ → u in L∞(0,T; H 1(Ω)) weak–star

and inH 1(0,T; (H 1(Ω))′) weakly,(2.34)

φε′ (uε′ ) → φ? in L2(ΩT ) weakly.(2.35)

Next we show thatφ? ≡ φ(u) by adapting an argument used in Blowey et al.
(1995). It follows from (2.6) that∫

ΩT

[uε − φ−1
ε (η)][φε(uε)− η]dxdt≥ 0 ∀ η ∈ L2(ΩT ).(2.36)

The integral being well-defined, since|φ−1
ε (r ) − φ−1

ε (s)| ≤ θ−1|r − s| ∀ r , s. A
simple calculation, noting (2.8) and (2.3), yields that for allr

|φ−1(r )− φ−1
ε (r )| ≤ 2ε

θ { [r − φ(1− ε)]+ + [−r + φ(−1 + ε)]+}.(2.37)

Since (2.34) implies thatuε′ → u in L2(ΩT ) strongly asε′ → 0, see Lions (1969),
noting (2.35) and (2.37) it follows from taking the limitε′ → 0 in (2.36) that∫

ΩT

[u − φ−1(η)][φ? − η]dxdt≥ 0 ∀ η ∈ L2(ΩT ),(2.38)

and hence thatφ? ≡ φ(u). Therefore taking the limitε′ → 0 in (2.16) yields that
u solves (2.17). Noting (2.18) yields existence of a solution{u, w} to (P) and
the bound (2.31) forw. The bound (2.32) follows in the same way as (2.21).
The bound (1.4) follows directly from the bound onφ(u) in (2.31) using the
argument prior to Theorem 1.1.

Uniqueness of a solution to (P) follows as for (Pε), see (2.23).
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We now prove an error bound between the unique solutionsu and uε of
problems (P) and (Pε). Definee = u− uε. Subtraction of (2.16) from (2.17) and
choosingη = e yields for a.e.t ∈ (0,T) that

γ|e|21 + (φ(u)− φε(uε), e) + 1
2

d
dt‖e‖2

−1 = θc|e|20 ≤ γ
2 |e|21 + θ2

c
2γ ‖e‖2

−1,(2.39)

where we have used (2.13) in bounding the right hand side. From the monotonic-
ity of φε and (2.8) it follows that for a.e.t ∈ (0,T)

(φε(u)− φε(uε), e) ≥ θ
2ε

∫
Ω+
ε(t)∪Ω−ε (t)

e2dx,(2.40)

where

Ω+
ε (t) := {x ∈ Ω : 1− ε ≤ u(x, t) ≤ uε(x, t)},

Ω−ε (t) := {x ∈ Ω : uε(x, t) ≤ u(x, t) ≤ −1 + ε}.
Next we note from the definition ofφε and (2.3) that

1. If |r | ≤ 1− ε thenφε(r ) ≡ φ(r ).
2. If r ≥ 1− ε ands ≤ r , then (φε(r )− φ(r ))(r − s) ≤ 0.
3. If r ≤ −1 + ε and r ≤ s, then (φε(r )− φ(r ))(r − s) ≤ 0.

Hence it follows for a.et ∈ (0,T) that

(φε(u)− φ(u), e) ≤
∫
Ω+
ε(t)∪Ω−ε (t)

(φε(u)− φ(u))edx

≤ −
∫
Ω+
ε(t)∪Ω−ε (t)

φ(u)edx.(2.41)

Substituting (2.40) and (2.41) into (2.39) and rearranging, yields for a.e.t ∈ (0,T)

γ
2 |e|21 + 1

2
d
dt‖e‖2

−1 + θ
2ε

∫
Ω+
ε(t)∪Ω−ε (t)

e2dx ≤ (φε(u)− φ(u), e) + θ2
c

2γ ‖e‖2
−1

≤ −
∫
Ω+
ε(t)∪Ω−ε (t)

φ(u)edx+ θ2
c

2γ ‖e‖2
−1.

Integrating overt ∈ (0,T), using a Gr̈onwall inequality and noting (2.14) results
in

‖e‖2
L2(0,T;H 1(Ω)) + ‖e‖2

L∞(0,T;(H 1(Ω))′) + θ
2ε

∫ T

0

∫
Ω+
ε(t)∪Ω−ε (t)

e2dxdt

≤ −C
∫ T

0

∫
Ω+
ε(t)∪Ω−ε (t)

φ(u)edxdt.(2.42)

The desired result (2.33) then follows from applying a Young’s inequality and
noting (2.31). ut
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We end this section by comparing the results of Lemma 2.1 and Theorem 2.1
with those in Elliott and Luckhaus (1991). Elliott and Luckhaus (1991) establish
existence and uniqueness of a solution to (Pε), the bounds (2.19) and a bound
similar to (2.22). We have outlined these proofs above as we need similar re-
sults for the semidiscrete and fully discrete approximations in the later sections.
However, in place of (2.20) they prove (2.25) and the following stability bounds
which hold independently ofε:

√
t
∂uε
∂t

∈ L2(0,T; H 1(Ω)),
√

tφε(uε) ∈ L∞(0,T; L2(Ω)),
√

twε ∈ L∞(0,T; H 1(Ω)).(2.43)

Letting ε → 0 they then establish Theorem 1.1. The main difference in our
approach are the bounds onφε(uε) and φ(u) in (2.20) and (2.31), which play
a key role in the crucial regularization error bound (2.33) and in the regularity
results (2.21) and (2.32).

3. A semidiscrete regularized approximation

Throughout the rest of the paper we assume that the assumptions (A) hold. We
then define the following semidiscrete approximation to (Pε):
(Ph

ε) Find{uh
ε (t), wh

ε (t)} ∈ Sh×Sh such thatuh
ε (0)≡ Qhu0 and for a.e.t ∈ (0,T)

(∂uh
ε

∂t , χ) + (∇wh
ε ,∇χ) = 0 ∀ χ ∈ Sh,(3.1a)

γ(∇uh
ε ,∇χ) + (Ψ ′ε(uh

ε ), χ)h = (wh
ε , χ) ∀ χ ∈ Sh.(3.1b)

HereQh : L2(Ω) → Sh is defined by

(Qhη, χ)h = (η, χ) ∀ χ ∈ Sh.(3.2)

Similarly to (2.11), we introduce the operatorG h : F → V h such that

(∇G hv,∇χ) = 〈v, χ〉 ∀ χ ∈ Sh,(3.3)

whereV h := {vh ∈ Sh : (vh, 1) = 0}. We have the following analogues of (2.12)
and (2.13). We define a norm onF by

‖v‖−h := |G hv|1 = 〈v,G hv〉1/2 ∀ v ∈ F ,(3.4)

and forα > 0 we have that

|vh|20 ≡ (∇G hvh,∇vh) ≤ 1
2α‖vh‖2

−h + α
2 |vh|21 ∀ vh ∈ V h.(3.5)

Sinceuh
ε (0) is piecewise linear,

(uh
ε (t), 1) = (uh

ε (0), 1) = (uh
ε (0), 1)h = (u0, 1)

and it follows that
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wh
ε ≡ −G h ∂uh

ε

∂t + 1
|Ω| (Ψ

′
ε(uh

ε ), 1)h,(3.6)

thus (Ph
ε) can be rewritten as:

Finduh
ε (t) ∈ Sh such thatuh

ε (0)≡ Qhu0 and for a.e.t ∈ (0,T), (uh
ε (t), 1) = (u0, 1)

and

γ(∇uh
ε ,∇χ) + (Ψ ′ε(uh

ε ), χ− ∫− χ)h + (G h ∂uh
ε

∂t , χ) = 0 ∀ χ ∈ Sh.(3.7)

Below we recall some well-known results concerningSh:

|(I − πh)η|m ≤ Ch2−m|η|2 ∀ η ∈ H 2(Ω), m = 0 or 1.(3.8)

|χ|h := [(χ, χ)h]1/2 ≤ |χ|0 ≤ C |χ|h ∀ χ ∈ Sh.(3.9)

|(χ1, χ2)− (χ1, χ2)h| ≤ Ch1+m‖χ1‖m‖χ2‖1

∀ χ1, χ2 ∈ Sh, m = 0 or 1.(3.10)

|(G −G h)η|0 ≤ Ch2−m‖η‖−m,

∀ η ∈ (H m(Ω))′ ∩F , m = 0 or 1.(3.11)

Next we note that

C1h2|vh|1 ≤ C2h|vh|0 ≤ ‖vh‖−h ≤ ‖vh‖−1

≤ C3‖vh‖−h ∀ vh ∈ V h.(3.12)

The first inequality on the left is just an inverse inequality, recalling that the
partitioning is quasi-uniform. The second follows from the first and (3.5). The
third follows from noting that|G hvh|1 ≤ |G vh|1. The final inequality follows
from noting (3.11) withm = 0 and the second inequality above.

The following bounds, concerningQh are easily established.

‖(I −Qh)η‖−1 ≤ Ch|η|0 ∀ η ∈ L2(Ω),(3.13)

see for example Blowey and Elliott (1992).

‖Qhη‖L∞(Ω) ≤ ‖η‖L∞(Ω) ∀ η ∈ L∞(Ω);(3.14)

since (Qhη)(xj ) ≡ (η, χj )/(1, χj ) j = 1 → J ; whereχj ∈ Sh andχj (xi ) = δij .
In addition, using the first inequality on the left of (3.12) and comparing with an
H 1 projection, one can show that

‖Qhη‖1 ≤ C‖η‖1 ∀ η ∈ H 1(Ω).(3.15)

Sinceφε is monotone it follows, see Elliott (1987, p. 68), that

|(I − πh)[φε(χ)]|0 ≤ Ch|πh[φε(χ)]|1 ∀ χ ∈ Sh.(3.16)

Furthermore, as the partitioning is (weakly) acute, it follows from (2.7) that

ε
θ |∇πh[φε(χ)]|20 ≤ (∇χ,∇πh[φε(χ)]) ∀ χ ∈ Sh,(3.17)

see Ciavaldini (1975) and Nochetto (1991, Sect. 2.4.2).
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Lemma 3.1. Let the assumptions on u0 of Theorem 1.1 and the assumptions (A)
hold. Then for allε ≤ ε0 and for all h> 0 there exists a unique solution{uh

ε , w
h
ε}

to (Ph
ε) such that the following stability bounds hold independently ofε and h:

uh
ε ∈ L∞(0,T; H 1(Ω)) ∩ H 1(0,T; (H 1(Ω))′),(3.18)

wh
ε ∈ L2(0,T; H 1(Ω)) and πh[φε(uh

ε )] ∈ L2(ΩT ).(3.19)

Furthermore
‖πh[Ψ ′ε(uh

ε )]‖L2(0,T;H 1(Ω)) ≤ Cε−1/2.(3.20)

Proof. The proof is a discrete analogue of Lemma 2.1. If (3.7) has two solutions
uh,1
ε , uh,2

ε , then for a.e.t ∈ (0,T), dh := uh,1
ε − uh,2

ε ∈ V h satisfies

γ|dh|21 + (φε(uh,1
ε )− φε(uh,2

ε ), dh)h + 1
2

d
dt‖dh‖2

−h = θc|dh|2h.(3.21)

Uniqueness then follows from noting (3.9), (3.5), (2.6), a Grönwall inequality,
(2.14) and (3.6).

Existence follows from standard ordinary differential equation theory. Choos-
ing χ ≡ ∂uh

ε /∂t in (3.7) and integrating over (0, t) yields for all t ∈ (0,T) that

γ

2
|uh
ε (t)|21 + (Ψε(uh

ε (t)), 1)h +
∫ t

0
‖∂uh

ε

∂s (s)‖2
−hds

=
γ

2
|Qhu0|21 + (Ψε(Qhu0), 1)h ≤ C ,(3.22)

where we have noted (3.15), (3.14) and the assumptions onu0. Hence the bounds
in (3.18) follow from noting (2.9), (2.14) and (3.12).

Choosingχ ≡ πh[φε(uh
ε )] in (3.7) yields for a.e. t ∈ (0,T) that

γ(∇uh
ε ,∇πh[φε(uh

ε )]) + |(I − ∫− )πh[φε(uh
ε )]|2h

= −(G h ∂uh
ε

∂t , (I −
∫− )πh[φε(uh

ε )]) + θc(uh
ε , (I −

∫− )πh[φε(uh
ε )])h.(3.23)

Integrating overt ∈ (0,T), applying a Young’s inequality and noting (3.9), (3.17),
(2.14), (3.12) and (3.18) yields that

ε

∫ T

0
|πh[φε(uh

ε )]|21dt +
∫ T

0
|(I − ∫− )πh[φε(uh

ε )]|2hdt ≤ C .(3.24)

Choosingχ ≡ uh
ε in (3.7) yields for any constantλ and for a.e. t ∈ (0,T)

that

(Ψ ′ε(uh
ε ), λ− ∫− uh

ε )h = (Ψ ′ε(uh
ε ), λ− uh

ε )h − γ|uh
ε |21 − (G h ∂uh

ε

∂t , u
h
ε )

≤ (Ψε(λ)− Ψε(uh
ε ), 1)h + θc

2 |uh
ε − λ|2h + C‖∂uh

ε

∂t ‖−1|uh
ε |0,(3.25)

where we have noted (2.4) and (2.14). Hence it follows on choosingλ = ±1,
integrating overt ∈ (0,T) and noting (2.9), (3.9), (2.14) and (3.18) that

‖ ∫− πh[Ψ ′ε(uh
ε )]‖L2(ΩT ) ≤ C .(3.26)

The desired results (3.19) and (3.20) then follow from combining (3.24), (3.26),
(3.18), (3.6) and noting (3.9). ut
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Theorem 3.1. Let the assumptions of Lemma 3.1 hold. Then for allε ≤ ε0 and
h > 0 we have that

‖uε − uh
ε ‖2

L2(0,T;H 1(Ω)) + ‖uε − uh
ε ‖2

L∞(0,T;(H 1(Ω))′) ≤ Cε−1h2.(3.27)

Proof. We seteε := uε − uh
ε , eA

ε := uε − πhuε and eh
ε := πhuε − uh

ε . Note that∫− eε =
∫− eA

ε +
∫− eh

ε = 0. Subtracting (3.7) from (2.16), then for a.e.t ∈ (0,T)
it follows that

γ(∇eε,∇χ) + (Ψ ′ε(uε)− Ψ ′ε(uh
ε ), χ− ∫− χ) + (G (∂uε

∂t − ∂uh
ε

∂t ), χ)

= (Ψ ′ε(uh
ε ), χ− ∫− χ)h − (Ψ ′ε(uh

ε ), χ− ∫− χ) + ((G h −G )∂uh
ε

∂t , χ) ∀ χ ∈ Sh.

Hence choosingχ ≡ eh
ε ∈ Sh and noting (2.7), (2.13), (2.14), (3.10), (3.16) and

a Young’s inequality yields for a.e.t ∈ (0,T) that

γ|eε|21 + ε
θ |φε(uε)−φε(uh

ε )|20+ 1
2

d
dt‖eε‖2

−1≤γ|eε|21+(φε(uε)−φε(uh
ε ), eε) + 1

2
d
dt‖eε‖2

−1

= θc|eε|20 + γ(∇eε,∇eA
ε ) + (Ψ ′ε(uε)− Ψ ′ε(uh

ε ), (I − ∫− )eA
ε ) + (G ∂eε

∂t , e
A
ε )

+
[

(πh[Ψ ′ε(uh
ε )], (I − ∫− )eh

ε )h − (πh[Ψ ′ε(uh
ε )], (I − ∫− )eh

ε )
]

+ ((πh − I )[φε(uh
ε )], (I − ∫− )eh

ε ) + ((G h −G )∂uh
ε

∂t , e
h
ε )

≤ C
[
‖eε‖2

−1 + |eA
ε |21 + ε−1|eA

ε |20 + ‖∂eε
∂t ‖−1|eA

ε |0 + h4‖πh[Ψ ′ε(uh
ε )]‖2

1

+ h2|πh[φε(uh
ε )]|21 + |(G −G h)∂uh

ε

∂t |20
]
.(3.28)

Integrating overt ∈ (0,T) and using a Gr̈onwall inequality yields that

‖eε‖2
L2(0,T;H 1(Ω)) + ε‖φε(uε)− φε(uh

ε )‖2
L2(ΩT ) + ‖eε‖2

L∞(0,T;(H 1(Ω))′)

≤ C
[
‖(I −Qh)u0‖2

−1 + ‖eA
ε ‖2

L2(0,T;H 1(Ω)) + ε−1‖eA
ε ‖2

L2(ΩT )

+‖∂eε
∂t ‖L2(0,T;(H 1(Ω))′)|eA

ε |L2(ΩT ) + h4‖πh[Ψ ′ε(uh
ε )]‖2

L2(0,T;H 1(Ω))

+h2‖πh[φε(uh
ε )]‖2

L2(0,T;H 1(Ω)) + |(G −G h)∂uh
ε

∂t |2L2(ΩT )

]
≤ Cε−1h2;

where we have noted (2.14), (3.13), (3.8), (2.21), (2.19), (3.18), (3.20) and (3.11)
with m = 1. Hence the desired result (3.27) follows.ut

4. A fully discrete approximation

We now consider the following fully discrete approximation to (Pε); a regularized
version of (Ph,∆t ) as studied by Copetti and Elliott (1992), see Sect. 1:
(Ph,∆t

ε ) For n ≥ 1, find {U n
ε ,W

n
ε } ∈ Sh × Sh such thatU 0

ε ≡ Qhu0 and

( U n
ε−U n−1

ε

∆t , χ)h + (∇Wn
ε ,∇χ) = 0 ∀ χ ∈ Sh,(4.1a)

γ(∇U n
ε ,∇χ) + (Ψ ′ε(U n

ε ), χ)h = (Wn
ε , χ)h ∀ χ ∈ Sh.(4.1b)
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Similarly to (3.7), (Ph,∆t
ε ) can be rewritten as:

For n ≥ 1 find U n
ε ∈ Sh such thatU 0

ε ≡ Qhu0, (U n
ε , 1) = (u0, 1) and

γ(∇U n
ε ,∇χ) + (Ψ ′ε(U n

ε ), χ− ∫− χ)h + ( ˆG h( U n
ε−U n−1

ε

∆t ), χ)h = 0 ∀ χ ∈ Sh;(4.2)

with

Wn
ε ≡ − ˆG h( U n

ε−U n−1
ε

∆t ) + 1
|Ω| (Ψ

′
ε(U n

ε ), 1)h.(4.3)

Here ˆG h : F h → V h is defined by

(∇ ˆG hv,∇χ) = (v, χ)h ∀ χ ∈ Sh(4.4)

whereF h := {v ∈ C(Ω) : (v, 1)h = 0}. Note thatV h ⊂ F h and the analogue
of (3.5) holds: forα > 0

|vh|2h ≤ 1
2α | ˆG hvh|21 + α

2 |vh|21 ∀ vh ∈ V h.(4.5)

It is easily deduced from (3.10), e.g. see Blowey and Elliott (1991), that

‖(G h − ˆG h)vh‖1 ≤ Ch2‖vh‖1, ∀ vh ∈ V h.(4.6)

In addition, we have the analogue of (3.12)

h2|vh|1 ≤ C1h|vh|h ≤ C2| ˆG hvh|1 ≤ C3|G hvh|1 ≤ C4| ˆG hvh|1
∀ vh ∈ V h.(4.7)

The first inequality on the left is just an inverse inequality on noting (3.9). The
second follows from the first and (4.5). The third and fourth follow from (4.6)
and noting the first two inequalities in (3.12) and (4.7), respectively.

Lemma 4.1. Let the assumptions of Lemma 3.1 hold. Let∆t ≤ 4γ/θ2
c. Then for

all ε ≤ ε0 and for all h> 0 there exists a unique solution{U n
ε ,W

n
ε }N

n=1 to (Ph,∆t
ε )

such that

max
n=1→N

|U n
ε |21 +

N∑
n=1

|U n
ε − U n−1

ε |21 +∆t
N∑

n=1

| ˆG h( U n
ε−U n−1

ε

∆t )|21

+∆t
N∑

n=1

|Wn
ε |21 +∆t

N∑
n=1

|πh[φε(U n
ε )]|20 ≤ C .(4.8)

Furthermore, for n= 1→ N we have that

|[U n
ε − 1]+|h + |[−U n

ε − 1]+|h ≤ Cε1/2.(4.9)
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Proof. Existence and uniqueness of a solution to (Ph,∆t
ε ) follows in exactly the

same way as that described in Copetti and Elliott (1992) for (Ph,∆t ). We outline
the proof for completeness. Existence follows by noting that for fixedn, (4.2) is
the Euler-Lagrange equation of the minimization problem

min
χ∈K h

γ
2 |χ|21 + (Ψε(χ), 1)h + 1

2∆t |∇ ˆG h(χ− U n−1
ε )|21;

whereK h := {χ ∈ Sh : (χ, 1) = (u0, 1)}.
For fixedn, if (4.2) has two solutionsU n,1

ε andU n,2
ε , thenD := U n,1

ε −U n,2
ε ∈

V h satisfies

γ|D |21 + (φε(U n,1
ε )− φε(U n,2

ε ),D)h + 1
∆t | ˆG hD |21 = θc|D |2h.

It follows from (2.6) and (4.5) withα = θc∆t/2 that

γ|D |21 + θ|D |2h + 1
∆t | ˆG hD |21 ≤ θc|D |2h ≤ 1

∆t | ˆG hD |21 + ∆tθ2
c

4 |D |21
from which uniqueness follows under the stated condition on∆t .

The stability bound (4.8) is the analogue of (3.18, 3.19) and is proved in an
analogous way. For fixedn, choosingχ ≡ (U n

ε −U n−1
ε )/∆t in (4.2) and noting

(2.4), the identity (2.5) and (4.5) yields for anyα > 0 that

γ
2 |U n

ε |21 + γ
2 |U n

ε − U n−1
ε |21 + (Ψε(U n

ε ), 1)h +∆t | ˆG h( U n
ε−U n−1

ε

∆t )|21

≤ γ
2 |U n−1

ε |21 + (Ψε(U n−1
ε ), 1)h + θc(∆t)2

2 |U n
ε−U n−1

ε

∆t |2h
≤ γ

2 |U n−1
ε |21 + (Ψε(U n−1

ε ), 1)h + θc
2

[
α
2 |U n

ε − U n−1
ε |21 + (∆t)2

2α | ˆG h( U n
ε−U n−1

ε

∆t )|21
]
.

Summing the above fromn = 1→ m yields for all m ≤ N that

γ
2 |U m

ε |21 + (γ2 − αθc
4 )

m∑
n=1

|U n
ε − U n−1

ε |21

+(1− θc∆t
4α

)∆t
m∑

n=1

| ˆG h( U n
ε−U n−1

ε

∆t )|21 + (Ψε(U m
ε ), 1)h

≤ γ
2 |U 0

ε |21 + (Ψε(U 0
ε ), 1)h ≡ γ

2 |Qhu0|21 + (Ψε(Qhu0), 1)h ≤ C ;

where we have noted (3.15), (3.14) and the assumptions onu0. Hence the first
four bounds of (4.8) hold on choosingα = θc∆t/3, noting the stated condition
for ∆t and (4.3). Furthermore, the bound (4.9) follows immediately from the
bound on (Ψε(U m

ε ), 1)h above.
Choosingχ ≡ πh[φε(U n

ε )] in (4.2), summing fromn = 1 → N and noting
the bounds above yields, similarly to (3.23) and (3.24), that

∆t
N∑

n=1

|(I − ∫− )πh[φε(U n
ε )]|2h ≤ C .(4.10)
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Choosingχ ≡ U n
ε in (4.2) and rearranging, similarly to (3.25) withλ = ±1, and

summingn = 1→ N yields, similarly to (3.26), that

∆t
N∑

n=1

| ∫− πh[Ψ ′ε(U n
ε )]|2h ≤ C .(4.11)

Combining (4.10), (4.11) and the first bound in (4.8) and noting (3.9) yields the
remaining bound in (4.8). ut

The first four stability bounds of (4.8) are established in Copetti and Elliott
(1992). In addition they prove discrete analogues of the bounds (2.43), estab-
lished by Elliott and Luckhaus (1991); see Theorem 1.2 in the limitε→ 0. The
main difference in our approach is the bound onπh[φε(U n

ε )], which leads to an
identical bound onπh[φ(U n)]; this plays a key role in the discrete regularization
error bound, see Theorem 4.2.

We now prove an error estimate between the problems (Ph,∆t
ε ) and (Ph

ε).

Theorem 4.1. Let the assumptions of Lemma 4.1 hold. Then we have that

‖uh
ε − Ûε‖2

L2(0,T;H 1(Ω)) + ‖uh
ε − Uε‖2

L∞(0,T;(H 1(Ω))′) ≤ C

[
∆t +

h4

∆t

]
;(4.12)

where
Uε(t) := t−tn−1

∆t U n
ε + tn−t

∆t U n−1
ε t ∈ [tn−1, tn] n ≥ 1

and
Ûε(t) := U n

ε t ∈ (tn−1, tn) n ≥ 1.

Proof. Using the above notation, (4.2) can be restated as:
Find Uε ∈ H 1(0,T; Sh) such thatUε(0) ≡ Qhu0 and for a.e.t ∈ (0,T),
(Uε(t), 1) = (u0, 1) and

γ(∇Ûε,∇χ) + (Ψ ′ε(Ûε), χ− ∫− χ)h + ( ˆG h ∂Uε

∂t , χ)h = 0 ∀ χ ∈ Sh.(4.13)

It follows from (4.7) and (4.8) that∫ T

0
‖Uε − Ûε‖2

−hdt ≡
N∑

n=1

∫ tn

tn−1

(tn − t)2‖∂Uε

∂t ‖2
−hdt ≤ (∆t)2

∫ T

0
‖∂Uε

∂t ‖2
−hdt

≤ C(∆t)2
∫ T

0
| ˆG h ∂Uε

∂t |21dt ≡ C∆t
N∑

n=1

| ˆG h(U n
ε − U n−1

ε )|21 ≤ C(∆t)2.(4.14)

In addition, we have from (4.8) that∫ T

0
|∂Uε

∂t |21dt ≡ 1
∆t

N∑
n=1

|U n
ε − U n−1

ε |21 ≤ C
∆t .(4.15)

We setEε := uh
ε −Uε ∈ V h andÊε := uh

ε − Ûε ∈ V h for a.e.t ∈ (0,T). Then
subtracting (4.13) from (3.7) and choosingχ ≡ Êε, and noting (3.9), (3.5), (4.6),
(3.10) and a Young’s inequality yields, similarly to (3.28), for a.e.t ∈ (0,T) that
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γ|Êε|21 + (φε(uh
ε )− φε(Ûε), Êε)h + 1

2
d
dt‖Eε‖2

−h

= θc|Êε|2h + (G h ∂Eε
∂t ,Eε − Êε) + (( ˆG h −G h)∂Uε

∂t , Êε)

+
[

( ˆG h ∂Uε

∂t , Êε)h − ( ˆG h ∂Uε

∂t , Êε)
]

≤ C
[
‖Êε‖2

−h + ‖∂Eε
∂t ‖−h‖Uε − Ûε‖−h + |(G h − ˆG h)∂Uε

∂t |20 + h4‖ ˆG h ∂Uε

∂t ‖2
1

]
≤ C

[
‖Eε‖2

−h + ‖Uε − Ûε‖2
−h + ‖∂Eε

∂t ‖−h‖Uε − Ûε‖−h

+h4‖∂Uε

∂t ‖2
1 + h4‖ ˆG h ∂Uε

∂t ‖2
1

]
.(4.16)

Noting (2.6), (2.14), (3.12), integrating overt ∈ (0,T) and a using a Grönwall
inequality yields that

‖Êε‖2
L2(0,T;H 1(Ω)) + ‖Eε‖2

L∞(0,T;(H 1(Ω))′)

≤ C
[
‖Uε − Ûε‖2

L2(0,T;(H 1(Ω))′) + ‖∂Eε
∂t ‖L2(0,T;(H 1(Ω))′)‖Uε − Ûε‖L2(0,T;(H 1(Ω))′)

+h4‖∂Uε

∂t ‖2
L2(0,T;H 1(Ω)) + h4‖ ˆG h ∂Uε

∂t ‖2
L2(0,T;H 1(Ω))

]
.

Hence noting (2.14), (3.12), (4.14), (3.18) and (4.15) yields the desired result
(4.12). ut
Theorem 4.2. Let the assumptions of Lemma 4.1 hold. Then for allε ≤ ε0 and
h > 0 there exists a unique solution{U n,Wn}N

n=1 to (Ph,∆t ) such that

max
n=1→N

|U n|21 +
N∑

n=1

|U n − U n−1|21 +∆t
N∑

n=1

| ˆG h( U n−U n−1

∆t )|21

+∆t
N∑

n=1

|Wn|21 +∆t
N∑

n=1

|πh[φ(U n)]|20 ≤ C .(4.17)

In addition (1.9) holds. Furthermore, we have that

‖Û − Ûε‖2
L2(0,T;H 1(Ω)) + ‖U − Uε‖2

L∞(0,T;(H 1(Ω))′) ≤ C(ε + (∆t)2),(4.18)

where U andÛ are defined similarly to their regularized counterparts, see The-
orem 1.3.

Proof. The proof is a discrete analogue of Theorem 2.1. Uniqueness of a solution
to (Ph,∆t ) follows as for (Ph,∆t

ε ), see also Copetti and Elliott (1992). Note that
one can allow∆t = 4γ/θ2

c. Existence of a solution follows by lettingε → 0,
noting the uniform bounds (4.8) and applying a discrete analogue of (2.34)→
(2.38). Hence the bounds (4.17) hold. The bound (1.9) follows immediately from
the bound onπh[φ(U n)] in (4.17).

We setE := U −Uε ∈ V h andÊ := Û − Ûε ∈ V h a.e.t ∈ (0,T). Subtracting
(4.2) from its non-regularized counterpart and choosingχ ≡ Ê yields for a.e.
t ∈ (0,T) that



18 J.W. Barrett and J.F. Blowey

γ|Ê|21 + (φ(Û )− φε(Ûε), Ê)h + ( ˆG h ∂E
∂t ,E)h + ( ˆG h ∂E

∂t , Ê − E)h = θc|Ê|2h.
Noting that for t ∈ (tn−1, tn), Ê − E ≡ (tn − t)∂E

∂t , (2.8) and the analogue of
(2.41) yields for a.e. t ∈ (0,T) that

γ|Ê|21 + θ
2ε (Ê, Ê)h

ω+
ε(t)∪ω−ε (t)

+ 1
2

d
dt | ˆG hE|21

≤ γ|Ê|21 + (φε(Û )− φε(Ûε), Ê)h + 1
2

d
dt | ˆG hE|21

≤ θc|Ê|2h + (φε(Û )− φ(Û ), Ê)h ≤ θc|Ê|2h − (φ(Û ), Ê)h
ω+
ε(t)∪ω−ε (t)

,(4.19)

where, recalling the notation of (1.5),

(η1, η2)h
ω+
ε(t)∪ω−ε (t)

:=
∑

j∈ω+
ε(t)∪ω−ε (t)

Mj η1(xj )η2(xj ), ∀ η1, η2 ∈ C(Ω);

and
ω+
ε (t) := {j : 1− ε ≤ Û (xj , t) ≤ Ûε(xj , t)},

ω−ε (t) := {j : Ûε(xj , t) ≤ Û (xj , t) ≤ −1 + ε}.
After noting (4.5) and applying a Young’s inequality, it follows from (4.19) that
for a.e t ∈ (0,T)

γ|Ê|21 + θ
2ε (Ê, Ê)h

ω+
ε(t)∪ω−ε (t)

+ 1
2

d
dt | ˆG hE|21

≤ C
[
| ˆG hE|21 + | ˆG h(Ê − E)|21 + ε|φ(Û )|2h

]
.

Integrating the above fort ∈ (0,T), applying a Gr̈onwall inequality and noting
(2.14), (4.7), (4.14), (3.9) and (4.17) yields the desired result (4.18).ut
Therefore combining (2.33), (3.27), (4.12) and (4.18) yields that

‖u − Û ‖2
L2(0,T;H 1(Ω)) + ‖u − U ‖2

L∞(0,T;(H 1(Ω))′)

≤ C

[
ε + ε−1h2 +∆t +

h4

∆t

]
.(4.20)

Hence choosingε := C1h ≤ ε0, for some constantC1 proves Theorem 1.3.
Finally, we note that it is not necessary to introduce the semidiscrete regu-

larized problem (Phε). One could analyse directly the error betweenuε and Uε.
However, such an analysis is rather cumbersome. We introduced (Ph

ε) in order
to split the error analysis into two (more amenable) parts and in an attempt
to isolate the errors due to (i) spatial discretization by finite elements and (ii)
time discretization. This is very desirable as one may be interested in alternative
time stepping procedures. We were not totally successful in this aim, since in

order to isolate the spatial error of the fully practical scheme (Ph,∆t
ε ): (∂uh

ε

∂t , χ) in

(3.1a) and (wh
ε , χ) in (3.1b) should be replaced by (∂uh

ε

∂t , χ)h and (wh
ε , χ)h; that

is, (G h ∂uh
ε

∂t , χ) in (3.7) should be replaced by (̂G h ∂uh
ε

∂t , χ)h. However, we were
not able to prove an error bound in this case; since an analogue of the key bound
(4.15) in the fully discrete case is not available.



An error bound for the finite element approximation of the Cahn-Hilliard equation 19

5. A numerical experiment

As no exact solution to (P) is known, a comparison between the solutions of
(Ph,∆t ) on a coarse mesh,̂U , with that on a fine mesh, ˆu, was made. The data
used in each experiment on the coarse meshes wereΩ = (0, 1), γ = 5× 10−3,
θ = 0.15, θc = 1.0, T = 0.36, ∆t = 0.48h, h = 1/(J − 1) whereJ = 2k + 1
(k = 6, 7, 8), tol = 1× 10−7 andµ = 1; the last two quantities were parameters
used to vary the degree and speed of convergence in the iterative method (method
II of Copetti and Elliott (1992)) to solve forU n at each time level in (Ph,∆t ).
The data were the same for the fine mesh exceptJ = 211 + 1. The initial datau0

was taken to be a smooth function, see Fig. 1. In fact we tooku0 ≡ U N , where
U N is the final solution of problem (Ph,∆t ) with the parameters stated above
exceptT = 0.18, h = 2−6 and random initial data perturbed about the mean
value of−0.6; this simulates two componentsA andB being quenched into an
unstable state. This choice of initial datau0 ensured that the logarithm played a
role. In each of the experiments after one time step there existed a point where
|U n

i | > 0.99. In Fig. 1 the solution on the fine mesh is plotted at time intervals
of 0.12.

-1

0

1

0 1

u0
HHHHHHj

���������9

u512� XXXXXXXXXXXz

u1024

u1536

Fig. 1. un plotted at intervals of 0.12

We computed the quantity

ξ :=

[
N∑

n=1

∆t |πhun − U n|21
]1/2

,

and obtained the following table:

J 65 129 257
ξ2 4.31×10−3 1.05×10−3 2.37×10−4 .
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We see that the ratio of consecutiveξ2 is approximately 4.1 and 4.5 which is
better than 2, the rate of convergence proved in Theorem 1.3.
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