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Summary. Methods for the numerical inversion of a Laplace transfdr@) which

use a special bilinear transformation fre particularly effective in many cases and

are widely used. The main purpose of this paper is to analyze the convergence and
conditioning properties of a special class of such methods, characterized by the use of
Lagrange interpolation. The results derived apply both to complex and real inversion,
and show that some known inversion methods are in fact in this class.
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1. Introduction

Among the numerical methods for the inversion ofaplace transformf, i.e., for
solving with respect tgf the equation

F(s) = £{f}(s) = /0 & f(z) du

particularly relevant are those which use a bilinear mapping like

stuo
w= o, 3 (6> )

and then approximateé(w) = F(s(w)) [3].
Such methods, including bothaguerre polynomial methodd0O, 11, 15 18 and
Piessens’ methodil 2], have led to reliable and efficient algorithms and software
[4, 5, 13].

The use of Lagrange interpolation at two special sets of knots for Laguerre poly-
nomial methods is discussed in [15

The approach of the present paper allows us to deal in a unified way with several
polynomial-type methods of inversion of the Laplace transform. We generalize and
formally characterize the approach in [1Beferring to such collocation methods as
C-methodsWe study their convergence and conditioning properties. Furthemore, we
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show that both the methods in [10] and [12] are in fact C-methods, which converge
on any class¥ of functions whose analytic continuation is given by

(1) F(s)=s77G(s) ,

for some fixedy > 0 andG analytic at infinity. The previous result accomplishes the
analysis in [2], where in fact Hardy’s theorem [9] has been generalized to orthogonal
polynomial expansions of' € . to prove the convergence of Piessens’ methods.
The background of the problem is summarized in Sect. 2. Section 3 is devoted
to defining C-methods and deriving their explicit representation. In Sect.4 a suffi-
cient condition for the (exponentially fast) convergence of C-methods is given, while
their conditioning properties are discussed in Sect. 5. Finally, Sect. 6 provides various
examples of such methods; both the methods in [10] and [12] are analyzed.

2. Preliminaries

This section provides some results and terminology on the inversion of a Laplace
transform (Sect.2.1) and on conformal mappings (Sect.2.2), which we will need
later.

2.1.

In the sequel we shall refer to the usual definitioaplace absolutely transformable
functions and of the_aplace absolute convergence abscisga[9, vol.ll, p.200].
Moreover, we shall denote by the radius of the smallest circle centered at the
origin and enclosing the singularities 6f.

Lemma 1. (Riemann) [9] Let f be an absolutely transformable function and F its
Laplace transform. Itr > o and ifx > 0 is a point of continuity off, then

o+ico
flx) = 1. Vp/ e F(s)ds .
2 ;

o—loo

Lemma 2. Let F be in.%; for somey > 0. Then F has a continuous, absolutely
transformable original function f andy < R . Moreover, if C is any piecewise smooth,
closed curve intersecting the real axis exactly twice and lying in the dofspin R,
then

@ f@)= zjri i €T5IG(s) ds + Si”ff” / T e IG(—s)ds, @ > 0.

In Eq. ( 2) the integration along C is carried out in the anticlockwise direction, and
—c is the abscissa of the point whef&intersects the real negative axis.

Sketch of the proofThe first part of the lemma easily follows from Hardy’s theorem
[9, vol.ll, p.248]. To prove Eq. ( 2), consider a famify”,,} of integration paths as
shown in the figure.

According to Cauchy’s theorem and Lemma 1,

2rif(x) = Iim/ e F(s)ds = lim /A e“s7T7'G(s)ds, x>0.
" JppP " Jpp
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Thus Eq. (2) follows from Jordan’s lemma [9, vol.l, p.255] and from the properties
of the functions™”. O

RemarkFor any natural numbet, F' € .%, implies thatf is a function of exponential
type, and Eg. (2) becomes

flx) = 1. % s "G(s)ds, x>0.
27T| C

In this case the conclusions of Lemma 2 follow from Pincherle’s theorem [9, vol.ll,
p.308].

2.2.

Given a closed Jordan curvke we denote by? the bounded open region havidgas

its boundary, byJ the simply connected, closed sét 3 and by.J°¢ the complement
of J with respect to the complex plane. Moreovér s the unit circle|s| = 1.

According to the Riemann mapping theorem, corresponding to every duthere
exists a unique functiog» which conformally maps/¢ onto U¢ such thatp(J) = U,
¢(00) = 0o and such that’(co) > 0. The quantityx ; = [¢'(c0)] 1 is the capacityof
the setJ [16, p.13]. Lastly, we denote by(r) (r > 1) the curve lying inJ¢ whose
image throughp is the circleU, of radiusr centered at the origin.

Consider now the transformation

s—o—2>b
s—o+b’

3) w= o€ (—00,00), b>0.

Eqg. ( 3) defines a one-to-one, conformal map, which transforms circles into &ircles
In particular, ( 3) maps any circl€ for which the pointss = o + b are symmetricat
onto somd/,., so that to the axis Re= ¢ correspond$/ and to the positive direction
on C corresponds the negative one bp.

1 Straight lines are generalized circles
2 Let D be a circle in the complex plane. The poinptsq are symmetrical with respect tb if there
exists a constarit such thats — p| = k|s — ¢| for anys € D
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It follows that C° is mapped intoﬁr andr > 1 orr < 1 depending ag — b € co'

orc+be 5 respectively®>. Moreover, ( 3) maps straight lines parallel to the real
and imaginary axes into circles which are tangentvir 1 to the real axis, and to
the axis Rev = 1, respectively. In the foregoing correspondence, the real axis and
the lower and upper half-planes are mapped into their analogues in-fhane. The
line Res = ¢ — b is transformed into Re = 1, and the half-plane Re< o — b is
mapped onto Re > 1.

Lastly, it is easy to prove:
Lemma 3. If J is a closed Jordan curve in the s-plane for whieh- b ej, then

its imageJ’ through ( 3) is a closed Jordan curve in the w-plane such that.J’.
Moreover, J is piecewise smooth if and only/ffis.

3. C-methods

Let F' € . for somey > 0. If ¢ > 0o, b > 0 andw is given by ( 3), then the
assumption o’ implies that (see Sect. 2.2)

@ sw=(2 ) (2, +o-0)

is an analytic function o/. Given the sequence
(5) w:h=0,12,... > w, =[who,...,wp] CU,

wherewy,,, # wy, if m #n, consider the Lagrange interpolation polynondiglwhich
interpolatesy at the N + 1 coordinates ofv,. We can choose, as an approximation
of f, the continuous functiorfy such that

£UwK@:@—a+w“wN(s‘”‘b).

s—o+b

Let {p,} (n =0,1,2,...) be any basis for the space of polynomials, and{gt} be
the sequence of the continuous functions whose Laplace transforms are

(3—0'+b)7pn<50b> .

s—o+b

If

N
(6) In(w) =3 copulw)

n=0
then fy can be obtained by:

I. evaluatingy at the coordinates)yj, of wy;

3 If C is the line Res = o, we must take ag° the right half-plane Re > o



Bilinear transform polynomial methods 273

Il. solving the linear system in the unknowns

[co,-...en]V(wy) = [Yo. . ... ¥N]

wherevyy, = ¥ (wyg) and

1 o1
~ pi(wno) ... pr(wnw)
V(wy) = .
pn(wno) -.. pn(wnn)

is a Vandermonde-likenatrix onw  [6];
lll. evaluating

N
fN(I) = Z Cn(pn(x; Y50, b)
n=0

Definition 1. A C-method of ordery on the system of nodes, briefly denoted by
CM (w,~), is a numerical method for Laplace transform inversion consisting of steps
)-111) above.

The results of Sect. 2.2 show that C-methods involve the evaluatibhadfprescribed

sets of points in the half-plane Re> o. They include both complex and real inversion
methods. The latter are characterized by the condition

wy, C [-1,1], h=0,1,2 ... .
Let LS be the generalized Laguerre polynomial of degreand ordera (o > —1);
then

I'la+n+1)(s— 1)

n! So¢+n+l

E{a® L7 () }(s) =

If in ( 6) we choosep,, (w) = w™, it follows that

. — gdo—bz, y-1 n! v—1
on(x;v,0,b) g T F(fy+n)L” (2bx) ,

and fx(z) is computed by step I) and replacing steps Il) and Ill) by:
I'. solving the linear system
[CO7 e 7CN]V(wN) = [1/}07 sy 77[]]\7] )
whereV(wy) = [wk]" (n =0, .., N) is the Vandermonde matrix om ;

lII'. evaluating

N
D) e nlc, _
fa(z) = oDz 1§ :I’(W+n)LZ Y2br) .
n=0
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We refer to such C-methods, which are special Laguerre polynomial methods, as
LC-methods
If

N
L (W) =D L™
n=0

is themth elementary Lagrange interpolation polynomial of degk&ehen it is easy
to prove (see for example [6]) that

VY wy)=[me] (m,n=0,...,N).

Thus,

N
7) =Y lpnthm  (n=0,...,N)

m=0
and

N
(8) fr(@) =27 " A (@)
m=0
where
N nl

= ! v—-1

9 Am(7) 2% b 4y n @)

For any fixedy,b > 0 and any real number, let ¥, ; -, be the set of functionsg
defined by Eq. ( 4), wheré’ € .% has (absolute) convergence abscisga< o. Let

R be the operator

(10) RPN i e W,y — fn

where fx is the function defined by steps I)-II). Obviouslﬁ%’b”) is a linear
operator on the space of holomorphic functionsidnwhose explicit representation
is given by ( 8).

4. A convergence criterion

Henceforth we will denote by - ||s the uniform norm on the sef.
Let fy be obtained by steps I)-lll).

Definition 2. The method” M (w, ) converges on the seX” of Laplace transforms
if and only if any F' € .7 has an original functiorf such that

f@= Jim fx@). @20,

whenevers > op andb > 0.
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Given a closed Jordan curvg let w be any sequence
wih=0,12 ... - w, =[who,...,wpn) CJ,

wherewy,,, # wy, if m #Zn. Consider any function) on J and construct for it the
Lagrange interpolating polynomid}, at the coordinates of,,. We denote byv;+1
the monic polynomial

h
wp+a(w) = H(w — Whk) -
k=0
The next lemma follows from the Fekete—Walsh convergence principle [16, p.17].
Lemma 4. Let ¢» be any function regular ory. The sequencé/,} converges uni-
formly to on J if and only if
m, "Vlwnsalls = ks

or, equivalently,

hlE‘noo h’V\wh+1(w)| = kglp(w)|,

uniformly on every compact set i, wherex; is the capacity of/ and ¢ is the
conformal map defined in Sect.2.2. Moreover i regular onJ(r) (r > 1), then

¢ — tulls = O

Theorem 1. The method”' M (w, ) converges exponentially o (v > 0) if there
exists a sequendg/,, } of piecewise smooth, closed Jordan curves intersecting the real
axis exactly twice and satisfying

)Vvr>1 Jv: {fwpm}CJ, CU, and 1eJ,;
II) hllm }H\VH(U}H.]_ Jn = KJ,-

Condition (ii) can be replaced by

i) e "N/ |whea| = K,

whereg,, is the conformal map corresponding Q.

I|m

¢n| uniformly for any compact set i,

Proof. Given anyF € .%, 0 > oo andb > 0, let C,; be the smallest circle in
Res > ¢ for which the pointss = o + b are symmetrical such that, ;, contains all
the singularities ofF'. According to the results of Sect. 2.2, the image through ( 3) of
C,p is a circleUg of radiusR = R, , > 1, and the function), defined by Eq. ( 4), is

regular in[}R. Condition (i) implies that for any ¥ r < R it is always possible to

choosen so that{wy,,,} € J,, C U, and 1eJO Let J/, be the inverse image under
(3) of J,. Lemma 3 implies that’/, is a piecewise smooth closed Jordan curve such

thato — b eJ’ andJ), C C¢,. Thus, we must havé’, CJ n-
On the other hand |GN andG are the two functions defined by

v =i (1270)) L cw=e (1200
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then from Lemma 2 it follows thak’ has its continuous original functiofisatisfying
for > 0 the equality

f@)— fn(x) = 2; 7{ e (s — o +b)77[G(s) — Gn(s)] ds
“ ‘]’;L
1) £+ Sn6) / e 5% (s+0 — b) " T[C(—s) — Gn(—5)] ds ,
T Can

wheres,, € J! satisfiess,, < c—b. Since (o0, s,,) C J/°, Eq.( 11) and the maximum
modulus principle imply that

f@) = fn@)=0(]¢ —Inlls,) » >0.

Let p > 1 be any number satisfyingd,(p) C(}R; according to condition (ii) and
Lemma 4,

[ — x|, = O~ ) |

so that the theorem is proved.O

Corollary 1. The method” M (w, v) converges exponentially o if there exists a
sequencg 6, } C [0, 2x] and a numbep € (0, 1] such that

why = pe@tI)  p=0,1,2,...; k=0,...,h.
Proof. Sincew,, is the vector of the roots of ordér+ 1 of (p€?»)"*1, we have
whra(w) = w"t — (pd? ),
If we U,, then we find that

wher(w)[? = 720 — 20D 26 ) cos[(h + 1)@ — 0,)], 6 € [0, 27],

so that, for any fixed > 1,
lim "V|wpsllo, =7
h—o0

The functiong(w) = w/r conformally mapg/¢ onto U¢ and, moreoverg(U,.) = U,
@(00) = o0, ¢'(00) = 1/r. Thus, Ky, = r, and the assertion follows by applying
Theorem 1 withJ,, = Uy4y/p,. O

Corollary 2. Let {p,} be a sequence of polynomials orthogonal with respect to the
measuredy on the segmert1,1]. If x/ > 0 almost everywhere if—1, 1] and w,
(h=0,1,2,...) is the vector whose coordinates are the zerog;ef, thenC M (w, 7)
converges exponentially o%¢. 4

4 A weaker version of this corollary follows from a theorem of Van Assche [17, p.18]. We omit it
because it is of no practical interest
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Proof. Let E,. (r > 1) be the ellipse defined by the parametric equation

1/ . 1
w=_(rd?+ 7 |, 0<6<2r.
2 ref

Since E, has foci atw = +£1 and semi axes
1 1
a= (r+1fr). b= (r—1/r),

there exists a sequence Bf. satisfying condition (i) of Theorem 1.
E¢ is conformally mapped ont&® by the function

Bw) = sz 1)

and ¢(E,) = U, ¢(c0) = 00, ¢'(c0) = 2/r. On the other hand, i+, is the monic
polynomial whose zeros are the coordinatesvgf then [8, p.151]

, +vVw? -1
lim  "Y|wpea| = o+ Vo =1
h—o0 2

uniformly on any compact subset of the domfir-+/w? — 1| > 1. Thus (ii") follows,
and the corollary is proved. O

5. Conditioning

According to the results of Sect. 3 , it is natural to consider the quantity

(7,0,b)
12 kx(ro.) = sup N Wl
ver Yo

to represent an (absolute) condition number of the problem of evaluftingn the
interval I C [0, o), starting with.

Theorem 2. Let I = [x1, 2] be any interval such thak c (0, ). If R7? is the
linear operator in ( 10) then

B
(13) k‘N(’}/,U,b)S F(’)/) Z |lmn|7

m,n=0

where
xz_l ify>1

b= x}—1<HN21¥! —1) ifo<vy<l
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Proof. SinceR%"”b) is linear andy belongs to the saf'(U) of continuous functions
on U, then

N N
(14) En(r, o) < sup sUpl Y dmAm| =SUPY (Al -
YeCW),IpI=17€l g z€l =0

Moreover, the following inequalities hold [1, p.786]:

e < T Ve 2,
1 (@) < (2 - I}(Zv;h’?) & (0<<1).

Thus, the statement of Theorem 2 follows from ( 9), ( 14) and the fact that

I'(y)h! - h!
Iy +h) HZ:01 v+ k)

is an increasing function o forO <y < 1. O

Equation (13) illustrates the terms that affect the conditioning. The faétezg
I'(v) is related to the parameters of the methods, while thegﬁﬁjnzo |lmn| depends
only on the set of knots. Sind8@ — oo asy — 0, particularly relevant is the influence
of 4, according to the fact that the slowE(s) decreases to zero as— oo, the more
difficult is the inversion ofF'.

Equation (13) suggests choosing the parameteas small as possible in the
interval o > oo. The factor €°* is inherent in the inversion dll Laplace transforms
and is not special to C-methods.

As regards the choice of the knots, we emphasize that, according to step llI),
their effects can be analyzed by means of the conditioning of Vandermonde matri-
ces, extensively studied by Gautschi (seé fiiif a general discussion and further
references).

6. Some remarkable C-methods

In the following examples we assume some typical configurations of interpolation
points and study both the convergence of the related C-methods and the conditioning
to evaluatefy from . We consider both complex (Sect.6.1) and real (Sect.6.2)
interpolation points. We show that the methods in,[1Q] are in fact convergent
collocation methods.

Henceforth,w;+; shall denote, as in Sect. 4, the monic polynomial whose zeros
are the coordinates ab,,.
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6.1. C-methods at the roots of unity

An important class of C-methods at complex knots is obtained by choosing the se-
quencew whose termw,, is p times (0< p < 1) the vector of the/{ + 1)st roots of
unity,

whe = peml . h=0,1,2,...; k=0,....h.

We refer to these methods simply @smethods at the roots of unity

Obviously, w satisfies the conditions stated in Corollary 1, so that any C-method of
order~ at the roots of unity converges exponentially .6f.

Since

wy+(w)

lm(w) - (’LU - wNm)w§v+]_(wN7n)

andwy+1(w) = w1 — pN*1 elementary calculations show that

(15) lnn = e N

From (15) and Theorem 2 it follows that

2 1—pN*

pNI(y) 1-p ifp<1,

(16) kN(’% g, b) S

e;?gf(Nu) ifp=1,

where B is the bound in ( 13). Eg. ( 16) shows that in this case the problem of
evaluatingfy starting frome is well conditioned if and only ify > 1 andp ~ 1.

The approximation formulae relating to the LC-methods at the roots of unity are
easily obtained by Eqgs. ( 7) and ( 15). We have

—n N N —oximmn
(17) e = ]\?”Zw(pezﬁi’?)e T p=0,...,N,

m=0

which proves that the methods for inverting a Laplace transform in [10] are precisely
LC-methods of order one at the roots of unity
Similar results are valid itv,, is p times the vector of theh(+ 1)st roots of—1,

k+1/2
wpr=pe ™ h=0,1,2,...; k=0,...,h.

Any C-method of ordery > 0 onw converges exponentially o, andkx (v, o, b)
satisfies the same inequalities as before.

51n[10], Eq.( 17) is obtained by approximating the Cauchy integral representation of the derivatives of
¢ at the origin, as in the Weeks method. The authors refer to their methadsdiied Weeks’ methods
In spite of these analogies, Weeks’ method is not a C-method
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6.2. C-methods at the roots of Jacobi polynomials

The Jacobi polynomial$(*® (a,3 > —1; n = 0,1,2,...) satisfy the conditions
stated in Corollary 2; thus, with any fixed 5 > —1, the method’ M (w, v) converges
exponentially on¥ if w,, (h =0,1,2,...) is the vector of the roots aP{%;”). Among

these real inversion methods are the Piessens’ methods [12], which are obtained by
expressing the polynomidly in terms of Jacobi polynomials. To prove this, let

N
Inw) =Y e PO (w)

n=0

be the polynomial which interpolates in ( 4) at the zeros of{:%). Then
1 [* 1 —
a8 ez, [ 1(17x)a(l+x)"eN(x)P$‘ﬁ)(x)dx: 0 ;kaP}ﬁ’m(ka),

where L
H, = / (1— 2)°( + ) [PCP @) dr |
—1

and the sum in the right-hand side of ( 18) is the Gauss-Jacobi quadrature formula
on w .. Substitution of ( 18) in 1) leads to Piessens’ approximation [12, Eq.(9)].
Particularly relevant are the two choices= § = F1/2, corresponding to the
Chebyshev polynomials of the first and second kind, respectively. In comparison with
other numerical real inversion methods, these methods are very accurate on a wide
range of functions [3, 13
We conclude this section by studying the conditioning in the casef = —1/2;
similar results are valid forx = 5 = 1/2. Therefore, letw, be the vector whose
coordinates are the zeros 8.1, the Chebyshev polynomial of the first kind. The
orthogonality properties of th&;, imply that [14]

N
_ 2 /
lm(w) - N + 12 Th(wN’ln)Th(w) )
h=0
so that, if
h
Th(w) =t
k=0
therf
5 N
(19) lmn = N+1 ; thnTh(wNm) .
Thus,

N 2 N N N h

m,n=0 m,n=0 h=n h=0 n=0

Since [14 p.63]

6 \* roe )
> h-n meansy 7 ifn=0and),_ otherwise
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h
S il = 1T0)] = H(@ 4V + (1 - V2))

n=0
it follows from Theorem 2 that
2B (1+v/2)N1 — (1 —V2)N*1 — /2
I'(v) V2 '

On the other hand, if), R are nonsingular matrices, and capdienotes theondition
numberof @) respect to itgow norm then

kN("Y? a, b) <

R < condQR ,

ety | cond@
whereel, ande?, are the lower and upper (in modulus) eigenvalueR ofespectively.
Let Vx be the Vandermonde matrix an,,. From ( 19) it follows that

V];l = TNDNLN s

WherEDN = N]_"_ldlag[l 27 ey 2], Ty = [T7(le)] and Ly = [t”] (Z,] = O7 Ceey N)
The matrix Ly is lower triangular and, again by the orthogonality properties of

Chebyshev polynomials, we have
(InDN)"H=TY
Thus,
condIyDy <2(N+1) , &} =tyy=2""1 | &b =tep=1,

and
2N71

2(N +1)

In [7] it is proved that the growth of corld(w y) is at leastO(2(N*Y/2) for any real
vector w,, whose coordinates are located symmetrically with respect to the origin.
Assuming Gautschi’s conjecture [6, @bout the optimality of symmetric knots for the
conditioning of Vandermonde matrices, we may conclude that C-methods of approxi-
mating f using only real values of the Laplace transfoffrare always exponentially
ill-conditioned.

< condVy .
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