
Numer. Math. 69: 269–282 (1995) Numerische
Mathematik
c© Springer-Verlag 1995

An analysis of bilinear transform polynomial methods
of inversion of Laplace transforms

G. Giunta1, A. Murli 2, G. Schmid2

1 Istituto di Matematica, Istituto Universitario Navale, Napoli, Italy
2 Dipartimento di Matematica ed Appl., Università “Federico II”, Napoli, Italy
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Summary. Methods for the numerical inversion of a Laplace transformF (s) which
use a special bilinear transformation ofs are particularly effective in many cases and
are widely used. The main purpose of this paper is to analyze the convergence and
conditioning properties of a special class of such methods, characterized by the use of
Lagrange interpolation. The results derived apply both to complex and real inversion,
and show that some known inversion methods are in fact in this class.
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1. Introduction

Among the numerical methods for the inversion of aLaplace transformF , i.e., for
solving with respect tof the equation

F (s) = £{f}(s) =
∫ ∞

0
e−sxf (x) dx ,

particularly relevant are those which use a bilinear mapping like

w =
s + α
s + β

(β > α)

and then approximateψ(w) = F (s(w)) [3].
Such methods, including bothLaguerre polynomial methods[10, 11, 15, 18] and
Piessens’ methods[12], have led to reliable and efficient algorithms and software
[4, 5, 13].

The use of Lagrange interpolation at two special sets of knots for Laguerre poly-
nomial methods is discussed in [15].

The approach of the present paper allows us to deal in a unified way with several
polynomial-type methods of inversion of the Laplace transform. We generalize and
formally characterize the approach in [15], referring to such collocation methods as
C-methods. We study their convergence and conditioning properties. Furthemore, we
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show that both the methods in [10] and [12] are in fact C-methods, which converge
on any classSγ of functions whose analytic continuation is given by

F (s) = s−γG(s) ,(1)

for some fixedγ > 0 andG analytic at infinity. The previous result accomplishes the
analysis in [2], where in fact Hardy’s theorem [9] has been generalized to orthogonal
polynomial expansions ofF ∈ Sγ to prove the convergence of Piessens’ methods.

The background of the problem is summarized in Sect. 2. Section 3 is devoted
to defining C-methods and deriving their explicit representation. In Sect. 4 a suffi-
cient condition for the (exponentially fast) convergence of C-methods is given, while
their conditioning properties are discussed in Sect. 5. Finally, Sect. 6 provides various
examples of such methods; both the methods in [10] and [12] are analyzed.

2. Preliminaries

This section provides some results and terminology on the inversion of a Laplace
transform (Sect. 2.1) and on conformal mappings (Sect. 2.2), which we will need
later.

2.1.

In the sequel we shall refer to the usual definition ofLaplace absolutely transformable
functions and of theLaplace absolute convergence abscissaσ0 [9, vol.II, p.200].
Moreover, we shall denote byR the radius of the smallest circle centered at the
origin and enclosing the singularities ofG.

Lemma 1. (Riemann) [9]. Let f be an absolutely transformable function and F its
Laplace transform. Ifσ > σ0 and if x > 0 is a point of continuity off , then

f (x) =
1

2πi
vp
∫ σ+i∞

σ−i∞
esxF (s) ds .

Lemma 2. Let F be in Sγ for someγ > 0. Then F has a continuous, absolutely
transformable original function f andσ0 ≤ R . Moreover, if C is any piecewise smooth,
closed curve intersecting the real axis exactly twice and lying in the domain|s| > R,
then

f (x) =
1

2πi

∮
C

esxs−γG(s) ds +
sin(πγ)
π

∫ ∞

c

e−sxs−γG(−s) ds , x > 0.(2)

In Eq. ( 2) the integration along C is carried out in the anticlockwise direction, and
−c is the abscissa of the point whereC intersects the real negative axis.

Sketch of the proof.The first part of the lemma easily follows from Hardy’s theorem
[9, vol.II, p.248]. To prove Eq. ( 2), consider a family{Cn} of integration paths as
shown in the figure.

According to Cauchy’s theorem and Lemma 1,

2πif (x) = lim
n

∫
P0P1

esxF (s) ds = lim
n

∫
_

P0P1

esxs−γG(s) ds , x > 0.
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Thus Eq. (2) follows from Jordan’s lemma [9, vol.I, p.255] and from the properties
of the functions−γ . ut
Remark.For any natural numbern, F ∈ Sn implies thatf is a function of exponential
type, and Eq. (2) becomes

f (x) =
1

2πi

∮
C

esxs−nG(s) ds , x > 0.

In this case the conclusions of Lemma 2 follow from Pincherle’s theorem [9, vol.II,
p.308].

2.2.

Given a closed Jordan curveJ , we denote by
◦
J the bounded open region havingJ as

its boundary, byJ the simply connected, closed setJ∪ ◦
J and byJc the complement

of J with respect to the complex plane. Moreover,U is the unit circle|s| = 1.
According to the Riemann mapping theorem, corresponding to every curveJ there

exists a unique functionφ which conformally mapsJc ontoU c such thatφ(J) = U ,
φ(∞) = ∞ and such thatφ′(∞) > 0. The quantityκJ = [φ′(∞)]−1 is thecapacityof
the setJ [16, p.13]. Lastly, we denote byJ(r) (r > 1) the curve lying inJc whose
image throughφ is the circleUr of radiusr centered at the origin.

Consider now the transformation

w =
s− σ − b

s− σ + b
, σ ∈ (−∞,∞) , b > 0 .(3)

Eq. ( 3) defines a one-to-one, conformal map, which transforms circles into circles1.
In particular, ( 3) maps any circleC for which the pointss = σ± b are symmetrical2

onto someUr, so that to the axis Res = σ correspondsU and to the positive direction
on C corresponds the negative one onUr.

1 Straight lines are generalized circles
2 Let D be a circle in the complex plane. The pointsp, q are symmetrical with respect toD if there

exists a constantk such that|s− p| = k|s− q| for any s ∈ D
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It follows thatCc is mapped into
◦
Ur and r > 1 or r < 1 depending asσ − b ∈ ◦

C

or σ + b ∈ ◦
C, respectively3. Moreover, ( 3) maps straight lines parallel to the real

and imaginary axes into circles which are tangent inw = 1 to the real axis, and to
the axis Rew = 1, respectively. In the foregoing correspondence, the real axis and
the lower and upper half-planes are mapped into their analogues in thew-plane. The
line Res = σ − b is transformed into Rew = 1, and the half-plane Res < σ − b is
mapped onto Rew > 1.

Lastly, it is easy to prove:

Lemma 3. If J is a closed Jordan curve in the s-plane for whichσ − b ∈ ◦J , then

its imageJ ′ through ( 3) is a closed Jordan curve in the w-plane such that1 ∈
◦
J ′.

Moreover, J is piecewise smooth if and only ifJ ′ is.

3. C-methods

Let F ∈ Sγ for someγ > 0. If σ > σ0, b > 0 andw is given by ( 3), then the
assumption onF implies that (see Sect. 2.2)

ψ(w) =

(
2b

1− w

)γ
F

(
2b

1− w
+ σ − b

)
(4)

is an analytic function onU . Given the sequence

w : h = 0, 1, 2, . . .→ wh ≡ [wh0, . . . , whh] ⊂ U ,(5)

wherewhm 6= whn if m 6= n, consider the Lagrange interpolation polynomial`N which
interpolatesψ at theN + 1 coordinates ofwN . We can choose, as an approximation
of f , the continuous functionfN such that

£{fN}(s) = (s− σ + b)−γ `N

(
s− σ − b

s− σ + b

)
.

Let {pn} (n = 0, 1, 2, . . .) be any basis for the space of polynomials, and let{ϕn} be
the sequence of the continuous functions whose Laplace transforms are

(s− σ + b)−γ pn

(
s− σ − b

s− σ + b

)
.

If

`N (w) =
N∑
n=0

cnpn(w) ,(6)

thenfN can be obtained by:

I. evaluatingψ at the coordinateswNk of wN ;

3 If C is the line Res = σ, we must take asCc the right half-plane Res > σ
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II. solving the linear system in the unknownscn

[c0, . . . , cN ]Ṽ (wN ) = [ψ0, . . . , ψN ] ,

whereψk = ψ(wNk) and

Ṽ (wN ) =


1 . . . 1
p1(wN0) . . . p1(wNN )
...

...
pN (wN0) . . . pN (wNN )


is a Vandermonde-likematrix onwN [6];

III. evaluating

fN (x) =
N∑
n=0

cnϕn(x; γ, σ, b).

Definition 1. A C-method of orderγ on the system of nodesw, briefly denoted by
CM (w, γ), is a numerical method for Laplace transform inversion consisting of steps
I)-III) above.

The results of Sect. 2.2 show that C-methods involve the evaluation ofF at prescribed
sets of points in the half-plane Res ≥ σ. They include both complex and real inversion
methods. The latter are characterized by the condition

wh ⊂ [−1, 1] , h = 0, 1, 2, . . . .

Let Lαn be the generalized Laguerre polynomial of degreen and orderα (α > −1);
then

£{xαLαn(x)}(s) =
Γ (α + n + 1)(s− 1)n

n! sα+n+1
.

If in ( 6) we choosepn(w) = wn, it follows that

ϕn(x; γ, σ, b) = e(σ−b)xxγ−1 n!
Γ (γ + n)

Lγ−1
n (2bx) ,

andfN (x) is computed by step I) and replacing steps II) and III) by:

II’. solving the linear system

[c0, . . . , cN ]V (wN ) = [ψ0, . . . , ψN ] ,

whereV (wN ) = [wnN ]T (n = 0, .., N ) is the Vandermonde matrix onwN ;
III’. evaluating

fN (x) = e(σ−b)xxγ−1
N∑
n=0

n! cn
Γ (γ + n)

Lγ−1
n (2bx) .
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We refer to such C-methods, which are special Laguerre polynomial methods, as
LC-methods.

If

lm(w) =
N∑
n=0

lmnw
n

is themth elementary Lagrange interpolation polynomial of degreeN , then it is easy
to prove (see for example [6]) that

V −1(wN ) = [lmn] (m,n = 0, . . . , N ) .

Thus,

cn =
N∑
m=0

lmnψm (n = 0, . . . , N )(7)

and

fN (x) = xγ−1e(σ−b)x
N∑
m=0

ψmλm(x) ,(8)

where

λm(x) =
N∑
n=0

lmn
n!

Γ (γ + n)
Lγ−1
n (2bx) .(9)

For any fixedγ, b > 0 and any real numberσ, let Ψσ,b,γ be the set of functionsψ
defined by Eq. ( 4), whereF ∈ Sγ has (absolute) convergence abscissaσ0 < σ. Let
R(σ,b,γ)
N be the operator

R(σ,b,γ)
N : ψ ∈ Ψσ,b,γ → fN ,(10)

where fN is the function defined by steps I)-III). Obviously,R(σ,b,γ)
N is a linear

operator on the space of holomorphic functions onU , whose explicit representation
is given by ( 8).

4. A convergence criterion

Henceforth we will denote by‖ · ‖S the uniform norm on the setS.
Let fN be obtained by steps I)-III).

Definition 2. The methodCM (w, γ) converges on the setT of Laplace transforms
if and only if anyF ∈ T has an original functionf such that

f (x) = lim
N→∞

fN (x) , x ≥ 0 ,

wheneverσ > σ0 andb > 0.
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Given a closed Jordan curveJ , let w be any sequence

w : h = 0, 1, 2, . . .→ wh = [wh0, . . . , whh] ⊂ J ,

wherewhm 6= whn if m 6= n. Consider any functionψ on J and construct for it the
Lagrange interpolating polynomial`h at the coordinates ofwh. We denote byωh+1
the monic polynomial

ωh+1(w) =
h∏
k=0

(w − whk) .

The next lemma follows from the Fekete–Walsh convergence principle [16, p.17].

Lemma 4. Let ψ be any function regular onJ . The sequence{`h} converges uni-
formly toψ on J if and only if

lim
h→∞

h+1
√
‖ωh+1‖J = κJ

or, equivalently,
lim
h→∞

h+1
√
|ωh+1(w)| = κJ |φ(w)| ,

uniformly on every compact set inJc, whereκJ is the capacity ofJ and φ is the
conformal map defined in Sect. 2.2. Moreover, ifφ is regular onJ(r) (r > 1), then

‖φ− `h‖J = O(r−(h+1)) .

Theorem 1. The methodCM (w, γ) converges exponentially onSγ (γ > 0) if there
exists a sequence{Jn} of piecewise smooth, closed Jordan curves intersecting the real
axis exactly twice and satisfying

i) ∀r > 1 ∃ν : {whm} ⊆ Jν ⊆ Ur and 1 ∈
◦
Jν ;

ii) lim
h→∞ h+1

√‖ωh+1‖Jn = κJn .

Condition (ii) can be replaced by

ii’) lim
h→∞ h+1

√|ωh+1| = κJn |φn| uniformly for any compact set inJc
n,

whereφn is the conformal map corresponding toJn.

Proof. Given anyF ∈ Sγ , σ > σ0 and b > 0, let Cσ,b be the smallest circle in
Res > σ for which the pointss = σ ± b are symmetrical such thatCσ,b contains all
the singularities ofF . According to the results of Sect. 2.2, the image through ( 3) of
Cσ,b is a circleUR of radiusR = Rσ,b > 1, and the functionψ, defined by Eq. ( 4), is

regular in
◦
UR. Condition (i) implies that for any 1< r < R it is always possible to

choosen so that{whm} ⊆ Jn ⊆ Ur and 1∈
◦
Jn. Let J ′n be the inverse image under

( 3) of Jn. Lemma 3 implies thatJ ′n is a piecewise smooth, closed Jordan curve such

thatσ − b ∈
◦
J ′n andJ ′n ⊆ Cc

σ,b. Thus, we must haveCσ,b ⊆
◦
J ′n.

On the other hand, ifGN andG are the two functions defined by

GN (s) = `N

(
s− σ − b

s− σ + b

)
, G(s) = ψ

(
s− σ − b

s− σ + b

)
,
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then from Lemma 2 it follows thatF has its continuous original functionf satisfying
for x > 0 the equality

f (x)− fN (x) =
1

2πi

∮
J′n

esx(s− σ + b)−γ [G(s)−GN (s)] ds

+
sin(πγ)

π

∫ ∞

−sn
e−sx(s + σ − b)−γ [G(−s)−GN (−s)] ds ,(11)

wheresn ∈ J ′n satisfiessn < σ−b. Since (−∞, sn) ⊂ J ′cn , Eq.( 11) and the maximum
modulus principle imply that

f (x)− fN (x) = O(‖ψ − `N‖Jn ) , x ≥ 0 .

Let ρ > 1 be any number satisfyingJn(ρ) ⊂ ◦
UR; according to condition (ii) and

Lemma 4,

‖ψ − `N‖Jn = O(ρ−(N+1)) ,

so that the theorem is proved.ut

Corollary 1. The methodCM (w, γ) converges exponentially onSγ if there exists a
sequence{θh} ⊂ [0, 2π] and a numberρ ∈ (0, 1] such that

whk = ρei(θh+k 2π
h+1 ) , h = 0, 1, 2, . . . ; k = 0, . . . , h.

Proof. Sincewh is the vector of the roots of orderh + 1 of (ρeiθh )h+1, we have

ωh+1(w) = wh+1 − (ρeiθh )h+1.

If w ∈ Ur, then we find that

|ωh+1(w)|2 = r2(h+1) − ρ2(h+1) − 2(rρ)h+1 cos[(h + 1)(θ − θh)], θ ∈ [0, 2π],

so that, for any fixedr > 1,

lim
h→∞

h+1
√
‖ωh+1‖Ur = r.

The functionφ(w) = w/r conformally mapsU c
r ontoU c and, moreover,φ(Ur) = U ,

φ(∞) = ∞, φ′(∞) = 1/r. Thus,KUr = r, and the assertion follows by applying
Theorem 1 withJn = U1+1/n. ut

Corollary 2. Let {pn} be a sequence of polynomials orthogonal with respect to the
measuredµ on the segment[−1, 1]. If µ′ > 0 almost everywhere in[−1, 1] andwh
(h = 0, 1, 2, . . .) is the vector whose coordinates are the zeros ofph+1, thenCM (w, γ)
converges exponentially onSγ . 4

4 A weaker version of this corollary follows from a theorem of Van Assche [17, p.18]. We omit it
because it is of no practical interest
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Proof. Let Er (r > 1) be the ellipse defined by the parametric equation

w =
1
2

(
reiθ +

1
reiθ

)
, 0≤ θ ≤ 2π.

SinceEr has foci atw = ±1 and semi axes

a =
1
2

(r + 1/r), b =
1
2

(r − 1/r),

there exists a sequence ofEr satisfying condition (i) of Theorem 1.
Ec
r is conformally mapped ontoU c by the function

φ(w) =
1
r

(w +
√
w2 − 1)

andφ(Er) = U , φ(∞) = ∞, φ′(∞) = 2/r. On the other hand, ifωh+1 is the monic
polynomial whose zeros are the coordinates ofwh, then [8, p.151]

lim
h→∞

h+1
√
|ωh+1| =

|w +
√
w2 − 1|
2

uniformly on any compact subset of the domain|w+
√
w2 − 1| > 1. Thus (ii’) follows,

and the corollary is proved. ut

5. Conditioning

According to the results of Sect. 3 , it is natural to consider the quantity

kN (γ, σ, b) = sup
ψ∈Ψ

‖R(γ,σ,b)
N (ψ)‖I
‖ψ‖U(12)

to represent an (absolute) condition number of the problem of evaluatingfN on the
interval I ⊂ [0,∞), starting withψ.

Theorem 2. Let I = [x1, x2] be any interval such thatI ⊂ (0,∞). If R(γ,σ,b)
N is the

linear operator in ( 10) then

kN (γ, σ, b) ≤ eσx2B

Γ (γ)

N∑
m,n=0

|lmn| ,(13)

where

B =

 xγ−1
2 if γ ≥ 1

xγ−1
1

(
2N !∏N−1

k=0
(γ+k)

− 1

)
if 0 < γ < 1.



278 G. Giunta et al.

Proof. SinceR(γ,σ,b)
N is linear andψ belongs to the setC(U ) of continuous functions

on U , then

kN (γ, σ, b) ≤ sup
ψ∈C(U ),‖ψ‖=1

sup
x∈I

|
N∑
m=0

ψmλm| = sup
x∈I

N∑
m=0

|λm| .(14)

Moreover, the following inequalities hold [1, p.786]:

|Lγ−1
h (2bx)| ≤ Γ (γ + h)

Γ (γ)h!
ebx (γ ≥ 1) ,

|Lγ−1
h (2bx)| ≤

(
2− Γ (γ + h)

Γ (γ)h!

)
ebx (0< γ ≤ 1) .

Thus, the statement of Theorem 2 follows from ( 9), ( 14) and the fact that

Γ (γ)h!
Γ (γ + h)

=
h!∏h−1

k=0 (γ + k)

is an increasing function ofh for 0< γ < 1. ut

Equation (13) illustrates the terms that affect the conditioning. The factor eσx2B/

Γ (γ) is related to the parameters of the methods, while the sum
∑N
m,n=0 |lmn| depends

only on the set of knots. SinceB →∞ asγ → 0, particularly relevant is the influence
of γ, according to the fact that the slowerF (s) decreases to zero ass→∞, the more
difficult is the inversion ofF .

Equation (13) suggests choosing the parameterσ as small as possible in the
intervalσ > σ0. The factor eσ0x is inherent in the inversion ofall Laplace transforms
and is not special to C-methods.

As regards the choice of the knots, we emphasize that, according to step III),
their effects can be analyzed by means of the conditioning of Vandermonde matri-
ces, extensively studied by Gautschi (see [6] for a general discussion and further
references).

6. Some remarkable C-methods

In the following examples we assume some typical configurations of interpolation
points and study both the convergence of the related C-methods and the conditioning
to evaluatefN from ψ. We consider both complex (Sect. 6.1) and real (Sect. 6.2)
interpolation points. We show that the methods in [10, 12] are in fact convergent
collocation methods.

Henceforth,ωh+1 shall denote, as in Sect. 4, the monic polynomial whose zeros
are the coordinates ofwh.
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6.1. C-methods at the roots of unity

An important class of C-methods at complex knots is obtained by choosing the se-
quencew whose termwh is ρ times (0< ρ ≤ 1) the vector of the (h + 1)st roots of
unity,

whk = ρe
2πik
h+1 , h = 0, 1, 2, . . . ; k = 0, . . . , h .

We refer to these methods simply asC-methods at the roots of unity.
Obviously,w satisfies the conditions stated in Corollary 1, so that any C-method of
orderγ at the roots of unity converges exponentially onSγ .
Since

lm(w) =
ωN+1(w)

(w − wNm)ω′N+1(wNm)

andωN+1(w) = wN+1 − ρN+1, elementary calculations show that

lmn =
ρ−n

N + 1
e
−2πimn
N+1 .(15)

From (15) and Theorem 2 it follows that

kN (γ, σ, b) ≤


eσx2B
ρNΓ (γ)

1−ρN+1

1−ρ if ρ < 1 ,

eσx2B
Γ (γ) (N + 1) if ρ = 1 ,

(16)

whereB is the bound in ( 13). Eq. ( 16) shows that in this case the problem of
evaluatingfN starting fromψ is well conditioned if and only ifγ ≥ 1 andρ ≈ 1.

The approximation formulae relating to the LC-methods at the roots of unity are
easily obtained by Eqs. ( 7) and ( 15). We have

cn =
ρ−n

N + 1

N∑
m=0

ψ(ρe
2πim
N+1 )e

−2πimn
N+1 , n = 0, . . . , N ,(17)

which proves that the methods for inverting a Laplace transform in [10] are precisely
LC-methods of order one at the roots of unity5.

Similar results are valid ifwh is ρ times the vector of the (h + 1)st roots of−1,

whk = ρe
k+1/2
h+1 πi h = 0, 1, 2, . . . ; k = 0, . . . , h .

Any C-method of orderγ > 0 onw converges exponentially onSγ , andkN (γ, σ, b)
satisfies the same inequalities as before.

5 In [10], Eq.( 17) is obtained by approximating the Cauchy integral representation of the derivatives of
ψ at the origin, as in the Weeks method. The authors refer to their methods asmodified Weeks’ methods.
In spite of these analogies, Weeks’ method is not a C-method
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6.2. C-methods at the roots of Jacobi polynomials

The Jacobi polynomialsP (α,β)
n (α, β > −1; n = 0, 1, 2, . . .) satisfy the conditions

stated in Corollary 2; thus, with any fixedα, β > −1, the methodCM (w, γ) converges
exponentially onSγ if wh (h = 0, 1, 2, . . .) is the vector of the roots ofP (α,β)

h+1 . Among
these real inversion methods are the Piessens’ methods [12], which are obtained by
expressing the polynomial`N in terms of Jacobi polynomials. To prove this, let

`N (w) =
N∑
n=0

cnP
(α,β)
n (w)

be the polynomial which interpolatesψ in ( 4) at the zeros ofP (α,β)
N+1 . Then

cn =
1

Hn

∫ 1

−1

(1− x)α(1 +x)β`N (x)P (α,β)
n (x) dx =

1

Hn

N∑
k=0

WkψkP
(α,β)
n (wNk) ,(18)

where

Hn =
∫ 1

−1
(1− x)α(1 +x)β [P (α,β)

n (x)]2 dx ,

and the sum in the right-hand side of ( 18) is the Gauss-Jacobi quadrature formula
on wN+1. Substitution of ( 18) in III) leads to Piessens’ approximation [12, Eq.(9)].

Particularly relevant are the two choicesα = β = ∓1/2, corresponding to the
Chebyshev polynomials of the first and second kind, respectively. In comparison with
other numerical real inversion methods, these methods are very accurate on a wide
range of functions [3, 13].

We conclude this section by studying the conditioning in the caseα = β = −1/2;
similar results are valid forα = β = 1/2. Therefore, letwh be the vector whose
coordinates are the zeros ofTh+1, the Chebyshev polynomial of the first kind. The
orthogonality properties of theTh imply that [14]

lm(w) =
2

N + 1

N∑
h=0

′Th(wNm)Th(w) ,

so that, if

Th(w) =
h∑
k=0

thkw
k ,

then6

lmn =
2

N + 1

N∑
h=n

?thnTh(wNm) .(19)

Thus,
N∑

m,n=0

|lmn| ≤ 2
N + 1

N∑
m,n=0

N∑
h=n

|thn| = 2
N∑
h=0

h∑
n=0

|thn| .

Since [14, p.63]

6
∑?

h=n
means

∑′
h=n

if n = 0 and
∑

h=n
otherwise
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h∑
n=0

|thn| = |Th(i)| =
1
2

((1 +
√

2)h + (1−
√

2)h) ,

it follows from Theorem 2 that

kN (γ, σ, b) ≤ eσx2B

Γ (γ)
(1 +

√
2)N+1 − (1−√2)N+1 −√2√

2
.

On the other hand, ifQ, R are nonsingular matrices, and condQ denotes thecondition
numberof Q respect to itsrow norm, then∣∣∣∣εuRεlR

∣∣∣∣ 1
condQ

≤ condQR ,

whereεlR andεuR are the lower and upper (in modulus) eigenvalues ofR, respectively.
Let VN be the Vandermonde matrix onwN . From ( 19) it follows that

V −1
N = TNDNLN ,

whereDN = 1
N+1diag[1, 2, . . . , 2], TN = [Tj(wNi)] andLN = [tij ] (i, j = 0, . . . , N ).

The matrix LN is lower triangular and, again by the orthogonality properties of
Chebyshev polynomials, we have

(TNDN )−1 = T T
N .

Thus,

condTNDN ≤ 2(N + 1) , εuLN = tNN = 2N−1 , εlLN = t00 = 1 ,

and
2N−1

2(N + 1)
≤ condVN .

In [7] it is proved that the growth of condV (wN ) is at leastO(2(N+1)/2) for any real
vectorwN whose coordinates are located symmetrically with respect to the origin.
Assuming Gautschi’s conjecture [6, 7] about the optimality of symmetric knots for the
conditioning of Vandermonde matrices, we may conclude that C-methods of approxi-
matingf using only real values of the Laplace transformF are always exponentially
ill-conditioned.
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