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Summary. An optimal control problem for impressed cathodic systems in elec-
trochemistry is studied. The control in this problem is the current density on
the anode. A matching objective functional is considered. We first demonstrate
the existence and uniqueness of solutions for the governing partial differential
equation with a nonlinear boundary condition. We then prove the existence of
an optimal solution. Next, we derive a necessary condition of optimality and
establish an optimality system of equations. Finally, we define a finite element
algorithm and derive optimal error estimates.
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1. Introduction

We consider an optimal control problem for impressed cathodic systems. A typ-
ical example of an impressed cathodic system is a metal container filled with
an electrolyte. The painted portion of the container surface is usually treated as
insulated. The unpainted part is divided into the cathode and the anode which are
connected to the negative and positive poles of an electrical source, respectively.
By adjusting the current density on the anode we could effectively alter the po-
tential distribution on the entire bounding surface or in the entire flow domain.
The potential distribution, of course, has a direct effect on the chemical reaction
process occurring inside the flow domain. The reaction process in turn affects
on the rate of corrosion of the metal container. Thus the current density on the
anode can be used as a practical control variable for generating a desired poten-
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tial field. This idea can be conveniently formulated as optimal control problems
for the potential equation with appropriate boundary conditions. Optimal control
problems of this sort have been studied in [20] and [21] where the goal was to
match a desired potential distribution on the cathode. The models analyzed in
[20] and [21] are essentially linear. [14] discussed, mainly from an algorithmic
point of view, several control mechanisms including adjusting the positions of
anodes and/or the current density on the anodes in order to match a desired
potential on the structure surface; nonlinear models were employed as well as
linear ones. [15] analyzed a “location control” problem, i.e., the control variable
is the location of anodes, wherein nonlinear models with boundary conditions of
polynomial or exponential growth type were considered. In this article, we will
attempt to analyze mathematically optimal control problems with current density
controls. The nonlinear model used involves an exponentially growing boundary
condition.

We assume the electrolyte occupies a physical domainΩ ∈ R2 with a bound-
aryΓ . The domain is assumed to be finite in this paper, although infinite domain
problems can be handled if appropriate limits at infinity are assumed. IfΩ ⊂ R3,
we will need to work with a non-Hilbert spaceW1,r (Ω) with, e.g.,r = 3; similar
results can still be obtained.

The electrical potentialφ in Ω is governed by the differential equation

− div (σ gradφ) = 0 in Ω ,

where the conductivityσ is a continuous function with a positive lower bound.
The boundaryΓ is divided into three components: the anodeΓA, the cathode

ΓC and the insulated partΓ0. On the cathodeΓC, φ satisfies the relation

σ
∂φ

∂n
= −f (φ) on ΓC ,

where f is an empirical function that depends on the electrode materials (see
[4]). In particular, we will assumef is given by the Butler-Volmer function:

(1.1) f (φ) = C3[eC1φ − e−C2φ]

where C1, C2 and C3 are positive constants (see [4]). Throughout this paper,
f will be assumed to be defined by (1.1). For notational convenience, we will
mainly usef (φ) rather than the explicit expression given in (1.1).

On the anodeΓA, we have the boundary condition

σ
∂φ

∂n
= u on ΓA ,

which corresponds to the specification of the current density on the anode. Ad-
justing the current density onΓA amounts to treatingu as a control variable. On
the insulated partΓ0,

σ
∂φ

∂n
= 0 onΓ0 .



Finite element approximation of an optimal control problem 291

@

@

@

inert anode cathode

p
a
in

te
d

electrolyte

Fig. 1. A typical impressed cathodic system: an electrolyte container connected with an electrical
current source

We are concerned with the following optimal control problem: seek a state
φ and a controlu such that the functional

(1.2) J (φ, u) =
1

2ε0

∫
Ω

(φ− φ0)2 dΩ +
δ0

2

∫
ΓA

u2 dΓ ,

is minimized subject to the the constraint equations

(1.3) − div (σ gradφ) = 0 in Ω

(1.4) σ
∂φ

∂n
= u on ΓA ,

(1.5) σ
∂φ

∂n
= 0 onΓ0

and

(1.6) σ
∂φ

∂n
= −f (φ) on ΓC .

In (1.2) φ0 is a desired potential distribution inΩ and ε0 and δ0 are positive
constants. Physically, this problem amounts to matching a desired potential in
the entire domainΩ by adjusting the (normal) electrical current density on the
anodeΓA. Many other objectives can be similarly treated.

We will utilize standard notations for Sobolev spacesH m(Ω), H s(ΓA),
H s(ΓC), H s(Γ0) and H s(Γ ). The corresponding norms on these spaces will be
denoted by, e.g.,‖ · ‖m, ‖ · ‖s,ΓA , etc. For details, see [1] and [8]. A weak formu-
lation for the nonlinear boundary value problem (1.3)–(1.6) is given as follows:
seek aφ ∈ H 1(Ω) such that
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(1.7)

∫
Ω

σ gradφ · gradψ dΩ +
∫
ΓC

f (φ)ψ dΓ

=
∫
ΓA

uψ dΓ ∀ ψ ∈ H 1(Ω) .

A solution φ to the nonlinear boundary value problem (1.3)–(1.6) will be un-
derstood in the sense of (1.7). We mention that second order elliptic differential
equations with exponentially growing coefficients were studied in, among oth-
ers, [9], [12]. [13] and [16]. An elliptic equation with mixed Dirichlet-Neumann
type boundary conditions that have an exponentially growing coefficient in the
boundary condition was studied in [7]. Some of the techniques in these articles
are useful for the mathematical and numerical analysis of the state equation (1.7).

We restate the minimization problem as follows:

(1.8)
seek a stateφ ∈ H 1(Ω) and au ∈ U such that the

functional (1.2) is minimized subject to (1.7),

where

(1.9) U is a non-empty, closed, convex subset ofL2(ΓA).

Now we state a few useful facts. We setα = C3 min{C1,C2}. We obtain by
elementary calculus that

f (x)x ≥ C3(eC1x − 1)x ≥ C3C1x2 ∀ x ≥ 0

and
f (x)x ≥ C3(e−C2x − 1)(−x) ≥ C3C2x2 ∀ x < 0

so that

(1.10) f (x)x ≥ αx2 ∀ x ∈ R .
It is also easy to see that

(1.11) f ′(x) = C3(C1eC1x + C2e−C2x) ≥ α ∀ x ∈ R .
The norm||| · |||1 on H 1(Ω) defined by

|||φ|||1 =

{∫
Ω

σ| gradφ|2 dΩ + α
∫
ΓC

φ2 dΓ

}1/2

∀ φ ∈ H 1(Ω)

is equivalent to the usualH 1(Ω)-norm‖ · ‖1, i.e., there exist constantsρ > 0 and
γ > 0 such that

(1.12) ρ ‖φ‖2
1 ≥

∫
Ω

σ| gradφ|2 dΩ +α
∫
ΓC

φ2 dΓ ≥ γ ‖φ‖2
1 ∀ φ ∈ H 1(Ω) .

A proof of (1.12) can be found in, e.g., [17]. We also state the trace result for
functions inH 1(Ω):
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(1.13) ‖φ‖0,Γ ≤ ‖φ‖1/2,Γ ≤ β‖φ‖1 ∀ φ ∈ H 1(Ω)

whereβ > 0 is a constant independent ofφ.
The rest of the paper is organized as follows. In Sect. 2 we prove the existence

and uniqueness of solutions to (1.7) so that the constraint equation is well-posed.
In Sect. 3 we show the existence of an optimal pair (φ̂, û) that minimizes (1.1)
subject to (1.7). In Sect. 4 we derive an optimality condition. In Sect. 5 we discuss
the regularity of optimal solutions. Finally in Sect. 6 we define a finite element
algorithm for solving the optimality system and derive optimal error estimates.

2. Existence and uniqueness of solutions to the constraint equations

We first examine the existence of a solution to the nonlinear Neumann type
boundary value problems (1.7).

Lemma 2.1.Assumeφ ∈ H 1(Ω) and s> 0. Thenes|φ| ∈ L1(Γ ). Moreover, there
exists a constantκ, independent ofφ, such that∫

Γ

es|φ| dΓ ≤ 1 + |Γ | + e
s2κ2‖φ‖2

1 |Γ | <∞ ,

where|Γ | is the measure ofΓ .

Proof. Let φ ∈ H 1(Ω) ands > 0 be given. Thenφ ∈ H 1/2(Γ ). Using embedding
results for Orlicz-Sobolev spaces (see [1], [10] and [18]) (recallΩ ⊂ R

2), we

haveH 1/2(Γ ) ↪→ LA(Γ ) where theN -function A(t) = et2 − 1. Thus there exists
a constantκ > 0 such that

‖φ‖LA (Γ ) ≡ inf
{

r :
∫
Γ

e
|φ|2
r 2 dΓ ≤ 1

}
≤ κ‖φ‖1 <∞ .

Hence for each sufficiently smallε > 0, the constantr ≡ ‖φ‖LA (Γ ) + ε satisfies

∫
Γ

[e
|φ|2
r 2 − 1] dΓ ≤ 1

so that ∫
Γ

e
|φ|2
r 2 dΓ ≤ 1 + |Γ | .

We setM = sr2. An elementary calculation yields

esx < e
x2

r 2 ∀ |x| > M .

SettingK = esM , i.e., K = es2r 2
<∞, we obtain
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Γ

es|φ| dΓ =
∫
{x∈Γ :|φ(x)|≥M}

es|φ| dΓ +
∫
{x∈Γ :|φ(x)|<M}

es|φ| dΓ

≤
∫
Γ

e
|φ|2
r 2 dΓ + K |Γ | ≤ 1 + |Γ | + e

s2(‖φ‖LA (Γ )+ε)
2

|Γ |

≤ 1 + |Γ | + e
s2(κ‖φ‖1+ε)2

|Γ | <∞ .

Letting ε→ 0 yield the desired result.

Theorem 2.2.Assume u∈ L2(ΓA). Then there exists a uniqueφ ∈ H 1(Ω) that
satisfies(1.7). Furthermore,φ satisfies the estimate

(2.1) ‖φ‖1 ≤ β

γ
‖u‖0,ΓA ,

whereβ andγ are constants independent ofφ as introduced in(1.12) and (1.13).

Proof. We introduce the functional

ju(ψ) =
1
2

∫
Ω

σ| gradψ|2 dΩ +
∫
ΓC

F (ψ) dΓ −
∫
ΓA

uψ dΓ ∀ ψ ∈ H 1(Ω) ,

whereF : R → R is defined by

F (x) =
C3

C1
eC1x +

C3

C2
e−C2x .

Thanks to Lemma 2.1, the term
∫
ΓC

F (ψ) dΓ is finite so thatju(ψ) <∞ for all

ψ ∈ H 1(Ω). It is clear thatφ ∈ H 1(Ω) is a solution of (1.7) if and only ifφ is
a solution of the minimization problem

(2.2) ju(φ) = min
ψ∈H 1(Ω)

ju(ψ) .

Note thatF ′′(x) = C3(C1eC1x + C2e−C2x) ≥ C3 min{C1,C2} = α > 0. Therefore
we have that

F (ψ + τ ) + F (ψ − τ ) − 2F (ψ) = F ′′(ξ)τ2 ≥ ατ2

whereξ is between (ψ − τ ) and (ψ + τ ), so that we obtain the strict convexity
property for the functionalju(·):

ju(ψ + τ ) + ju(ψ − τ ) − 2ju(ψ) ≥
∫
Ω

σ| gradτ |2 dΩ + α
∫
ΓA

τ2 dΓ

≥ γ‖τ‖2
1 ∀ ψ, τ ∈ H 1(Ω) .

It follows that

ju(ξ) + ju(ζ) − 2ju
(
(ξ + ζ)/2

) ≥ γ

4
‖ξ − ζ‖2

1 ∀ ξ, ζ ∈ H 1(Ω)

so that
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(2.3) ju(ξ) + ju(ζ) − 2 inf
ψ∈H 1(Ω)

ju(ψ) ≥ γ

4
‖ξ − ζ‖2

1 ∀ ξ, ζ ∈ H 1(Ω) .

Now, let {ψk} ⊂ H 1(Ω) be a minimizing sequence for (2.2), i.e.,

lim
k→∞

ju(ψk) = inf
ψ∈H 1(Ω)

ju(ψ) .

Then, from (2.3),{ψk} is a Cauchy sequence inH 1(Ω). Let φ be theH 1(Ω)-
strong limit of {ψk}. We may choose a subsequence (still denoted by{ψk})
such that{ψk} converges toφ pointwise almost everywhere inΩ. Using Fatou’s
Lemma for the limit in the term

∫
ΓC

F (ψk) dΓ , we obtain

ju(φ) ≤ lim inf
k→∞

ju(ψk) = inf
ψ∈H 1(Ω)

ju(ψ) .

Hence,φ is a solution of (2.2), or equivelently, (1.7). The uniqueness of the
solution for (1.7) follows directly from the strict convexity ofju(·) (or from
(2.3)).

Finally we prove (2.1). By settingψ = φ in (1.7) and using (1.10) and (1.12),
we obtain that

γ ‖φ‖2
1 ≤

∫
ΓA

uφ dΓ ≤ ‖u‖0,ΓA ‖ψu‖0,ΓA ≤ β ‖u‖0,ΓA ‖ψu‖1

so that

‖φu‖1 ≤ β

γ
‖u‖0,ΓA .

3. Existence of an optimal solution

Having shown that the constraint equation (1.7) is well posed, we are now pre-
pared to study the existence of an optimal solution (φ̂, û) that minimizes the
functional (1.2) subject to (1.7). We introduce the admissible set

Uad = {(φ, u) ∈ H 1(Ω) × U : (φ, u) satisfies (1.7)} ,
whereU is given by (1.9). Then the goal of this section is to show the existence
of a solution (̂φ, û) for the minimization problem:

J (φ̂, û) = min
(φ,u)∈Uad

J (φ, u) .

We first establish a useful result.

Lemma 3.1.Assume{φn} ⊂ L2(ΓC) is a sequence such thatφn → φ a.e. onΓC

and

(3.1)
∫
ΓC

f (φn)φn dΓ ≤ B ∀ n
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where f is defined by(1.1) and B> 0 is a constant independent of n. Then∫
ΓC

f (φ)φ dΓ ≤ lim inf
n→∞

∫
ΓC

f (φn)φn dΓ

and

lim
n→∞

∫
ΓC

|f (φn) − f (φ)| dΓ = 0 .

Proof. The proof follows the ideas of [13], pp. 21–22. Sincef is continuous and
φn → φ a.e. onΓC, we deduce thatf (φn) → f (φ) a.e. onΓC. Note thatf (φ)φ ≥ 0
on ΓC so that we may use Fatou’s Lemma to obtain∫

ΓC

f (φ)φ dΓ ≤ lim inf
n→∞

∫
ΓC

f (φn)φn dΓ ≤ B .

Hencef (φ)φ ∈ L1(Ω). By settingK = sup|x|≤1 |f (x)| we easily conclude from
the identity

(3.2) |f (t)| = |t |−1f (t)t ∀ t /= 0

that
|f (t)| ≤ f (t)t + K ∀ t ∈ R .

Thus
|f (φ)| ≤ |f (φ)| |φ| + K on ΓC ,

i.e., f (φ) ∈ L1(ΓC). Utilizing (3.2) again, we deduce that for eachδ > 0 and for
a.e.x ∈ ΓC, we have either

|φn| ≤ δ−1

or
|f (φ)| ≤ δf (φn)φn

so that
|f (φ)| ≤ Cδ + δf (φn)φn on ΓC ,

whereCδ = sup
|x|≤δ−1

|f (x)|. For every measurable subsetS ⊂ ΓC we have

∫
ΓC

|f (φn)| dΓ ≤ Cδ|S| + δ
∫
ΓC

f (φn)φn dΓ .

Equation (2.1) implies ∫
S

f (φn)φn dΓ ≤ 2B

for n greater than someN0 > 0. Thus∫
S
|f (φn)| dΓ ≤ Cδ|S| + 2Bδ ∀ n > N0 ,
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where |S| is the measure ofS. Hence, the sequence of functions{f (φn)} has
equi-absolutely continuous integrals. By Vitali’s Convergence Theorem,

lim
n→∞

∫
ΓC

|f (φn) − f (φ)| dΓ = 0 .

We are now prepared to prove the existence of an optimal solution.

Theorem 3.2.There exists a(φ̂, û) ∈ H 1(Ω)×U that minimizes(1.2) subject to
(1.7).

Proof. Theorem 2.2 implies an element (φ, u) ∈ Uad exists such thatJ (φ, u)
<∞. Thus we may choose a minimizing sequence{(φn, un)} ⊂ Uad such that

(3.3) lim
n→∞J (φn, un) = inf

(φ,u)∈Uad

J (φ, u)

and
(3.4)∫

Ω

σ gradφn · gradψ dΩ +
∫
ΓC

f (φn)ψ dΓ =
∫
ΓA

unψ dΓ , ∀ ψ ∈ H 1(Ω) .

Using (1.2) and (3.3) we deduce that{un} is bounded inL2(ΓA). Then (2.1)
implies {‖φn‖1} is bounded. Hence we may extract a subsequence{(φn, un)}
such that

φn ⇀ φ̂ in H 1(Ω) and un ⇀ û in L2(ΓA) .

Furthermore, trace theorems and compact imbedding results implyφn → φ in
L2(ΓC); this in turn impliesφn → φ pointwise a.e. onΓC (after extracting sub-
sequences if necessary). By settingψ = φn in (3.4) we obtain∫

Ω

σ| gradφn|2 dΩ +
∫
ΓC

f (φn)φn ≤ ‖un‖0,ΓA ‖φn‖0,ΓA ≤ β ‖un‖0,ΓA ‖φn‖1 .

Hence we deduce ∫
ΓC

f (φn)φn ≤ M

whereM is a constant independent ofn. By Lemma 3.1,∫
ΓC

f (φ̂)φ̂ dΓ ≤ lim inf
n→∞

∫
ΓC

f (φn)φn dΓ

and

(3.5) lim
n→∞

∫
ΓC

|f (φn) − f (φ̂)| dΓ = 0 .

For eachψ ∈ C∞(Ω), (3.5) allows us to pass to the limit in (3.4) to obtain
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Ω

σ grad φ̂ · gradψ dΩ +
∫
ΓC

f (φ̂)ψ dΓ =
∫
ΓA

ûψ dΓ ∀ ψ ∈ C∞(Ω) .

Then using the denseness ofC∞(Ω) in H 1(Ω) and the fact thatf (φ̂) ∈ L2(ΓC)
(due to Lemma 2.1), we obtain∫

Ω

σ grad φ̂ · gradψ dΩ +
∫
ΓC

f (φ̂)ψ dΓ =
∫
ΓA

ûψ dΓ ∀ ψ ∈ H 1(Ω) .

Thus (φ̂, û) ∈ Uad. Finally using the weak lower semi-continuity ofJ (·, ·), we
conclude that (̂φ, û) is indeed an optimal solution, i.e.,

J (φ̂, û) = inf
(φ,u)∈Uad

J (φ, u) .

4. A necessary condition of optimality

In this section we will derive a necessary condition that an optimal solution must
satisfy. (The existence of an optimal solution has been established in Sect. 3.)

In Sect. 2 we have shown that for eachu ∈ L2(ΓA), there exists a unique
φ satisfying (1.7). Thus the stateφ is a well-defined function ofu and will be
denoted byφ = φ(u). In Sect. 3 we have proved that there exists a ˆu ∈ U such
that (φ(û), û) ∈ Uad is a minimizer for the problem (1.8). Introducing

G (u) = J
(
φ(u), u

) ∀ u ∈ U ,

we see that ˆu is a minimizer for the problem

G (û) = min
u∈U

g(u)

so that formally, ˆu necessarily satisfies

G ′(û) · (u − û) ≥ 0 ∀ u ∈ U .

Our task is to justify this necessary condition rigorously and express it in a more
practical form.

We first study the differentiability of the mappingu 7→ φ(u) from L2(ΓA)
to H 1(Ω). (But remember we need to come back later to the case where the
mappingu 7→ φ is from U to H 1(Ω).)

Lemma 4.1.The mapping u7→ φ(u) is differentiable from L2(ΓA) to H 1(Ω).

Proof.Let u ∈ L2(ΓA) be given. We define a linear operatorK : L2(ΓA) → H 1(Ω)
as follows:Kw = ξ for w ∈ L2(ΓA) andξ ∈ H 1(Ω) if and only if
(4.1)∫

Ω

σ gradξ · gradψ dΩ +
∫
ΓC

f ′(φu) ξψ dΓ =
∫
ΓC

wψ dΓ ∀ ψ ∈ H 1(Ω) .
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Lemma 2.1 ensures the term
∫
ΓC

f ′(φu) ξψ dΓ is finite; also, (1.11)–(1.12) and
Lax-Milgram Lemma guarantees the operatorK is well defined. We now show
thatφ(u) is differentiable andK = φ′(u). For eachv ∈ L2(ΓA), by subtracting the
defining equations forφ(v) andφ(u) (see (1.7)) and then subtracting the defining
equation forζ = K (u − v) (see (4.1)), we obtain∫

Ω

σ grad
[
φ(v) − φ(u) − ζ

] · gradψ dΩ

+
∫
ΓC

[
f
(
φ(v)

)− f
(
φ(u)

) − f ′
(
φ(u)

)
ζ
]
ψ dΓ = 0 ∀ ψ ∈ H 1(Ω) .

Settingψ = φ(v)−φ(u)− ζ and using the Taylor expansionf
(
φ(v)

)
= f

(
φ(u)

)
+

f ′
(
φ(u)

)
[φ(v)−φ(u)]+ f ′′(η)[φ(v)−φ(u)]2/2 whereη is betweenφ(v) andφ(u),

we have that∫
Ω

σ| grad
(
φ(v) − φ(u) − ζ

)|2 dΩ +
∫
ΓC

f ′
(
φ(u)

)[
φ(v) − φ(u) − ζ

]2
dΓ

=
1
2

∫
ΓC

f ′′(η)[φ(v) − φ(u)]2
[
φ(v) − φ(u) − ζ

]
dΓ

≤ 1
2

{∫
ΓC

|f ′′(η)|4 dΓ
}1/4

‖φ(v) − φ(u)‖2
L4(ΓC) ‖φ(v) − φ(u) − ζ‖L4(ΓC)

≤ C
2

B1(‖η‖1) ‖φ(v) − φ(u)‖2
1 ‖φ(v) − φ(u) − ζ‖1

where in the last inequality we used Lemma 2.1 to estimate the first factor with
B1(·) a continuous positive function, and used trace theorems to estimate the
other two factors. Using (1.11)–(1.12), we derive from the last relation that

(4.2) ‖φ(v)− φ(u)− K (v − u)‖1 ≤ C
2γ

B1
(‖φ(u)‖1 + ‖φ(v)‖1

) ‖φ(v)− φ(u)‖2
1

for all v ∈ L2(ΓA). By subtracting the defining equations forφ(u) andφ(v) and
settingψ = φ(u) − φ(v) we obtain∫

Ω

| grad [φ(u) − φ(v)]|2 dΩ +
∫
ΓC

[
f
(
φ(u)

)− f
(
φ(v)

)]
[φ(u) − φ(v)] dΓ

=
∫
ΓA

(u − v) [φ(u) − φ(v)] dΓ .

Sincef
(
φ(u)

)− f
(
φ(v)

)
= f ′(ξ) [φ(u)−φ(v)] whereξ is betweenφ(u) andφ(v),

we have that, using (1.11) and (1.12),

γ ‖φ(u)−φ(v)‖2
1 ≤

∫
ΓA

(u−v) [φ(u)−φ(v)] dΓ ≤ β ‖u−v‖0,ΓA ‖φ(u)−φ(v)‖1

so that

(4.3) ‖φ(u) − φ(v)‖1 ≤ β

γ
‖u − v‖0,ΓA .
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By plugging this last relation into (4.2) and using (2.1), we have that

‖φ(v) − φ(u) − K (v − u)‖1 ≤ Cβ
2γ2

B1
(‖φ(u)‖1 + 1

) ‖v − u‖2
0,ΓA

for all v ∈ L2(ΓA) with ‖v‖0,ΓA ≤ γ
β . Hence we have proved that the mapping

u 7→ φ(u) is differentiable fromL2(ΓA) to H 1(Ω) and thatφ′(u) = K whereK
is defined by (4.1).

Remark.We may use boodstrap techniques to show that the mappingu 7→ φ(u)
is infinitely differentiable fromL2(ΓC) → H 1(Ω).

Remark.From (1.4)–(1.6) we obtain∥∥∥σ∂φ(u)
∂n

∥∥∥
0,Γ

≤ ‖f (φu)‖0,ΓC + ‖u‖0,ΓA

and using Lemma 2.1, ∥∥∥σ∂φ(u)
∂n

∥∥∥
0,Γ

≤ B2(‖u‖0,ΓA )

whereB2(·) is a continuous, positive function. This last estimate together with
(1.2) and elliptic regularity results yields

‖σ gradφ(u)‖1/2 ≤ B3
(‖u‖0,ΓA

)
where B3(·) equalsB2(·) times a positive constant. Sobolev imbedding results
imply that

‖ gradφ(u)‖L4(Ω) ≤ B4
(‖u‖0,ΓA

)
and

‖φ(u)‖L∞(Ω) ≤ B5
(‖u‖0,ΓA

)
where B4(·) and B5(·) are both equal toB2(·) times a corresponding positive
constant. There estimates together with (2.1) and (4.3) allow us to show that the
mappingu 7→ φ(u) is infinitely differentiable fromL2(ΓA) to W1,4(Ω).

Now we are prepared to derive a necessary condition that an optimal solution
for (1.8) satisfies. Noting that we consider the functionalG (u) = J

(
φ(u), u

)
only for u ∈ U and U in general is not an open set, we need to be careful in
making use of the derivativeφ′(u).

Theorem 4.2.Assume(φ̂, û) ∈ Uad is an optimal solution to the minimization
problem(1.8). Then there exists aλ ∈ H 1(Ω) such that

(4.4)

∫
Ω

σ gradψ · gradλdΩ +
∫
ΓC

f ′(φ̂)ψλdΓ

=
1
ε0

∫
Ω

(φ̂− φ0)ψ dΩ ∀ ψ ∈ H 1(Ω) .
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and

(4.5)
∫
ΓA

(δ0û + λ)(u − û) dΓ ≥ 0 ∀ u ∈ U .

Proof. For an arbitraryu ∈ U , we defineg(t) = J
(
φ(tu +(1− t)û), tu +(1− t)û

)
for t ∈ [0, 1]. Due to the convexity ofU we have thattu + (1− t)û ∈ U for all
t ∈ [0, 1] so thatg(·) attains a minimum att = 0. From Lemma 4.1 we easily see
that g(·) is right-differentiable att = 0 (we denote this right-derivative byg′(0))
andg′(0) ≥ 0. Using chain rules we obtain

(4.6) g′(0) =
1
ε0

∫
Ω

[
φ(û) − φ0

] [
φ′(û)(u − û)

]
dΩ + δ0

∫
ΓA

û (u − û) dΓ ≥ 0 .

We setλ ∈ H 1(Ω) to be the solution of (4.4) (the existence of such aλ is
guaranteed by (1.11)–(1.12) and Lax-Milgram Lemma.) We setζ = φ′(u)(u− û).
Then by the definition ofφ′(u) (see the proof of Lemma 4.1 and (4.1)) we have
that

(4.7)

∫
Ω

σ gradζ · gradψ dΩ +
∫
ΓC

f ′(φ̂) ζψ dΓ

=
∫
ΓA

(u − û)ψ dΓ ∀ ψ ∈ H 1(Ω) .

By settingψ = ζ in (4.4) andψ = λ in (4.7) and then comparing the two equations
we obtain ∫

ΓA

(u − û)λ dΓ =
1
ε0

∫
Ω

(φ̂− φ0)ζ dΩ

=
1
ε0

∫
Ω

[
φ(û) − φ0

] [
φ′(û)(u − û)

]
dΩ .

Plugging this last relation into (4.4) yields (4.5).

5. An optimality system and the regularity of its solutions

In the sequel we will treat the special caseU = L2(ΓA). From (4.5) we easily
obtain

(5.1) û = − 1
δ0
λ .

From (4.4), (5.1) and the original constraint equation (1.7), we form the fol-
lowing system of equations (dispensing with the hat notations to denote optimal
solutions):
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(5.2)

∫
Ω

σ gradφ · gradψ dΩ +
∫
ΓC

f (φ)ψ dΓ

= − 1
δ0

∫
ΓA

λψ dΓ , ∀ ψ ∈ H 1(Ω)

and

(5.3)

∫
Ω

σ gradλ · gradω dΩ +
∫
ΓC

f ′(φ)λω dΓ

=
1
ε0

∫
Ω

(φ− φ0)ω dΩ , ∀ ω ∈ H 1(Ω) .

This system of equations will be called theoptimality system.
Integrations by parts may be used to show that the system (5.2)–(5.3) con-

stitutes a weak formulation of the problem

(5.4) − div (σ gradφ) = 0 in Ω ,

(5.5)
σ
∂φ

∂n
= − 1

δ0
λ on ΓA , σ

∂φ

∂n
= 0 onΓ0

and σ
∂φ

∂n
= −f (φ) on ΓC ,

(5.6) − div (σ gradλ) =
1
ε0

(φ− φ0) in Ω ,

(5.7) σ
∂λ

∂n
= 0 onΓA ∪ Γ0 and σ

∂λ

∂n
= −f ′(φ)λ on ΓC ,

Now we examine the regularity of solutions of the optimality system (5.2)–
(5.3), or equivalently, (5.4)–(5.7).

Theorem 5.1.Suppose thatΩ ⊂ R
2 is convex or of class C1,1 andσ ∈ C1(Ω).

Assume(φ, λ) ∈ H 1(Ω)×H 1(Ω) is a solution to the optimality system(5.2)–(5.3),
or equivalently,(5.4)–(5.7), then we have that(φ, λ) ∈ W3/2,r (Ω) × W3/2,r (Ω)
for r ∈ [1,∞).

Proof. Sinceφ, λ ∈ H 1(Ω), Lemma 2.1 impliesf (φ) ∈ Lr (ΓC) and f ′(φ) ∈
Lr (ΓC) for all r ∈ [1,∞). We infer from trace theorems thatλ ∈ Lq(ΓC) for
all q > 1. Hence we haveσ ∂φ∂n ∈ Lq(Γ ) and σ ∂λ∂n ∈ Lq(Γ ) for eachq > 1.
By applying elliptic regularity results to equations (5.4)–(5.7), we obtainφ ∈
W3/2,q(Ω) andλ ∈ W3/2,q(Ω) for eachq > 1.

Remark.In general the possible discontinuity of the normal derivative on the
intersection ofΓC, Γ0 and ΓA prohibits us from obtaining further regularity.
However, ifφ andλ vanish on the entire intersection ofΓC, Γ0 andΓA, then we
could in fact show thatφ ∈ C2(Ω) ∩ C(Ω) andλ ∈ C2(Ω) ∩ C(Ω), i.e.,φ and
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λ are in fact classical solutions of the optimality system. Also,H 2(Ω)-regularity
for φ andλ is expected.

6. Finite element approximations

6.1 Finite element discretizations

A finite element discretization of the optimality system (5.2)–(5.3) is defined in
the usual manner. For simplicity we assume the domainΩ is a convex polygon.
We first choose families of finite dimensional subspacesV h ⊂ H 1(Ω) satisfying
the approximation property: there exists a constantC and an integerk such that

(6.1) ‖v − vh‖1 ≤ Chm‖v‖m+1 , ∀ v ∈ H m+1(Ω) , 1 ≤ m ≤ k .

One may consult,e.g., [3] or [6] for a catalogue of finite element spaces satisfying
(6.1). Then, we may formulate the approximate problem for the optimality system
(5.2)–(5.3): seekφh ∈ V h andλh ∈ V h such that

(6.2)

∫
Ω

σ gradφh · gradψh dΩ +
∫
ΓC

f (φh)ψh dΓ

= − 1
δ0

∫
ΓA

λhψh dΓ , ∀ ψh ∈ V h

and

(6.3)

∫
Ω

σ gradλh · gradωh dΩ +
∫
ΓC

f ′(φh)λhωh dΓ

=
1
ε0

∫
Ω

(φh − φ0)ωh dΩ , ∀ ωh ∈ V h .

6.2 Quotation of Brezzi-Rappaz-Raviart approximation theory

The error estimate to be derived in Sect. 6.3 makes use of results developed by
Brezzi et al. (see [5], also [7] and [8]) concerning the approximation of a class of
nonlinear problems. Here, for the sake of completeness, we will state the relevant
results, specialized to our needs.

The nonlinear problems considered in [5] (also [7] and [8]) are of the type

(6.4) F (ψ) ≡ ψ + TG(ψ) = 0

whereX andY are Banach spaces andT ∈ L (Y ; X), G is a C2 mapping from
X into Y . A solutionψ to the equationF (ψ) = 0 is called anonsingular solution
if we have thatF ′(ψ) is an isomorphism fromX into X. (Here,F ′(·) denotes the
Frechet derivative ofF (·).)
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Approximations are defined by introducing a family of finite dimensional sub-
spacesXh ⊂ X and for eachh > 0 an approximating operatorTh ∈ L (Y ; Xh).
Then, we seekψh ∈ Xh such that

(6.5) F h(ψh) ≡ ψh + ThG(ψh) = 0 .

We will assume that there exists another Banach spaceZ , contained inY , with
continuous imbedding, such that

(6.6) G′(ψ) ∈ L (X; Z) ∀ ψ ∈ X .

Concerning the operatorTh, we assume the approximation properties

(6.7) lim
h→0

‖(Th − T)y‖X = 0 ∀ y ∈ Y

and

(6.8) lim
h→0

‖(Th − T)‖L (Z ;X) = 0 .

Note that (6.6) and (6.8) imply that the operatorG′(ψ) ∈ L (X; X) is compact.
Morevover, (6.8) follows from (6.7) whenever the imbeddingZ ⊂ Y is compact.

We can now state the first result that will be used in the sequel. In the
statement of the theorem,G′′ represents the second order Frechet derivative of
G.

Theorem 6.1.Let X and Y be Banach spaces. Assume that G is a second order
Frechet differentiable mapping from X into Y and that G′′ is bounded on all
bounded sets of X . Assume that(6.6)–(6.8) hold and thatψ is a nonsingular
solution of (6.4). Then, there exists aδ > 0 and an h0 > 0 such that for h≤ h0,
there exists a uniqueψh ∈ Xh satisfyingψh is a nonsingular solution of(6.5)
and‖ψh − ψ‖X ≤ δ. Moreover, there exists a constant C> 0, independent of h,
such that

(6.9) ‖ψh − ψ‖X ≤ C‖(Th − T)G(ψ)‖X .

For the second result, we need to introduce two other Banach spacesH and
W, such thatW ⊂ X ⊂ H , with continuous imbeddings, and assume that

(6.10)

for all w ∈ W, the operatorG′(w) may be extended as a linear

operator ofL (H ; Y), the mappingw → G′(w) being continuous

from W onto L (H ; Y).

We also suppose that

(6.11) lim
h→0

‖Th − T‖L (Y ;H ) = 0 .

Then we may state the following additional result.
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Theorem 6.2.Assume that the hypotheses of Theorem6.1 hold and that(6.10)
and (6.11) hold. Assume further that

(6.12) F ′(ψ) is an isomorphism of H.

Then, for h≤ h1 sufficiently small, there exists a constant C , independent of h,
such that

(6.13) ‖ψh − ψ‖H ≤ C‖(Th − T)G(ψ)‖H + ‖ψh − ψ‖2
X .

6.3 Error estimates for the approximations of solutions of the optimality system

In order to derive error estimates, we begin by recasting the optimality system
(5.2)–(5.3) and its discretization (6.2)–(6.3) into a form that fits into the frame-
work of Brezzi-Rappaz-Raviarttheory summarized in Sect. 6.2.

We define
X = H 1(Ω) × H 1(Ω) ,

Y = H−1/2(Γ ) × H 1(Ω)
∗ × H−1/2(Γ ) ,

Z = L2(Γ ) × L2(Ω) × L2(Γ )

and
Xh = V h × V h ,

whereH 1(Ω)
∗

denotes the dual space ofH 1(Ω). Note that using Sobolev imbed-
ding theorems,Z ⊂ Y with a compact imbedding.

Let the operatorT ∈ L (Y ; X) be defined in the following manner:T(ζ, η, θ)
= (φ, λ) for (ζ, η, θ) ∈ Y and (φ, λ) ∈ X if and only if

(6.14)
∫
Ω

σ gradφ · gradψ dΩ + α
∫
ΓC

φψ dΓ = 〈ζ, ψ〉Γ , ∀ ψ ∈ H 1(Ω)

and

(6.15)

∫
Ω

σ gradλ · gradω dΩ + α
∫
ΓC

λω dΓ = 〈η, ω〉 + 〈θ, ω〉Γ ,

∀ ω ∈ H 1(Ω) .

Clearly, (6.14)–(6.15) consists of twouncoupledelliptic equations with mixed
Robin-Neumann type boundary conditions andT is its solution operator.

Analogously, the operatorTh ∈ L (Y ; Xh) is defined as follows:Th(ζ, η, θ) =
(φh, λh) for (ζ, η, θ) ∈ Y and (φh, λh) ∈ Xh if and only if

(6.16)
∫
Ω

σ gradφh · gradψh dΩ + α
∫
ΓC

φhψh dΓ = 〈ζ, ψh〉Γ , ∀ ψh ∈ V h

and
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(6.17)

∫
Ω

σ gradλh · gradωh dΩ + α
∫
ΓC

λhωh dΓ = 〈η, ωh〉 + 〈θ, ωh〉Γ ,

∀ ωh ∈ V h .

Clearly, (6.16)–(6.17) consists of two discrete Poisson-type equations that are
discretizations of the equations (6.14)–(6.15); also,Th is the solution operator
for these two discrete equations.

By the well-known results concerning the approximation of elliptic equations
(see,e.g., [3] or [6]), we obtain:

(6.18) ‖(T − Th)(ζ, η, θ)‖X → 0 ash → 0 ,

for all (ζ, η, θ) ∈ Y and, in addition, ifT(ζ, η, θ) ∈ H m+1(Ω) × H m+1(Ω), then

(6.19) ‖(T − Th)(ζ, η, θ)‖X ≤ Chm‖T(ζ, η, θ)‖H m+1(Ω)×H m+1(Ω) .

Also, becauseZ ⊂ Y with a compact imbedding, we have that

(6.20) ‖(T − Th)‖L (Z ;X) → 0 ash → 0 .

Next, we define thenonlinear mappingG : X → Y as follows:G
(
φ, λ

)
=

(ζ, η, θ) for (φ, λ)∈X and (ζ, η, θ) ∈ Y if and only if

(6.21) 〈ζ, π〉Γ =
1
δ0

∫
ΓA

λπ dΓ +
∫
ΓC

(f (φ) − αφ)π dΓ ∀ π ∈ H 1/2(Γ ) ,

(6.22) 〈η, ω〉 = − 1
ε0

∫
Ω

(φ− φ0) ω dΩ ∀ ω ∈ H 1(Ω)

and

(6.23) 〈θ, τ〉Γ =
∫
ΓC

(f ′(φ) − α)λ τ dΓ ∀ τ ∈ H 1/2(Γ ) .

(6.21)–(6.23) is equivalent to

(6.24) ζ =


1
δ0
λ on ΓA ;

f (φ) − αφ on ΓC ;

0 onΓ0 ,

(6.25) η = − 1
ε0

(φ− φ0) in Ω

and

(6.26) θ =

{
(f ′(φ) − α)λ on ΓC ;

0 onΓ0 ∪ ΓA .

Recallf (φ) = C3(eC1φ−eC2φ) so thatf ′(φ) = C3(C1eC1φ+C2eC2φ). Using Lemma
2.1 and trace theorems we infer that if (φ, λ) ∈ H 1(Ω) × H 1(Ω), then for all
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q > 1, φ|Γ ∈ Lq(Γ ), λ|Γ ∈ Lq(Γ ), f (φ) ∈ Lq(Γ ) and f ′(φ) ∈ Lq(Γ ). Hence
we see that the triplet (ζ, η, θ) defined by (6.24)–(6.26) is indeed inY , i.e., G is
well-defined.

It is easily seen that the optimality system (5.2)–(5.3) is equivalent to

(6.27) (φ, λ) + TG (φ, λ) = 0

and that the discrete optimality system (6.2)–(6.3) is equivalent to

(6.28) (φh, λh) + ThG
(
φh, λh

)
= 0 .

We have thus recast our continuous and discrete optimality problems into a
form that enables us to apply the theories of Sect. 6.2. It remains to verify the
hypotheses in Theorem 6.1. This will be the task of the next two propositions.

Proposition 6.3. The operator G: X → Y defined by(6.21)–(6.23)is second
order Frechet differentiable. Furthermore,(6.6) holds and G′′ is bounded on all
bounded sets of X .

Proof. In showing the differentiability ofG, the linear terms appearing in the
definition of G does not pose any difficulty. Furthermore the nonlinear terms
in (6.21) and (6.23) can be dealt with in a similar way. For clarity, we will
only analyse the differentiability of the nonlinear termτ 7→ ∫

ΓC
f ′(φ)λτ dΓ . We

define a mappingQ : X → H−1/2(Γ ) by 〈Q(φ, λ), τ〉 ≡ ∫
ΓC

f ′(φ)λτ dΓ for all

(φ, λ) ∈ X andτ ∈ H 1/2(Γ ). For each given (φ, λ) ∈ X we have that

(6.29)

〈
Q(φ + δφ, λ + δλ) − Q(φ, λ), τ

〉
−
∫
ΓC

f ′′(φ)(δφ)λτ dΓ −
∫
ΓC

f ′(φ)(δλ)τ dΓ

=
∫
ΓC

[f ′(φ + δφ) − f ′(φ) − f ′′(φ)(δφ)] λτ dΓ

+
∫
ΓC

[f ′(φ + δφ) − f ′(φ)](δλ)τ dΓ

=
∫
ΓC

∫ 1

0
[f ′′

(
(1− t)φ + t(φ + δφ)

)− f ′′(φ)] dt (δφ)λτ dΓ

+
∫
ΓC

∫ 1

0
f ′′
(
(1− t)φ + t(φ + δφ)

)
dt (δφ)(δλ)τ dΓ

=
∫
ΓC

∫ 1

0

∫ 1

0
t f ′′′

(
s(1− t)φ + st(φ + δφ) + (1− s)φ

)
ds dt|δφ|2 λτ dΓ

+
∫
ΓC

∫ 1

0
f ′′
(
(1− t)φ + t(φ + δφ)

)
dt (δφ)(δλ)τ dΓ ∀ (δφ, δλ)∈X.



308 L.S. Hou and J.C. Turner

Note that f (φ) = C3(eC1φ − e−C2φ), f ′(φ) = C3(C1eC1φ + C2e−C2φ), f ′′(φ) =
C3(C2

1 eC1φ −C2
2 e−C2φ) and f ′′′(φ) = C3(C3

1 eC1φ + C3
2 e−C2φ). By Lemma 2.1 we

have that for all real numberm > 1,

‖f ′(φ)‖Lm(ΓC) ≤ C

{
1 + |Γ | + e

m2C‖φ‖2
1 |Γ |

} 1
m

,

‖f ′′(φ)‖Lm(ΓC) ≤ C

{
1 + |Γ | + e

m2C‖φ‖2
1 |Γ |

} 1
m

and

‖f ′′′(φ)‖Lm(ΓC) ≤ C

{
1 + |Γ | + e

m2C‖φ‖2
1 |Γ |

} 1
m

,

where C is a generic constant independent ofφ. Trace theorems forΩ ⊂ R
2

implies that for allp > 1, q > 1 andr > 1,

‖δφ‖Lp(ΓC) ≤ C‖δφ‖1 ∀ δφ ∈ H 1(Ω) ,

‖δλ‖Lq(ΓC) ≤ C‖δλ‖1 ∀ δλ ∈ H 1(Ω)

and
‖τ‖Lr (ΓC) ≤ C‖τ‖1/2,Γ ∀ τ ∈ H 1/2(Γ ) .

We fix somem > 1, p > 1, q > 1 andr > 1 with 1
m + 1

p + 1
q + 1

r = 1. Then for
every (δφ, δλ) ∈ X we have that∫

ΓC

∫ 1

0
f ′′
(
(1− t)φ + t(φ + δφ)

)
dt (δφ)(δλ)τ dΓ

≤ sup
0≤t≤1

‖f ′′
(
(1− t)φ + t(φ + δφ)

)‖Lm(ΓC) ‖δφ‖Lp(ΓC) ‖δλ‖Lq(ΓC) ‖τ‖Lr (ΓC)

≤ C

{
1 + |Γ | + e

m22C‖φ‖2
1 |Γ |

} 1
m

‖δφ‖1 ‖δλ‖1 ‖τ‖1/2,Γ ∀ τ ∈ H 1/2(Γ ) .

Similarly, we have that for everyδφ ∈ H 1(Ω) and everyτ ∈ H 1/2(Γ ),∫
ΓC

∫ 1

0

∫ 1

0
t f ′′′

(
s(1− t)φ + st(φ + δφ) + (1− s)φ

)
ds dt|δφ|2 λτ dΓ

≤ C

{
1 + |Γ | + e

m23C‖φ‖2
1 |Γ |

} 1
m

‖δφ‖2
1 ‖λ‖1 ‖τ‖1/2,Γ .

Returning to (6.29) we obtain that for allτ ∈ H 1/2(Γ ) and (δφ, δλ) ∈ X,〈
Q(φ + δφ, λ + δλ) − Q(φ, λ), τ

〉
−
∫
ΓC

f ′′(φ)(δφ)λτ dΓ −
∫
ΓC

f ′(φ)(δλ)τ dΓ

≤ C

{
1 + |Γ | + e

m23C‖φ‖2
1 |Γ |

} 1
m {‖δφ‖1 ‖δλ‖1 + ‖δφ‖2

1 ‖λ‖1
} ‖τ‖1/2,Γ ,
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so that we concludeQ as a mapping fromX to H−1/2(Γ ) is Frechet differentiable
and its derivativeQ′(φ, λ) is given by〈

Q′(φ, λ)(ψ̃, ω̃), τ
〉

=
∫
ΓC

[f ′′(φ)ψ̃λτ + f ′(φ)ω̃τ ] dΓ ∀ τ ∈ H 1/2(Γ ) .

Hence, taking into account the remarks in the beginning of the proof, we have
justified thatG is Frechet differentiable and its Frechet derivativeG′(φ, λ) is
defined as follows. For each (φ, λ) ∈ X, G′(φ, λ)(ψ̃, ω̃) = (ζ̃, η̃, θ̃) for (ψ̃, ω̃)∈X
and (̃ζ, η̃, θ̃) ∈ Y if and only if

(6.30) 〈ζ̃, π〉Γ =
1
δ0

∫
ΓA

ω̃ π dΓ +
∫
ΓC

(f ′(φ)ψ̃ − αψ̃)π dΓ ∀ π ∈ H 1/2(Γ ) ,

(6.31) 〈η̃, ω〉 = − 1
ε0

∫
Ω

ψ̃ ω dΩ ∀ ω ∈ H 1(Ω)

and

(6.32) 〈θ̃, τ〉Γ =
∫
ΓC

f ′′(φ)ψ̃λ τ dΓ +
∫
ΓC

(f ′(φ) − α) ω̃ τ dΓ ∀ τ ∈ H 1/2(Γ ) ;

or, equivalently,

(6.33) ζ̃ =


1
δ0
ω̃ on ΓA ;

f ′(φ)ψ̃ − αψ̃ on ΓC ;

0 onΓ0 ,

(6.34) η̃ = − 1
ε0
ψ̃ in Ω

and

(6.35) θ̃ =

{
f ′′(φ)λψ̃ + (f ′(φ) − α)ω̃ on ΓC ;

0 onΓ0 ∪ ΓA .(
These defining equations can be formally derived by differentiating (6.21)–

(6.23).
)

It is easy to verify from the above equations that for each (ψ̃, ω̃) ∈ X,
we have (̃ζ, η̃, θ̃) ∈ Z , i.e., G′(φ, λ) mapsX into Z ; furthermore, using trace
theorems and Lemma 2.1 we obtain that

‖ζ̃‖0,Γ ≤ 1
δ0
‖ω̃‖0,Γ + ‖f ′(φ)‖L4(ΓC) ‖ψ̃‖L4(Γ ) + α‖ψ̃‖0,Γ

≤ C
δ0
‖ω̃‖1 + C

{
1 + |Γ | + e

C‖φ‖2
1 |Γ |

}1/4

‖ψ̃‖1 + C‖ψ̃‖1 ,

‖η̃‖0 ≤ 1
ε
‖ψ̃‖1
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and

‖ζ̃‖0,Γ ≤ ‖f ′′(φ)‖L6(ΓC) ‖ψ̃‖L6(Γ ) ‖λ‖L6(Γ ) + ‖f ′(φ)‖L4(ΓC) ‖ω̃‖L4(Γ ) + α‖ω̃‖0,Γ

≤ C

{
1 + |Γ | + e

C‖φ‖2
1 |Γ |

}1/4

{‖ψ̃‖1 ‖λ‖1 + ‖ω̃‖1} + C‖ω̃‖1 .

ThusG′(φ, λ) ∈ L (X; Z), i.e., we have shown that (6.6) hold.
To show the second order differentiability ofG, again for clarity we will

examine only one nonlinear term appearing in the definition ofG′, e.g., the
term τ 7→ ∫

ΓC
f ′′(φ)ψ̃λτ dΓ . We define a mappingR : X → L (X; H−1/2(Γ ))

by
〈
R(φ, λ)(ψ̃, ω̃), τ

〉 ≡ ∫
ΓC

f ′′(φ)ψ̃λτ dΓ for all (φ, λ), (ψ̃, ω̃) ∈ X and τ ∈
H 1/2(Γ ). For each given (φ, λ) ∈ X we have that for all (δφ, δλ) ∈ X,〈

[R(φ + δφ, λ + δλ) − R(φ, λ)](ψ̃, ω̃), τ
〉

−
∫
ΓC

f ′′′(φ)(δφ)ψ̃ λτ dΓ −
∫
ΓC

f ′′(φ)ψ̃(δλ)τ dΓ

=
∫
ΓC

[f ′′(φ + δφ) − f ′′(φ) − f ′′′(φ)(δφ)]ψ̃ λτ dΓ

+
∫
ΓC

[f ′′(φ + δφ) − f ′′(φ)]ψ̃(δλ)τ dΓ

=
∫
ΓC

∫ 1

0

∫ 1

0
t f ′′′′(s(1− t)φ + st(φ + δφ) + (1− s)φ) ds dtψ̃|δφ|2 λτ dΓ

+
∫
ΓC

∫ 1

0
f ′′′((1− t)φ + t(φ + δφ)) dt (δφ)(δλ)ψ̃τ dΓ .

Thus similar to the analysis ensuing (6.29), we can show that the operatorR is
Frechet differentiable and its derivativeR′(φ, λ) is defined by:

R′(φ, λ) · ((ψ̃, ω̃), ( ˜̃ψ, ˜̃ω)
)

=
∫
ΓC

f ′′′(φ) ˜̃φ ψ̃ λ τ dΓ +
∫
ΓC

f ′′(φ) ψ̃ ˜̃λ τ dΓ .

Hence,G is second order Frechet differentiable andG′′(φ, λ) is defined as fol-
lows. For each (φ, λ) ∈ X, G′′(φ, λ)·((ψ̃, ω̃), ( ˜̃ψ, ˜̃ω)

)
= (ζ̃, η̃, θ̃) for

(
(ψ̃, ω̃), ( ˜̃ψ, ˜̃ω)

)
∈ X × X and (̃ζ, η̃, θ̃) ∈ Y if and only if

〈ζ̃, π〉Γ =
∫
ΓC

f ′′(φ) ˜̃ψ ψ̃ π dΓ ∀ π ∈ H 1/2(Γ ) ,

〈η̃, ω〉 = 0 ∀ ω ∈ H 1
0 (Ω)

and

〈θ̃, τ〉Γ =
∫
ΓC

[f ′′′(φ) ˜̃ψ ψ̃ λ + f ′′(φ) ψ̃ ˜̃λ] τ dΓ +
∫
ΓC

f ′′(φ) ˜̃ψ ω̃ τ dΓ

∀ τ ∈ H 1/2(Γ ) ;
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or, equivalently,

(6.36) ζ̃ =


0 onΓA ;

f ′′(φ) ˜̃ψ ψ̃ on ΓC ;

0 onΓ0 ,

(6.37) η̃ = 0 in Ω

and

(6.38) θ̃ =

{
[f ′′′(φ) ˜̃ψ ψ̃ λ + f ′′(φ)ψ̃ ˜̃λ] + f ′′(φ) ˜̃ψ ω̃ on ΓC ;

0 onΓ0 ∪ ΓA .

Furthermore, using Lemma 2.1, (6.36)–(6.38) and trace theorems, we may derive
a bound forG′′(φ, λ) for each given (φ, λ):

||G′′(φ, λ)||Y ≤ C

{
1 + |Γ | + e

C‖φ‖2
1 |Γ |

}
(1 +‖λ‖1)

for some constantC , so thatG′′ is bounded on every bounded subset ofX.

A solution
(
φ, λ

)
of the problem (5.2)–(5.3), or equivalently, of (6.27), is

nonsingular if thelinear system

(6.39)

∫
Ω

σ grad φ̃ · gradψ dΩ +
∫
ΓC

f ′(φ)φ̃ψ dΓ

+
1
δ0

∫
ΓA

λ̃ψ dΓ = 〈ζ̃, ψ〉 ∀ ψ ∈ H 1(Ω)

and

(6.40)

∫
Ω

σ grad λ̃ · gradω dΩ +
∫
ΓC

f ′′(φ) φ̃ λ ω dΓ +
∫
ΓC

f ′(φ) λ̃ ω dΓ

− 1
ε0

∫
Ω

φ̃ ω dΩ = 〈η̃, ω〉 ∀ ω ∈ H 1(Ω)

has a unique solution (φ̃, λ̃) ∈ X for every ζ̃, η̃ ∈ H 1(Ω)∗.
An analogous definition holds for nonsingular solutions of the discrete opti-

mality system (6.2)–(6.3), or equivalently, (6.28).
It is evident that (6.39)–(6.40) has a unique solution for large enoughσ, e.g.,

σ > max

{
C
δ0
,

C
ε0
, C‖λ‖L4(ΓC) ‖f ′′(φ)‖L4(ΓC)

}
.

It is reasonable to assume that (6.39)–(6.40) has a unique solution generically
with respect toσ, i.e., the optimal solutions are almost always nonsingular. Thus
Theorem 6.1 and Proposition 6.3 lead to the following:
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Theorem 6.4. Assume(φ, λ) is a nonsingular solution of the optimality system
(5.2)–(5.3).Assume that the finite element spaces Vh satisfy the condition(6.1).
Then, there exists aδ > 0 and h0 > 0 such that for h≤ h0, there exists a
unique nonsigular solution(φh, λh) of the discrete optimality system(6.2)–(6.3)
satisfying‖φh − φ‖1 + ‖λh − λ‖1 ≤ δ. Moreover,

(6.41) ‖φh − φ‖1 + ‖λh − λ‖1 → 0 as h→ 0 .

If, in addition, the solution of the optimality system satisfies(φ, λ) ∈ H m+1(Ω)×
H m+1(Ω), then there exists a constant C , independent of h, such that

(6.42) ‖φ− φh‖1 + ‖λ− λh‖1 ≤ C hm
(‖φ‖m+1 + ‖λ‖m+1

)
.

A consequence of Theorems 6.4 is the following corollary that gives error
estimates for the approximation of the controls.

Corollary 6.5. Assume(φ, λ) is a nonsingular solution of the optimality system
(5.2)–(5.3).Assume that the finite element spaces Vh satisfy the condition(6.1).
Define the approximate control by

uh = − 1
δ0
λh on ΓA .

Then

(6.43) ‖uh − u‖1/2,ΓA
→ 0 ash → 0 .

If, in addition, the solution of the optimality system satisfies(φ, λ) ∈ H m+1(Ω)×
H m+1(Ω), then there exists a constant C , independent of h, such that for h≤ h0,

(6.44) ‖uh − u‖1/2,ΓA
≤ C
δ0

hm
(‖φ‖m+1 + ‖λ‖m+1

)
.

Proof. Recall thatu = − 1
δ0
λ on ΓA; see (5.1). Then (6.43) and (6.44) follow

trivially from (6.41)–(6.42) and the inequalities (see [1])

‖u − uh‖1/2,ΓA
=

1
δ0
‖λ− λh‖1/2,ΓC

≤ 1
δ0
‖λ− λh‖1/2,Γ ≤ C

δ0
‖λ− λh‖1 .

Now we wish to apply Theorem 6.2 to deriveL2(ΓC)-error estimates for the
approximations ofu. To this end, we assume the domainΩ is convex and for
each givenε ∈ (0, 1/4), we introduce spaces

H = H 1/2+ε(Ω) × H 1/2+ε(Ω) and W = H 3/2+ε(Ω) × H 3/2+ε(Ω) .

Note thatX ⊂ H with a compact imbedding so that (6.18) implies

‖(T − Th)‖L (Y ;H ) → 0 ash → 0 .
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Again using finite element approximation results in [6] we have that ifΩ is
convex andT(ζ, η, θ) ∈ H m+1(Ω) × H m+1(Ω), then

‖(T − Th)(ζ, η, θ)‖H ≤ Chm−ε+1/2‖T(ζ, η, θ)‖H m+1(Ω)×H m+1(Ω) .

Proposition 6.6. For each(φ, λ) ∈ W , the operator G′(φ, λ) : X → Y defined
by (6.33)–(6.35)can be extended as a linear operator ofL (H ; Y). Furthermore,
the mappingw → G′(w) is continuous from W ontoL (H ; Y).

Proof. Note thatW ⊂ L∞(Ω) × L∞(Ω) andH 1/2+ε(Ω)|Γ ⊂ L2(Γ ) with contin-
uous imbeddings. For each (φ, λ) ∈ W, we can easily verify from (6.33)–(6.35)
that

‖G′(φ, λ)(ψ̃, ω̃)‖Y

≤ A(φ) {‖ω̃‖0,ΓA + ‖ψ̃‖0,ΓC + ‖ψ̃‖0 + ‖ω̃‖0,ΓC}
≤ CT A(φ) {‖ω̃‖1/2+ε + ‖ψ̃‖1/2+ε} ∀ (ψ̃, ω̃) ∈ H ,

where

A(φ) = C max

{
1
δ0
,

1
ε0
, max
|x|≤‖φ‖3/2+ε

(|f ′(x)| + α), max
|x|≤‖φ‖3/2+ε

(|f ′′(x)| ‖λ‖3/2+ε)

}

andCT is a constant such that‖ψ‖0,Γ ≤ CT‖ψ‖1/2+ε for all ψ ∈ H 1/2+ε(Ω). The
desired results follow easily from this estimate.

If (φ, λ) is a nonsingular solution of (5.2)–(5.3), using the denseness ofH 1(Ω)
in H 1/2+ε(Ω) and regularity theories for (6.39)–(6.40), we infer that (6.12) holds.

Thus we have verified all the requirements in Theorem 6.2 so that we can
draw the following conclusion:

Theorem 6.7. AssumeΩ is convex and(φ, λ) is a nonsingular solution of the
optimality system(5.2)–(5.3).Assume that the finite element spaces Vh satisfy
the condition(6.1). Then, there exists aδ > 0 and h0 > 0 such that for h≤ h0,
there exists a unique nonsigular solution(φh, λh) of the discrete optimality system
(6.2)–(6.3)satisfying‖φh − φ‖1 + ‖λh − λ‖1 ≤ δ. If, in addition, the solution of
the optimality system satisfies(φ, λ) ∈ H m+1(Ω) × H m+1(Ω), then there exists a
constant C , independent of h, such that

(6.45) ‖φ− φh‖ε+1/2 + ‖λ− λh‖ε+1/2 ≤ Chm−ε+1/2
(‖φ‖m+1 + ‖λ‖m+1

)
.

A consequence of Theorem 6.7 is the following corollary that gives the
L2(ΓA)-error estimates for the the approximation of the controls.

Corollary 6.8. AssumeΩ is convex and(φ, λ) is a nonsingular solution of the
optimality system(5.2)–(5.3).Assume that the finite element spaces Vh satisfy the
condition (6.1). Define the approximate control by
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uh = − 1
δ0
λh onΓA .

If the solution of the optimality system satisfies(φ, λ) ∈ H m+1(Ω) × H m+1(Ω),
then for eachε ∈ (0, 1/4) there exists a constant C , independent of h, such that
for h ≤ h0,

(6.46) ‖uh − u‖0,ΓA ≤
C
δ0

hm−ε+1/2
(‖φ‖m+1 + ‖λ‖m+1

)
.

Proof. Recall thatu = − 1
δ0
λ on ΓA; see (5.1). Then (6.46) follows trivially from

(6.45) and the trace theorems (see [1])

‖u − uh‖0,ΓA =
1
δ0
‖λ− λh‖0,ΓC ≤

1
δ0
‖λ− λh‖0,Γ ≤ C

δ0
‖λ− λh‖ε+1/2 .
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16), 279–317
19. Tikhomorov, V. (1982): Fundamental Principles of the Theory of Extremal Problems. Wiley,

Chichester
20. Zamani. N.G., Chuang, J.M. (1987): Optimal control of current in a cathodic protection system:

a numerical investigation. Optimal Control Appl. & Meth.8, 339–350
21. Zamani, N.G., Porter, J.F., Mufti, A.A. (1986): A survey of computational efforts in the field of

corrosion engineering. Int. J. Numer. Meth. Eng.23, 1295–1311


