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Summary. We prove convergence of a class of higher order upwind finite vol-
ume schemes on unstructured grids for scalar conservation laws in several space
dimensions. The result is applied to the discontinuous Galerkin method due to
Cockburn, Hou and Shu.
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1. Introduction

In this paper we shall consider higher order finite volume discretizations for
hyperbolic conservation laws in several space dimensions

∂

∂t
u(x, t) +∇ · f (u(x, t)) = 0,(1.1)

with initial values
u(x, 0) = u0(x),(1.2)

wherex ∈ Rd, t ∈ R+, u ∈ R and f ∈ C1(R,Rd) (in fact, in this paper we only
need thatf is Lipschitz-continuous). We consider initial datau0 ∈ L1∩ L∞(Rd).

There are essentially three different numerical methods for discretizing (1.1),
(1.2). Finite difference methods are defined on cartesian, structured grids. Via
dimensional splitting one-dimensional schemes are applied to multidimensional
problems [8, 10, 12]. Furthermore there are the finite volume [9, 14, 16, 19, 22,
29] and the finite element methods (streamline diffusion, streamline diffusion
shock capturing, transport diffusion) [20, 21, 32, 35] on unstructured grids.
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The solution of (1.1), (1.2) will in general develop discontinuities which will
move through the domain. In order to avoid a very fine global grid for getting
higher resolution it is necessary to uselocal mesh refinement near these shocks.
A major disadvantage of cartesian grids is that local mesh refinement will either
have global effects or produce hanging nodes. On the other hand, it is very
simple to refine an unstructured grid locally by dividing a single triangle into
two new or four new triangles. Moreover, such grids are very flexible if one wants
to discretize bounded domains with more general geometries, which frequently
occur in applications. Finally, for improving the resolution of discontinuities it is
necessary to use higher order schemes together with flux limiters. Now for finite
volume and for finite element schemes mesh refinement and higher order accuracy
can be combined much more easily than for dimensional splitting schemes.

Convergence of higher order accurate schemes in several space dimensions
was first proved by Johnson and Szepessy [20, 35] for the streamline diffusion
shock capturing method on unstructured grids and later by Coquel and LeFloch
[9, 10] for a class of dimensional splitting schemes on cartesian grids. For finite
volume schemes, there are so far only results for monotone, first order schemes
[11, 3, 24]. In this paper, we generalize these results and show convergence of
a class of higher order accurate, upwind finite volume schemes on unstructured
triangular grids in several space dimensions.

The basic idea for getting higher order is similar as in 1-D. Let us briefly
repeat the procedure in 1-D. First we consider a scheme in conservation form of
first order.

un+1
i := un

i −
∆t
∆x

(g(un
i , u

n
i +1)− g(un

i−1, u
n
i ))(1.3)

for the initial value problem

∂t u(x, t) + ∂xf (u(x, t)) = 0 in R× R+,(1.4)

with initial values
u(x, 0) = u0(x)in R.(1.5)

The valueun
i is assumed to become an approximation ofu(i∆x, n∆t), where

u is the exact solution of (1.4), (1.5) and∆t , ∆x refer to a uniform grid. The
vector (un

i )i can be used to define a piecewise constant functionvh : R→ R as

vh(x, t) := un
i if xi− 1

2
≤ x < xi + 1

2
and tn−1 ≤ t < tn.

In order to get higher order schemes in 1-D it is usual to replace the piecewise
constant functionvh by a piecewise linear oneuh , e.g.

uh(x, t) := un
i + si (x − xi ) for xi− 1

2
≤ x < xi + 1

2
and tn−1 ≤ t < tn.

Here sj is a suitable slope which has to be chosen very carefully in order to
avoid oscillations. One way to do this is given by the following definition. Let

σj = sign(un
j − un

j−1)
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and r be defined by

| un
j − un

r |:= min{| un
j − un

j−1 |, | un
j +1 − un

j |}.

Then the slopesj is defined by

sj =
1
∆x

(un
j − un

r ) if σj σj +1 > 0

sj = 0 otherwise.

This means thatsj corresponds to that slope which modulus is minimal, except
for local extrema, wheresj = 0. In this paper we shall consider a generalization
of this scheme to 2-D. The convergence of a similar scheme of higher order for
1-D scalar conservation laws with a strictly convex flux function has been proved
in [33].

The outline of this paper is as follows: In Sect. 2, we define the class of
finite volume schemes which we shall consider in this paper, and state the main
convergence result. On the triangles we use piecewise constant values for the
approximating solutions. For instance the discontinuous Galerkin method as de-
fined in [6] defines a piecewise smooth function on the grid. The jumps of this
function along the edges of the triangles are used to define the numerical fluxes
through these edges. It turns out, that for defining the scheme we only need the
values of this piecewise smooth function in some integration nodes along the
edges. Of course these values should satisfy some properties, which will also be
given in this section. As in [11, 3, 24, 35], the main tool for proving the con-
vergence is the concept of measure valued solutions, which was introduced by
DiPerna [13]. The details of this theory will be given in Sect. 3. Then in Sections
4–6 we shall show that the approximating sequence satisfies the assumptions of
Theorem 3.8 of DiPerna. In particular in Sect. 4 we shall prove theL∞-estimate
using similar ideas as in [6]. This estimate implies the weak-star convergence of
the approximating sequence to a Young measure. Then in Sect. 5 the convexity
of the numerical entropy is used to prove similarly as in [24], that the Young
measure also satisfies a set of entropy conditions and therefore is an admissi-
ble measure valued solution. The derivation of these entropy inequalities is the
central piece of this work. TheL1-estimate and the consistency with the initial
conditions will be given in Sect. 6. DiPerna’s theory now implies that the Young
measure reduces to the admissible weak solution in the sense of Kruzkov [25].
In Sect. 7 we show that for higher order finite volume schemes, the restrictions
imposed on the values at the edges do not affect the order of accuracy. We also
remark that the discontinuous Galerkin method as defined in [6] satisfies the
conditions of Sect. 2. In Sect. 8, we characterize the numerical fluxes to which
our convergence proof applies.
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2. Statement of the main result

In this section we fix the notation concerning the triangulation, define the class
of numerical schemes for which we can show convergence and we summarize
the main result.

Definition 2.1. The set

T := {Ti |Ti is a triangle fori ∈ I ⊆ N}
where I ⊆ N is an index set, is called an unstructured grid ofΩ ⊂ R2 if the
following two properties are satisfied:

1) Ω =
⋃
i∈I

Ti ,

2) For two different Ti ,Tj we haveTj ∩ Ti = ∅ or

Tj ∩ Ti = a common vertex ofTi ,Tj or

Tj ∩ Ti = a common edge ofTi ,Tj .

In this exposition, we restrict ourselves to two space dimensions. All results can
be readily generalized to any number of space dimensions.

Notation 2.2. Let I be an index set and forh > 0 let Th := {Ti |i ∈ I } denote
an unstructured triangular grid ofR2. We will use the following notation:

Ti : the i th triangle.
|Ti |: area ofTi .
h := supi diam(Ti ).
tn := n∆t , n = 0, . . . ,N : the time aftern time steps.N∆t = T.
xi : center of gravity ofTi .
Ni : set of the indicesj of the trianglesTj neighboringTi .
Sij , j ∈ Ni : joint edge ofTi ,Tj .
|Sij |: length ofSij .
nij : outward unit normal toTi in the direction ofj ∈ Ni .

Assumption 2.3.We assume that there are constants c1 and cV such that

0< c1 ≤ ∆t
h

and sup
i∈I

h2

|Ti | ≤ cV(2.1)

if ∆t , h → 0.

Assumption 2.4.Let gij (u, v) be a numerical flux consistent with f(u) · nij , i.e.

gij (u, u) = f (u) · nij .(2.2)

We assume thatg is Lipschitz-continuous. In particular, suppose that for all M>
0 there is a constant Cg = Cg(M ) such that for all u, u′, v, v′ ∈ [−M ,M ]

|gij (u, v)− gij (u′, v′)| ≤ Cg(M )(|u − u′| + |v − v′|)(2.3)
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and thatg is conservative, i.e.

gij (u, v) = −gji (v, u).(2.4)

Moreover, assume thatgij is monotone:

∂

∂u
gij (u, v) ≥ 0≥ ∂

∂v
gij (u, v).(2.5)

Example 2.5.(Engquist-Osher and Lax-Friedrichs numerical fluxes) Let

cij (u) := f (u) · nij ,

and define

c+
ij (u) :=

∫ u

0
max{c′ij (s), 0}ds, c−ij (u) :=

∫ u

0
min{c′ij (s), 0}ds.

The Engquist-Osher numerical flux is then given by (see [15]):

gEO
ij (u, v) :=

(
c+

ij (u) + c−ij (v)
)
.

The Lax-Friedrichs numerical flux is given explicitly by (see [27]):

gLF
ij (u, v) :=

f (u) + f (v)
2

· nij +
u − v

2λij
,

whereλij are arbitrarily chosen constants satisfying

λij = λji > c̃ > 0 ,

and
λij sup

|u|≤M
|f ′(u) · nij | ≤ 1 .

ThengEO
ij , gLF

ij (and all their convex combinations) satisfy the conditions (2.2)–
(2.5).

Assumption 2.6. Let U : R → R be Lipschitz-continuous and convex, and let
(U ,F ) be an entropy pair for (1.1). We assume that there exists a numerical
entropy flux Gij (u, v) which is

(i) consistent with F· nij , i.e.

Gij (u, u) = F (u) · nij ,(2.6)

(ii) Lipschitz-continuous, such that for all M> 0 there is a constant CG =
CG(M ) such that for all u, u′, v, v′ ∈ [−M ,M ] ⊂ R

|Gij (u, v)−Gij (u′, v′)| ≤ CG(|u − u′| + |v − v′|),(2.7)

(iii) conservative, i.e. for all j∈ Ni
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Gij (u, v) = −Gji (v, u),(2.8)

and
(iv) satisfies the compatibility conditions

∂Gij

∂u
(u, v) = U ′(u)

∂gij

∂u
(u, v) ,

∂Gij

∂v
(u, v) = U ′(v)

∂gij

∂v
(u, v)(2.9)

almost everywhere.

We will require that the numerical fluxg admits an numerical entropy flux
satisfying Assumption 2.6. In Sect. 8, we will discuss this assumption and show
that it is satisfied for the Engquist-Osher and the Lax-Friedrichs fluxes – in fact,
we will characterize all such fluxes.

Notation 2.7. We will approximate the cell average of the solution at timetn

over triangleTi by un
i . Below we will often drop the superscriptn and write

ui = un
i . Given i , j , let xijl ∈ Sij and ωl ≥ 0, l = 1, . . . ,m be such that the

quadrature formula

∫
Sij

ϕ(x)dx = |Sij |
m∑

l =1

ωlϕ(xijl ) + O(h3)(2.10)

holds for all smoothϕ. Furthermore (see Fig. 1), let

dij := xj − xi anddijl := xijl − xi(2.11)

and choose coefficientsαijlp , βijlp , p ∈ Ni such that

− dijl =
∑
p∈Ni

αijlp dip , anddjil =
∑
p∈Ni

βijlp dip .(2.12)

With the dij associate

∆ij := uj − ui

and define

aijl :=
∑
p∈Ni

αijlp∆ip andbijl :=
∑
p∈Ni

βijlp∆ip .(2.13)

We will also use the notation

I (c1, . . . , cn) := [min{c1, . . . , cn},max{c1, . . . , cn}].

This notation, as well as the following definition, is adapted from Cockburn, Hou
and Shu [6].
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Fig. 1. Triangulation and notation

Remark 2.8.In order to illustrate the meaning of theaijl let us consider the case
that given a pointxijl , only two of the valuesαijlp are non-zero, say

dijl = αijlp dip + αijlq diq .

Let L : R2 → R be the linear function defined by

L(xi ) = ui , L(xp) = up, L(xq) = uq.

Then
ui + aijl = L(xijl ).

Definition 2.9. a) An unstructured triangular gridTh as defined in Definition
2.1 is called aB-triangulation if the constantsαijlp andβijlp defined in (2.12) are
nonnegative.

b) A family (Th)h>0 of B-triangulations is calledB-uniform if there exists a
constantµ > 0 such that 0≤ αijlp , βijlp ≤ µ ash → 0.

Example 2.10.In ([6], Prop. 2.9), it is shown that if the triangles are acute (no
angle is greater thanπ/2) and satisfy (2.1), then the family of triangulations is
B-uniform with µ = 2c3

V (1 + c2
V )2/3.

Now we are ready to define the scheme.

Definition 2.11. (the numerical scheme) Letu0 ∈ L∞(R2) with compact support,
let u0

i be defined by

u0
i :=

1
|Ti |

∫
Ti

u0(x)dx(2.14)



534 D. Kröner et al.

and assume thatuk
i are already defined fork ≤ n and i ∈ I . Let α ∈] 1

2, 1].
Furthermore assume that there are valuesun

ijl ∈ R for i ∈ I , j ∈ Ni and l =
1, . . .m such that the following conditions are satisfied:

a) There is a constantC1 > 0 such that for alli , j , l

|un
ijl | ≤ C1hα.(2.15)

b) There is a constantC2 > 0 such that for alli , j , l

un
ijl ∈ I (±C2h2α,−aijl ± C2h2α)(2.16)

un
jil ∈ I (±C2h2α, bijl ± C2h2α).(2.17)

c) For all i , j , l ,

(ui − uj )u
n
ijl ≤ C2h2α.(2.18)

Then we define

un+1
i := un

i −
∆t
|Ti |

∑
j∈Ni

m∑
l =1

ωl |Sij |gijl ,(2.19)

where

gijl := gij (ui + un
ijl , uj + un

jil ).(2.20)

The following is a natural property of explicit schemes:

Definition 2.12. We say that the scheme defined in Definition 2.11 has a finite
stencil if there is a constantK ∈ N such that the updateun+1

i is only affected by
the values{uj | |xj − xi | < Kh}.

Theorem 2.13. Let (Th := {Ti | i ∈ I })h>0 be a family of B-triangulations,
where h := supi∈I diam(Ti ). Suppose that Assumptions 2.3, 2.4 and 2.6 and the
quadrature rule (2.10) hold. Let u0 ∈ L∞(R2) with compact support and define
u0

i by (2.14). Assume that uk
i are already defined for k≤ n ∈ N and i ∈ I .

Moreover assume that for i∈ I , j ∈ Ni , l = 1, . . . ,m the values unijl ∈ R are given
and satisfy (2.15)–(2.18) for a givenα ∈]0, 1]. Define un+1

i by (2.19)–(2.20) and
suppose that the thus defined scheme has a finite stencil in the sense of Definition
2.12. Suppose furthermore that the CFL-condition

∆t
h

≤ 1
cV Cg(M )

∑
j∈Ni

∑m
l =1ωl [1 +

∑
p∈Ni

(αijlp + βijlp )]
(2.21)

is satisfied. Let

uh(x, t) := un
i for x ∈ Ti and tn ≤ t < tn+1.(2.22)

Then for any given T> 0, uh ∈ L1 ∩ L∞(R2 × [0,T]), and as h→ 0 there is a
subsequence ofuh which converges to the Kruzkov solution strongly in L1

loc(R2×
[0,T]).
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Note 2.14.(i) For general initial datau0 ∈ L1∩L∞(R2) the statement of Theorem
2.13 remains true (see [23]).

(ii) In [24], the compatibility condition (2.9) was only required in the second
argument ofG and g, because for the first order scheme the numerical flux
gij (ui , uj ) depends in the first argument only onui . Since higher order schemes
are defined usinggij (ui + un

ijl , ui + un
jil ), one also needs a compatibility condition

in the first argument.
(iii) Assumptions (2.15)–(2.17) are modified from assumption (2.15b) in [6].

They are analogous to a one-dimensional flux-limiter for TVBM schemes (com-
pare for example [4]). Condition (2.18) is an additional strengthening of (2.16),
(2.17) which we will need in order to prove that the Young measure established
in Sect. 4 is an admissible measure valued solution (compare Theorem 5.1).

(iv) In practice,C1 = C1(M1) (resp.C2 = C2(M2)) whereM1 (resp.M2) is an
L∞-bound for the first (resp. second) derivative ofu0 in the regions whereu0 is
smooth (compare Sect. 7).

(v) In a recent paper Geiben [17] has removed the requirement of aB-
triangulation and she has developed new high order upwind finite volume
schemes following the lines of Theorem 2.13. In the case of smooth solutions
of scalar conservation laws the experimental order of convergence was approxi-
matelyh2. These schemes have also been applied to systems, and were combined
with local mesh refinement and coarsening in order to resolve discontinuities
sharply.

(vi) In [30], Theorem 2.13 could be generalized to irregular grids made of
arbitrary polygons inRd, d ≥ 1, where the condition (2.1) is replaced by

lim
h→0

h2α/ρ = 0

whereρ is the minimum of all inner diameters of all polygons. Therefore thin
polygons, which may become flat in the limith → 0, are allowed. In [1] numer-
ical experiments indicate that thin triangles which are aligned with the disconti-
nuities of the solution (shocks etc.), improve the resolution.

In the next section, we review the Kruzkov admissible weak solution and
DiPerna’s theory of measure-valued solution. In Sect. 4, we prove anL∞ bound
for uh, following [6]. Section 5 contains the key entropy inequality, and the
convergence proof is finished in Sect. 6. In Sect. 7, we apply the result to the
discontinuous Galerkin finite element method.

3. Entropy inequalities, the Kruzkov solution, and admissible measure
valued solutions

In this section, we briefly review some definitions and results on which our
convergence proof is built.

Definition 3.1. (i) An entropy is a functionU : R→ R which is Lipschitz and
convex. LetF : R→ R2 be defined by
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F (s) :=
∫ s

U ′f ′.

The pair (U ,F ) is called an entropy-entropy-flux pair or briefly an entropy pair
for the conservation law (1.1).

(ii) For any k ∈ R, let U (s, k) := |s − k|. U (·, k) is called the Kruzkov
entropy, with entropy fluxF (·, k).

(iii) Let u0 ∈ L1 ∩ L∞(R2) andu ∈ L1 ∩ L∞(R2 × [0,T]). If for all k ∈ R
∂t U (u, k) +∇ · F (u, k) ≤ 0

in the sense of distributions, and if for allR> 0,

lim
t↓0

∫
|x|<R

|u(x, t)− u0(x)|dx = 0,

thenu is called the admissible weak solution of (1.1), (1.2).

Remark 3.2.In [25], Kruzkov shows that givenu0 ∈ L1 ∩ L∞(R2), there exists
exactly one admissible weak solutionu of (1.1), (1.2). We will refer to it as the
Kruzkov solution.

Definition 3.3. A Young measureν is a measurable map

ν : Rm → Prob(Rn),

y 7→ νy.

The starting point for DiPerna’s results (Theorems 3.8 and 3.10) is the following
theorem of Tartar [37, 38]:

Theorem 3.4. Let (uh)h>0 denote a family of functions mappingRm → Rn that
is bounded in L∞(Rm) with ‖uh‖L∞ ≤ M . Then there is a subsequence uh and a
Young measureν supported in a ball of radius M such that for all continuousg,
the weak-star limit ofg(uh) exists and

w∗ − lim
h→0

g(uh) = 〈ν, g〉 :=
∫
Rn

g(λ)dν(λ).

Corollary 3.5. (strong convergence) The sequence uh converges to u strongly in
L1

loc if and only if the Young measureν reduces at almost all points y to the Dirac
measure concentrated at u(y).

The proof of this corollary can be found in [13].

Definition 3.6. A Young measureν : R2 × [0,T] → R is called an admissible
measure valued solution of (1.1) if there exists a constantM > 0 such that for
all (x, t) the support ofνx,t is contained in{λ : |λ| ≤ M }, and if for all Kruzkov
entropy pairs,

∂t 〈ν,U (id , k)〉 +∇ · 〈ν,F (id , k)〉 ≤ 0(3.1)

in the sense of distributions.
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Remark 3.7.(i) Choosingk = ±M in (3.1) one derives

∂t 〈ν, id〉 +∇ · 〈ν, f 〉 = 0

(ii) Requiring (3.1) only for the Kruzkov entropies is equivalent to requiring it
for all entropies (compare [13], p. 239).

The most important tool for proving the convergence will be the following result
of DiPerna ([13] Theorems 4.1 and 4.2):

Theorem 3.8. Let u0 ∈ L1 ∩ L∞(R2) and letν be an admissible measure valued
solution of (1.1). Assume that

(i) there exists a C> 0 such that for almost every t∈ [0,T],∫
R2

〈νx,t , |id |〉dx ≤ C

(ii)

lim
t↓0

1
t

∫ t

0

∫
R2

〈νx,s, |id − u0(x)|〉 dx ds= 0.

Then the Young measureν reduces to a Dirac measure centered at the Kruzkov
solution u of (1.1), (1.2), i.e.

νx,t = δu(x,t), a.e. (x, t) ∈ R2 × [0,T] .

Remark 3.9.This result assumes the existence of Kruzkov’s solution and es-
tablishes sufficient conditions which guarantee that an approximating sequence
contains a subsequence which converges to the Kruzkov solution.

The following theorem gives a useful sufficient condition for property (ii) of
Theorem 3.8:

Theorem 3.10. Assume that u0 ∈ L1 ∩ L∞(R2) and thatν is an admissible mea-
sure valued solution of (1.1). Furthermore suppose that condition (i) of Theorem
3.8 is valid and that

lim
t↓0

1
t

∫ t

0

∫
R2

〈νx,s, id〉φ(x) dx ds=
∫
R2

u0(x)φ(x) dx(3.2)

for all φ ∈ C1
0 (R2). If in addition

lim
t↓0

1
t

∫ t

0

∫
R2

〈νx,s,U 〉 dx ds≤
∫
R2

U (u0(x)) dx(3.3)

holds foronestrictly convex continuous function U: R→ R with U (0) = 0, then
ν satisfies condition (ii) of Theorem 3.8.

The main ideas of the proof of this theorem can be found in Sect. 6 of [13].
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4. L∞ bound

In this section we give anL∞-bound for the piecewise constant functionuh

defined in (2.22).

Theorem 4.1. Suppose that the conditions of Theorem 2.13 and‖u0‖L∞(R2) ≤
1
2M hold. Let T> 0 be given. Then the following holds:

a) There are constantŝC = Ĉ(M ) > 0 and h0 = h0(T) > 0 such that if the
CFL-condition (2.21) holds, then for all h≤ h0 and for all n with n∆t ≤ T , we
have

sup
i∈I

|un
i | ≤

1
2

M + Ĉ n∆th2α−1 ≤ M .(4.1)

b) If the family of triangulations is B-uniform as h→ 0, then (4.1) holds
under the CFL-condition

∆t
h

≤ 1
cV Cg(M )3(1 + 4µ)

.(4.2)

Here cV is defined in (2.1), Cg(M ) in (2.3) andµ in Definition 2.9.b.

Since the proof is essentially due to [6], we will skip some elementary calcula-
tions.

Proof. The conditions (2.16) and (2.17) imply that there are constants

0≤ α̂ijlp ≤ αijlp(4.3)

and
0≤ β̂ijlp ≤ βijlp(4.4)

such that

|un
ijl + âijl | ≤ C2h2α(4.5)

|un
jil − b̂ijl | ≤ C2h2α(4.6)

where

âijl :=
∑
p∈Ni

α̂ijlp∆ip(4.7)

b̂ijl :=
∑
p∈Ni

β̂ijlp∆ip(4.8)

From (4.5)–(4.8) and (2.15)–(2.17) we know that

âijl = O(hα), b̂ijl = O(hα).(4.9)

Let
ĝijl := gij (ui − âijl , uj + b̂ijl ).(4.10)

Then
|ĝijl − gijl | ≤ Cg(M )(|âijl + un

ijl | + |b̂ijl − un
jil |) = O(h2α).(4.11)
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Let α̂ijl , β̂ijl be as in (4.3)–(4.8). Define

ûn+1
i := H (ui , uj , j ∈ Ni ) := un

i −
∆t
|Ti |

∑
j∈Ni

m∑
l =1

ωl |Sij |ĝijl .

Now (4.3)–(4.11) and (2.3) imply that there is a constantC = C(M ) independent
of n such that

|un+1
i − ûn+1

i | ≤ Ch2α.

Now let Ĉ ≥ C/c1 ≥ Ch/∆t , wherec1 is given in (2.1). Then

sup
i∈I

|un+1
i | ≤ sup

i∈I
|ûn+1

i | + Ch2α ≤ sup
i∈I

|ûn+1
i | + Ĉ∆th2α−1.(4.12)

Chooseh0 so small thatTĈ h2α−1
0 ≤ 1

2M . Inequality (4.12) implies that in order
to prove a), it is sufficient to show that under the CFL-condition (2.21), ˆun+1

i is
a convex combination ofui , uj , j ∈ Ni .

Let us fix i , j and l . If gij is C1, then there are constantsξ ∈ I (ui − âijl , ui ),
η ∈ I (uj + b̂ijl , uj ) andζ ∈ I (ui , uj ) such that

ĝijl − f (ui ) · nij =

∂ug(ξ, µj + b̂ijl )
∑
p∈Ni

α̂ijlp − ∂vg(ui , η)
∑
p∈Ni

β̂ijlp − ∂vg(ui , ζ)

ui

+
∑
p∈Ni

[
−∂ug(ξ, µj + b̂ijl )α̂ijlp + ∂vg(ui , η)β̂ijlp

]
up + ∂vg(ui , ζ)uj .

Let δjp be the Kronecker symbol. Then

ûn+1
i =

1− ∆t
|Ti |

∑
j∈Ni

m∑
l =1

ωl |Sij |∂ug(ξ, µj + b̂ijl )
∑
p∈Ni

α̂ijlp − ∂vg(ui , η)
∑
p∈Ni

β̂ijlp − ∂vg(ui , ζ)

 ui

+
∆t
|Ti |

∑
p∈Ni

∑
j∈Ni

m∑
l =1

ωl |Sij |
[
∂ug(ξ, µj + b̂ijl )α̂ijlp(4.13)

−∂vg(ui , η)β̂ijlp − ∂vg(ui , ζ)δjp

]
up

=: γ0ui +
∑
p∈Ni

γpup.

Now, γ0 +
∑

p∈Ni
γp = 1, and forp ∈ Ni , γp ≥ 0. Finally, γ0 ≥ 0 follows

from (2.21), (4.3) and (4.4), the assumption (2.1) on the triangulation and the
monotonicity of g (see (2.5)). Ifgij is notC1 replace the derivatives by difference
quotients. This proves a). Part b) of the theorem follows directly from a).ut

Using theL∞ estimate (4.1) together with Tartar’s theorem, we know that
a subsequence ofuh converges weak-star to a Young measureν. In the next
section, we show thatν is an admissible measure valued solution of (1.1).
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5. Existence of an admissible measure valued solution

In this section we prove existence of an admissible measure valued solution. First,
we prove a cell entropy inequality. This is the main part in our convergence proof.
The key tools for obtaining this entropy inequality are (2.9) and (2.18).

Theorem 5.1. Let (U ,F ) be a convex entropy pair with U∈ C2 and assume that
Gij satisfies Assumption 2.6. Suppose that the CFL-condition (2.21) holds. Then
there are constants C= C(C1,C2,M ,Cg(M ), cV ,

∆t
h ) and h0 > 0 such that for

h ≤ h0

U (un+1
i )− U (ui ) +

∆t
|Ti |

∑
j∈Ni

m∑
l =1

ωl |Sij |Gijl ≤ C‖U ′′‖L∞(BM )h
2α,(5.1)

where
Gijl := Gij (ui + un

ijl , uj + un
jil ).

Remark 5.2.a) The proof of this theorem is the central piece of this work. It
relies on a careful analysis of the entropy-dissipation and on the properties of
the flux-limiters (2.15)–(2.18).
b) A cell entropy inequality similar to (5.1) was derived as early as 1971 by Lax
[28] for the first-order Lax-Friedrichs finite difference scheme. Since then, many
authors have applied and refined these ideas (see, e.g. [36, 10, 35, 34, 24] and
the references therein).
c) Further comments on Theorem 5.1 may be found at the end of the paper in
“Added in proof”.

Proof of Theorem 5.1.Note that

un+1
i =

1
3

∑
j∈Ni

m∑
l =1

ωl [ui − 3λij (gijl − f (ui ) · nij )],

whereλij := ∆t|Sij |
|Ti | . SinceU is convex,ωl ≥ 0 and

∑m
l =1ωl = 1,

U (un+1
i ) ≤ 1

3

∑
j∈Ni

m∑
l =1

ωl U
(
ui − 3λij (gijl − f (ui ) · nij )

)
.

It is thus sufficient to show that for each (i , j , l ),

E := U
(
ui − 3λij (gijl − f (ui ) · nij )

)− U (ui ) + 3λij (Gijl − F (ui ) · nij )

≤ C‖U ′′‖L∞(BM )h
2α.

From now on let (i , j , l ) be fixed andλ := λij , u := ui , v := uj , ũ := un
ijl ,

ṽ := un
jil , γ0 := f (u) ·nij andΓ0 := F (u) ·nij . For 0≤ τ ≤ 1 let γ(τ ) (respectively

γ1(τ ), γ2(τ ), Γ (τ ), Γ1(τ ), Γ2(τ )) be the functiongij (respectively∂ugij , ∂vgij , Gij ,
∂uGij , ∂vGij ) evaluated at (u+τ ũ, u+τ (v−u+ṽ)). Note thatγ0 = γ(0), Γ0 = Γ (0).
Let
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b(τ ) := u − 3λ(γ(τ )− γ0).

Now

E = U (b(1))− U (u) + 3λ(Γ (1)− Γ0) =
∫ 1

0
[U ′(b(τ ))b′(τ ) + 3λΓ ′(τ )]dτ

From the compatibility conditions (2.9), we have

Γ ′(τ ) = Γ1(τ )ũ + Γ2(τ )(v − u + ṽ)

= U ′(u + τ ũ)γ1(τ )ũ + U ′(u + τ (v − u + ṽ))γ2(τ )(v − u + ṽ).

Therefore,E = E1 + E2, where

E1 := 3λũ
∫ 1

0
[U ′(u + τ ũ)− U ′(b(τ ))]γ1(τ )dτ

E2 := 3λ(v − u + ṽ)
∫ 1

0
[U ′(u + τ (v − u + ṽ))− U ′(b(τ ))]γ2(τ )dτ

We first treatE1. SinceU ∈ C2, it is possible to chooseξ(τ ) ∈ I (b(τ ), u + τ ũ)
such that

U ′(u + τ ũ)− U ′(b(τ )) = U ′′(ξ(τ ))(u + τ ũ − b(τ )).

Let

γ∗1 (τ ) :=

{ gij (u+τ ũ,u)−gij (u,u)
τ ũ if τ ũ /= 0

0 otherwise
,

γ∗2 (τ ) :=

{
gij (u+τ ũ,u+τ (v−u+ṽ))−gij (u+τ ũ,u)

τ (v−u+ṽ) if τ (v − u + ṽ) /= 0
0 otherwise

.

Then

γ(τ )− γ0 = τ [γ∗1 (τ )ũ + γ∗2 (τ )(v − u + ṽ)]

and

E1 = 3λũ
∫ 1

0
τU ′′(ξ(τ ))[(1 + 3λγ∗1 (τ ))ũ + 3λγ∗2 (τ )(v − u + ṽ)]γ1(τ )dτ.

From (2.3), |γ1(τ )|, |γ2(τ )|, |γ∗1 (τ )|, |γ∗2 (τ )| ≤ Cg(M ). From (2.1) and (2.21),
3λCg(M ) ≤ 1. From (2.15),|ũ|, |ṽ| ≤ C1hα. From (2.18), (v − u)ũ ≥ −C2h2α,
and from the monotonicity ofgij (2.5), γ1(τ )γ∗2 (τ ) ≤ 0. Therefore,

λ2γ1(τ )γ∗2 (τ )(v − u)ũ ≤ C2h2α,

which yields

E1 ≤ C‖U ′′‖L∞(BM )h
2α.

The termE2 can be treated similarly. ut
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Proposition 5.3. Let ν be the Young measure established in Sect. 4. Then for any
convex entropy pair(U ,F ) with U ∈ C2,

∂t 〈ν,U 〉 +∇ · 〈ν,F 〉 ≤ 0(5.2)

in the sense of distributions. Moreover, for allϕ ∈ C∞
0 (R2 × [0,T)) with ϕ ≥ 0,∫ T

0

∫
R2

[〈νx,t ,U 〉∂tϕ(x, t) + 〈νx,t ,F 〉 · ∇ϕ(x, t)]dxdt

+
∫
R2

U (u0(x))ϕ(x, 0)dx ≥ 0.(5.3)

In order to prove this proposition, we need the following

Lemma 5.4. Let ϕ ∈ C∞
0 (R2 × [0,T]), ϕn

i := ϕ(xi , tn), ϕn
ijl := ϕ(xijl , tn). Then

there are constants C= C(ϕ,T) and h0 > 0 such that for h≤ h0

∆t
N∑

n=0

∑
i∈I

∑
j∈Ni

m∑
l =1

ωl |Sij ||Gijl − F (ui ) · nij ||ϕn
i − ϕn

ijl | ≤ Ch
α
2 .(5.4)

This lemma will be proved at the end of this section.

Proof of Proposition 5.3.Let BR be the ball of radiusR in R2, and letχR be the
indicator function ofBR. Let ϕ ∈ C∞

0 (BR × [0,T)), ϕ ≥ 0 andϕn
i := ϕ(xi , tn).

Multiply (5.1) by |Ti |ϕn
i and sum overi andn, n ≤ N , whereN∆t = T.

N∑
n=0

∑
i∈I

|Ti |[U (un+1
i )− U (un

i )]ϕn
i +∆t

N∑
n=0

∑
i∈I

∑
j∈Ni

m∑
l =1

ωl |Sij |Gijl ϕ
n
i

≤ C
N∑

n=0

∑
i∈I

|Ti |ϕn
i h2α.

We have
N∑

n=0

∑
i∈I

|Ti |[U (un+1
i )− U (un

i )]ϕn
i

= −∆t
N∑

n=1

∑
i∈I

|Ti |U (un
i )
ϕn

i − ϕn−1
i

∆t
−
∑
i∈I

|Ti |U (u0
i )ϕ0

i

≥ −∆t
N∑

n=1

∑
i∈I

∫
Ti

U (uh(x, tn))[∂tϕ(x, tn) + O(∆t)χR(x)]dx

−
∑
i∈I

∫
Ti

U (u0(x))[ϕ(x, 0) + O(∆t)χR(x)]dx

= −∆t
N∑

n=1

∫
R2

U (uh(x, tn))∂tϕ(x, t)dx−
∫
R2

U (uh(x, 0))ϕ(x, 0)dx + O(∆t)

= −
∫ T

∆t

∫
R2

U (uh(x, t))∂tϕ(x, t)dxdt−
∫
R2

U (uh(x, 0))ϕ(x, 0)dx + O(∆t).
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Sinceϕ is supposed to have compact support and sinceGijl (u, v) = −Gjil (v, u),
we have

N∑
n=0

∑
i∈I

∑
j∈Ni

m∑
l =1

ωl |Sij |Gijl ϕ
n
ijl = 0

and therefore

∆t
N∑

n=0

∑
i∈I

∑
j∈Ni

m∑
l =1

ωl |Sij |Gijl ϕ
n
i = ∆t

N∑
n=0

∑
i∈I

∑
j∈Ni

m∑
l =1

ωl |Sij |Gijl (ϕn
i − ϕn

ijl )

= ∆t
N∑

n=0

∑
i∈I

∑
j∈Ni

m∑
l =1

ωl |Sij |[Gijl − F (un
i ) · nij ](ϕn

i − ϕn
ijl )

−∆t
N∑

n=0

∑
i∈I

∑
j∈Ni

(
|Sij |F (un

i ) · nij

m∑
l =1

ωlϕ
n
ijl

)
.

From (5.4), the first summand on the RHS isO(h
α
2 ). The second summand is

−∆t
N∑

n=0

∑
i∈I

∑
j∈Ni

(∫
Sij

F (uh) · nϕ + O(h3)χR(xi )

)

= −∆t
N∑

n=0

∑
i∈I

∫
Ti

F (uh) · ∇ϕ + TR2O(h) = −
∫ T

0

∫
R2

F (uh) · ∇ϕ + O(h)

Finally,

h2α
N∑

n=0

∑
i∈I

|Ti |ϕn
i ≤ Ch2α−1TR2.

Therefore,

−
∫ T

∆t

∫
R2

U (uh)∂tϕ−
∫ T

0

∫
R2

F (uh) · ∇ϕ−
∫
R2

U (uh(0))ϕ(·, 0)

≤ O(hα/2) + O(h2α−1) + O(h) = O(hε) for someε > 0

if α > 1
2. Taking the limit ash → 0 yields (5.3). Forϕ ∈ C∞

0 (R2 × (0,T)), this
implies

∂t 〈ν,U 〉 +∇ · 〈ν,F 〉 ≤ 0

in the sense of distributions. ut
Corollary 5.5. The Young measureν established in Sect. 4 is an admissible mea-
sure valued solution of (1.1). Moreover,∫ T

0

∫
R2

[〈νx,t , id〉∂tϕ(x, t) + 〈νx,t , f 〉 · ∇ϕ(x, t)]dxdt

+
∫
R2

〈νx,0, id〉ϕ(x, 0)dx = 0.(5.5)
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Proof. We already know from Tartar’s theorem that suppνx,t ⊂ BM for all
(x, t) ∈ R2 × [0,T]. It remains to show (3.1) for all Kruzkov entropies
U (·, k) = | · −k|. Given k ∈ R andε > 0, let

Uε(s) :=

{ − ε
8[((s− k)/ε)4 − 6((s− k)/ε)2 − 3] for |s− k| < ε

|s− k| otherwise

Uε ∈ C2, and asε→ 0, Uε → U (·, k) pointwise uniformly. Using the dominated
convergence theorem one can pass to the limitε→ 0 in (5.3) to obtain∫ T

0

∫
R2

〈νx,t ,U (id , k)〉∂tϕ(x, t) + 〈νx,t ,F (id , k)〉 · ∇ϕ(x, t)

+
∫
R2

〈νx,0,U (id , k)〉ϕ(x, 0)≥ 0.

From here, one immediately obtains (3.1). Moreover, settingk = ±M , one ob-
tains (5.5). ut

It remains to prove Lemma 5.4.

Proof of Lemma 5.4.As before, letλij := ∆t|Sij |
|Ti | . In ([24], Lemma 4.7), it is

shown for the first order scheme

un+1
i = un

i −
∑
j∈Ni

λij gij (ui , uj )

that for Gij corresponding to the entropyU (s) = 1
2s2,

1
2

[(un+1
i )2 − (un

i )2] +
∑
j∈Ni

λij Gij (ui , uj )

+
∑
j∈Ni

λ2
ij [gij (ui , uj )− f (ui ) · nij ]2 ≤ 0.(5.6)

From (2.20), (2.15) and (2.3),∑
j∈Ni

m∑
l =1

λij ωl [gijl − gij (ui , uj )] = O(hα).

It is now easy to modify the proof of ([24], Lemma 4.7) to show that for the
scheme (2.19) one has the estimate

1
2

[(un+1
i )2 − (un

i )2] +
∑
j∈Ni

λij Gij (ui , uj ) +
∑
j∈Ni

(λij )2[gij (ui , uj )

−f (ui ) · nij ]2 ≤ O(hα).(5.7)

Since the initial datau0 have compact support, and since the scheme has a finite
stencil (see Definition 2.12), there is a constantR0 such that the support of
uh(·, tn) is contained in a ball of radiusRn := R0 + nhK. Because of Assumption
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2.3 and sincetn ≤ T, Rn ≤ R0 + KT/c1. Let In := {i ∈ I : |xi | ≤ Rn}.
Multiplying (5.7) by |Ti | and summing overi ∈ In we obtain

1
2
‖uh(tn+1)‖2

L2(R2) −
1
2
‖uh(tn)‖2

L2(R2)

+
∑
i∈In

∆t2

|Ti |
∑
j∈Ni

|Sij |2(gij (ui , uj )− f (ui ) · nij )2 ≤ Chα.

Using that (∆t)2

|Ti | ≥ (c1)2 > 0, multiplying by∆t and summing overn = 0, . . .N
we obtain

∆t
N∑

n=0

∑
i∈In

∑
j∈Ni

|Sij |2[gij (ui , uj )− f (ui ) · nij ]2 ≤ CThα.(5.8)

Now let U ∈ C2 be any convex entropy with corresponding numerical entropy
flux Gij satisfying Assumption 2.6. As in ([24], Prop.4.3), we use the compati-
bility condition (2.9) to show that

|Gij (ui , uj )− F (ui ) · nij | ≤ ‖U ′‖L∞(BM )|gij (ui , uj )− f (ui ) · nij |.
Applying this to (5.8), we obtain

∆t
N∑

n=0

∑
i∈In

∑
j∈Ni

|Sij |2[Gij (ui , uj )− F (ui ) · nij ]2 ≤ C(‖U ′‖L∞(BM ))Thα.(5.9)

Since
[Gijl −Gij (ui , uj )] = O(hα),

we have that

∆t
N∑

n=0

∑
i∈In

∑
j∈Ni

m∑
l =1

ωl |Sij |2[Gijl − F (ui ) · nij ]2

≤ 2∆t
N∑

n=0

∑
i∈In

∑
j∈Ni

|Sij |2[Gij (ui , uj )− F (ui ) · nij ]2 + C∆t
N∑

n=0

∑
i∈In

h2+α

≤ CThα.(5.10)

Using (5.10) and Ḧolder’s inequalitiy we derive

∆t
N∑

n=0

∑
i∈I

∑
j∈Ni

m∑
l =1

ωl |Sij ||Gijl − F (ui ) · nij ||ϕn
i − ϕn

ijl |

≤
∆t

N∑
n=0

∑
i∈I

∑
j∈Ni

m∑
l =1

ωl |Sij |2|Gijl − F (ui ) · nij |2
 1

2

∆t
N∑

n=0

∑
i∈I

∑
j∈Ni

m∑
l =1

ωl |ϕn
i − ϕn

ijl |2
 1

2

≤ (CThα)
1
2 (C(ϕ)T)

1
2 = C(ϕ,T)h

α
2 ut
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6. Consistency with the initial conditions

In this section we show that the admissible measure valued solutionν of (1.1)
equals the Kruzkov solution of (1.1) with initial data (1.2). According to the
theory outlined in Sect. 3, it remains to show that assumptions (i) and (ii) of
DiPerna’s Theorem 3.8 are satisfied.

Theorem 6.1. For all t ∈ [0,T],∫
R2

〈νx,t , |id |〉dx ≤ ‖u0‖L1(R2),

i.e. condition (i) of Theorem 3.8 holds.

Proof. We know from Tartar’s theorem, that

uh
∗
⇀ 〈ν, id〉 =: u

in L∞(R2 × R+). For almost everyt , there is a compactly supported probability
measureµ·,t such that

uh(t)
∗
⇀ 〈µ·,t , id〉 =: v(·, t).

Let σ ∈ C∞
0 ([0,T]), ϕ ∈ C∞

0 (R2) andψ(x, t) := σ(t)ϕ(x). Then

lim
h→0

∫
R2

uh(x, t)ϕ(x)dx =
∫
R2

v(x, t)ϕ(x)dx

and therefore

lim
h→0

∫ T

0

∫
R2

uh(x, t)ψ(x, t)dxdt =
∫ T

0

∫
R2

v(x, t)ψ(x, t)dxdt.

On the other hand,

lim
h→0

∫ T

0

∫
R2

uh(x, t)ψ(x, t)dxdt =
∫ T

0

∫
R2

u(x, t)ψ(x, t)dxdt.

and therefore we obtain thatv(x, t) = u(x, t) at all Lebesgue-points (x, t) of u
andv. Therefore, we can identifyv with u andµ·,t with ν·,t .

Next, for any convexU ∈ C2, let (U ,F ) be an entropy-entropy-flux pair and
Gij a numerical entropy-flux consistent withF · nij and satisfying Assumption
2.6. From (5.1),

U (un+1
i )− U (un

i ) ≤ −∆t
|Ti |

∑
j∈Ni

m∑
l =1

ωl |Sij |Gijl + ‖U ′′‖L∞([−M ,M ])O(h2α).

Multiply this by |Ti | and sum overn = 0, . . . ,N − 1 (N∆t = t) and i ∈ IN =
{i ∈ I : |xi | ≤ RN}. Since for alln ≤ N the support ofuh(·, tn) is contained in
a ball of radiusRN ,
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−∆t
N−1∑
n=0

∑
i∈IN

∑
j∈Ni

m∑
l =1

ωl |Sij |Gijl = 0,

and we obtain∫
R2

U (uh(x, t))dx ≤
∫
R2

U (uh(x, 0))dx + C‖U ′′‖L∞([−M ,M ])h
2α−1.(6.1)

Now define

Uε(s) :=

{ − ε
8[(s/ε)4 − 6(s/ε)2 − 3] for |s| < ε

|s| otherwise

Let ε = ε(h) := h2β , with β ∈]0, α− 1
2[. Note that‖U ′′

ε(h)‖L∞(BM ) ≤ C
ε = Ch−2β .

Therefore, (6.1) gives∫
R2

Uε(h)(uh(x, t))dx ≤
∫
R2

Uε(h)(uh(x, 0))dx + Ch2(α−β− 1
2 ).(6.2)

Using Tartar’s theorem and (6.2) we derive∫
R2

〈νx,t , |id |〉dx = lim
R→∞

∫
BR

〈νx,t , |id |〉dx

= lim
R→∞

lim
h→0

∫
BR

|uh(x, t)|dx ≤ lim
R→∞

lim
h→0

∫
BR

Uε(h)(uh(x, t))dx

≤ lim
h→0

∫
R2

Uε(h)(uh(x, t))dx ≤ lim
h→0

[∫
R2

Uε(h)(uh(x, 0))dx + Ch2(α−β− 1
2 )

]
= lim

h→0

∫
R2

Uε(h)(uh(x, 0))dx

For everyh > 0,∫
R2

Uε(h)(uh(x, 0))dx ≤
∫

supp(uh)

3ε
8

dx +
∫
R2

|uh(x, 0)|dx ≤ Ch2β +
∫
R2

|u0(x)|dx

so ∫
R2

〈νx,t , |id |〉dx ≤
∫
R2

|u0(x)|dx,

which is theL1-bound we were looking for. ut
Next we prove that assumption (ii) of Theorem 3.8 holds. For this purpose,

it remains to show that assumptions (3.2) and (3.3) of Theorem 3.10 hold.

Proposition 6.2. For all φ ∈ C∞
0 (R2)

lim
t↓0

1
t

∫ t

0

∫
R2

〈νx,s, id〉φ(x) dx ds=
∫
R2

u0(x)φ(x) dx(6.3)

i.e. condition (3.2) of Theorem 3.10 holds.
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Proof. The proof is taken from ([24], Prop.3.9.). Based on the equality (5.5), one
can show that for allφ ∈ C∞

0 (R2) the map

t → A(t) :=
∫
R2

〈νx,t , id〉φ(x)dx

is absolutely continuous over [0,T] and that

A(0) =
∫
R2

u0(x)φ(x)dx. ut

Proposition 6.3. Let U(u) = 1
2u2. Then

lim
t↓0

1
t

∫ t

0

∫
R2

〈νx,s,U 〉dxds≤
∫
R2

U (u0(x))dx ,(6.4)

i.e. (3.3) holds.

Proof. The proof is a generalization of ([24], Prop.3.13). As in the proof of
Theorem 6.1, multiply (5.1) by|Ti | and sum overi ∈ IN . Then∑

i∈IN

|Ti |[U (un+1
i )− U (un

i )] ≤ Ch2α(6.5)

Let 0 ≤ t1 := n1∆t ≤ t2 := n2∆t . Sum (6.5) over 0≤ n′ ≤ n, and let
t := n∆t ≤ t2. Then∑

i∈IN

|Ti |[U (un
i )− U (u0

i )] ≤ nCh2α ≤ t2Ch2α−1.(6.6)

Sum (6.6) overn = n1, . . . , n2 − 1:
n2−1∑
n=n1

∑
i∈IN

|Ti |U (un
i ) ≤ (n2 − n1)

∑
i∈IN

|Ti |U (u0
i ) + (n2 − n1)t2Ch2α−1.

Multiplying this by ∆t
t2−t1

gives

1
t2 − t1

∫ t2

t1

∫
R2

U (uh(x, t))dxdt≤
∫
R2

U (uh(x, 0))dx + Ct2h2α−1

Let h → 0. Tartar’s theorem 3.4 implies that

1
t2 − t1

∫ t2

t1

∫
R2

〈νx,t ,U 〉dxdt≤
∫
R2

U (u0(x))dx.

The rest of the proof can be found in [24].ut
Proof of Theorem 2.13.From Theorem 6.1, condition (i) of Theorem 3.8 holds.
From Propositions 6.2 and 6.3, conditions (3.2) and (3.3) of Theorem 3.10 are
satisfied. Therefore, we can apply the latter theorem and conclude that condition
(ii) of Theorem 3.8 holds. Using this theorem, we obtain that

νx,t = δu(x,t) a.e. (x, t) ∈ R2 × [0,T],

whereu is the (unique) Kruzkov solution of (1.1), (1.2). Corollary 3.5 implies
that the sequenceuh converges strongly inL1

loc(R2 × [0,T]) to u. This finishes
the convergence proof for the higher order finite volume schemes.ut
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7. Applications

In this section we apply our convergence result to the discontinuous Galerkin
finite element method. This method was introduced in [4, 5, 6]. Numerical ex-
periments concerning this method for scalar conservation laws are presented in
[6], and for the compressible two-dimensional Euler equations in [7]. Very exten-
sive experiments for MUSCL-type reconstruction methods for equations in two
and three space dimensions, in particular on unstructured meshes as they appear
under local refinement have been conducted by Geiben [18]. Geiben develops
a new reconstruction method with flux-limiters along the lines of the present
paper. The resulting schemes satisfy the conditions for the convergence theorem.
The experiments she has done refer to nonlinear conservation laws in 2-D on
unstructured grids. For smooth solutions of a nonlinear scalar equation (where
the exact solution is known) she got an experimental order of convergence (EOC)
with respect to theL1− norm close to 2. If the grid is strongly non-uniform as
after a local refinement step, then the EOC is approximately3

2. For discontin-
uous solutions the EOC goes down to 1.25 but is still better than for the first
order Engquist-Osher scheme (EOC=1.06) or for the Durlovsky-Engquist-Osher
scheme(EOC=0.98) [14]. For the shock tube problem she got EOC=1.01 for the
higher order and EOC=0.62 for the first order Steger and Warming scheme. Also
in this case theL1− error is much less than for the Durlovsky-Engquist-Osher
scheme [14]. Similar results are obtained on a strongly nonuniform mesh.

In the following, k ≥ 0 is fixed. Given aB-triangulationTh := {Ti : i ∈ I }
let

Vh := {v ∈ L1 ∩ L∞(R2) : v|Ti ∈ Pk(Ti )},

where Pk is the space of polynomials of degree≤ k. Let V h ⊂ Vh denote
the subspace of elements which are piecewise constant over the triangles, and
decomposeVh orthogonally with respect to theL2 scalar product:

Vh = V h ⊕ Ṽh.(7.1)

Let Πk : L1 ∩ L∞(R2) → Vh be theL2-projection (soΠ0 is the projection onto
the piecewise constantsV h). Given u ∈ L1 ∩ L∞(R2) andk ≥ 0, let

uh := Πk u ∈ Vh(7.2)

uh := Π0 u ∈ V h(7.3)

ũh := uh − uh ∈ Ṽh(7.4)

We will approximate the solutionu(·, t) of (1.1) - (1.2) byuh(·, t) ∈ Vh, and
we will show that ash → 0, the sequenceuh contains a subsequence which
converges to the unique entropy solution of (1.1), (1.2).
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Heuristical derivation of a semidiscrete equation

In this paragraph, we assume thatuh ∈ C1([0,T],Vh), where

Vh := {v ∈ L1 ∩ L∞(R2) : v|Ti is continuous for all i ∈ I }.
If uh ∈ L1(R+,Vh) is a weak solution of (1.1), it satisfies

d
dt

∫
Ti

uh(·, t)vh +
∫

Ti

∇ · f (uh(·, t))vh = 0

for all i ∈ I and allvh ∈ Vh. Integrating by parts formally yields

d
dt

∫
Ti

uh(·, t)vh +
∑
j∈Ni

∫
Sij

f (uh(·, t)) · nij vh −
∫

Ti

f (uh(·, t)) · ∇vh = 0.

Sinceuh is discontinuous across the boundary ofTi , we replacef · nij |Sij | in the
first integral by a numerical fluxgij as defined in Definition 2.4. Moreover, we
replace the integrals by quadrature formulae∫

Sij

ϕ ≈
m∑

l =1

ωlϕ(xijl )|Sij |

and ∫
Ti

ϕ ≈
r∑

p=1

ωpϕ(xip)|Ti |

where thexijl resp.xip are integration nodes onSij resp. inTi , the quadrature
formula over the edges is supposed to be exact for polynomials of degree≤ 2k+1
and the one over the triangles for polynomials of degree≤ 2k. Then as in ([6],
(2.4)) we obtain the weak formulation

d
dt

∫
Ti

uh(·, t)vh = −
∑
j∈Ni

m∑
l =1

ωl gijl (uh(·, t))vint
h (xijl )

+|Ti |
r∑

p=1

ωpf (uh(xip , t)) · ∇vh(xip),(7.5)

where
gijl (uh(·, t)) := gij (uint

h (xijl , t), u
int
h (xjil , t))(7.6)

and
uint

h (xijl , t) := lim
x→xijl ,x∈Ti

uh(x, t)(7.7)

Given uh(·, t) ∈ Vh and i ∈ I define a linear mapping̀i : Pk(Ti ) → R by

`i (vh|Ti ) = −
∑
j∈Ni

m∑
l =1

ωl |Sij |gijl (uh(·, t))vint
h (xijl )+|Ti |

r∑
p=1

ωpf (uh(xip , t))·∇vh(xip).

(7.8)
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Then there is awi ∈ Pk(Ti ) such that for allvh ∈ Vh,

`i (vh|Ti ) = (wi , vh)L2(Ti ).(7.9)

We can now define an operatorLh : Vh → Vh by

uh(·, t) 7→ Lhuh(·, t)
Lhuh(x, t) := wi (x) for x ∈ Ti .(7.10)

Combining (7.5) – (7.10) we obtain the semidiscrete equation

d
dt

uh(t) = Lhuh(t).(7.11)

Definition of the discontinuous Galerkin method

Now we would like to give the definition of the discontinuous Galerkin method.
Formally, (7.11) can be discretized with respect to time as

uh(tn+1) = uh(tn) +∆tLhuh(tn).

But in generaluh(tn+1) will not satisfy the constraints given in (2.15)–(2.18).
Therefore we have to projectuh(tn+1) onto a spacêVh of functions satisfying all
these constraints (see (7.14) below). This projection is given byΛh (see (7.18)),
and it takes over the role of the slope limiters which are used in the context of
upwind finite difference methods.

Definition 7.1. (ProjectionΛh) For u(·) ∈ Vh define

ui :=
1
|Ti |

∫
Ti

u(x)dx(7.12)

uijl := lim
x→xijl ,x∈Ti

u(x)− un
i(7.13)

For givenu(·) ∈ Vh defineaijl , bijl as in (2.13), usingui as defined in (7.12).
Then for givenα, C1, C2 define

V̂h(u) := {v ∈ Vh : for all i ∈ I and all j ∈ Ni v satisfies (7.15)−(7.17)},
(7.14)
where

|ṽijl | ≤ C1hα(7.15)

ṽijl ∈ I (±C2h2α,−aijl ± C2h2α)(7.16)

(ui − uj )ṽijl ≤ C2h2α.(7.17)

Now Λh(u) is defined as theL2-projection ontoV̂h(u):

Λh(u) : L1 ∩ L∞(R2) → V̂h(u).(7.18)



552 D. Kröner et al.

Note 7.2.a) V̂h(u) is not a subspace ofVh, but of Vh. It is necessary to useVh

in the definition ofV̂h(u) instead ofVh, since otherwise the result in Lemma 7.7
will not hold. Compare also Remark 7.9.
b) V̂h(u) is convex, containsv ≡ 0, and ifw ∈ V̂h(u), thenw + V h ⊂ V̂h(u).

Definition 7.3. (discontinuous Galerkin finite element method) LetTh be aB-
triangulation, and let 0 =t0 < t1 < . . . < tN = T. For given initial data
u0 ∈ L∞(R2) with compact support define

uh(x, 0) :=
1
|Ti |

∫
Ti

u0(x)dx for x ∈ Ti(7.19)

and
uh(·, 0) :=Λh(uh(·, 0))Πk u0.(7.20)

For n = 0, . . . ,N − 1 let uh(·, tn) = uh(·, tn) + ũh(·, tn) ∈ V̂h(uh(·, tn)) be given
and define

uh(·, tn+1) := uh(·, tn) +∆tLhuh(·, tn)(7.21)

ũh(·, tn+1) := Λh(uh(·, tn+1)) [ũh(·, tn) +∆t L̃huh(·, tn)],(7.22)

where we have used the orthogonal decomposition

Lhuh(·, tn) = Lhuh(·, tn) + L̃huh(·, tn)(7.23)

analogous to (7.4). Now

uh(·, tn+1) = uh(·, tn+1) + ũh(·, tn+1) ∈ V̂h(uh(·, tn+1)).(7.24)

Remark 7.4.1) Note that for alli ∈ I ,∫
Ti

ũh(x, tn+1)dx = 0.

2) While we use an explicit Euler timestep to discretize (7.11), Cockburn,
Hou and Shu derive a higher order accurate TVD Runge-Kutta timediscretization.

Corollary 7.5. The definition of the discontinuous Galerkin method implies

un+1
i = un

i −
∆t
|Ti |

∑
j∈Ni

m∑
l =1

ωl |Sij |gijl (uh(·, t)),(7.25)

where as before upi = uh(xi , tp) for p = 0, . . . ,N andgijl is defined as in (7.6).

Proof. Let vh ∈ Vh, suppvh ⊂ Ti , vh|Ti ≡ 1
|Ti | . Using this in (7.8) gives

Lhuh(xi , t
n) = − 1

|Ti |
∑
j∈Ni

m∑
l =1

ωl |Sij |gijl (uh(·, t)).

From here and (7.21), (7.25) follows immediately.ut



Convergence of higher order upwind finite volume schemes on unstructured grids 553

Convergence and spatial accuracy

We are now ready to prove the following

Theorem 7.6. Suppose that the CFL-condition (2.21) (resp. (4.2) for a B-uniform
family of triangulations) is satisfied, and that the regularity assumption (2.1) holds
for some cV > 0. Then, as h→ 0, the sequenceuh produced by the discontinuous
Galerkin method contains a subsequence which converges strongly in L1

loc(R2 ×
[0,T]) to the unique entropy solution u of (1.1)–(1.2).

Proof. The proof follows immediately from the preceding corollary and Theorem
2.13. It remains only to remark that the method has a finite stencil.ut

Finally,we study the spatial order of consistency of the discontinuous Galerkin
method.

Lemma 7.7. Suppose that u: [0,T]×R2 → R and f : R→ R2 are smooth, and
that (Th)h>0 is a B-uniform family of triangulations with respect to a constantµ
which is regular in the sense of (2.1). For tn ∈ [0,T] let

un
i :=

1
|Ti |

∫
Ti

u(·, tn) .

Let C1,C2 be sufficiently large and letΛh(uh(·, tn)) be the projection defined by
(7.18). Then
a)

Λh(uh(·, tn)) u(·, tn) = u(·, tn).

b) There is a constant C3 > 0 depending only onµ, u and f such that

sup
x∈R2

|LhΛh(uh(·, tn)) u(x, tn) +∇ · f (u(x, tn))| ≤ C3hk+1(7.26)

c)

sup
i∈I

∣∣∣∣∣∣ 1
|Ti |

∑
j∈Ni

m∑
l =1

ωl gijl (Λh(uh(·, tn)) u(·, tn))− 1
|Ti |

∫
Ti

∇ · f (u(·, tn))

∣∣∣∣∣∣
≤ C3hk+1,(7.27)

wheregijl (Λh(uh(·, tn)) u(·, tn)) is defined analogously to (7.6) – (7.7).

Proof. Let Ml := ‖∇l u‖L∞(R2×[0,T]) and

un
ijl := u(xijl , t

n)− un
i(7.28)

Therefore
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un
ijl = u(xijl , t

n)− u(xi , t
n) + O(h2) = ∇u(xi , t

n)(xijl − xi ) + O(h2)

= −∇u(xi , t
n)
∑
p∈Ni

αijlp dip + O(h2) = −
∑
p∈Ni

αijlp [∆ip + O(h2)] + O(h2)

= −aijl + O(h2)(1 +
∑
p∈Ni

αijlp ).

Since
∑

p∈Ni
αijlp is uniformly bounded andα ≤ 1, this implies

|un
ijl + aijl | ≤ C2h2α

if C2 is large enough, i.e. (2.16) holds. Analogously, (2.17) holds with the
same choice ofC2. Conditions (2.15) and (2.18) are satisfied sinceu is suf-
ficiently smooth. Therefore,C1,C2 can be chosen such thatu(·, tn) ∈ V̂ n

h , so that
Λh(uh(·, tn)) u(·, tn) = u(·, tn). This provesa). Note that in particular,

gijl (Λh(uh(·, tn)) u(·, tn)) = f (u(xijl , t
n)) · nij .

Now we can apply Lemma 2.1 of [6] to obtainb). It remains to provec). We
have by definition

∇ · f (u) =
1
|Ti |

∫
Ti

∇ · f (u(·, tn)).

Decompose∇·f (u) = ∇ · f (u)+∇̂ · f (u). Since this decomposition is orthogonal,
we obtain 1

|Ti |
∑
j∈Ni

m∑
l =1

ωl |Sij |gijl (Λh(uh(·, tn)) u(·, tn))−∇ · f (u)

2

=
1
|Ti |

∫
Ti

[
Lhu +∇ · f (u)

]2
≤ 1
|Ti |

{∫
Ti

[Lhu +∇ · f (u)]2 +
∫

Ti

[L̃hu + ∇̂ · f (u)]2

}
=

1
|Ti |

∫
Ti

[Lhu +∇ · f (u)]2 ≤ ‖Lhu +∇ · f (u)‖2
L∞(R2) ≤

[
C3hk+1

]2
,

where the last inequality follows from (7.26).ut
The following corollary follows immediately from the proof of the preceding

Lemma:

Corollary 7.8. If we assume that there is a constant C> 0 such that as h→ 0,

h2(1−α)(1 +
∑
p∈Ni

αijlp ) ≤ C

instead of ”(Th)h>0 is a B-uniform family of triangulations”, then (7.26)–(7.27)
hold as well.
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Remark 7.9.The point of Lemma 7.7 is that conditions (2.15)–(2.18) are au-
tomatically satisfied for smooth functions and thatΛh(uh(·, tn)) reduces to the
identity in that case. Inequalities (7.26)–(7.27) donot imply that the discontinuous
Galerkin method (7.19) – (7.24) is spatially consistent of orderk + 1. The rea-
son is the innocent-looking projectionΠk in (7.20). We recall a counterexample
given in [19]: Fork = 0,

Lh(Λh(uh(·, tn))Π0 u(·, tn)) = − 1
|Ti |

∑
j∈Ni

gij (un
i , u

n
ij )

and in general∣∣∣∣∣∣ 1
|Ti |

∑
j∈Ni

gij (un
i , u

n
ij )− 1

|Ti |
∫

Ti

∇ · f (u(·, tn))

∣∣∣∣∣∣ = O(1).

The same remark applies to Lemma 2.1 of Cockburn, Hou and Shu [6].

8. Numerical entropy fluxes

In this section we completely characterize the numerical fluxesgij which satisfy
Assumption 2.4 and admit a numerical entropy fluxGij satisfying Assumption
2.6.

Lemma 8.1. Suppose thatgij is a numerical flux satisfying Assumption 2.4. Then
the following are equivalent:

(i) For every Lipschitz-continuous convex entropy U there exists a Gij satis-
fying the Assumptions 2.6.

(ii) For all Kru žkov-entropies U(·, k) there exists a Gij satisfying the Assump-
tions 2.6.

(iii) There are Lipschitz-continuous functionsϕij , ψij : R → R with ϕij (0) =
0 = ψij (0),

ϕij ≡ ψji

and constants Cϕ(M ),Cψ(M ) > 0 such that for almost all s∈ [−M ,M ],

Cϕ ≥ ϕ′ij (s) ≥ 1
2
|f ′(s) · nij |

Cψ ≥ ψ′ij (s) ≥ 1
2
|f ′(s) · nij |

and

gij (u, v) =
f (u) + f (v)

2
· nij +

{
ϕij (u)− ϕij (v) for v ≥ u
ψij (u)− ψij (v) for v < u

(8.1)
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Proof. That (i) implies (ii) is trivial.
We now show that (iii) implies (i). It is not hard to check thatgij given by

(8.1) satisfies Assumption 2.4. Given an entropy pair (U ,F ), let

Gij (u, v) := F (0) · nij +
∫ u

0
U ′(s)∂ugij (s, v)ds +

∫ v

0
U ′(t)∂vgij (u, t)dt

=
F (u) + F (v)

2
· nij +

{ ∫ u
v

U ′(s)ϕ′ij (s)ds for v ≥ u∫ u
v

U ′(s)ψ′ij (s)ds for v < u

ThenGij satisfies Assumption 2.6.
Finally, we show that (ii) implies (iii). Letφ ∈ C∞

0 (R2), suppφ ⊂ (−1, 1)2,
φ ≥ 0,

∫
φ = 1, and forε > 0 defineφε(s, t) := 1

ε2φ( s
ε ,

t
ε ). For v ≥ u + 4ε,

let k := u+v
2 . Then u + 2ε ≤ k ≤ v − 2ε. Let i , j be fixed, and drop the

subscripts fromn, g and G. Let U (s) := |s − k|. Then for (s, t) ∈ [−ε, ε]2,
U ′(u − s) = −1 = −U ′(v − t). Sinceg,G and U are Lipschitz, (2.9) gives for
almost all (s, t) ∈ [−ε, ε]2

Gu(u − s, v − t) = −gu(u − s, v − t)

Gv(u − s, v − t) = gv(u − s, v − t).

Multiplying by φε(s, t) and integrating gives

φε ∗Gu(u, v) = −φε ∗ gu(u, v)

φε ∗Gv(u, v) = φε ∗ gv(u, v).

SinceG andg are Lipschitz, one can apply the dominated convergence theorem
to derive

Gε
u (u, v) = −gεu(u, v)

Gε
v (u, v) = gεv(u, v),

whereGε = φε ∗G, gε = φε ∗ g. This gives immediately

gεuv(u, v) = 0 for v ≥ u + 4ε,

and analogously one derives

gεuv(u, v) = 0 for v ≤ u − 4ε.

Let v > u + 4ε > 2ε. Then

gε(u, v) = gε(u, u + 4ε) +
∫ v

u+4ε
gεv(u, t)dt

= gε(u, u + 4ε) +
∫ v

u+4ε
gεv(−2ε, t)dt

= gε(u, u + 4ε) + gε(−2ε, v)− gε(−2ε, u + 4ε).

As ε→ 0, we obtain forv > u > 0
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gε(u, v) = f (u) · n − g(0, u) + g(0, v).

In the same fashion, we obtain

g(u, v) =


f (u) · n − g(0, u) + g(0, v) for v > u > 0 or v < u < 0
g(u, 0) + g(0, v)− f (0) · n for v > 0> u or v < 0< u
g(u, 0)− g(v, 0) + f (v) · n for 0> v > u or 0< v < u

From here, one can show that

g(u, v) =
f (u) + f (v)

2
· n +

{
ϕ(u)− ϕ(v) for v ≥ u
ψ(u)− ψ(v) for v < u

with

ϕ(s) =

{ f (s)+f (0)
2 · n − g(0, s) for s ≥ 0

g(s, 0)− f (s)+f (0)
2 · n for s < 0

(8.2)

ψ(s) =

{
g(s, 0)− f (s)+f (0)

2 · n for s ≥ 0
f (s)+f (0)

2 · n − g(0, s) for s < 0
(8.3)

It is elementary to check thatϕ,ψ satisfy the properties required in (iii). ut
Example 8.2.The Engquist-Osher flux can be rewritten in the form

gEO
ij (u, v) =

f (u) + f (v)
2

· nij +
1
2

∫ u

v

|f ′(s) · nij |ds.

Therefore,

ϕEO
ij (s) =

1
2

∫ s

0
|f ′ · nij |.

For the Lax-Friedrichs flux,

ϕLF
ij (s) =

s
2λij

.

Therefore, ifϕij corresponds to any numerical flux satisfying our asumptions,
then

d
ds
ϕij (s) ≥ d

ds
ϕEO

ij (s),

which can be interpreted by saying that the Engquist-Osher flux is the least
dissipative one admitted in our proof.

Added in proof:We are grateful to the referees for a hint to a recent paper
of Cockburn, Coquel and LeFloch [2] which has been published as a preprint
of the Ecole Polytechnique (October 1993) while our paper was already being
refereed. We would also like to thank Bernado Cockburn for sending us a more
recent version of that preprint (June 1994). In this version, Cockburn, Coquel and
LeFloch establish anL∞(L1) error estimate for a general class of finite volume
methods under some additional assumptions. The error is proven to be of order
h1/4. They use the Kuznetsov [26] theory in order to get the necessary estimates
from the Kruzkov entropy inequalities. Nearly the same result has been obtained



558 D. Kröner et al.

with the same method by Vila [39] (January 1993). The paper [2] refers to higher
order and [39] to first order finite volume schemes.

In our paper we show convergence for higher order schemes with a com-
pletely different method. Our assumptions are weaker than those made in [2]
in the following two ways: First, we can prove convergence for initial data in
L1 ∩ L∞, while the Kuznetsov theory (and hence [2]) requires the data to be
of bounded variation. Secondly, the result in [2] assumes that the flux function
f is smooth, that∂2/∂u2f (u) is bounded and that the so calledsharp entropy
inequalitieshold. In [3, 10], these entropy inequalities could only be derived
under the additional assumption that either

(i) there is aδ > 0 such that for alli ∈ I , j ∈ Ni and allu,∣∣∣∣∂2f (u)
∂u2

· nij

∣∣∣∣ ≥ δ(8.4)

or
(ii) the numerical viscosity coefficient is bounded below by a constant inde-

pendent ofh,

Qij (u, v) := λij
f (u) · nij + f (v) · nij − 2gij (u, v)

v − u
≥ Q∗ > 0.(8.5)

The genuine-nonlinearity assumption (8.4) is a restriction both to the flux function
f and the triangulation, and will usually not hold, especially when a grid is
automatically refined. The assumption (8.5) is not satisfied by the Engquist-Osher
and the Godunov flux. Our entropy inequality (see Theorem 5.1) is of interest
in its own right. It does not rely on (8.4) and (8.5). The flux functionf only
needs to be Lipschitz continuous, and we can include the Engquist-Osher flux.
Furthermore, a recent result of Noelle [30] also applies to Godunov’s numerical
flux and nonconvex flux functionsf .

We would also like to mention that the technique developed in this paper
was already applied to situations with more general triangulations in two recent
papers: Geiben [17] removes the requirement of a B-triangulation and enforces
the L∞ bound by a new flux-limiter, and Noelle [30] generalizes the result
to irregular polygonal grids, where cells may become flat in the limit. In a
forthcoming paper [31], Noelle also obtains error estimates for such grids, for
nonconvex fluxfunctions and general E-fluxes.
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23. Kröner, D., Noelle, S., Rokyta, M. (1993): Convergence of higher order upwind finite volume
schemes on unstructured grids for scalar conservation laws in several space dimensions. SFB256
preprint no. 268, Bonn, Germany
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