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1. Introduction

In this paper we shall consider higher order finite volume discretizations for
hyperbolic conservation laws in several space dimensions

(1.1) gtu(x,t)+V~f(u(x,t)):0,

with initial values
(1.2) u(x, 0) = up(x),

wherex € RY,t € B,,u € R andf € CL(R, RY) (in fact, in this paper we only
need thaf is Lipschitz-continuous). We consider initial daige L* N L>°(RY).
There are essentially three different numerical methods for discretizing (1.1),
(1.2). Finite difference methods are defined on cartesian, structured grids. Via
dimensional splitting one-dimensional schemes are applied to multidimensional
problems [8, 10, 12]. Furthermore there are the finite volume [9, 14, 16, 19, 22,
29] and the finite element methods (streamline diffusion, streamline diffusion
shock capturing, transport diffusion) [20, 21, 32, 35] on unstructured grids.
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The solution of (1.1), (1.2) will in general develop discontinuities which will
move through the domain. In order to avoid a very fine global grid for getting
higher resolution it is necessary to useal mesh refinement near these shocks.

A major disadvantage of cartesian grids is that local mesh refinement will either
have global effects or produce hanging nodes. On the other hand, it is very
simple to refine an unstructured grid locally by dividing a single triangle into
two new or four new triangles. Moreover, such grids are very flexible if one wants
to discretize bounded domains with more general geometries, which frequently
occur in applications. Finally, for improving the resolution of discontinuities it is
necessary to use higher order schemes together with flux limiters. Now for finite
volume and for finite element schemes mesh refinement and higher order accuracy
can be combined much more easily than for dimensional splitting schemes.

Convergence of higher order accurate schemes in several space dimensions
was first proved by Johnson and Szepessy [20, 35] for the streamline diffusion
shock capturing method on unstructured grids and later by Coquel and LeFloch
[9, 10] for a class of dimensional splitting schemes on cartesian grids. For finite
volume schemes, there are so far only results for monotone, first order schemes
[11, 3, 24]. In this paper, we generalize these results and show convergence of
a class of higher order accurate, upwind finite volume schemes on unstructured
triangular grids in several space dimensions.

The basic idea for getting higher order is similar as in 1-D. Let us briefly
repeat the procedure in 1-D. First we consider a scheme in conservation form of
first order.

. At
(1.3) u’ L= u' — Ax (g(u, uly) — g(u 4, um)

for the initial value problem

(1.4) Su(x, ) + O f(u(x,1)) =0 in R xR,

with initial values
(1.5) u(x,0) =up(x)in R.

The valueu is assumed to become an approximationu@fAx, nAt), where
u is the exact solution of (1.4), (1.5) andt, Ax refer to a uniform grid. The
vector (i"); can be used to define a piecewise constant funajonR — R as

vp(x,t) =y if X_1 <X < X1 and t,_1 <t <t,.

In order to get higher order schemes in 1-D it is usual to replace the piecewise
constant functiony, by a piecewise linear ong, , e.g.

Un(x,t) :=u" +s5(x —x) for X_1 <X < X1 and t,_; <t <ty

Here s is a suitable slope which has to be chosen very carefully in order to
avoid oscillations. One way to do this is given by the following definition. Let

oj =signy” —u )
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andr be defined by
n nj.— H n n n n
[u = o = mind]u —uly [ ul —ut [}

Then the slope is defined by

1 .
§ = AX(ujn —Llrn) if ojoj+1>0

s =0 otherwise

This means thag corresponds to that slope which modulus is minimal, except
for local extrema, wherg = 0. In this paper we shall consider a generalization
of this scheme to 2-D. The convergence of a similar scheme of higher order for
1-D scalar conservation laws with a strictly convex flux function has been proved
in [33].

The outline of this paper is as follows: In Sect. 2, we define the class of
finite volume schemes which we shall consider in this paper, and state the main
convergence result. On the triangles we use piecewise constant values for the
approximating solutions. For instance the discontinuous Galerkin method as de-
fined in [6] defines a piecewise smooth function on the grid. The jumps of this
function along the edges of the triangles are used to define the numerical fluxes
through these edges. It turns out, that for defining the scheme we only need the
values of this piecewise smooth function in some integration nodes along the
edges. Of course these values should satisfy some properties, which will also be
given in this section. As in [11, 3, 24, 35], the main tool for proving the con-
vergence is the concept of measure valued solutions, which was introduced by
DiPerna [13]. The details of this theory will be given in Sect. 3. Then in Sections
4—6 we shall show that the approximating sequence satisfies the assumptions of
Theorem 3.8 of DiPerna. In particular in Sect. 4 we shall prove_tReestimate
using similar ideas as in [6]. This estimate implies the weak-star convergence of
the approximating sequence to a Young measure. Then in Sect.5 the convexity
of the numerical entropy is used to prove similarly as in [24], that the Young
measure also satisfies a set of entropy conditions and therefore is an admissi-
ble measure valued solution. The derivation of these entropy inequalities is the
central piece of this work. The!-estimate and the consistency with the initial
conditions will be given in Sect. 6. DiPerna’s theory now implies that the Young
measure reduces to the admissible weak solution in the sense of Kruzkov [25].
In Sect. 7 we show that for higher order finite volume schemes, the restrictions
imposed on the values at the edges do not affect the order of accuracy. We also
remark that the discontinuous Galerkin method as defined in [6] satisfies the
conditions of Sect. 2. In Sect. 8, we characterize the numerical fluxes to which
our convergence proof applies.
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2. Statement of the main result

In this section we fix the notation concerning the triangulation, define the class
of numerical schemes for which we can show convergence and we summarize
the main result.

Definition 2.1. The set
.7 = {T;|T; is a triangle fori € | C N}

wherel C IN is an index set, is called an unstructured gridsdfc R? if the
following two properties are satisfied:

1) 2=\t

iel
2) For two different T;, T; we haveT,NT; =0 or
Tj N Ti = a common vertex of;, T; or
T; N Ti = a common edge of;, T;.

In this exposition, we restrict ourselves to two space dimensions. All results can
be readily generalized to any number of space dimensions.

Notation 2.2. Let | be an index set and fdr > 0 let.7; := {Ti|i € 1} denote
an unstructured triangular grid @?. We will use the following notation:

T;: thei® triangle.

|Ti|: area ofT;.

h := supdiam(T;).

t":=nAt,n=0,...,N: the time aftem time stepsNAt =T.

X : center of gravity ofT;.

N;: set of the indice$ of the trianglesT; neighboringT;.

S, ] € Ni: joint edge ofT;, T;.

|S;j |: length of §;.

n; - outward unit normal tdl; in the direction off € N;.

Assumption 2.3.We assume that there are constantsod G, such that

2

(2.1) O0<c < At and sup <cvy
h icl |Til

if At,h — 0.
Assumption 2.4.Let gj (u,v) be a numerical flux consistent witlfu) - n;, i.e.
(2.2) gij (u,u) =f(u) - ny.

We assume thatis Lipschitz-continuous. In particular, suppose that for all:M
0 there is a constant £= C,(M) such that for all uu’, v,v" € [-M,M]

(2.3) |gij (u, v) — gij (U, )] < CeM)(Ju — U’ +|v — o))
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and thatg is conservative, i.e.
(2.4) gi (U, v) = —gji (v, u).
Moreover, assume thaj; is monotone:

0

0
(2.5) ou i (u,v) >0> 907

(u,v).

Example 2.5.(Engquist-Osher and Lax-Friedrichs numerical fluxes) Let
Gj (u) :==f(u)-nj,

and define

u

u
ci(u) = / max{c; (s),0}ds, ¢ (u):= / min{c; (s), 0}ds.
0 0
The Engquist-Osher numerical flux is then given by (see [15]):
giljzo(uv v) = (CJ(U) +Cj (v)) )

The Lax-Friedrichs numerical flux is given explicitly by (see [27]):

fuy+f) Lu-v

LF ——
gij (U,U) L 2 n'l 2)\” ’

where \; are arbitrarily chosen constants satisfying
)\ij :)\ji >E>O,
and
Aj sup [f/(u)-n| <1.
uj<M

Then gf©, gi™ (and all their convex combinations) satisfy the conditions (2.2)-
(2.5).

Assumption 2.6.Let U : R — IR be Lipschitz-continuous and convex, and let
(U,F) be an entropy pair for (1.1). We assume that there exists a numerical
entropy flux G (u, v) which is

(i) consistent with F y, i.e.

(2.6) Gj (u,u) = F(u) - ny,

(i) Lipschitz-continuous, such that for all M> O there is a constant € =
Cs(M) such that for all uu’,v,v’ e [-M,M] C R

(2.7) |Gjj (u,v) — Gj (u’,v)] < Ca(Ju — U’ + v —0']),

(iif) conservative, i.e. for all je N;
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(2.8) Gj (u,v) = =G;ji (v, u),

and
(iv) satisfies the compatibility conditions

9G; . Dgi 0G; . Ogi
29) o= ), ) =07 u)

almost everywhere.

We will require that the numerical flux admits an numerical entropy flux
satisfying Assumption 2.6. In Sect. 8, we will discuss this assumption and show
that it is satisfied for the Engquist-Osher and the Lax-Friedrichs fluxes — in fact,
we will characterize all such fluxes.

Notation 2.7. We will approximate the cell average of the solution at titAe
over triangleT; by u”. Below we will often drop the superscript and write

u = u". Giveni,j, letxy € § andw > 0,1 = 1,...,m be such that the
guadrature formula

(2.10) /S p)dx = 15| S wripxy) + O(h?)

1=1

holds for all smoothp. Furthermore (see Fig. 1), let
(2.11) dj ==X —X anddj =Xy — X
and choose coefficientsiy , Gijp , P € Ni such that

(2.12) —dy = Z aijip dip, anddj = Z Bijtp dip -

pEN; peN;

With the d; associate

Aj = U —
and define
(2.13) ay = Y aijp Ajp andby =Y B App.
peEN; peN;
We will also use the notation
I(c,...,Cn) :=[min{cy,...,Cn}, max{cy,...,Ch}l.

This notation, as well as the following definition, is adapted from Cockburn, Hou
and Shu [6].
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Fig. 1. Triangulation and notation

Remark 2.8.In order to illustrate the meaning of tlag let us consider the case
that given a poink; , only two of the valuesy;, are non-zero, say

dji = ajip dip + vjiq dig -
Let L : B2 — R be the linear function defined by
LX) = Ui, L(Xp) = Up, L(Xg) = Ug.
Then
Ui +ay = L(x; ).

Definition 2.9. a) An unstructured triangular gridf, as defined in Definition
2.1 is called &B-triangulation if the constants;, andgj, defined in (2.12) are
nonnegative.

b) A family (27)h>0 Of B-triangulations is called-uniform if there exists a
constantu > 0 such that 0< ajp, Bjp < 1 ash — 0.

Example 2.10.n ([6], Prop. 2.9), it is shown that if the triangles are acute (no
angle is greater than/2) and satisfy (2.1), then the family of triangulations is
B-uniform with ;1 = 2¢3 (1 +¢Z)%/3.

Now we are ready to define the scheme.

Definition 2.11. (the numerical scheme) Lag € L>(I2?) with compact support,
let u® be defined by

(2.14) ul = ! Up(x)dx
Tl Jr,
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and assume that® are already defined fok < n andi € I. Let o €]3,1].
Furthermore assume that there are valuiﬁse Rfori el,j €N andl =
1,...m such that the following conditions are satisfied:

a) There is a consta@®; > 0 such that for ali,j, I

(2.15) U} | < Cihe.

b) There is a constar@@, > 0 such that for ali,j, I

(2.16) ufi € 1(£Ch*, —ay + Coh*)
(2.17) Ujri} el (iCzhza, bij| + Czhza).
c) For alli,j,I,
(2.18) (U — u)ufi < Ch?*.
Then we define
n+l ._ |n At .
(2.19) u =y — Imi| ZZWI|SJ' |giit »
Hien 1=1
where
(2.20) git = gij (Ui + Ujj, Uy + Uji ).

The following is a natural property of explicit schemes:

Definition 2.12. We say that the scheme defined in Definition 2.11 has a finite
stencil if there is a constamt € IN such that the update’*? is only affected by
the values{u;| |x — x| < Kh}.

Theorem 2.13.Let (% = {Ti | i € |})h>0 be a family of B-triangulations,
where h:= sup, diam(T;). Suppose that Assumptions 2.3, 2.4 and 2.6 and the
quadrature rule (2.10) hold. Letouc L°°(I2?) with compact support and define

u by (2.14). Assume that‘uare already defined for k& n € Wand i € I.
Moreover assume that forg¢ | ,j € Ni,I =1 ... m the values ij}x € Ik are given

and satisfy (2.15)—(2.18) for a given<]0, 1]. Define §*! by (2.19)—(2.20) and
suppose that the thus defined scheme has a finite stencil in the sense of Definition
2.12. Suppose furthermore that the CFL-condition

At 1
h = e CoM) Y e St [+ S (o + )]

is satisfied. Let

(2.21)

(2.22) un(x,t):=u" forx e Tyandt" <t < t™!

Then for any given T 0, up, € L N L>=(®? x [0, T]), and as h— O there is a
subsequence of, which converges to the Kruzkov solution strongly f@? x
[0, T]).



Convergence of higher order upwind finite volume schemes on unstructured grids 535

Note 2.14.(i) For general initial datap € L*NL>°(1R?) the statement of Theorem
2.13 remains true (see [23]).

(i) In [24], the compatibility condition (2.9) was only required in the second
argument ofG and g, because for the first order scheme the numerical flux
gij (Ui, u;) depends in the first argument only an Since higher order schemes
are defined usingj (Ui +uj, U +uj), one also needs a compatibility condition
in the first argument.

(iii) Assumptions (2.15)—(2.17) are modified from assumption (2.15b) in [6].
They are analogous to a one-dimensional flux-limiter for TVBM schemes (com-
pare for example [4]). Condition (2.18) is an additional strengthening of (2.16),
(2.17) which we will need in order to prove that the Young measure established
in Sect.4 is an admissible measure valued solution (compare Theorem 5.1).

(iv) In practice,C; = C1(M1) (resp.C, = C3(My)) whereM; (resp.My) is an
L>°-bound for the first (resp. second) derivativeugfin the regions whereg is
smooth (compare Sect. 7).

(v) In a recent paper Geiben [17] has removed the requirement Bf a
triangulation and she has developed new high order upwind finite volume
schemes following the lines of Theorem 2.13. In the case of smooth solutions
of scalar conservation laws the experimental order of convergence was approxi-
matelyh?. These schemes have also been applied to systems, and were combined
with local mesh refinement and coarsening in order to resolve discontinuities
sharply.

(vi) In [30], Theorem 2.13 could be generalized to irregular grids made of
arbitrary polygons irk®, d > 1, where the condition (2.1) is replaced by

H 2« —
pm /o =0

wherep is the minimum of all inner diameters of all polygons. Therefore thin
polygons, which may become flat in the lintit— O, are allowed. In [1] numer-
ical experiments indicate that thin triangles which are aligned with the disconti-
nuities of the solution (shocks etc.), improve the resolution.

In the next section, we review the Kruzkov admissible weak solution and
DiPerna’s theory of measure-valued solution. In Sect. 4, we proue<abound

for up, following [6]. Section 5 contains the key entropy inequality, and the
convergence proof is finished in Sect.6. In Sect. 7, we apply the result to the
discontinuous Galerkin finite element method.

3. Entropy inequalities, the Kruzkov solution, and admissible measure
valued solutions

In this section, we briefly review some definitions and results on which our
convergence proof is built.

Definition 3.1. (i) An entropy is a functiorJ : R — IR which is Lipschitz and
convex. LetF : R — 2 be defined by
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F(s) = /SU’f’.

The pair U, F) is called an entropy-entropy-flux pair or briefly an entropy pair
for the conservation law (1.1).

(i) For any k € R, let U(s,k) := |s — k|. U(-,k) is called the Kruzkov
entropy, with entropy flux= (-, k).

(i) Let up € L*NL>*(R?) andu € L1 NL>®(R? x [0, T)). If for all k € R

8U (U, k) +V -F(u,k) <0

in the sense of distributions, and if for &l > 0,

Iim/ u(x,t) — ug(x)|dx = 0,
im |X|<R|( ) — Uo(X)|

thenu is called the admissible weak solution of (1.1), (1.2).

Remark 3.2.In [25], Kruzkov shows that giveng € L N L>°(1?), there exists
exactly one admissible weak solutionof (1.1), (1.2). We will refer to it as the
Kruzkov solution.

Definition 3.3. A Young measure’ is a measurable map

v:R™ — Prob(®R"),

y — .

The starting point for DiPerna’s results (Theorems 3.8 and 3.10) is the following
theorem of Tartar [37, 38]:

Theorem 3.4. Let (un)n>o denote a family of functions mappi” — R" that
is bounded in B°(R™) with ||uy||L.~ < M. Then there is a subsequengeand a
Young measure supported in a ball of radius M such that for all continuogs
the weak-star limit ofy(u,) exists and

W fm o) = (v9) = | o))
Corollary 3.5. (strong convergence) The sequengecanverges to u strongly in
Lt . if and only if the Young measurereduces at almost all points y to the Dirac
measure concentrated aty).

The proof of this corollary can be found in [13].

Definition 3.6. A Young measure : R? x [0, T] — IR is called an admissible
measure valued solution of (1.1) if there exists a congthnt 0 such that for
all (x,t) the support oix ; is contained in{A : |[A] < M}, and if for all Kruzkov

entropy pairs,

(3.1) A (v, U (id,k)) + V - (v, F(id, k)) <0

in the sense of distributions.
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Remark 3.7.() Choosingk = +M in (3.1) one derives
O (v,id)+V - (v,f) =0

(i) Requiring (3.1) only for the Kruzkov entropies is equivalent to requiring it
for all entropies (compare [13], p. 239).

The most important tool for proving the convergence will be the following result
of DiPerna ([13] Theorems 4.1 and 4.2):

Theorem 3.8. Let iy € L1 N L>°(R?) and letr be an admissible measure valued
solution of (1.1). Assume that
(i) there exists a C> 0 such that for almost everyd [0, T],

/<uxyt,|id\>dx§C
J 12
(ii)
1t :
I:[Q t/0/ﬂ&z<z/x7s,||d—uo(x)\>dxds—0.

Then the Young measurgeduces to a Dirac measure centered at the Kruzkov
solution u of (1.1), (1.2), i.e.

Ukt = duxy), a.e.(x,t) € R?x[0,T].

Remark 3.9.This result assumes the existence of Kruzkov's solution and es-
tablishes sufficient conditions which guarantee that an approximating sequence
contains a subsequence which converges to the Kruzkov solution.

The following theorem gives a useful sufficient condition for property (ii) of
Theorem 3.8:

Theorem 3.10. Assume thatgic L* N L>°(®?) and thatv is an admissible mea-
sure valued solution of (1.1). Furthermore suppose that condition (i) of Theorem
3.8 is valid and that

t
(3.2) Iti[rg tl/o /M(ux,s,idw(x)dx ds= /mz Uo(X)p(x) dx

for all ¢ € C3(R?). If in addition

1
(3.3) lim t/o/mz<1/>(7s,u>dxds§ /EZU(UO(X))dX

t]0

holds foronestrictly convex continuous function UR — R with U(0) = 0, then
v satisfies condition (ii) of Theorem 3.8.

The main ideas of the proof of this theorem can be found in Sect. 6 of [13].
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4. L°° bound

In this section we give ahm°°-bound for the piecewise constant functiop
defined in (2.22).

Theorem 4.1. Suppose that the conditions of Theorem 2.13 fngl| - p2) <
;M hold. Let T> 0 be given. Then the following holds:

a) There are constant§ = C(M) > 0 and hy = ho(T) > 0 such that if the
CFL-condition (2.21) holds, then for all K hy and for all n with nAt < T, we
have

(4.1) sup|u”| < ;M +CnAth?t < M.
iel
b) If the family of triangulations is B-uniform as h» 0, then (4.1) holds
under the CFL-condition
At < 1
h = oy Cy(M)3(1+4)
Here g, is defined in (2.1), XM) in (2.3) andy in Definition 2.9.b.

(4.2)

Since the proof is essentially due to [6], we will skip some elementary calcula-
tions.

Proof. The conditions (2.16) and (2.17) imply that there are constants

(4.3) 0 < Gjjp < aijp

and .

(4.4) 0 < Bilp < Biip

such that

(4.5) ufl +&| < Ch*

(4.6) |uii —by| < Ch*

where

4.7) & = Z Gijip Aip
peEN;

(4.8) by = Z Bitp Aip
peN;

From (4.5)-(4.8) and (2.15)—(2.17) we know that

(4.9) & =0(h"),by =0(h*).
Let A
(4.10) i = gip (Ui — &, Uy + by ).
Then

(4.12) it — gin | < Co(M)(1&; +ufi | +[by — ufi|) = O(h*).
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Let &y, 3 be as in (4.3)—(4.8). Define

. . At U .
uin+1 =H (ui,u,- ,] €N = uin _ T Z Zwl |SJ |gij| .
Hien 1=1
Now (4.3)—(4.11) and (2.3) imply that there is a constant C(M) independent
of n such that
|uin+1 o l]in+l| < Ch204'
Now let C > C/c; > Ch/At, wherec; is given in (2.1). Then

(4.12) sup|u™?Y| < sup|a™Y| + Ch?* < sup|a™?Y| + € Ath?* 1,
iel iel iel

Choosehy so small thaff € h§“*1 < éM. Inequality (4.12) implies that in order
to prove a), it is sufficient to show that under the CFL-condition (2.8} is
a convex combination ofi, uj,j € N;.

Let us fixi,j andl. If g; is C1, then there are constartise | (u; — &1, Up),
nel(u +by,u) and¢ €1 (u,y) such that

peN; pEN;

gip —fFu)-ny = {&19(& 1 + by )Z@ijlp — Ovg(Ui, ) Z Bip — Owg(ui, C)] Ui

+ ) [—3ug(€,/~tj + by )dip +8vg(uia77)éijlp} Up + dug(Ui, QY.

pEN;
Let 6, be the Kronecker symbol. Then

ain+1: {1_ ?it ZZM‘SH

JEN 1=1

{&19(5, 4 0) Y dgp — dug(uim) Y i — dug(ui, C)] } U

peN; pEN;
At u "
(4.13) ) DD wls] [aug(i,uj + by )ijp
""'peNijeN 1=1
—3ug (Ui, )i — 3vg(Ui,O5jp}Up
= YU + Z YpUp-
peEN;

Now, o + ZpeNi Y% = 1, and forp € N;, v > 0. Finally, 7o > 0 follows

from (2.21), (4.3) and (4.4), the assumption (2.1) on the triangulation and the
monotonicity of g (see (2.5)). fj is notC* replace the derivatives by difference
qguotients. This proves a). Part b) of the theorem follows directly from a).

Using theL*> estimate (4.1) together with Tartar’'s theorem, we know that
a subsequence afy, converges weak-star to a Young measurdn the next
section, we show that is an admissible measure valued solution of (1.1).
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5. Existence of an admissible measure valued solution

In this section we prove existence of an admissible measure valued solution. First,
we prove a cell entropy inequality. This is the main part in our convergence proof.
The key tools for obtaining this entropy inequality are (2.9) and (2.18).

Theorem 5.1. Let(U, F) be a convex entropy pair with ¢ C? and assume that

Gj satisfies Assumption 2.6. Suppose that the CFL-condition (2.21) holds. Then
there are constants G C(Cy,C,,M,Cy(M), cy, Ah‘) and hy > 0 such that for

h <hg

(5.1) U(ui””)fU(ui)w ZwasnGm<CHU"||Loc<BM>h

]€N| 1=1

where

Gj =Gy (u + uul Ut ujri1| )-
Remark 5.2.a) The proof of this theorem is the central piece of this work. It
relies on a careful analysis of the entropy-dissipation and on the properties of
the flux-limiters (2.15)—(2.18).
b) A cell entropy inequality similar to (5.1) was derived as early as 1971 by Lax
[28] for the first-order Lax-Friedrichs finite difference scheme. Since then, many
authors have applied and refined these ideas (see, e.g. [36, 10, 35, 34, 24] and
the references therein).
¢) Further comments on Theorem 5.1 may be found at the end of the paper in

“Added in proof”.

Proof of Theorem 5.1Note that

ur+t = Z Z‘”' [ui — 3N (g — f(u) - my)],

]ENI =1

_ Atl§

] |, SinceU is convex,w >0 andd N w =1,

where ) =

U™l < Z ZMU = 3\ (gip —fF(u)-ny)).

jeN. 1=1
It is thus sufficient to show that for each |, 1),
E = U (u —3Xj(gy —fF(u)-nj)) —Uu)+3X(Gy — F(u)-ny)
< CllU" || yh®.
From now on leti(,j,l) be fixed andA = Aj, u = u, v = u, 0 = uj,
U= Uj, v :=f(u)-nj andlp :=F(u)-nj. For 0< 7 < 1 lety(r) (respectively
Y1(7), v2(7), I'(7), I1(7), I2(7)) be the functiory; (respectivelyd,gij, 0. gij, Gij ,

0uGj, 0,Gjj) evaluated atu+70, u+7(v—u+7)). Note thaty, = v(0), I = I°(0).
Let
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b(7) :=u —3A(v(7) — Y0)-
Now

1
E=U(Mb@)-U)+3\I'1)—-Io) = /0 [U/(b(r))b'(r) + 3\ (7)]dT

From the compatibility conditions (2.9), we have

I''(r) = Ii(n)G+ Ix(r)(v —u+9)
U'(u+7i)yn(D)a+U'u+7( —u+9)v(r)(v —u+7d).

Therefore,E = E; + E,, where
1
E, = 3)\0/ [U'(u+70) — U'(b(r)]ya(r)dT
0

B

B -urh [ U/ U+ 70— U+ 5) — U/ B a(r)dr
0

We first treatE;. SinceU € C?2, it is possible to choosg(r) € | (b(7), u + 70)
such that

U’(u + ) — U’ (b(r)) = U"(&(M)(u + 7T — b(7)).

Let
gij (U+707U2*gu‘ (u,u) if 70 #0
Y1 (7-) = T 7& ; ,
0 otherwise
gij (u+Th,u+T(v—u+v))—gj (u+ra,u) - ~
PY;(T) = J T(v—Uu+0d) J if T(U _ u+ U) # 0 )
0 otherwise
Then
Y1) =0 = T[ (MU + 3 (7)(v — u +D)]
and

1
E, =3)d /0 TU G + 3\ (7)) + 3N3 (7)(v — U + §)]ya(r)d T

From (2.3), [7(n)], [v2(7)], v (D). 13 (0] < Cy(M). From (2.1) and (2.21),
3\C,(M) < 1. From (2.15)/d|, |3| < C1h®. From (2.18), { — u)i > —C;h?~,
and from the monotonicity of; (2.5), v1(7)v5(7) < 0. Therefore,

Na(r)ys (1) — u)d < Coh®,

which yields
E1 < C[[U”[[L=(@w)h**

The termE, can be treated similarly. O
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Proposition 5.3. Letv be the Young measure established in Sect. 4. Then for any
convex entropy paifU , F) with U € C?,

(5.2) O(r,U)+V . -(v,F) <0

in the sense of distributions. Moreover, for alle C§°(1R? x [0, T)) with ¢ > 0,
-
| [ a0+ (. F) - Tt et
0 ik

(5.3) + [ U@oto)etx, 0> 0
EZ
In order to prove this proposition, we need the following

Lemma 5.4. Let o € Cg°(R? x [0, T]), ¢! := @(x,t"), ¢l = (X ,t"). Then
there are constants G C(y, T) and Iy > 0 such that for h< hg

N m
B4 ALY N NN @S lIGi — Fu) - nylle! — ¢ | < Ch?.

n=0 icl jeN; I=1
This lemma will be proved at the end of this section.

Proof of Proposition 5.3Let Bg be the ball of radiuR in 22, and letygr be the
indicator function ofBg. Let ¢ € C§°(Br x [0,T)),p > 0 andy)' := (X, t").
Multiply (5.1) by |Ti|¢' and sum over andn,n < N, whereNAt =T.

N N m
SO TMIUG - U@+ AT ST 3D wlS Gy

n=0 i€l n=0 i€l jeN; I=1
N
<C Y3 Milern,
n=0 i€l
We have
N
DO MU ™) — U uel
n=0 iel
eN n_ n-1
= Aty Y mUW)”T T =Y ImU W)
n=1 i€l iel
N
> —AtY N [ UUn(x t)[Bp(x, ) + O(At) yr(x)]dx
n=1 i€l Ti
=3 [ Utttet. 0 + (A el

i€l

N
—A UNY! dx — 0 o o
t;/mZU(uh(x,t )dkp(x, t)dx /EZU(uh(x, Ne(x, 0)dx + O(At)

T
—/ / U(uh(x,t))atap(x,t)dxdt—/ U (up(x, 0))p(x, 0)dx + O(At).
At JR? B2
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Sincey is supposed to have compact support and s@g¢u, v) = —G;j (v, u),

we have | i
DD D wlSilGigh =0

n=0 i€l jeN I=1

and therefore

N m N m
A SN Wl IGuel =AY DN wlS Gy (e - #f))

n=0 iel jeN, I=1 n=0 iel jeN, I=1

N m
= At Z Z Z ZM 1S Gy — F(u") - mi 1(" — i)

n=0 iel jeN I=1
N m
SR HHCLERESEN]
n=0 i€l jeN =1

From (5.4), the first summand on the RHSO¢h 2 ). The second summand is

ay

F(un) - ne +O(h3)XR(Xi)>

n=0 i€l jeN i
N T
= fAtZZ/ F(up) - Vo + TRRO(h) = 7/ / F(un) - Vo +O(h)
n=0 i€l i 0 2
Finally,
N
W2y " DTl < Ch TR
n=0 i€l
Therefore,

[ [vee- [ [ Funve- [ u@onao

< 0(h*/?) + O(h?**~) + O(h) = O(h®) for somee > 0
if « > 1. Taking the limit ash — 0 yields (5.3). Forp € C§°(R? x (0, T)), this
implies
at<V7U>+V‘ <V7F> <0
in the sense of distributions. O
Corollary 5.5. The Young measuteestablished in Sect. 4 is an admissible mea-
sure valued solution of (1.1). Moreover,

)
| Lsasidheto, )+ (s t) - Vit e

(5.5) + /m (10.id)o(x, 0)dx = 0,
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Proof. We already know from Tartar's theorem that supp C By for all
(x,t) € R? x [0,T]. It remains to show (3.1) for all Kruzkov entropies

U(-,k) =] —K|. Givenk € R ande > 0, let
U.(s) := —g[((s—k)/s)4—6((s—k)/5)2—3] for |s—Kk| <e
e |s — K| otherwise

U. € C? and as — 0,U. — U (-, k) pointwise uniformly. Using the dominated
convergence theorem one can pass to the kmit 0 in (5.3) to obtain

T
| [ U000, + G F 1. - Tt
0o Jm
+ [ 050,00, ) ptx,0) = 0
T2
From here, one immediately obtains (3.1). Moreover, settirg+M, one ob-
tains (5.5). O

It remains to prove Lemma 5.4.

Proof of Lemma 5.4As before, let); := A#ﬁ”'. In ([24], Lemma 4.7), it is
shown for the first order scheme

u™t =t = > N (U )
JeN;
that for G; corresponding to the entrofy (s) = ;s?,
1
2[(Uin+1)2 — (UM + Z i G (Ui, up)
JEN;

(5.6) +> Mgy (Ui, u) — F(u)-my]? < 0.
JeN;

From (2.20), (2.15) and (2.3),
SN Njwilgi — gy (U, y)] = O(h*).
JEN 1=1

It is now easy to modify the proof of ([24], Lemma 4.7) to show that for the
scheme (2.19) one has the estimate

;[(Uim)2 — U+ ) NGy (U u) + ()L (U u)
ieN jeN
(5.7) —f () - 1> < O(h®).

Since the initial dataly have compact support, and since the scheme has a finite
stencil (see Definition 2.12), there is a const&gtsuch that the support of
un(-,t") is contained in a ball of radiuR, := Ry + nhK. Because of Assumption
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2.3 and sinca" < T, Ry, < Ry+KT/ci. Letl, :={i e | : |x]| < Ry}
Multiplying (5.7) by |Ti| and summing over € |, we obtain

1 1
T G e T G s
£ A0S 15 Pl () — () )2 < Ch
ITi| A VAT TR = M
i€ly jEN;

Using that(ﬁﬂ2 > (c1)? > 0, multiplying by At and summing oven =0,...N

we obtain
N

(5.8) ALY NS 1S Pl (us ) — f(u) - ] < CTh™,
n=0i€l,jeN

Now letU € C? be any convex entropy with corresponding numerical entropy
flux G satisfying Assumption 2.6. As in ([24], Prop.4.3), we use the compati-
bility condition (2.9) to show that

G (Ui, u) — F (W) -y | < (U7 [[Loo gy lgi (Ui b)) —F(ui) -y .
Applying this to (5.8), we obtain

N
(5.9) At > IS PGy (Ui, ) — F(w) - ny]? < C(JU ey T

n=0i€lyjEN
Since
[Gii — Gij (Ui, u)] = O(h?),
we have that

N m
A DN D wilsi PG - Fu) - ml?

n=0 i€l jeN I=1

N N
< 2At ZZ Z |S; 1[Gy (Ui, ) — F () - n]? + C At ZZ h#e

n=0i€lyjEN; n=0 i€l
(5.10) < CTh".

Using (5.10) and @lder’s inequalitiy we derive

N m
AN S wlSi Gy — F(w) -y llef — o |

n=0 i€l jeN; I=1

N m %
< (AtZZZZwlsj Gy — F(u) - nj IZ)
n=0 iel jeN I=1
N m %
(AtZZZZw? — |2)
n=0 i€l jeN I=1
< (CTh"):(C(L)T): =C(p, T)h? O
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6. Consistency with the initial conditions

In this section we show that the admissible measure valued solutmin(1.1)
equals the Kruzkov solution of (1.1) with initial data (1.2). According to the
theory outlined in Sect. 3, it remains to show that assumptions (i) and (ii) of
DiPerna’s Theorem 3.8 are satisfied.

Theorem 6.1. For allt € [0, T],

| sl < ol
i.e. condition (i) of Theorem 3.8 holds.
Proof. We know from Tartar’s theorem, that
Up — (v,id) =:u

in L>°(R? x ). For almost every, there is a compactly supported probability
measureu. ; such that

Un(t) = (p.1,id) =: (-, 1).

Let o € C§°([0, T]), ¢ € Cs°(R?) and (X, t) == o(t)p(X). Then

rljmo/mz Up(X, t)p(x)dx = /mzv(x,t)gp(x)dx

and therefore

T T
Iim/ / uh(x,t)q/z(x,t)dxdt:/ /v(x,t)d;(x,t)dxdt.
h—=0Jo Jm2 0o Jm
On the other hand,

T T
rI1|L1:|0/0 /mzuh(x,t)w(x,t)dxdt:/O /m2 u(x, t)y(x, t)dxdt.

and therefore we obtain tha(x,t) = u(x,t) at all Lebesgue-pointsx(t) of u
andv. Therefore, we can identify with u and x. ; with v. ;.

Next, for any convex € C?, let (U, F) be an entropy-entropy-flux pair and
Gj a numerical entropy-flux consistent with - n; and satisfying Assumption
2.6. From (5.1),

N At T N
U™ -uu < I D> wilSi (G + U [ieg-mmpOh??).
I

jeN I=1
Multiply this by |T;| and sum oven = 0,....,N —1 (NAt =t) andi € Iy =
{i €l :|x] <Ry} Since for alln < N the support oluy(-,t") is contained in
a ball of radiusRy,
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N—-1 m
— At Z Z Z ZM IS; |Giji =0,

n=0iclyjeN I1=1

and we obtain
(6.1) /U(uh(x,t))dxg/ U (un(x, 0))dx + C|U” || q—m mph?* 2.
12 12

Now define

—5l(s/e)* —6(s/e)> — 3] fors| <e
Is| otherwise

U.(s) = {

Lete = (h) := h%, with 3 €]0,a — ;[. Note that||U/ [[L~@y) < ¢ = Ch=2°,
Therefore, (6.1) gives

(6.2) / Uy (Un(x, t))dx < / U,y (Un(x, 0))dx + Ch2—0-3)
|2 |2

Using Tartar's theorem and (6.2) we derive

/(uxyt,|id|>dx lim / (v, lid])dx
B2 R—oo JBg

=i i Un(x, t)|dx lim lim ] un(x,t))dx
RILmoorl'Lno/BR h(x, 1] R~>ooh—>0_/BR =) (Un(x, 1))

IA

< fm [ Uyt )
h—0 EZ

IN

lim [ / ug(h)(uh(x,0))dx+Ch2<a—5—%>}
h—>0 mz

= Iim/ Ug(h)(uh(X,O))dX
h—0 T2

For everyh > 0,

/ Us(h)(uh(x70))dx§/ 38o|x+/ |uh(x70)|dx§Ch25+/ |uo(x)|dx
B supp(in) 8 T2 B2

S0
/ (xt, lid])dx < / [uo(X)|dX,
it i
which is theL!-bound we were looking for. O

Next we prove that assumption (ii) of Theorem 3.8 holds. For this purpose,
it remains to show that assumptions (3.2) and (3.3) of Theorem 3.10 hold.

Proposition 6.2. For all ¢ € C§°(R?)

1t _ B
(6.3) lim t/O/mz@)(ys,ld)gzb(x)dx ds= /m2 Uo(X)(x) dx

t10

i.e. condition (3.2) of Theorem 3.10 holds.
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Proof. The proof is taken from ([24], Prop.3.9.). Based on the equality (5.5), one
can show that for aly € C5°(IR?) the map

t — At) ::/ (vx 1, 1d ) p(X)dx
EZ
is absolutely continuous over [0] and that
A(0) :/ Up(X)o(x)dx. O
mz

Proposition 6.3. Let U(u) = ;u?. Then
t
(6.4) Iiml/ / (uX,S,U>dxds§/ U (up(x))dx ,
t|0 t 0 72 h2

i.e. (3.3) holds.
Proof. The proof is a generalization of ([24], Prop.3.13). As in the proof of
Theorem 6.1, multiply (5.1) byT;i| and sum over € Iy. Then
(6.5) D ITU ™) — U] < ch*

iE€ln
Let 0 < t; ;= nAt < tp = mAt. Sum (6.5) over 0< n’ < n, and let
t :=nAt <t,. Then

(6.6) DO ITIU UM — U u)] < nCh** < t,Ch**
i€ly
Sum (6.6) ovem =ng,...,n, — 1.
np—1
DO MU < (=) > [Ti|U () + (nz — ny)t,Ch**
n=ng icly i€l

Multiplying this by 2! gives

t2
1 / / U(uh(x,t))dxdtg/ U (un(x, 0))dx + Ctph?*—1
-t /i, Jee 2

Let h — 0. Tartar’'s theorem 3.4 implies that

t,
1 / /(yx,t,U>dxdt§/ U (up(x))dx.
h—1; t, Jm2 T2

The rest of the proof can be found in [24].0

Proof of Theorem 2.13rom Theorem 6.1, condition (i) of Theorem 3.8 holds.
From Propositions 6.2 and 6.3, conditions (3.2) and (3.3) of Theorem 3.10 are
satisfied. Therefore, we can apply the latter theorem and conclude that condition
(i) of Theorem 3.8 holds. Using this theorem, we obtain that

Ukt = Ouy) a€. K1) € R? x [0, T],

whereu is the (unique) Kruzkov solution of (1.1), (1.2). Corollary 3.5 implies
that the sequence, converges strongly i} (22 x [0, T]) to u. This finishes
the convergence proof for the higher order finite volume schemes.
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7. Applications

In this section we apply our convergence result to the discontinuous Galerkin
finite element method. This method was introduced in [4, 5, 6]. Numerical ex-
periments concerning this method for scalar conservation laws are presented in
[6], and for the compressible two-dimensional Euler equations in [7]. Very exten-
sive experiments for MUSCL-type reconstruction methods for equations in two
and three space dimensions, in particular on unstructured meshes as they appear
under local refinement have been conducted by Geiben [18]. Geiben develops
a new reconstruction method with flux-limiters along the lines of the present
paper. The resulting schemes satisfy the conditions for the convergence theorem.
The experiments she has done refer to nonlinear conservation laws in 2-D on
unstructured grids. For smooth solutions of a nonlinear scalar equation (where
the exact solution is known) she got an experimental order of convergence (EOC)
with respect to thd.;— norm close to 2. If the grid is strongly non-uniform as
after a local refinement step, then the EOC is approximajelyor discontin-
uous solutions the EOC goes down to 1.25 but is still better than for the first
order Engquist-Osher scheme (EOC=1.06) or for the Durlovsky-Engquist-Osher
scheme(EOC=0.98) [14]. For the shock tube problem she got EOC=1.01 for the
higher order and EOC=0.62 for the first order Steger and Warming scheme. Also
in this case thd;— error is much less than for the Durlovsky-Engquist-Osher
scheme [14]. Similar results are obtained on a strongly nonuniform mesh.

In the following, k > 0 is fixed. Given &-triangulation7 :={T; : i €| }
let

Vi = {v e LENL®(R?) : vl € Pu(T)},

where Py is the space of polynomials of degree k. Let Vy, C V; denote
the subspace of elements which are piecewise constant over the triangles, and
decomposd/y, orthogonally with respect to thi? scalar product:

(7.1) Vih =V @ Vh.

Let IT, : L N L>=(®?) — V;, be theL?-projection (solly is the projection onto
the piecewise constanté,). Givenu € L' N L>°(®?) andk > 0, let

(7.2) Up = IIxu € Vy
(7.3) up = Ilpu € Vy
(7.4) Oh = Uy — Up € Vi

We will approximate the solutiomi(-,t) of (1.1) - (1.2) byun(-,t) € V;, and
we will show that ash — 0, the sequence; contains a subsequence which
converges to the unique entropy solution of (1.1), (1.2).
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Heuristical derivation of a semidiscrete equation

In this paragraph, we assume thgte C*([0, T], %), where
Zh = {v € LN L>(R?) : v|y, is continuous for alli €1}.

If uy € LY(R+, Z) is a weak solution of (1.1), it satisfies
d
[t [ 9@t =0
dt Ti Ti

foralli € and allv, € V. Integrating by parts formally yields

((jjt /T UnC, Do+ 3 /si (Un(-, 1)) - ny v — /T (Un(, 1)) - Vo = 0.

JEN;

Sinceuy, is discontinuous across the boundaryTpfwe replace - n; |S;| in the
first integral by a numerical fluy; as defined in Definition 2.4. Moreover, we
replace the integrals by quadrature formulae

/S;‘ Y wie()S|

1=1

and ;
/ Y wpp(Xip) Ti|
i p=1
where thex;; resp.x;, are integration nodes o§; resp. inT;, the quadrature
formula over the edges is supposed to be exact for polynomials of degeke 1

and the one over the triangles for polynomials of degre2k. Then as in ([6],
(2.4)) we obtain the weak formulation

:t /T Un(,Den = =3 > wig (Un(, D)ur" O )

JEN I=1
(7.5) HTi D wpf (Un(Xip, 1)) - Von(Xyp),
p=1
where . _
(7.6) gii (Un(-, 1)) = gij (U™ (1, 1), U™ (i , 1))
and _
(7.7) unOgi,t) == lim un(x, t)
X—Xiji ,XET;

Givenup(-,t) € %, andi € | define a linear mapping : P«(T;) — R by

Glonln) == > wilSilgin (UnC D)V 0GNHTi D wpf (Un(Xip, 1) Von(xip)-
JEN I=1 p=1
(7.8)
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Then there is av; € P¢(T;) such that for ally, € Vy,
(7.9) Li(vn|7) = (i, vn)ieqr)-
We can now define an operatby : Z, — Vi by

Un(,t) — Lnun(-,t)
(7.10) Lhup(X,t) = wi(x) forx €T;.

Combining (7.5) — (7.10) we obtain the semidiscrete equation

(7.12) :tuh(t) = Lpup(t).

Definition of the discontinuous Galerkin method

Now we would like to give the definition of the discontinuous Galerkin method.
Formally, (7.11) can be discretized with respect to time as

Un(t"*F) = Un(t") + AtLpun(t").

But in generalu,(t"*1) will not satisfy the constraints given in (2.15)—(2.18).
Therefore we have to projeat(t"*!) onto a space7h of functions satisfying all
these constraints (see (7.14) below). This projection is givergsee (7.18)),

and it takes over the role of the slope limiters which are used in the context of
upwind finite difference methods.

Definition 7.1. (ProjectionAy) For u(-) € %, define

(7.12) u = u(x)dx
|Ti| T

(7.13) uj = lim _u(x)—u"
X—Xiji ,XET;

For givenu(-) € %, defineay , by as in (2.13), using; as defined in (7.12).
Then for givena, C;, C, define

Vh(u) = {veZ : foralli €l and allj € N; v satisfies (715)—(7.17)},

(7.14)

where

(7.15) || < Cih®

(7.16) By € 1(£Coh*, —ay + Ch*)
(7.17) (U —u)oy < Czhza.

Now Ap(u) is defined as thé&2-projection onto\7h(u):

(7.18) Ap(u) 1 LN L®(R2) — Vi (u).
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Note 7.2.a) \7h(u) is not a subspace af,,, but of Z;. It is necessary to usgy,

in the definition of\7h(u) instead ofV,,, since otherwise the result in Lemma 7.7
will not hold. Compare also Remark 7.9.

b) \7h(u) is convex, contains = 0, and ifw € \7h(u), thenw +Vy C \7h(u).

Definition 7.3. (discontinuous Galerkin finite element method) L&t be aB-
triangulation, and let 0 % < t! < ... < tN = T. For given initial data
Up € L°°(R?) with compact support define

(7.19) Un(x,0) := 'I% Up(x)dx for x € T;
i Ti

and

(7.20) Un(+, 0) := An(un(-, 0)) Ik Uo.

Forn=0,...,N — 1 letun(-,t") = un(-,t") + Gn(-, t") € Vi(un(-,t")) be given
and define

(7.21) Up(, ™) = up(,t") + AtLpUn (-, t")
(7.22) Gn(-,t™Y) == An(un(, t™) [En(, t") + AtLaUn(-, t)],

where we have used the orthogonal decomposition

(7.23) LaUn (-, t") = LaUn(-, t") + Laun(-, ")
analogous to (7.4). Now

(7.24) Un(-, %) = Un (-, ™) + T (-, 1) € Vi (un(:, ™).

Remark 7.4.1) Note that for alli € 1,

/ T (x, t""Hdx = 0.

2) While we use an explicit Euler timestep to discretize (7.11), Cockburn,
Hou and Shu derive a higher order accurate TVD Runge-Kutta timediscretization.

Corollary 7.5. The definition of the discontinuous Galerkin method implies
n+l _ .n At .
(7.25) U E U DD wilSilgi n(- 1),
il jeN 1=1
where as before{U= un(x,tP) for p=0,...,N andgj is defined as in (7.6).
Proof. Let vy € Vi, suppun C Ti,vnlt, = ‘Tli‘. Using this in (7.8) gives
1 m
Lnun (%, t") = — Tl D0 wilSilgi (Un( 1)
Hien 1=1

From here and (7.21), (7.25) follows immediatelyd
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Convergence and spatial accuracy

We are now ready to prove the following

Theorem 7.6. Suppose that the CFL-condition (2.21) (resp. (4.2) for a B-uniform
family of triangulations) is satisfied, and that the regularity assumption (2.1) holds
for some ¢ > 0. Then, as h— 0, the sequence;, produced by the discontinuous
Galerkin method contains a subsequence which converges stronggy. ([A%Lx

[0, T]) to the unique entropy solution u of (1.1)—(1.2).

Proof. The proof follows immediately from the preceding corollary and Theorem
2.13. It remains only to remark that the method has a finite stendil.

Finally,we study the spatial order of consistency of the discontinuous Galerkin
method.

Lemma 7.7. Suppose that u[0, T] x R?> — R and f : R — R? are smooth, and
that (%f)n>0 is a B-uniform family of triangulations with respect to a constant
which is regular in the sense of (2.1). Fdr & [0, T] let

n

1
U -

= u-,t".
ITil Jr,

Let G, C, be sufficiently large and let,(un(-,t")) be the projection defined by
(7.18). Then
a)

Ah(uh('a tn)) U(', tn) = U(', tn)

b) There is a constant{> 0 depending only om, u and f such that

(7.26) Sup |Ln An(Un(-, t") u(x, t") + V - f (u(x, t")| < Csh**

XER2
c)
! Y n 1 )
SUpl g 2 2o (DU ) = IRECEY
(7.27) < Cghk*t,

wheregij (An(un(-, t")) u(-,t")) is defined analogously to (7.6) — (7.7).
Proof. Let My := || V'U[ . r2x[o,1) @nd
(7.28) uil = ul, ") —uf

Therefore
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u(%,t") — u(x,t") + O(h?) = Vu(x, t")(g —x) +O(h?)

—VU(Xi,tn) Z Qiijip dip + O(hz) =— Z Qlijip [Aip + O(hz)] + O(hz)
peN; peN;

—aj +O(h*)(L+ > aijp).

pPEN

n
Ui

SinceZpENi aijp IS uniformly bounded and: < 1, this implies
ufi +ay | < Coh™

if C, is large enough, i.e. (2.16) holds. Analogously, (2.17) holds with the
same choice ofC,. Conditions (2.15) and (2.18) are satisfied sincés suf-
ficiently smooth. ThereforeC;, C, can be chosen such thaf, t") € \7h”, so that
An(Up(,t") u(-,t") = u(-,t"). This provesa). Note that in particular,

it (An(un(, tM)u(, t) = Uy, t™) -y

Now we can apply Lemma 2.1 of [6] to obtab). It remains to provec). We
have by definition

V-f(u)= |-|:'L| /T V- f(u(,t).

Decomposé/-f(u) =V - f(u)+V/~?(/u). Since this decomposition is orthogonal,
we obtain

2

[|T1i| DD wlSilgi (Aa(UnC, ™) U, ) = V- (u)

JEN; 1=1

i |T1-| ACTEA RO

1 2
T T_[LhU+V'f(U)]2§||LhU+V'f(U)||E°°(JI&2)S [Csh“*]",

where the last inequality follows from (7.26). 0

The following corollary follows immediately from the proof of the preceding
Lemma:

Corollary 7.8. If we assume that there is a constantCO such that as h— 0,
h2(1—a)(1 + Z Oéijlp) <C
peN;

instead of '(%7)h>0 is @ B-uniform family of triangulations”, then (7.26)—(7.27)
hold as well.
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Remark 7.9.The point of Lemma 7.7 is that conditions (2.15)—(2.18) are au-
tomatically satisfied for smooth functions and that(un(-,t")) reduces to the
identity in that case. Inequalities (7.26)—(7.27)rdimply that the discontinuous
Galerkin method (7.19) — (7.24) is spatially consistent of olderl. The rea-
son is the innocent-looking projectidiy in (7.20). We recall a counterexample
given in [19]: Fork =0,

Lh(An(un(, tn)) Iyu(:, tn)) =— |-|:} | Z Jij (Uin, ui?
ien

and in general

1 3 1
S, ul) — ()| = |
Tl A I /Ti vttt =00

The same remark applies to Lemma 2.1 of Cockburn, Hou and Shu [6].

8. Numerical entropy fluxes

In this section we completely characterize the numerical flyxeshich satisfy
Assumption 2.4 and admit a numerical entropy fl@i satisfying Assumption
2.6.

Lemma 8.1. Suppose thag; is a numerical flux satisfying Assumption 2.4. Then
the following are equivalent:

(i) For every Lipschitz-continuous convex entropy U there existg aadis-
fying the Assumptions 2.6.

(i) For all Kru zkov-entropies ¢, k) there exists a ¢ satisfying the Assump-
tions 2.6.

(iii) There are Lipschitz-continuous functiogg , ¢ : R — R with ¢; (0) =
0 =45 (0),

wij = Ui

and constants (M), C,(M) > 0 such that for almost all & [-M,M],

, 1
Cy > pjj(s) > z\f/(S) - |

1
Cp = ¢j(s) = LIF'(s) -y

v

and
(8.1) gij (u,v) = f(u) +f(v) ny { wij (U) — g (v) forv>u

2 i (U) — ¢ (v) forv <u
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Proof. That (i) implies (ii) is trivial.
We now show that (i) implies (i). It is not hard to check thgt given by
(8.1) satisfies Assumption 2.4. Given an entropy pdirk), let

Gj(u,v) := F(0)-nj + /U U’(s)dugi (s, v)ds + /v U’(t)9,gi (u, t)dt
0 0
FW+F@) { [ U (s)gj(s)ds for v >u
0

2 f:ﬁ U’(s)yf(s)ds for v <u

ThenG; satisfies Assumption 2.6.

Finally, we show that (i) implies (iii). Letp € C5°(R?), suppp C (—1,1)?,
¢ >0, [¢ =1, and fore > O definep.(s,t) := 512¢(§, ). Forv > u+ 4,
let k := “;”. Thenu + 2 < k < v — 2. Leti,j be fixed, and drop the
subscripts fromn, g and G. Let U(s) := |s — k|. Then for §,t) € [—¢,¢€]?,
U'(u—s)=-1=-U'(v —t). Sinceg,G andU are Lipschitz, (2.9) gives for
almost all 6,t) € [—¢,¢]?

Guu—-s,v—t) = —gy(u—s,v—1t)
G,(u—s,v—1) = gy,(u—-s,v—1).

Multiplying by ¢.(s,t) and integrating gives
(ba * GU(U,’U) = _¢€ * gu(ua U)
b * Gy(U,v) = e * gu(U,v).

SinceG andg are Lipschitz, one can apply the dominated convergence theorem
to derive

Gi(u,v) = —gi(u,v)
G,(u,v) = gy(u,v),

whereG® = ¢, * G, g° = ¢, * g. This gives immediately
go,(U,v) =0 forv > u+4e,
and analogously one derives
9o (U,v) =0 forv < u — 4e.

Letv > u+4e > 2. Then

v

U u+de) + / g2 (u, tydt

u+de

g°(u, )
v

gf(u,u+4€)+/ g5 (=22, tydt
u+de

g (U, u+4e) +g°(=2¢,v) — g° (=22, U + 4e).

As ¢ — 0, we obtain forv >u >0
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g°(u,v) =f(U) - n —g(0,u) + g(0, v).

In the same fashion, we obtain

g(u,0)+g¢(0,v) —f(0)-n forv >0>uorv<O<u

f(u)-n—g0O,u)+g0,v) forv>u>00rv<u<O
g9(u,v)
g(u,0)—g(v,0)+f(v)-n forO>v>uor0O<wv<u

From here, one can show that

g(u,v) = f(u)+f () .n+{ o(u) —p(v) forv>u

2 Pu) —YP(v) forv<u
with f(s)+f (0)
7O n—g(0,s) fors>0
= 2 ’ _
(8.2) ©(s) { 9(s,0) — f(5)+f(0) -n fors<0
_ 95,00 "9TO .0 fors>0
(8.3) U(s) = { FEH0) g(o s) fors<0

It is elementary to check that, ¢ satisfy the properties required in (iii). O

Example 8.2.The Engquist-Osher flux can be rewritten in the form
f(u +f v
Gij O(U v) = () +1( ) Njj / ‘f (S) - nj |ds.

Therefore,
‘Puo(s)— / ‘fl nl]
For the Lax-Friedrichs flux,

LF —
S
QOI] ( ) 2)\|J
Therefore, ify; corresponds to any numerical flux satisfying our asumptions,
then d

‘PU (s) > SOU O(S)

which can be interpreted by saying that the Engquist-Osher flux is the least
dissipative one admitted in our proof.

Added in proof:We are grateful to the referees for a hint to a recent paper
of Cockburn, Coquel and LeFloch [2] which has been published as a preprint
of the Ecole Polytechnique (October 1993) while our paper was already being
refereed. We would also like to thank Bernado Cockburn for sending us a more
recent version of that preprint (June 1994). In this version, Cockburn, Coquel and
LeFloch establish ah>°(L') error estimate for a general class of finite volume
methods under some additional assumptions. The error is proven to be of order
h1/4. They use the Kuznetsov [26] theory in order to get the necessary estimates
from the Kruzkov entropy inequalities. Nearly the same result has been obtained
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with the same method by Vila [39] (January 1993). The paper [2] refers to higher
order and [39] to first order finite volume schemes.

In our paper we show convergence for higher order schemes with a com-
pletely different method. Our assumptions are weaker than those made in [2]
in the following two ways: First, we can prove convergence for initial data in
L! N L>, while the Kuznetsov theory (and hence [2]) requires the data to be
of bounded variation. Secondly, the result in [2] assumes that the flux function
f is smooth, that?/ou?f (u) is bounded and that the so callstlarp entropy
inequalitieshold. In [3, 10], these entropy inequalities could only be derived
under the additional assumption that either

(i) there is @5 > 0 such that for ali € 1,j € N; and allu,

’ &% (u)

ou? | >0

(8.4)

or
(ii) the numerical viscosity coefficient is bounded below by a constant inde-
pendent ofh,

(8.5) Qi (u,v) == Aj ) -my +F(0) -y = 23 (U, 0)

v—u
The genuine-nonlinearity assumption (8.4) is a restriction both to the flux function
f and the triangulation, and will usually not hold, especially when a grid is
automatically refined. The assumption (8.5) is not satisfied by the Engquist-Osher
and the Godunov flux. Our entropy inequality (see Theorem 5.1) is of interest
in its own right. It does not rely on (8.4) and (8.5). The flux functioronly
needs to be Lipschitz continuous, and we can include the Engquist-Osher flux.
Furthermore, a recent result of Noelle [30] also applies to Godunov’s numerical
flux and nonconvex flux functions.

We would also like to mention that the technique developed in this paper
was already applied to situations with more general triangulations in two recent
papers: Geiben [17] removes the requirement of a B-triangulation and enforces
the L> bound by a new flux-limiter, and Noelle [30] generalizes the result
to irregular polygonal grids, where cells may become flat in the limit. In a
forthcoming paper [31], Noelle also obtains error estimates for such grids, for
nonconvex fluxfunctions and general E-fluxes.

>Q.>0.
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