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Summary. An optimal control problem for impressed cathodic systems in elec-

trochemistry is studied. The control in this problem is the current density on

the anode. A matching objective functional is considered. We first demonstrate
the existence and uniqueness of solutions for the governing partial differential
equation with a nonlinear boundary condition. We then prove the existence of
an optimal solution. Next, we derive a necessary condition of optimality and

establish an optimality system of equations. Finally, we define a finite element
algorithm and derive optimal error estimates.
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1. Introduction

We consider an optimal control problem for impressed cathodic systems. A typ-
ical example of an impressed cathodic system is a metal container filled with
an electrolyte. The painted portion of the container surface is usually treated as
insulated. The unpainted part is divided into the cathode and the anode which are
connected to the negative and positive poles of an electrical source, respectively.
By adjusting the current density on the anode we could effectively alter the po-
tential distribution on the entire bounding surface or in the entire flow domain.
The potential distribution, of course, has a direct effect on the chemical reaction
process occurring inside the flow domain. The reaction process in turn affects
on the rate of corrosion of the metal container. Thus the current density on the
anode can be used as a practical control variable for generating a desired poten-
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tial field. This idea can be conveniently formulated as optimal control problems
for the potential equation with appropriate boundary conditions. Optimal control
problems of this sort have been studied in [20] and [21] where the goal was to
match a desired potential distribution on the cathode. The models analyzed in
[20] and [21] are essentially linear. [14] discussed, mainly from an algorithmic
point of view, several control mechanisms including adjusting the positions of
anodes and/or the current density on the anodes in order to match a desired
potential on the structure surface; nonlinear models were employed as well as
linear ones. [15] analyzed a “location control” problem, i.e., the control variable
is the location of anodes, wherein nonlinear models with boundary conditions of
polynomial or exponential growth type were considered. In this article, we will
attempt to analyze mathematically optimal control problems with current density
controls. The nonlinear model used involves an exponentially growing boundary
condition.

We assume the electrolyte occupies a physical dorflain2? with a bound-
ary I'. The domain is assumed to be finite in this paper, although infinite domain
problems can be handled if appropriate limits at infinity are assumegl.dfR3,
we will need to work with a non-Hilbert spad& ™" (£2) with, e.g.,r = 3; similar
results can still be obtained.

The electrical potentiap in 2 is governed by the differential equation

—div(cgrad¢) =0 in (2,

where the conductivity is a continuous function with a positive lower bound.
The boundaryl” is divided into three components: the anddg the cathode
I'c and the insulated patfy. On the cathodd ¢, ¢ satisfies the relation
¢
=—f on I
7 o (®) c,
wheref is an empirical function that depends on the electrode materials (see
[4]). In particular, we will assumé is given by the Butler-Volmer function:

(11) f(¢) = Ca[e? — & ’]

where C;, C, and C3 are positive constants (see [4]). Throughout this paper,
f will be assumed to be defined by (1.1). For notational convenience, we will
mainly usef (¢) rather than the explicit expression given in (1.1).
On the anodd s, we have the boundary condition
¢
=u onlI,
o on A

which corresponds to the specification of the current density on the anode. Ad-
justing the current density ofix amounts to treating as a control variable. On
the insulated party,

99

=0 onIy.
"an 0
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Fig. 1. A typical impressed cathodic system: an electrolyte container connected with an electrical
current source

We are concerned with the following optimal control problem: seek a state
¢ and a control such that the functional

1 ]
12) 70u=, [©-oraes’ [ war,
260 0 2 I
is minimized subject to the the constraint equations
(1.3) —div(cgrad¢) =0 in 2
0
(1.4) aaﬁ =u onlj,
0
(1.5) aaﬁ =0 only
and
0
(1.6) 08:2': =—f(¢p) onlg.

In (1.2) ¢g is a desired potential distribution ife and ey and 6o are positive
constants. Physically, this problem amounts to matching a desired potential in
the entire domain? by adjusting the (normal) electrical current density on the
anodel’s. Many other objectives can be similarly treated.

We will utilize standard notations for Sobolev spadd$'(£2), HS(Ia),
HS(Ic), HS(Ib) andH3(I"). The corresponding norms on these spaces will be
denoted by, e.g| - [|m, || - I|s,r. €tC. For details, see [1] and [8]. A weak formu-
lation for the nonlinear boundary value problem (1.3)—(1.6) is given as follows:
seek ap € H(£2) such that
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/agradgb-gradwd(2+ f(o)ydI

(1.7) ° Te

:/ updl’ Ve HY{().
I'p

A solution ¢ to the nonlinear boundary value problem (1.3)—(1.6) will be un-
derstood in the sense of (1.7). We mention that second order elliptic differential
equations with exponentially growing coefficients were studied in, among oth-
ers, [9], [12]. [13] and [16]. An elliptic equation with mixed Dirichlet-Neumann
type boundary conditions that have an exponentially growing coefficient in the
boundary condition was studied in [7]. Some of the techniques in these articles
are useful for the mathematical and numerical analysis of the state equation (1.7).
We restate the minimization problem as follows:

seek a state € H(£2) and au € U such that the

18

(1.8) functional (1.2) is minimized subject to (1.7),
where

(1.9) U is a non-empty, closed, convex subsetl.8I ).

Now we state a few useful facts. We set C3 min{Cy, C,}. We obtain by
elementary calculus that

f(X)X > Ca(e°* — 1)x > CaCix> Vx>0

and

f(X)x > Ca(e™ 2 — 1)(—x) > CsCox? V¥ x <0
so that
(1.10) fX)x > ax? VxeR.

It is also easy to see that
(1.11) f/(x) = C3(C1€°* + Cre™ ) > VX €eR.
The norm||| - |||z on H(£2) defined by

1/2
||¢||1={/Qalgrad¢|2d9+a/r ¢2dF} Vo eHY )

is equivalent to the usudl 1(£2)-norm | - ||, i.e., there exist constants> 0 and
~ > 0 such that

(1.12)p||¢|\iz/a|grad¢>\2dn+a/ QPdr =62 ¥ éeHYQ).

A proof of (1.12) can be found in, e.g., [17]. We also state the trace result for
functions inH1(£2):
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(1.13) léllo,r < |@ll1/2,r < Bllél1 V¢ eHND)

whereg > 0 is a constant independent of

The rest of the paper is organized as follows. In Sect. 2 we prove the existence
and uniqueness of solutions to (1.7) so that the constraint equation is well-posed.
In Sect. 3 we show the existence of an optimal pair) that minimizes (1.1)
subject to (1.7). In Sect. 4 we derive an optimality condition. In Sect. 5 we discuss
the regularity of optimal solutions. Finally in Sect. 6 we define a finite element
algorithm for solving the optimality system and derive optimal error estimates.

2. Existence and uniqueness of solutions to the constraint equations

We first examine the existence of a solution to the nonlinear Neumann type
boundary value problems (1.7).

Lemma 2.1.Assumes € H(£2) and s> 0. Thene®l?! ¢ LY(I"). Moreover, there
exists a constant, independent o, such that

1| S
erldr <1+|I'+e || < o0,
r

where|I'| is the measure of".

Proof. Let ¢ € H(£2) ands > 0 be given. Them € H/2(I"). Using embedding
results for Orlicz-Sobolev spaces (see [1], [10] and [18]) (re€alt R?), we

haveH Y2(I") < La(I") where theN-function A(t) = & — 1. Thus there exists
a constant > 0 such that

6|2
6l =int {r s [ e dr <1} < ol < oo,
r

Hence for each sufficiently small> 0, the constant = ||¢||L, () + € satisfies

|2
[er? —1]dI <1
I

so that
g%
/er2 dI < 1+|I.
r
We setM = sr?. An elementary calculation yields

x2

e* < er? Vx| >M.

SettingK = &M, i.e., K =€ < 0o, we obtain
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/eSW" dF=/ e’ll dF+/ el?ldr
r {Xer:|p()|>M} {Xer:|g()| <M}

§2

2
|¢2| (II¢HLA(F)+E)2
< [ e dI+K|I'| <1+|I'l+e ||
r

2 2
S 1+|F| +eS (=l @ll1+e) |F| < 00.

Letting e — 0 yield the desired result.

Theorem 2.2.Assume uc L?(Ix). Then there exists a unique € H1(£2) that
satisfies(1.7). Furthermore,¢ satisfies the estimate

@) Jolls < 2 ulo,
whereg and~ are constants independent®fs introduced in(1.12) and (1.13).

Proof. We introduce the functional
W)=, [ oloradudos [ F@dr- [ updr  veenio),
2Ja Ic T

whereF : R — R is defined by

C C
F(X) = C?’eClx + BeCax

1 2

Thanks to Lemma 2.1, the tergf}c F(y)dI is finite so that, () < oo for all

W € HY(9). It is clear thaty € H(£2) is a solution of (1.7) if and only if is
a solution of the minimization problem

(22) ju(@ = min ju(y).

YeHH ()

Note thatF”(x) = C3(C1€%1* + Ce~¢2X) > Cgmin{Cy,C,} = a > 0. Therefore
we have that

F+7)+F( 1) = 2F () = F"(O7" > ar’

where¢ is between{) — 7) and ¢ + 7), so that we obtain the strict convexity
property for the functionaj(-):

ju(w+r)+1u<w—r)721u(¢)z/ olgrad7|2d9+a/ 2dr

2 I'p
>q||r|2 Vi, e HY(R).

It follows that

u© +1u(©) = 2u(€+Q/2) = JllE -l vECeH D)

so that
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. . . . y
(23)  Ju@+u@ -2 inf ju@) > ,lE-Clf VECEHND).
peH(2) 4

Now, let {¢x} C H1(£2) be a minimizing sequence for (2.2), i.e.,

lim ju() = inf ().
k—oo YeHY()
Then, from (2.3),{«x} is a Cauchy sequence H(f2). Let ¢ be theH(£2)-
strong limit of {¢x}. We may choose a subsequence (still denoted{dy})
such that{y } converges t@ pointwise almost everywhere if2. Using Fatou’s
Lemma for the limit in the tern}fFC F(yx)dI’, we obtain
ju(@) < liminfju() = inf ju(®).

peH(2)

Hence, ¢ is a solution of (2.2), or equivelently, (1.7). The uniqueness of the
solution for (1.7) follows directly from the strict convexity ¢f(-) (or from

(2.3)).
Finally we prove (2.1). By setting = ¢ in (1.7) and using (1.10) and (1.12),
we obtain that

7 l6]2 < / UsdT < [ullory, [ullorn < B ullo.rs [4uls
A

so that

16ulls < P u
vy

|0»FA :

3. Existence of an optimal solution

Having shown that the constraint equation (1.7) is well posed, we are now pre-
pared to study the existence of an optimal solutignd) that minimizes the
functional (1.2) subject to (1.7). We introduce the admissible set

220 ={(6,u) € HY(£2) x U : (¢, u) satisfies (1.7),

whereU is given by (1.9). Then the goal of this section is to show the existence
of a solution ¢, 0) for the minimization problem:

7(5,0)= min  Z(s,u).

(¢,u)€2aqg

We first establish a useful result.

Lemma 3.1.Assume{¢n} C L%(Ic) is a sequence such that — ¢ a.e. onlc
and

(3.1) f(pn)pndI’<B Vn

Ic
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where f is defined byl.1) and B > 0 is a constant independent of n. Then
/ f(p)pdI’ < Iiminf/ f(dn)ondI”
FC n—oo FC

and

i [ e - f@ldr =o.

Proof. The proof follows the ideas of [13], pp. 21-22. Sirfcés continuous and
¢n — ¢ a.e. onl ¢, we deduce thdt(¢n) — f(¢) a.e. onlc. Note thaff (¢)¢ > 0
on Ic so that we may use Fatou’s Lemma to obtain

/ f(¢)¢5df§|iminf/ f(pn)pndl’ < B.
Ic n—oo Jre

Hencef (¢)¢ € LY(£2). By settingK = SUPy <1 If (x)] we easily conclude from
the identity

(3.2) [f@) =t '@t Vt#0
that
f@t) <f(tt+K VteR.

Thus
(@) < [f(9)l]¢| +K onlt,

i.e., f(¢) € LY(I). Utilizing (3.2) again, we deduce that for ea¢h> 0 and for
a.e.x € I'c, we have either
n| <671

or

f ()| < 6 (én) én

so that
If(¢)| < Cs+06f(dpn) on oON I,

whereCs = sup |f (x)|. For every measurable subsgtC I'c we have
Ix|<o—1

/ If (Pn)|dI" < C6|S\+6/ f(¢n)pndI.
Ic Ic

Equation (2.1) implies
[foondr <28
S

for n greater than somi, > 0. Thus

/If(¢>n)l dI" < Cs|S|+2B6 ¥V n > Np,
S
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where |S| is the measure 08. Hence, the sequence of functiofs(¢n)} has
equi-absolutely continuous integrals. By Vitali's Convergence Theorem,

im [ [f(n) —f(@)dr =0.
n—oo FC

We are now prepared to prove the existence of an optimal solution.

Theorem 3.2.There exists Zﬁq;, ) € H(£2) x U that minimizeg(1.2) subject to
a.7).

Proof. Theorem 2.2 implies an elemenp, 1) € 24,4 exists such thatZ (¢, u)
< oo. Thus we may choose a minimizing sequeké,, U,)} C ?Zaq such that

(33) nlngo /7(925”7 uﬂ) = (qb,ui)r;f/dad‘?((b’ U)
and
(3.4)

/ograd¢n-gradwd(2+/ f(¢n)¢dF:/ Uppdl’, Vo e HY(R).
n Ic I'a

Using (1.2) and (3.3) we deduce thfi,} is bounded inL?(Iy). Then (2.1)
implies {||¢n||1} is bounded. Hence we may extract a subsequ€iigg, un)}
such that

on—¢ INHYR) and u,— 0 inL23(I}).

Furthermore, trace theorems and compact imbedding results igmphy ¢ in
L2(I'c); this in turn implies¢, — ¢ pointwise a.e. ol ¢ (after extracting sub-
sequences if necessary). By setting: ¢ in (3.4) we obtain

0.1 [I#nllo,rs < B|Unllo,ry l|Pnll1-

| oloradon?d2+ [ 1(6non < ul
n Ic

Hence we deduce
f(én)pn <M
Ic

whereM is a constant independent nf By Lemma 3.1,
/ f(d)pdI < Iiminf/ f (¢n)n dI”
Ic e Jre
and
(3.5) lim / If (¢n) — ()| dI" = 0.
— 00 Ic

For eachy € C*(£2), (3.5) allows us to pass to the limit in (3.4) to obtain
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/o—grados-gradwdm f(q%)wdr=/ Gypdll Ve Co().
(9] Ic I'a

Then using the denseness ®f°(£2) in H(£2) and the fact thaf (¢) € L2(Ic)
(due to Lemma 2.1), we obtain

/agradé-grad¢d9+ f(&)wdfz/ ypdll V¢ eHY).
n Ic I'n

Thus @, U) € ?/ag. Finally using the weak lower semi-continuity 97 (-, -), we
conclude that¢, 0) is indeed an optimal solution, i.e.,

7($,0) =,Anf 7).

BU)E Vad

4. A necessary condition of optimality

In this section we will derive a necessary condition that an optimal solution must
satisfy. (The existence of an optimal solution has been established in Sect. 3.)
In Sect.2 we have shown that for eashc L?(I4), there exists a unique
¢ satisfying (1.7). Thus the state is a well-defined function ofi and will be
denoted byp = ¢(u). In Sect. 3 we have proved that there exists @ U such

that @(0), Q) € 24,54 is a minimizer for the problem (1.8). Introducing

Z(u) = Z((u),u) Yueu,
we see thatiis a minimizer for the problem
(@) = ming(u)
so that formally,u"necessarily satisfies
S'@)-u-0)>0 VueU.

Our task is to justify this necessary condition rigorously and express it in a more
practical form.

We first study the differentiability of the mapping — ¢(u) from L?(1a)
to H1(£2). (But remember we need to come back later to the case where the
mappingu — ¢ is from U to H(12).)

Lemma 4.1. The mapping u— ¢(u) is differentiable from B(I'’y) to H(£2).

Proof.Letu € L2(I'y) be given. We define a linear operator. L>(Ix) — H(£2)
as follows:Kw = ¢ for w € L?(I'x) and¢ € H(£2) if and only if
(4.2)

/agrad§-grad¢d9+/ f’(qsu)wdl“:/ wypdl Vi e HY(D).
n Ic Ic
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Lemma 2.1 ensures the terﬁ}cf’(gbu)gw dr' is finite; also, (1.11)—(1.12) and
Lax-Milgram Lemma guarantees the operatoiis well defined. We now show
that¢(u) is differentiable and = ¢’(u). For eachv € L?(I4), by subtracting the
defining equations fog(v) and¢(u) (see (1.7)) and then subtracting the defining
equation for¢ = K(u — v) (see (4.1)), we obtain

/Q o grad[¢(v) — ¢(u) — ¢ - grady df2
« [ 60) =1 60) ~F(pw)Jvdr=o Vi eHi(@).
Settingy = ¢(v) — ¢(u) — ¢ and using the Taylor expansidrig(v)) = f (¢(u)) +

£/ (o(u)) [¢(v) — p(W)]+ " (N[ H(v) — p(u)]?/2 wherey is betweenp(v) and (),
we have that

/Q o] grad(¢(v) — ¢(u) - ¢)[7d 2 +/ t(6(W)) [¢(v) — ¢u) — ¢ *dI

Ic

) ; /F Fle() = WP [é(v) — ¢(u) — ¢] dI
1/4
< ;{ /F P 16(0) = Gl 2y 1) — S = Clluagr

< S Bullnl 6(e) — 6@IE 1960) — 6 —

where in the last inequality we used Lemma 2.1 to estimate the first factor with
B;(-) a continuous positive function, and used trace theorems to estimate the
other two factors. Using (1.11)—(1.12), we derive from the last relation that

(4.2) [l¢(v) — B(u) — K (v —u)[l < ; Ba(llo(u)ll + 6(v)I|2) [l¢(v) — o) %

for all v € L2(I'a). By subtracting the defining equations fofu) and ¢(v) and
settingy = ¢(u) — ¢(v) we obtain

/Q | grad p(u) — $(v)][*d 2 +/ [ (6(u)) — T (6(v)] [$(u) — p(v)] AT

I'c

= /F (U — o) [é(u) — G dT .

Sincef (¢(u)) —f (¢(v)) = /(€) [¢(u) — #(v)] where¢ is betweenp(u) and¢(v),
we have that, using (1.11) and (1.12),

v [l p(u) — ()12 S/F (u—v)[p(u) — ()] dI" < B |lu—wllo,ry (L) — P(v)|l2
so that

.3) 6w — () < f lu—vllor.-
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By plugging this last relation into (4.2) and using (2.1), we have that
K <%lg +1 :
[p(v) = (u) = K(v — )1 < 272 1(lle@)ls + 1) [lv — ullg r

for all v € L2(I'a) with ||v]lo,r, < 7. Hence we have proved that the mapping

u — ¢(u) is differentiable fromL?(I5) to H(£2) and that¢/(u) = K whereK
is defined by (4.1).

Remark.We may use boodstrap techniques to show that the mappirgp(u)
is infinitely differentiable fromL?(Ic) — H(£2).

Remark.From (1.4)—(1.6) we obtain

o754 <t @alore + lulln,
and using Lemma 2.1,
o507, < Beullo

whereBy(+) is a continuous, positive function. This last estimate together with
(1.2) and elliptic regularity results yields

||o grad ¢(U)||1/2 < B3(HU||07FA)

where Bz(-) equalsBy(-) times a positive constant. Sobolev imbedding results
imply that
I grad ¢(u)lle(e) < Ba(llullo,ry)
and
l¢(u)llLoo() < Bs([[ullo.r,)
where B4(-) and Bs(-) are both equal tdB,(-) times a corresponding positive

constant. There estimates together with (2.1) and (4.3) allow us to show that the
mappingu — ¢(u) is infinitely differentiable fromL?(I’a) to W14(42).

Now we are prepared to derive a necessary condition that an optimal solution
for (1.8) satisfies. Noting that we consider the functioffa(u) = 7 (¢(u), u)
only foru € U andU in general is not an open set, we need to be careful in
making use of the derivative’(u).

Theorem 4.2. Assume($, (i) € 7444 is an optimal solution to the minimization
problem (1.8). Then there exists & € H(£2) such that

/agradugradxdrh/ ()Y dT
(4.4) @ T'c

= [@-cude  veeni@)
0Jn
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and

(4.5) /F(600+)\)(u—0)dF20 Yueu.

Proof. For an arbitraryu € U, we defineg(t) = 7 (¢(tu+(1—t)0), tu+(1—t)a)
for t € [0, 1]. Due to the convexity o) we have thatu + (1 —t)0 € U for all

t € [0,1] so thatg(-) attains a minimum &t = 0. From Lemma 4.1 we easily see
that g(-) is right-differentiable at = 0 (we denote this right-derivative hy(0))
and ¢’(0) > 0. Using chain rules we obtain

@) 4@ = [ [0~ o] [FOu -] d2+eo [ a@-tyar>o.

A

We setA € HY(f2) to be the solution of (4.4) (the existence of such\ as
guaranteed by (1.11)—(1.12) and Lax-Milgram Lemma.) We set’(u)(u — Q).
Then by the definition ofY’(u) (see the proof of Lemma 4.1 and (4.1)) we have
that

/ﬂograd§~gradz/;d(2+/F /(¢) CypdIl
(4.7) ¢

= (u—0dlr V¢ eHY(N).
I'p

By settingy = ¢ in (4.4) andy = X in (4.7) and then comparing the two equations
we obtain
[ w-onar=" [ G- scan
FA €0 0
_ 1 ~ e ~
= 1 [ 160 - o] [¢ @ - 0] do.

Plugging this last relation into (4.4) yields (4.5).

5. An optimality system and the regularity of its solutions

In the sequel we will treat the special cade= L?(I4). From (4.5) we easily
obtain

1
51 0=—_\.
(5.1) a=-
From (4.4), (5.1) and the original constraint equation (1.7), we form the fol-
lowing system of equations (dispensing with the hat notations to denote optimal
solutions):
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/ ograd¢ - grady df2 + f(o)ydI
7] Ic

_ 1
==,

(5.2)
/ XypdIn, Yo eHY(D)
I'p

and
/ ograd\-gradwd?+ [ f/(p)Awdl’
(5.3) « T
1 1
= (¢ — po)wdf2, YweHY(2).
€ Jo
This system of equations will be called tbptimality system

Integrations by parts may be used to show that the system (5.2)—(5.3) con-
stitutes a weak formulation of the problem

(5.4) —div(ocgrad¢) =0 in {2,
06¢ =— l)\ onlhy, 0‘8¢ =0 onlIly
(5.5) on bo on
0
and "aﬁ =—f(¢) onlig,
. 1 .
(5.6) —div(ocgradA) = (¢ — ¢o) in 2,
€0
oA oA ,
(5.7) % an =0 onIaUlIp and % an =—f'(p)A onlig,

Now we examine the regularity of solutions of the optimality system (5.2)—
(5.3), or equivalently, (5.4)—(5.7).

Theorem 5.1.Suppose thaf? ¢ &2 is convex or of class & ando € C(£2).
Assuméa, \) € H1(£2) x H(£) is a solution to the optimality systef® 2)—5.3),
or equivalently,(5.4)~(5.7), then we have thaip, \) € W27 (2) x W3/2r(12)
forr €[1, c0).

Proof. Since ¢, A € H(£2), Lemma 2.1 impliesf (¢) € L' (Ic) andf’(¢) €
L"(I¢) for all r € [1,00). We infer from trace theorems that € L9(I¢) for
all g > 1. Hence we havergﬁ e L9Y(I") and agﬁ € L9(I") for eachq > 1.
By applying elliptic regularity results to equations (5.4)—(5.7), we obtaia
W?3/24(02) and A € W¥/24(2) for eachq > 1.

Remark.In general the possible discontinuity of the normal derivative on the
intersection oflc, Iy and I'x prohibits us from obtaining further regularity.
However, if¢ and A vanish on the entire intersection 6§, Iy and s, then we
could in fact show that) € C?(£2) N C(£2) and\ € C?(2) N C(£2), i.e., ¢ and
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X are in fact classical solutions of the optimality system. AKGS(f2)-regularity
for ¢ and \ is expected.

6. Finite element approximations
6.1 Finite element discretizations

A finite element discretization of the optimality system (5.2)—(5.3) is defined in
the usual manner. For simplicity we assume the donfiais a convex polygon.
We first choose families of finite dimensional subspa¢ésc H1(12) satisfying
the approximation property: there exists a cons@rand an integek such that

(6.1) v — o2 < ChM[v]jmsz, YveH™Y2), 1<m<Kk.

One may consulg.g, [3] or [6] for a catalogue of finite element spaces satisfying
(6.1). Then, we may formulate the approximate problem for the optimality system
(5.2)—(5.3): seeky" € VM and \" € V" such that

/ ograd¢” - grady"d2+ [ f(e")y"dIr
7] Ic

_ 1
=

(6.2)
/)\hwhdf, vyh e vh
I'a

and

/agrad/\“~gradwhd!2+ f/(MAWdI
63) ¢ 1FC
= /(¢h—¢0)whd07 vVl evh,
€0 Jn

6.2 Quotation of Brezzi-Rappaz-Raviart approximation theory

The error estimate to be derived in Sect. 6.3 makes use of results developed by
Brezzi et al. (see [5], also [7] and [8]) concerning the approximation of a class of
nonlinear problems. Here, for the sake of completeness, we will state the relevant
results, specialized to our needs.

The nonlinear problems considered in [5] (also [7] and [8]) are of the type

(6.4) F@)=v+TG() =0

whereX andY are Banach spaces afide £ (Y; X), G is aC? mapping from
X into Y. A solution to the equatiorF () = 0 is called anonsingular solution
if we have thaf~’(y) is an isomorphism fronX into X. (Here,F’(:) denotes the
Frechet derivative oF (-).)
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Approximations are defined by introducing a family of finite dimensional sub-
spacesX" C X and for eacth > 0 an approximating operatd™ € £(Y; X").
Then, we seek)” € X" such that

(6.5) Fh" ="+ TG = 0.

We will assume that there exists another Banach sgaamntained inY, with
continuous imbedding, such that

(6.6) G'W) e £(X;Z) YeX.

Concerning the operatdi”, we assume the approximation properties

(6.7) Im [|(T" = Tyllx =0 ¥YyeY
and
(6.8) r!iLnO I(T" = T)| »@zx) =0.

Note that (6.6) and (6.8) imply that the opera@f(y)) € £ (X; X) is compact.
Morevover, (6.8) follows from (6.7) whenever the imbeddihg- Y is compact.

We can now state the first result that will be used in the sequel. In the
statement of the theoren®” represents the second order Frechet derivative of
G.

Theorem 6.1.Let X and Y be Banach spaces. Assume that G is a second order
Frechet differentiable mapping from X into Y and that @ bounded on all
bounded sets of X. Assume th@6)—(6.8)hold and thati is a nonsingular
solution of (6.4). Then, there exists &> 0 and an Iy > 0 such that for h< hy,

there exists a unique™ € X" satisfyingy/" is a nonsingular solution of(6.5)

and [|[" — 9||x < &. Moreover, there exists a constant>€0, independent of h,
such that

(6.9) 9" —¥llx < CI(T" = T)G)|Ix -

For the second result, we need to introduce two other Banach splaeasl
W, such thatW c X C H, with continuous imbeddings, and assume that

for all w € W, the operatoG’(w) may be extended as a linear
(6.10) operator ofZ'(H;Y), the mappingy — G’(w) being continuous
from W onto £ (H;Y).

We also suppose that

. h .
(6.11) lim [[T" T

z(vH) = 0.

Then we may state the following additional result.
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Theorem 6.2. Assume that the hypotheses of Theofefnhold and that(6.10)
and (6.11) hold. Assume further that

(6.12) F’(y) is an isomorphism of H

Then, for h< hy sufficiently small, there exists a constant C, independent of h,
such that

(6.13) WM —llw < CI(T" = T)GW)|In + [[¥" — vk -

6.3 Error estimates for the approximations of solutions of the optimality system

In order to derive error estimates, we begin by recasting the optimality system
(5.2)—(5.3) and its discretization (6.2)—(6.3) into a form that fits into the frame-
work of Brezzi-Rappaz-Raviatheory summarized in Sect. 6.2.
We define
X =HY(2) x H(1),

Y =H Y2 x HY(2)" x H~Y3(I),
Z =LA(I) x L2(N) x LA(D)
and
Xh=vhxvh,

whereH }(2)" denotes the dual spacel8f(£2). Note that using Sobolev imbed-
ding theoremsZ C Y with a compact imbedding.

Let the operatol € £(Y;X) be defined in the following mannefi((, n, 0)
= (¢, A) for (¢,n,0) € Y and @, ) € X if and only if

(6.14) /Qagradqb«grad'wdfha : ovdI' =(C,¥)r, Vi e HY{(92)
C

and

/ograd)\~gradwd(2+a/ Awdl’ = (n,w) + (0, w)r,
Jo

(6.15) Ie

YweHY D).
Clearly, (6.14)—(6.15) consists of twancoupledelliptic equations with mixed
Robin-Neumann type boundary conditions ahnds its solution operator.

Analogously, the operatd@" € £ (Y; X") is defined as followsT"(¢, 7, 6) =
(6", AP for (¢,n,0) € Y and ", A") e X" if and only if

(6.16) /Qo—grad¢h-grad¢hd(2+a PN dr = (¢, M, Vot evh

Ic

and
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rad \" - radwth+a/ Aodr = (g, W™+ (0, 0™,
6.17) /Qog 9 (m,w") +(0,w")

I'c
vV evh.

Clearly, (6.16)—(6.17) consists of two discrete Poisson-type equations that are
discretizations of the equations (6.14)—(6.15); alEb,is the solution operator
for these two discrete equations.

By the well-known results concerning the approximation of elliptic equations
(see,e.qg, [3] or [6]), we obtain:

(6.18) IT = T"(7,0)x =0 ash -0,

for all (¢,n,6) € Y and, in addition, ifT(¢,n,0) € H™(2) x H™(2), then
(6.19) (T =T m,0)lIx < Ch™[[T(C, 0, 0)lymeaqoyxnme) -

Also, becaus& C Y with a compact imbedding, we have that

(6.20) (T = T")|»@zx)— 0 ash— 0.

Next, we define theonlinear mappingG : X — Y as foIIows:G(qS, )\) =
(¢,n,0) for (p,\)eX and ¢,n,0) € Y if and only if

(6.21) (¢, m)p = ! )\7rdF+/ (f (@) — ag)rdl” ¥V reHYAD),
b0 Jry e

(6.22) (n,w>=—1/(¢—¢o)wd(2 Y we HY(N)
€ Jo

and

(6.23) O,7r= [ (f'(¢)—a)ATdl’ V7 eHY3(D).
Ic

(6.21)—(6.23) is equivalent to

5]6)\ onlp;
(6.24) C={f(@-ap onlt;

0 on Iy,

1 .

(6:29) n=-_(6-d) inQ

€0
and
(6.26) p={ O e

0 onlpgUIy.

Recallf (¢) = C3(e%2? — €%2%) so thatf’(¢) = C3(C1€%1? +C,e%2?). Using Lemma
2.1 and trace theorems we infer that i, ) € H(£2) x H(£2), then for all



Finite element approximation of an optimal control problem 307

q > 1, ¢|r € LYD), N € LY, f(¢) € LI andf/(¢) € LIY(I"). Hence
we see that the triplet/(n, #) defined by (6.24)—(6.26) is indeed ¥ i.e.,G is
well-defined.

It is easily seen that the optimality system (5.2)—(5.3) is equivalent to

(6.27) @, N)+TG(p,N) =0

and that the discrete optimality system (6.2)—(6.3) is equivalent to

(6.28) @", A" +T"G (4", A") = 0.

We have thus recast our continuous and discrete optimality problems into a
form that enables us to apply the theories of Sect.6.2. It remains to verify the
hypotheses in Theorem 6.1. This will be the task of the next two propositions.
Proposition 6.3. The operator G: X — Y defined by(6.21)—(6.23)is second
order Frechet differentiable. Furthermoré$.6) holds and @ is bounded on all
bounded sets of X.

Proof. In showing the differentiability ofG, the linear terms appearing in the
definition of G does not pose any difficulty. Furthermore the nonlinear terms

in (6.21) and (6.23) can be dealt with in a similar way. For clarity, we will
only analyse the differentiability of the nonlinear tetm— frcf/(¢))‘7 dr'. We

define a mappin® : X — H~Y2(I") by (Q(¢, \), 7) = fFCf’(¢)>\T dI for all
(#,\) € X andT € HY2(I"). For each givend, \) € X we have that

(QUo+60,A+80) = Q9. ), 7)
— f”(qb)(égzﬁ))\TdF—/ f'(p)(6N)TdI
Ic Ic
= /F [£/(6 +86) — £(¢) — £ "(6)(EA)] ArdT
+ / [/(6 + 66) — 1 (@)I(6X)r d T
Ic
6.29 1
( ) :/F /0[f”((l—t)¢+t(¢+6¢))—f”(¢)]dt(6¢))\7'dl"
1
£ — d d
N /F c /0 (L— 1) +t(6 +66)) dt (S)(6A)r AT
:/Jl/ltf”’(s(l—t)¢+st(¢+6¢)+(1—s)qb) ds dt|6p|> Ard I
I'~/0J0

+ / J 't (L= t)g+t(p+56)) dt (SE)ENTAT Y (56, 63) €X.
I'c/0
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Note thatf(¢) = C3(€“1? — e %2?), f/(¢) = C3(C16“1? + Cre~%2?), "(¢) =
C3(C2eC1? — C2e~29) andf’’(¢) = C3(C3e“1? + Cie~C29). By Lemma 2.1 we
have that for all real numben > 1,

1
2C 2 m
[/ (#)|[Lm(re) < C {1+|p +eMClol |F|} ’

1
2C 2 m
||fl/(¢)||Lm(FC) SC {1+|F|+em |¢|1F}
and 1
2C 2 m
[F"(A)lum(rey < C {1+|r| +mCllol |F} 7

whereC is a generic constant independentdofTrace theorems fof2 C R2
implies that for allp > 1, g > 1 andr > 1,

166lore) < ClI6olly V¢ € HY(12),
16AllLagrg < ClI6AlL V 6X € HY(£2)

and
|7llercrey < Clitllajar Y7 eHYHD).

We fix somem > 1,p > 1,q > 1 andr > 1 with r]11+;+é+r1:1.Thenfor
every ¢, 6\) € X we have that

1
/F /o f7((1—t)p +t(p +69)) dt (5p)(N) T d I

< sup. [f7((2 = t)p + (¢ + 6¢)) llLmre) 1160 llp(rey 16N ILacrey I lILr ey

m

1
22C 2 m
<C {1 +| 1|+ 2Nl |F|} 18611 [6AlI1 | 7llajor ¥ 7€ HYA(T).

Similarly, we have that for evenjo € H(£2) and everyr € HY2(I),
1 1
/ / / tf7(s(1 —t)g +st(p + 5¢) + (1 — s)¢) ds dt|6¢|* AT dI"
r.Jo Jo

1
23C 2 m
<c {1 +| 0|+ |r|} 166113 1M1 72,1
Returning to (6.29) we obtain that for alle HY2(I") and ¢¢,6)) € X,

(Q@+eo.A+5n - QN 7) - [

Ic

f“((;ﬁ)(é(b))ﬁdf—/ f'(p)(6N)TdI

Ic

m

1
<o+ &1 U™ sl Al + 116612 1A
< +|I'+e [T e {l6oll 6M2 + 1160 NIT 1AL} 1T lla/2.r
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so that we conclud® as a mapping fronX to H ~1/2(I") is Frechet differentiable
and its derivativeQ’(¢, \) is given by

(Q@N3),7) = /F [f"(@)PAr +H(@)or]dl v r e HYA(D).

Hence, taking into account the remarks in the beginning of the proof, we have
justified thatG is Frechet differentiable and its Frechet derivati8§¢, )) is
defined as follows. For eack(\) € X, G’ (4, \) (¥, &) = (, 7, ) for (), &) €X

and ¢,7,0) € Y if and only if

(6.30) (C,m)p = 1/ ondl+ [ F(®) — ad)rdl ¥V reHYAD),
N Ic

(6.31) (ﬁ,w>=—€l/z/~)wd!2 YweHYQ)
0Jn
and

(6.32) (6,7)r :/ f/(P)ATdl + [ (f'(¢) —a)ordl ¥V reHY3(D);
Ic Ic
or, equivalently,

1 ~

5% onrlp;
(633 E= 1 1@ —ob onr;

0 on Iy,

- 1~ .
(6.34) ==, P oin £2

0
and
(6.35) 6= {f”(@M/J +(f'(¢) — ) onlIg;
0 onlpUl}p.

(These defining equations can be formally derived by differentiating (6.21)—
(6.23).) It is easy to verify from the above equations that for eaﬁh:{) e X,

we have {,7,0) € Z, i.e., G'(¢,\) mapsX into Z; furthermore, using trace
theorems and Lemma 2.1 we obtain that

> 1, . ~ -
ICllo.r < 5OHWHO,F +IF'@)lacrey 1P llaery + elldllor

C - el 17~ ;
< g+ o+ R r T g s,

~ 1 -
Ilo < 191l
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and
[Cllo,r < IF7(D)lisrg) 1¥1sry [Mscry + I @O)argy 1©llary + @ll@llo,r

Cll¢l? Sal
SC{1+IF|+e 1IF} Ll Ml + |2} + Cll&]]1 -

ThusG'(¢,\) € £(X;Z), i.e., we have shown that (6.6) hold.

To show the second order differentiability &f, again for clarity we will
examine only one nonlinear term appearing in the definitiorGof e.g., the
term 7 — fFCf”((z))@Z)\T dI". We define a mappin® : X — Z(X;H ~Y2(I))

by (R(¢, (¥, 2),7) = fFCf”(¢)zZATdF for all (¢,)\), (¢,&) € X andT €
HY2(I"). For each givend, \) € X we have that for all{p, 6)) € X,

(IR + 86,7 +6X) = R, NI($,0),7)
[ )6y Ardr — / £($)0(EN T dI
Ic Ic

=)0 "(p+69) —1"(¢) — " (¢) (6P AT dT
gy (¢ +6¢) — T (O)P(ENTdT
1,1 ‘ 5
:/J/ tf77(S(1 — t)p + St(p + 6¢) + (1 — S)p) ds dtep|66|> Ar d T
I'~/0JO

L .
+/ /f///((l_t)¢+t(¢+6¢))dt(5¢)(5)\)¢7dp'
rcJo

Thus similar to the analysis ensuing (6.29), we can show that the op&asor
Frechet differentiable and its derivati¥(¢, \) is defined by:

R’(¢,A)-((¢7&),(i,5))=ﬁ @ 3iArdrs [ @ iiear,

Hence,G is second order Frechet differentiable a@d(¢, A) is defined as fol-

lows. For eachd, \) € X, G”(¢, \)- (¢, @), (&, &)) = ((, 7, 6) for (&, %), (¢, &))
e X x X and (,7,0) € Y if and only if

Cmyp= [ @) bdrdl VreHYD),
Ic
(fl,w) =0 YweHHR)
and
@,7)r = F[f"'(¢)$w+f”(<z>)zzi]fdr+ (@) ordl

I'c
Vv reHYXD);
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or, equivalently,

o onlpx;
(6.36) (= { f"(¢)bd on It;
0 only,
(6.37) =0 inQ
and
638 §={@IIA@FN 1000 on T
0 onlpgUI}y.

Furthermore, using Lemma 2.1, (6.36)—(6.38) and trace theorems, we may derive
a bound forG” (¢, \) for each given ¢, \):

C

2
|G"@u»|vg<:{1+IW+e'“luw}<1+Al)

for some constan€, so thatG” is bounded on every bounded subsetXaf

A solution (¢, \) of the problem (5.2)—(5.3), or equivalently, of (6.27), is
nonsingular if thdinear system

/Qagrad<;3~grad1/)d!2+ i f/(p)pydI
(6.39) Ll 1
v o [ Swdr=@u) veeni)
50 1,

and

/agrad:\~gradwd(2+ f"(¢)pAwdl + [ /() Awdl
(6.40) 7° 1FC fe
— /q';wd!2=<ﬁ,w> VweHY)
€ Jn

has a unique solutionp(\) € X for every(, i € H1(£2)*.

An analogous definition holds for nonsingular solutions of the discrete opti-
mality system (6.2)—(6.3), or equivalently, (6.28).

It is evident that (6.39)—(6.40) has a unique solution for large eneyghg.,

c C
7> max{ ¢ . €Al IF @ | -

It is reasonable to assume that (6.39)—(6.40) has a unique solution generically
with respect tas, i.e., the optimal solutions are almost always nonsingular. Thus
Theorem 6.1 and Proposition 6.3 lead to the following:
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Theorem 6.4. Assumg¢, A) is a nonsingular solution of the optimality system
(5.2)—(5.3).Assume that the finite element spacéss¥dtisfy the conditior(6.1).
Then, there exists & > 0 and by > 0 such that for h< hy, there exists a
unique nonsigular solutiofs”, \") of the discrete optimality syste(6.2)—(6.3)
satisfying||¢" — ¢||1 + |A" — A||1 < &. Moreover,

(6.41) 16" = lla + A" = Al = 0 ash— 0.

If, in addition, the solution of the optimality system satisfigs\) € H™1(£2) x
H™1(12), then there exists a constant C, independent of h, such that

(6.42) o — "l + 1A = A"[[2 < Ch™([|@]lmer + | Allmea) -

A consequence of Theorems 6.4 is the following corollary that gives error
estimates for the approximation of the controls.

Corollary 6.5. Assumd¢, A) is a nonsingular solution of the optimality system
(5.2)—(5.3).Assume that the finite element spacéss¥dtisfy the conditior(6.1).
Define the approximate control by

uh:—l)\h only.
oo
Then
(6.43) Ju" —ull1/2,, — 0 ash —0.

If, in addition, the solution of the optimality system satisfigs\) € H™(£2) x
H™1(12), then there exists a constant C, independent of h, such that foh#

Cc
(6.44) Iu" — llyyzr < g A" (I€llme + [ Allmen)

Proof. Recall thatu = —51 A on I'x; see (5.1). Then (6.43) and (6.44) follow
trivially from (6.41)—(6.423 and the inequalities (see [1])

1 1 C

h - h h h
u—u = A=A < A=A < A=A,
| l1/2,ra 50” /2. < 60” /2. < 60H 1

Now we wish to apply Theorem 6.2 to derité(Ic)-error estimates for the
approximations ofu. To this end, we assume the domdihis convex and for
each givere € (0,1/4), we introduce spaces

H=HY2 Q) x HY?*(2)  and W =H3¥#"(2) x H¥/2"(02).
Note thatX C H with a compact imbedding so that (6.18) implies

(T =T »m) — 0 ash — 0.
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Again using finite element approximation results in [6] we have tha? if
convex andT (¢, n, ) € H™1(£2) x H™(12), then

1T = TN, n,0)lln < Ch™2|T(C,n, Olnmes(2)xHmei(e) -

Proposition 6.6. For each(¢, \) € W, the operator G¢, \) : X — Y defined
by (6.33)—(6.35)an be extended as a linear operatorsf(H ; Y). Furthermore,
the mappingy — G’(w) is continuous from W ont&4'(H;Y).

Proof. Note thatW C L>°(£2) x L>(£2) andH Y/2*(£2)|» ¢ L?(I") with contin-
uous imbeddings. For each,(\) € W, we can easily verify from (6.33)—(6.35)
that .
||G/(¢7 A)(wvd)”Y
<A@ {lI@llo.rn + lello.re *+ [ llo + [|&lo.re }
< Cr A {ll@llejzve + ll1llajaveey ¥V (,0) €H

where

A<¢>>:<:max{1 L max (/09| +a),  max (|f"<x>A3/2+€>}

) )
b0’ €0 XI<Ifll3/oee IXI<I|l13/24

andCr is a constant such thijt)||o.r < Cr|[t)[|1/2+ for all » € HY2*(12). The
desired results follow easily from this estimate.

If (¢, \) is a nonsingular solution of (5.2)—(5.3), using the denseneds @)
in H/2*(2) and regularity theories for (6.39)—(6.40), we infer that (6.12) holds.
Thus we have verified all the requirements in Theorem 6.2 so that we can
draw the following conclusion:

Theorem 6.7. Assumef? is convex and¢, \) is a nonsingular solution of the
optimality system(5.2)—(5.3).Assume that the finite element space’s étisfy
the condition(6.1). Then, there exists & > 0 and hy > 0 such that for h< hg,
there exists a unique nonsigular solutigst', \") of the discrete optimality system
(6.2)—(6.3)satisfying||¢" — ¢||1 + || A" — A||1 < é. If, in addition, the solution of
the optimality system satisfi¢s, \) € H™1(2) x H™2(12), then there exists a
constant C, independent of h, such that

(6.45)  [|¢ = @ [lcsrjz + 1A = A" ex1j2 < CH™ Y2 ([[dlmes + || Allmes) -

A consequence of Theorem 6.7 is the following corollary that gives the
L2(I'p)-error estimates for the the approximation of the controls.

Corollary 6.8. Assumef? is convex and¢, ) is a nonsingular solution of the
optimality systen{5.2)—(5.3).Assume that the finite element spacéss¥tisfy the
condition (6.1). Define the approximate control by
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1
u"=— A" onrly.
o

If the solution of the optimality system satisfigs\) € H™1(£2) x H™(12),
then for eache € (0, 1/4) there exists a constant C, independent of h, such that
for h < hg,

C —e
(6.46) Iu" = ullo,r, < 60hm V21|l lmer + [[Allmea) -

Proof. Recall thatu = — 510/\ on I'a; see (5.1). Then (6.46) follows trivially from
(6.45) and the trace theorems (see [1])

1 1 C
h — h h h
lu=tlor = 5 A= Nlore < o A= Nlor < A=Ay
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