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1. Introduction

Let 2 be a bounded domain iR%,d < 3, with a Lipschitz boundary2. We
consider the Cahn-Hilliard equation with logarithmic free energy:
Find {u(x,t), w(x,t)} such that

g‘: = Aw in 2r =2 x(0,7T),

w = ¥'(u) —vAu in 27,
u(x,0) = up(x) VX €S2,

ou ow

v - oy 0 on 902 x (0, T);

wherev is normal tods2, the free energy¥ : [—1,1] — R is given by

—S
2

and~, 0 and 6. are positive constants with < 6.. We define the monotone
function¢ : (—1,1) — R to be

¢(s) = ¢'(s) = §[In(L +5) — In(1 - s)].

The above problem was proposed by Cahn (1961) and Cahn and Hilliard
(1958) to model phase separation of a binary mixture, which is quenched into

B(s) =)+ -5 =) el Sea st %[+ Pa-s)
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an unstable state. Here:= Xg — Xa € [—1, 1], whereXa, Xg € [0,1] are the
mass fractions of the two componermisand B. When the quench is shallow,
that is 6 is close tod., then the free energy?, is usually approximated by a
quartic polynomial. The majority of the mathematics literature has concentrated
on this case. However, this approximation is invalid if the quench is deep, i.e.
0 < 0. For a fuller discussion of the model, see Copetti and Elliott (1992) and
the references therein.

We introduce a weak formulation of the above problem:
(P) Find {u, w} such thatu(-,0) =ug(-) and for a.et € (0, T)

(1.1a) (O m)y+(Vw, V) =0 VneHY ),

(1.1b) A(Vu, Vi) + (@' (u), 1) = (w, 1) ¥ 7€ HYD).

We have adopted the standard notation for Sobolev spaces, denoting the norm of
H™($2) (m € N) by || ||m and the semi-norm bl |,. Throughout {; -) denotes the
standard_.? inner product over? and (-, -) denotes the duality pairing between
(H1(£2))’ andHX(12); In addition we define

=501 Vel
The maijor difficulty in problem (P) is that’(s) is singular ats = +£1 and
therefore has no meaning if = +1 in an open set of non-zero measure. By

studying a regularized problem, see i the next section, Elliott and Luckhaus
(1991) proved the following result; see also Copetti and Elliott (1992):

Theorem 1.1. Given @ € H(£2) and § € (0, 1) such that||ug|| =2 < 1 and
| ¥ up| < 1— 6, then there exists a unique soluti¢n, w} to (P) such that

u e L=, T;HY2)NHYO,T;H2))),

(1.2) w— f w e L30,T; H(1)),
VG € L2(0, TiHY(92)), vi(u) € L0, T;L3(52)),
(1.3) Viw € L>=(0, T; H(2))
and
(1.4) u <1 ae in £r.

We note that the integral assumption on the initial data only excludes the physi-
cally uninteresting case afy = +1, when only one component is present.

In addition to the above, Elliott and Luckhaus (1991) proved tha&l/és— 0
the solution{u, w} of (P) converges to the free boundary limit problem studied
by Blowey and Elliott (1991) and Blowey and Elliott (1992).

The finite element approximation of (P) has been considered by Copetti and
Elliott (1992) under the following assumptions:
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(A) Let 2 be convex polyhedral. Le#Z " be a quasi-uniform partitioning of
into disjoint open simpliceg with h,, := diam() andh := max,c »n h,, so
that{2 = U,.c . In addition, it is assumed thaf " is an acute partitioning;
that is for (i)d = 2 the angle of any triangle does not excee@, (i) d =3
the angle between any two faces of the same tetrahedron does not exceed
7/2. In fact the casel = 2 can be relaxed to weakly acute, see Nochetto
(1991); that is, the sum of opposite angles relative to any side does not exceed
.

Associated with7 ™" is the finite element space
Shi={xeC(): x| islinearV x € 7"} c HY().

Let 7" : C(£2) — S" be the interpolation operator such thatn(x) = n(x)
(G =1—J), where{x; }J-J:l is the set of nodes o7 ". A discrete inner product

on C(£?2), is then defined by

J
A5 = [ GO0 = S M s,

=1

whereM; > 0.

Given N, a positive integer, letAt := T/N denote the time step artd :=
nAt,n =1 — N. Then Copetti and Elliott (1992) considered the following fully
practical finite element approximation of (P):

(P"4Y Forn=1— N find {U", W"} € S" x S" such that

unurt " n h
(1.6a) ( U 7X) +(VW",Vy)=0 VyeSh,
(1.6b) VU™, Vx) + @' (U™, )" = (W", x)" ¥ xeSs,
where .
(1.7) (U%X) =(uw,x) Vxes"

By studying a regularized problem, similar to(®) in Sect. 4, Copetti and
Elliott (1992) proved the following result:

Theorem 1.2. Let the assumptions ory f Theorem 1.1 and the assumptions
(A) hold. LetAt < 4v/62. Then there exists a unique solutigp ", W}V, to
(P"4Y) such that for =1 — N

n n
UM+ UK = UK+ AU W
k=1 k=1

n
(1.8) FALY 4 VY TR+t (U B+t W2 < C
k=1

and
(1.9) UML) < 1.
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Furthermore, (P4Y) — (P) and U — u in L3(r, T;L%(f2)) for all 7 > 0 as
h, At — 0; where

(1.10) U@) =" un+mtun !t tetgtn>1

In addition, Copetti and Elliott (1992) discuss two iterative methods for solving
the resulting nonlinear algebraic equations at each time levelir{)Pand report
on some numerical results for= 1.

It is the main purpose of this paper to prove the following error bound for
the approximation (P4Y):

Theorem 1.3. Let the assumptions oy wf Theorem 1.1 and the assumptions
(A) hold. LetAt = Ch for any fixed constant C. Then for allh 0 such that
At < 4v/62, we have that

A2 2
(1.11) [u—=UllE01m10) * IU—Ullisormey) < Ch

where U(t) is defined by (1.10) and (t) :=U" t € (tn_1,t,) n > 1.

Throughout we assume the same assumptions on the partitiofithgs Copetti

and Elliott (1992), see (A) above. The layout of this paper is as follows. In
the next section we study the regularized problem),(ihtroduced by Elliott

and Luckhaus (1991). Firstly we prove som@édependent stability bounds for
the solution{u., w. }, extending on those given by Elliott and Luckhaus (1991).
We then use these to infer more regularity far,w} and to prove an error
bound for this regularization procedure. In Sect. 3 we prove an error bound for
a continuous in time finite element approximatiorf)®f (P.). In Sect.4 we
take time discretization into account and prove an error bound betwégarg
(P4Y), a regularized version of [P*!). In addition we prove an error bound for
this discrete regularization procedure. By combining all the above error bounds
and choosing the regularization parameterand the time stepAt, in terms

of the mesh spacind), we obtain the error bound Theorem 1.3. Throughout
C denotes a generic constant independent of these three parameters. Finally in
Sect.5 we present a humerical experiment.

We end this section by noting that the results in Theorem 1.1 above have
been proved in Elliott and Luckhaus (1991) for a multicomponent version of
(P). Recently, results similar to those of Copetti and Elliott (1992) in Theorem
1.2 above have been proved by Blowey et al. (1995) for this multi-component
problem. In a forthcoming paper we intend to extend the error bound in this
paper to this case.

2. A regularized problem
We use the Elliott and Luckhaus (1991) regularization for problem (P) with the

logarithmic free energy (u) replaced by the twice continuously differentiable
function . (s) := ¢.(s) + % (1 — s?) wheree € (0,1) and
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“(s) s[<1-c.

fA—9)In[1°]+ 21 +s)2+ 51 +s)In[5] — % s< —1+¢

f@+s)in[L3]+ J(1—sP2+ 50 —s)n[5] - % s>1-¢
Ye(S) =
4

(2.1)
The monotone function
f(L+In(l+s))— 2 (1—-s)—f%Ine s>1-¢

e(S) = e(s) = { ¢(s) Is|<1-¢

—S@+In(l—s)+ L (A+s)+5Ine s< —1+e
2.2)

has the properties: For al> 0
P(S) > ¢e(s) ifl>s>1—¢

(2:3) De(S) > p(s) if —1+e>s>-1"
Forallr,s

WS —5) =Yu(S)(r —8) — OcS(r — ) < (1) — ¢e(S) +OcS(s — 1)
(2.4) =) - We(s) + G (r — )

where we have used the identity
(2.5) 2s(s—r)=s*>—r?+(s—r)? Vr,s.

Fore < 1/2 and for allr,s

(2.6) 0(r —8)? < (¢c(r) — ¢=(s)(r —9)

(2.7) and ;(aﬁs(r) — $<(8))% < (¢=(r) — d=())(r — 9).
In addition, ifr,s >1—corr,s < —1+¢ then

(2.8) 2 (1 =8)2 < (¢e(r) — p=(S))(r —9).

Furthermore, it is a simple matter to show th&t is bounded below for
sufficiently small; e.g. it < eg:=0/(86;) then

(29)  W©)>{ (s-1B+[-1-SB) 6> 6 Vs,

where [+ := maxX{-,0}. To see this, we note firstly fojs| < 1 that¥.(s) >
¥(S) > ¥(0) = —0In2 > —6.. Secondly, fors > 1 we have under the stated
assumption o that.(s) > 2 (s— 1P — % + %1 -s) =[2 — %Us—1)*—
e +0c(1—s) > [ —0c(s— 12 — % — %, where we have applied a Young's
inequality. Applying a similar bound fos < —1 yields the desired result (2.9).

We now study the corresponding regularized version of (P) as introduced by
Elliott and Luckhaus (1991):
(P.) Find {u.,w.} such thatu.(-,0) = up(-) and for a.et € (0, T)

(2.10a) (% m) + (Vw., Vi) =0 V¥ neHY ),
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(2.10b) AV, Vi) + (@L(Ue),m) = (we,m) ¥ 7 € HY(D).

It is convenient to introduce the “inverse Laplacian” operdtor. .7 — V
such that
(2.11) (VGu, Vi) =(v,n) ¥neH (),
where.7 = {ve (HY(2)) : (v,1) =0} andV = {v € HY(2) : (v,1) = O}
One can then define a norm on by
(2.12) Iv]|_1 = |Z v = (v, TV)Y? Yve.Z.

We note also for future reference that using a Young’s inequality yields for all
«a > 0 that

(213)  PB=(VE0.V) < A2+ bl VueV.

Choosingp = 1 in (2.10a) yields tha(aa“; ,1) =0, i.e. {(t), 1) = (o, 1) for
all t. Hence it follows from the Poincéarinequality

(2.14) Inlo < Ce(Inls+1(n, 1)) ¥V neHN )
that
(2.15) w. = -5 %N+ £ W ().

Therefore (B) can be rewritten as:
Find u. such thatu.(-,0) = up(-) and for a.et € (0, T), (u.(t), 1) = (Up, 1) and

(2.16) Y(Vu, Vi) + (TL(u),n — £ )+ (% %, m) =0 VneHY ).

Similarly, (P) can be rewritten as:
Find u such thatu(-,0) = ug(-) and for a.et € (0, T), (u(t), 1) = (U, 1) and

(217) VU, V) + @' (u),n—F )+ (£ %, n)=0 VneH(Q)

with
(2.18) w=—9%N+4 ().

Lemma 2.1. Let the assumptions of Theorem 1.1 hold. Then fok &l o there
exists a unigue solutiofu., w. } to (P.) such that the following stability bounds
hold independently of

(2.19) U. € L0, T; H(2) N HYO, T; (H1(52))),
(2.20) we € L2(0, T; H(2)) and ¢.(u.) € L2(027);
and if 2 is convex polyhedral off2 € C1:*

(2.21) U, € L2(0, T; H?(02)).
Furthermore

(2.22)  |[ue = sl omiLzqay *+ Il-Ue = sl o iLzq2) < Cel/2.
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Proof. Assuming that (2.16) has two solutiong, u?, it follows that for a.e.
t €(0,T)d:=ul—-u? eV satisfies

(2.23) YA + (P (ud) — p-(u?),d) + L3 1d|[2, = 6|d]3.

Unigueness then follows from noting (2.13), (2.6), @@wall inequality, (2.14)
and (2.15).

Existence follows from standard arguments using Galerkin approximations
and then passing to the limit. The choices)dfelow can be justified in a similar
way.

Choosingn = du. /ot in (2.16) and integrating over () yields for all
t € (0,T) that

t
SO+ ). 0+ [ 1% IR s
(2.24) = 7 vof} + (#(w), 1) < C,

where we used the assumptionswpnHence the: independent bounds in (2.19)
follow from noting (2.9) and (2.14). Noting (2.15), (2.14) and (2.19) yields that

(2.25) 10 = Ywelzommra)y < C.

The bound (2.22) follows immediately from the bound @n((.(t)), 1) in (2.24)
and (2.9).

Choosingn = ¢.(u.) in (2.16), noting thai’(-) > 6 and (2.14) yields for
aete(0,T) that

,0u,
290/ [F 10— £ o)l < v — % I3
Ou.
(2.26) < CruG+ 75 11241
Integrating the above ovérc (0, T) and noting (2.19) yields that
(2.27) (1 = F ) (ue) |2 < C.

Choosingn = u. in (2.16) yields for any constant and for ae. t € (0, T)
that

(Pl(ue), A — Jc Ue) = (Epé(us)a A—U) — 'Y|u6|i - (55765;5 , Ue)
< (WE()\) - Ws(us)v 1) + Gzc‘us - )“5 +C ” aautE H*l|u€|07

where we have noted (2.4) and (2.14). Hence it follows on choosimgt1l and
noting (2.9) that

(2.28) 812|| f wl(uo) < CLL+ [ucfg+ 1 %¢ [|-aluclo].
Integrating the above overe (0, T) and noting (2.19) yields that

(2.29) | £ ZL(u)ll22n < C.
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Combining (2.29), (2.25) and (2.27) yields the desired result (2.20). Finally
(2.21) follows from (2.10b), (2.19), (2.20) and standard elliptic regularity theory.
O

Theorem 2.1. Let the assumptions of Theorem 1.1 hold. Then there exists a
unique solution{u, w} to (P) such that

(2.30) uecL>®0T;HY)NHLO,T; HY)),
(2.31) w € L0, T; HY(£2)) and ¢(u) € L?(127);
and if 2 is convex polyhedral off2 € C1*
(2.32) u e L2(0,T; H?(02)).
In addition (1.4) holds. Furthermore, we have that
(233) ||U - uE”EZ(O,T;Hl(.Q)) + Hu - UEHEOO(O,TJ(HI(Q))’) S CE.
Proof. As the bounds (2.19) and (2.20) are independent,ot follows that
there existsu € L0, T;H(£2)) N H(O, T;(H(£))), ¢* € L%(f2r) and a
subsequencéu.. } such that ag’ — 0
U — u in L*(0, T; H(£2)) weak-star
(2.34) and inH(0, T; (H(£2))") weakly,
(2.35) b (Uer) — ¢ in L2(2r) weakly.

Next we show thaty* = ¢(u) by adapting an argument used in Blowey et al.
(1995). It follows from (2.6) that

(2.36) /Q U — o7 [o-(us) — nldxdt> 0 ¥ 1 € L2(2r).

The integral being well-defined, singe-(r) — ¢-(s)| < 0~ %r —s| vV r,s. A
simple calculation, noting (2.8) and (2.3), yields that forrall

(2.37) |o7H(r) = oM 0 < FH{Ir — o — o)+ + [T + (-1 +e)]. .

Since (2.34) implies that., — u in L2(f27) strongly as’ — 0, see Lions (1969),
noting (2.35) and (2.37) it follows from taking the limit — O in (2.36) that

(2.38) /Q [U— o lle* — mdxdt>0 vy e L2(2r),

and hence thap* = ¢(u). Therefore taking the limit’ — 0 in (2.16) yields that
u solves (2.17). Noting (2.18) yields existence of a solufenw} to (P) and
the bound (2.31) forw. The bound (2.32) follows in the same way as (2.21).
The bound (1.4) follows directly from the bound @rfu) in (2.31) using the
argument prior to Theorem 1.1.

Uniqueness of a solution to (P) follows as for.JPsee (2.23).
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We now prove an error bound between the unique solutiorand u. of
problems (P) and (. Definee = u — u.. Subtraction of (2.16) from (2.17) and
choosingn = e yields for a.et € (0, T) that

2
(2.39) ylel + (¢(U) — ¢-(u-), €) + 3 §llell, = Oclefd < Jlef2 + 3% [lel|2,,

where we have used (2.13) in bounding the right hand side. From the monotonic-
ity of ¢. and (2.8) it follows that for a.e. € (0, T)

(2.40) (6-(U) — 6-(u),€) > £ / edx,

(U ()
where
QX)) ={xe N:1—e<u(x,t) <u.x1)},
0N-(t) ={x e 2:ux,t) <u(x,t) < —1+e}.
Next we note from the definition af. and (2.3) that

1 If |r] < 1—etheng.(r) = ¢(r).
2. Ifr>1—cands <r, then ¢.(r) — o(r))(r —s) <O0.
3. Ifr <—1+¢ andr <s, then @.(r) — &(r))(r —s) <O0.

Hence it follows for a.d@ € (0, T) that

@0 -0 < [ 0.0 seds

— / o(u)edx.
QXU (1)

Substituting (2.40) and (2.41) into (2.39) and rearranging, yields fot & €0, T)

(2.41)

IN

02
Tel2+ 1d 2, + £ /Q g S S O 0@+ el
£ U €

92
< - / o(edx+ £ [lef2,.
Q: U 1)

Integrating ovet € (0, T), using a Gonwall inequality and noting (2.14) results
in

T ,
[ P / / e2dxdt
L2(O,T,H1(Q)) L (O,T,(Hl(.(Z))) 2e o ;(t)UQ;(’[)

T
(2.42) < fC/ / ¢(u)edxdt
0 (U ()

The desired result (2.33) then follows from applying a Young’s inequality and
noting (2.31). O
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We end this section by comparing the results of Lemma 2.1 and Theorem 2.1
with those in Elliott and Luckhaus (1991). Elliott and Luckhaus (1991) establish
existence and uniqueness of a solution tg),(fhe bounds (2.19) and a bound
similar to (2.22). We have outlined these proofs above as we need similar re-
sults for the semidiscrete and fully discrete approximations in the later sections.
However, in place of (2.20) they prove (2.25) and the following stability bounds

which hold independently of:
VI € 2O TIHI9), Vi.(w) € L¥(0.T; LX)

(2.43) Viw, € L%(0,T; HY(12)).

Letting ¢ — O they then establish Theorem 1.1. The main difference in our
approach are the bounds @n(u.) and ¢(u) in (2.20) and (2.31), which play

a key role in the crucial regularization error bound (2.33) and in the regularity
results (2.21) and (2.32).

3. A semidiscrete regularized approximation
Throughout the rest of the paper we assume that the assumptions (A) hold. We

then define the following semidiscrete approximation tg)(P
(P1) Find {uf(t), w"(t)} € S"xS" such that"(0) = Q"up and for a.et € (0, T)

(3.1a) (% )+ (Vall,Vx) =0 ¥ yeSh,
(3.1b) VU, Vx) + @), )" = (w?, x) ¥ xesh
Here Q" : L2(£2) — S" is defined by

(3.2) Q" x)"=(m,x) Vxes"

Similarly to (2.11), we introduce the operatsr" : .7 — V" such that
(3.3) (VE"0,Vx) = (v,x) Vxes,

whereV" := {v" € S": (v", 1) = 0}. We have the following analogues of (2.12)
and (2.13). We define a norm o# by

(3.4) [v]|—n = |Z "]y = (v, CM0)Y2 Vo eT,
and fora > 0 we have that
(385)  ["B=(VEMN, Vo) < L [[o"2 + SR Vot e Vi,
Sinceu!(0) is piecewise linear,
Ul(1), 1) = @P(0), 1) = UI(0), 1) = (uo, 1)

and it follows that
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h_  hou? | 1 hy 1yh
(3.6) wl = -+ b @), P,

thus (P) can be rewritten as:
Findu"(t) € S" such thau"(0) = Q"up and for a.et € (0, T), (u"(t), 1) = (U, 1)
and

h
B7) VUl V) + @), x — £ )"+ (£ % x)=0 Vxesh
Below we recall some well-known results concernBiy
(3.8) (I —7™Mnlm < Ch®>M|nl, ¥neH?(), m=0orl
(3.9) I = 10602 < Ixlo < Clxla ¥ x €S".

(¢ x2) — (xas x2)" < ChY™|xaImllx2ll1
(3.10) Vxnx2€S", m=0orl

(5" — <)l < Ch* ™Il —m,
(3.11) Vne H™(2)Nn.#Z, m=0orl
Next we note that

Cih?[o"y < Cohloo < [0 —n < [[o"]| 1
(3.12) < Cyllo"|lon VoM evh

The first inequality on the left is just an inverse inequality, recalling that the
partitioning is quasi-uniform. The second follows from the first and (3.5). The
third follows from noting thaf¢"v"|; < | v"|;. The final inequality follows
from noting (3.11) withm = 0 and the second inequality above.

The following bounds, concernin@" are easily established.

(3.13) I = Q™nll-1 < Chinlo ¥ n € LA(12),
see for example Blowey and Elliott (1992).
(3.14) 1Q" Il () < IImllioeqy ¥ 1 € L(42);

since Q")(%) = (7,x))/(L,x5) | =1— J; wherey; € S" and x;(x) = &;.
In addition, using the first inequality on the left of (3.12) and comparing with an
H1 projection, one can show that

(3.15) IQ"llr < Clinlls ¥ n e HY().
Since¢. is monotone it follows, see Elliott (1987, p. 68), that
(3.16) (1 =760l < Chlm"[¢-()]l1 ¥ x € S".
Furthermore, as the partitioning is (weakly) acute, it follows from (2.7) that
(3.17) 51V [6-00115 < (Vx, Va[g-(0D) ¥ x € S,

see Ciavaldini (1975) and Nochetto (1991, Sect. 2.4.2).
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Lemma 3.1. Let the assumptions ory @f Theorem 1.1 and the assumptions (A)
hold. Then for alk < o and for all h > 0 there exists a unique solutidu, "}
to (P?) such that the following stability bounds hold independently afd h:

(3.18) ul € L0, T; HY(2)) nHY(O, T; (H1(2))),
(3.19) wh € L2(0, T; HY(£2)) and 7"[4.(uM)] € L2(27).
Furthermore

(3.20) 7 2L UM |20 3m202y) < Ce™ Y2

Proof. The proof is a discrete analogue of Lemma 2.1. If (3.7) has two solutions
uft uh2 then for a.et € (0, T), d" := ul? — uM? € VI satisfies

e 1Ye

(3:21)  Ald"[F+ (P=(ul) — 9o(u?),d"" + J & [1d" 2y = beld" [}

Uniqueness then follows from noting (3.9), (3.5), (2.6), @@vall inequality,
(2.14) and (3.6).

Existence follows from standard ordinary differential equation theory. Choos-
ing x = ou" /ot in (3.7) and integrating over (0) yields for allt € (0, T) that

t h
SO + @) 2+ [ 15 @12 s

(3.:22) = 1Q"of} + @-(Q"w). 1) < C,

where we have noted (3.15), (3.14) and the assumptiong.ditence the bounds
in (3.18) follow from noting (2.9), (2.14) and (3.12).
Choosingy = 7"[¢.(uM)] in (3.7) yields for ae. t € (0, T) that

VU, VA o M) + (1 — £ )7 [p-uM] [
(3.23) = —(L"% (1 — £ ) oM + (U, 0 — £ )" [oe (UMD,

Integrating ovet < (0, T), applying a Young'’s inequality and noting (3.9), (3.17),
(2.14), (3.12) and (3.18) yields that

(3.24) €/OT Iﬂh[fbs(UQ)]lde/oT (= £ )r"[e(UD)]]7dt < C.
Choosingy = u" in (3.7) yields for any constant and for ae. t € (0, T)
that
(LU, A — f )" = @), A — Ul — AUl — (£ )
(3825) < @(N) — (D), 1) + %[ul — AR+ CI| %7 | a]ulo

where we have noted (2.4) and (2.14). Hence it follows on chooksirg+1,
integrating ovett € (0, T) and noting (2.9), (3.9), (2.14) and (3.18) that

(3.26) | £ =" [@L U]z < C.

The desired results (3.19) and (3.20) then follow from combining (3.24), (3.26),
(3.18), (3.6) and noting (3.9). O
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Theorem 3.1. Let the assumptions of Lemma 3.1 hold. Then foeall g and
h > 0 we have that

h h _
(3.27)  [Jue —u HE?(O,T;H sy FllUe — U ”EDO(O,T;(H oy < Ce th?,

Proof. We sete. := u. — uM, e := u. — 7"u. andel := 7"u. — uP. Note that
f e =f e+ f e =0. Subtracting (3.7) from (2.16), then for atec (0, T)
it follows that

. h
(Ve Vx) + (PL(ue) — TLul), x — f )+ (% — 6515),X)
B - h
= (@), x — £ 0" - @), x — £ ) +(E" -9 x) Vxesh

Hence choosing = €' € S" and noting (2.7), (2.13), (2.14), (3.10), (3.16) and
a Young's inequality yields for a.e.c (0, T) that

Y0elF + §|p(ue) — po (UM Z+3 G lleclZr < vle B+ (p-(u) — - (ul), &) + 5 S lle]%,
= Oclec[5+~v(Ve., Vel + (Tl (u) — wL(ul), (I — £ )ed) + (5 %, eb)
+[EZLUN]L 0 = £)eD) — E N0 - £ )eD) ]

(" = D] (1 — £ + (5" = )5 e

<C [ lecl|Zy + (€83 + e Hel |3 + 1| % ll-vlef o+ h*||w"[wZ(uM]|I3
(3.28) +h2r o I + (% — 5N 3],
Integrating ovett € (0, T) and using a Ginwall inequality yields that

el a0 iy * Ellde(Ue) = Sy * 1elZe 0 122
<C| (0 —QMupl?, + 181122032y + €€ P22
+| % ey 1€ zgen + DT LUz 0 11
o @hyoul —1p2.
+h2||7Th[¢e(U?)]||EZ(0,T;H1(Q)) +( - M EZ(QT)}S Ce'h?;
where we have noted (2.14), (3.13), (3.8), (2.21), (2.19), (3.18), (3.20) and (3.11)
with m = 1. Hence the desired result (3.27) followsO
4. A fully discrete approximation
We now consider the following fully discrete approximation te){R regularized
version of (P4!) as studied by Copetti and Elliott (1992), see Sect. 1:
(P1AY) Forn > 1, find {U, W"} € S" x S" such thatU? = Q"uy and
(4.12) (VA 0N+ (YWD, V) =0 ¥y e S,

(4.1b) Y(VUL, Vx) + (LU, )" = (W, )" 7y e S
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Similarly to (3.7), (F'g’m) can be rewritten as:
Forn > 1 find U € S" such thatu? = Q"u, (U, 1) = (Up, 1) and

(4.2) A(VUD, VX)+@LUDN, x — £ 0"+ (£ )0 =0 vy esh
with

(4.3) WP = (YR U, 1.

Here &N : 7" — v is defined by

(4.4) (VC,Vy) =, x)" Vyxes

where. 7" := {v € C(2) : (v,1)" = 0}. Note thatvV" ¢ .7 " and the analogue
of (3.5) holds: fora. > 0

(4.5) W2 < L [EMPR+ G E W e v

It is easily deduced from (3.10), e.g. see Blowey and Elliott (1991), that
(4.6) 1(E" = ML < CR?loMls, Vo eV

In addition, we have the analogue of (3.12)

h2o"|; < Cih[o"[n < Co| €M1 < Ca| M|y < Cyl C My
4.7 vl e v,

The first inequality on the left is just an inverse inequality on noting (3.9). The
second follows from the first and (4.5). The third and fourth follow from (4.6)
and noting the first two inequalities in (3.12) and (4.7), respectively.

Lemma 4.1. Let the assumptions of Lemma 3.1 hold. Wet< 4~ /62. Then for
all ¢ < g and for all h > O there exists a unique solutidiy ", W"}N_, to (P1-4Y)
such that

N N
_ SheUl—un—t
max (UZE+ 3 JU2 - UM+ Ay R

n=1 n=1
N N
(4.8) +ALY CWPE ALY g (UN]F < C.
n=1 n=1

Furthermore, for n=1 — N we have that

(4.9) (U7~ 2uly +][-U7 — ey < CV2
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Proof. Existence and uniqueness of a solution t@y%ﬂ follows in exactly the
same way as that described in Copetti and Elliott (1992) f8r{). We outline
the proof for completeness. Existence follows by noting that for fixe(.2) is
the Euler-Lagrange equation of the minimization problem

min 3+ @00, 1 + 4 VE (- U

whereK" :={x € S" : (x,1) = (U, 1) }.
For fixedn, if (4.2) has two solutiont) ! andU "2, thenD := UM —-UM2 ¢
VI satisfies

YD+ (@ (UY) = 6.(US?),D)" + 1 |"D[Z = 6c|D 3.
It follows from (2.6) and (4.5) withw = 6. At/2 that

1IDE+6DR + 31D < 6DR < A<D+ 2% D;
from which uniqueness follows under the stated condition/Atn

The stability bound (4.8) is the analogue of (3.18, 3.19) and is proved in an
analogous way. For fixed, choosingy = (UM — U"~1)/At in (4.2) and noting

(2.4), the identity (2.5) and (4.5) yields for any> 0 that
TUPG+ 2IUD —UP 2+ (. (U)), 1) +At|ffh(ue"*AUte”_l)|%
< JJUP12 4 (@ (UDY), 10 + 9C(§1)2 | ug_mgfl 2
< JIUIEH U, D+ [ GIUn - urE s QY R

Summing the above from = 1 — m yields for allm < N that
m
;/|U5m|% + (Z - Otfc)z |Usn - Usnil %
n=1

O At m 1
> uh—unh-
HL- o DAY [ENT R+ @ um, D
n=1
< UL+ @.(U2), 1) = J|Q"uol2 + (¥ (Q"wp), 1) < C;

where we have noted (3.15), (3.14) and the assumptiong.oHence the first
four bounds of (4.8) hold on choosing = . At/3, noting the stated condition
for At and (4.3). Furthermore, the bound (4.9) follows immediately from the
bound on ¢.(U™M), 1)" above.

Choosingy = 7"[¢-(UM)] in (4.2), summing fromn = 1 — N and noting
the bounds above yields, similarly to (3.23) and (3.24), that

N
(4.10) A I = £ )" [p(UMIR < C.

n=1
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Choosingy = U in (4.2) and rearranging, similarly to (3.25) with= +1, and
summingn = 1 — N vyields, similarly to (3.26), that

N
(4.12) A | f wWUNE < C.
n=1

Combining (4.10), (4.11) and the first bound in (4.8) and noting (3.9) yields the
remaining bound in (4.8). O

The first four stability bounds of (4.8) are established in Copetti and Elliott
(1992). In addition they prove discrete analogues of the bounds (2.43), estab-
lished by Elliott and Luckhaus (1991); see Theorem 1.2 in the limit 0. The
main difference in our approach is the bounddti¢. (U], which leads to an
identical bound omr"[¢(U ")]; this plays a key role in the discrete regularization
error bound, see Theorem 4.2.

We now prove an error estimate between the problers‘{Pand (P).

Theorem 4.1. Let the assumptions of Lemma 4.1 hold. Then we have that

~ h4
h 2 h 2 .
(412)””5 - UEHLZ(O,T;Hl(Q)) + Hus - UEHLOC(OJ’;(Hl(_Q))/) S C |:At + At:| ’
where
Uot):="tur+ Ut teftontln>1

and A
Us(t) = Usn t € (tnfl,tn) n 2 1.

Proof. Using the above notation, (4.2) can be restated as:
Find U. € H(0,T;SM such thatU.(0) = Q"uy and for a.e.t € (0,T),
(Ue(t),1) = (Uo, 1) and

(4.13)y(VU., Vx) + @/(0.), x — £ 0" + ("% )" =0 ¥ xesh.
It follows from (4.7) and (4.8) that

T N th T
/O IU. = 02t =S / (tn — 07 2% 2 pdlt < (At)? / 99 |2, dit
n=1"“"n-1

T N
(4.14) < C(At)? /O |00 |2dt = C At Z |l ehUr — UM Y2 < C(AL2
n=1
In addition, we have from (4.8) that

T N
(4.15) /0 Pelzdt= A > UM —UrE < §
n=1
We setE. :=ul—U, e VM andE. :=uP — U, e V" for a.e.t € (0,T). Then

subtracting (4.13) from (3.7) and choosigg= E., and noting (3.9), (3.5), (4.6),
(3.10) and a Young’s inequality yields, similarly to (3.28), for d.€. (0, T) that
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YIE 2 + (pe(ul) — 6(U.), E)" + LS |E| 12,
= Go|E 2+ (M E. —E) +((¥" — &M% E)
(TN B - (2 )|

< ClIE |2, +11% 1o llU: = Oclln +1(5" = £™)% B+ 04200 2]
< Cl B0 +11U. = GelZ + 1% -nlUe = Oclln

i)

Noting (2.6), (2.14), (3.12), integrating overc (0, T) and a using a Gnwall
inequality yields that

(416) +h4| OUe Hl+h4||<(h8U

202 2
e C20.7:113¢2)) * IEellEoe 07120y
Uz = Ucllei0mmiqayy *+ 1 % ooy Ve — Uellizoreiey)

+h % ks

aU, h au
HLZ(o T:H1(12)) ||LZ(O T;HL(2)

Hence noting (2.14), (3.12), (4.14), (3.18) and (4.15) yields the desired result
(4.12). O

Theorem 4.2. Let the assumptions of Lemma 4.1 hold. Then foeall g and
h > 0 there exists a unique solutigiu ", W"}N_, to (P"4!) such that

N N
— 5 n_yyn-1
max [UNF+) UM UM ALY e (VR )R

n=1 n=1
N N
(4.17) +ALY WP+ ALY R [g(UM]fE < C.
n=1 n=1

In addition (1.9) holds. Furthermore, we have that
(4.18) (|0 — Uc 2oty * U = UclPoc or gy < Cle+ (A1),

where U andJ are defined similarly to their regularized counterparts, see The-
orem 1.3.

Proof. The proof is a discrete analogue of Theorem 2.1. Uniqueness of a solution
to (P"4") follows as for (?4!), see also Copetti and Elliott (1992). Note that
one can allowAt = 4y/62. Existence of a solution follows by letting — 0,
noting the uniform bounds (4.8) and applying a discrete analogue of (2:34)
(2.38). Hence the bounds (4.17) hold. The bound (1.9) follows immediately from
the bound ont"[¢(U™)] in (4.17).

We setE :=U —U. e VM andE :=U -U, e V" aetc (0, T). Subtracting
(4.2) from its non-regularized counterpart and choosine: E yields for ae.
t € (0,T) that
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YE[RZ+(3(0) — 6.(0.), E) + (LN E EY + (" E —E) = 4|EZ.

Noting that fort € (tr—1,t), E — E = (t» — t)9F, (2.8) and the analogue of
(2.41) yields for . t € (0, T) that
- 0 (E E 1d| A
’Y|E|% + 25(E3 E)?d;(t)uw;(t) + 2 dt 'ghEE
<YE[F+ (6:0) — 6-(Uo), E)" + 3 4| < "E

where, recalling the notation of (1.5),

(771’ UZ)Zz(t)Uw;(t) = Z MJ 7]1(X1 )772()(])a A m,n2 € C(Q):

jewituw (t)
and
Wity :={j :1-e<00x,1) < U(x,1)},
wo (1) = {j 1 U.04,1) U4, 1) < —1+e}

After noting (4.5) and applying a Young'’s inequality, it follows from (4.19) that
fora.e te (0,T)

1d <§>hE|%

=12 0 (F E\h
7|E|1 + zs(Ea E)w;(t)Uu};(t) + 2dt!*

<C||ZER+|ZNE -E)E +elo(U)R |

Integrating the above far € (0, T), applying a Gdnwall inequality and noting
(2.14), (4.7), (4.14), (3.9) and (4.17) yields the desired result (4.18).

Therefore combining (2.33), (3.27), (4.12) and (4.18) yields that

Jlu—U ||EZ(O,T;H1(Q)) +lu—-U ”EOO(O,T;(H 1(2)))
4
(4.20) <Cle+te h?+At+ h
At
Hence choosing := C;h < ¢, for some constant; proves Theorem 1.3.

Finally, we note that it is not necessary to introduce the semidiscrete regu-
larized problem (P). One could analyse directly the error betwaenand U..
However, such an analysis is rather cumbersome. We introdu¢@dn(Prder
to split the error analysis into two (more amenable) parts and in an attempt
to isolate the errors due to (i) spatial discretization by finite elements and (ii)
time discretization. This is very desirable as one may be interested in alternative
time stepping procedures. We were not totally successful in this aim, since in

. . . auh .
order to isolate the spatial error of the fully practical schenfe{#: ( o> X) in

(3.1a) and ¢!, x) in (3.1b) should be replaced b)%”g,x)h and ", x)"; that

N h . ~ h
is, (& 83‘157X) in (3.7) should be replaced byﬁ(*_1 %‘;,X)h. However, we were
not able to prove an error bound in this case; since an analogue of the key bound
(4.15) in the fully discrete case is not available.
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5. A numerical experiment

As no exact solution to (P) is known, a comparison between the solutions of
(P"At) on a coarse meshyJ, with that on a fine meshy, was made. The data
used in each experiment on the coarse meshes Were(0,1), v = 5 x 1073,

0 = 015,60, = 1.0, T = 0.36, At = 0480, h = 1/(J — 1) whereJ = 2+ 1

(k =6,7,8), tol = 1x 10~7 and i = 1; the last two quantities were parameters
used to vary the degree and speed of convergence in the iterative method (method
Il of Copetti and Elliott (1992)) to solve fot" at each time level in (P4).

The data were the same for the fine mesh exdept2!! + 1. The initial dataug

was taken to be a smooth function, see Fig. 1. In fact we tgok UN, where

UN is the final solution of problem (P!) with the parameters stated above
exceptT = 0.18, h = 276 and random initial data perturbed about the mean
value of —0.6; this simulates two componemsand B being quenched into an
unstable state. This choice of initial daig ensured that the logarithm played a
role. In each of the experiments after one time step there existed a point where
[U"| > 0.99. In Fig. 1 the solution on the fine mesh is plotted at time intervals
of 0.12.

ylo24 —
u1536

Fig. 1. u" plotted at intervals of 0.12
We computed the quantity

N 1/2
€= ZAth”—U”ﬁ] :
n=1

and obtained the following table:

J 65 129 257
€ 431x10% 1.05x10°% 2.37x10°*
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We see that the ratio of consecutigé is approximately 4.1 and 4.5 which is
better than 2, the rate of convergence proved in Theorem 1.3.
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