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Summary. In an abstract framework we present a formalism which specifies the no-
tions of consistency and stability of Petrov-Galerkin methods used to approximate
nonlinear problems which are, in many practical situations, strongly nonlinear ellip-
tic problems. This formalism gives rise to a priori and a posteriori error estimates
which can be used for the refinement of the mesh in adaptive finite element methods
applied to elliptic nonlinear problems. This theory is illustrated with the example:
—div (k(u)Vu) +c- Vu = f in a two dimensional domaif® with Dirichlet boundary
conditions.
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1. Introduction

Let X andY be two reflexive Banach spaces and let us considéf-anapping
F : X — Y’ whereY” is the dual space df, the duality pairing is denoted biy|-).
We are interested in approximations of an elemert X satisfying

(1.1) F(u)=0,
or equivalently
1.2) (F(w)jv) =0, VYoveY.

In order to build approximations;, of u, we use a Petrov-Galerkin method on (1.2),
that is to say we choose finite dimensional subspatgsc X andY; C Y with
dim X, = dimY}, and we findu;, € X, satisfying

(1.3) (F(uh)|vh> =0, Vo,eY,.
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In this paper we assume we have a solution u of (1.1) such that &ehétrderivative
DF(u) at the point u is an isomorphism frotd onto Y’. Then, under consistency
and stability conditions which are essentially linked to approximation properties of
X by X,, of Y by Y, and to discrete “inf-sup” conditions on the bilinear form
b(p, ) = (DF(u)ply)), we prove that Problem (1.3) has a unique solutignin
a neighborhood of: and we establish a priori and a posteriori error estimates for
(u — up) In the norm of X. Let us point out that the main term in the a posteriori
estimate is the residual valyg'(uy)||y+ in the Y’-norm. In concrete situations, the
knowledge of this value is important since it allows to minimize the error by means
of adaptive techniques (see for instance Johnson [11], Johnson and Hansboo [12],
Baranger-Elamri [3], Veidrth [15], Picasso [13]).

The main results presented in this paper have been announced in Pousin-Rappaz
[14]. For proving them, we begin to build @-mappingF}, : X — Y’ such that if
w € X is a solution of

(1.4) Fyp(w) =0,

thenw belongs toX; andu;, = w is a solution of (1.3) and conversely. Next we
compare the mappingg' and Fj, in a similar way as in Crouzeix-Rappaz [5] for
obtaining the existence and the error estimates for the approximate problem (1.3).
Nevertheless, in contrast to the method previously employed in Crouzeix-Rappaz [5],
the new approach presented here, does not require to invert the principal part of the
operator when treating approximations of nonlinear elliptic problems. Consequently
our theory permits to consider strongly nonlinear problems.

An outline of the paper is as follows. In Sect. 2 we define the functional framework
in which the problem is set and we give some abstract theorems of convergence and
error estimates when we compare Problem (1.4) to Problem (1.1) under reasonable
assumptions. Section 3 is devoted to the particular case where the nonlinear problem
(1.1) is approximated by Petrov-Galerkin methods (1.3). We give a priori and a
posteriori error estimates. In Sect. 4 we consider a nonlinear stationary heat problem
with a convection term. Under appropriate hypotheses we show how the abstract
results of the previous sections can be applied to the finite element approximation of
this problem, and we give a posteriori error estimates by means of local indicators
which are used in an adaptive code solving this problem (see Picasso [13]).

2. Abstract results

Let X and Z be two Banach spaces the norm of which are respectively denoted
by || - [|x and by]| - ||z. If £(X,Z) is the Banach space of all continuous linear
operators fromX into Z, we denote by(|T'[|xz = SUR,¢ x jju =1 ITul/z the norm
of T € £(X,2). If G: X — Zis aC*mapping fromX into Z and ifu € X, we
denote byDG(u) the FEchet derivative ofy at the pointu.

We begin to establish a result which is similar to one of them we find in Girault-
Raviart [9].

Theorem 1. LetG : X — Z be aC*-mapping fromX into Z and letw be an element
of X. We assume

(2.1) (i) DG(w) is an isomorphism fronX onto Z,
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(2.2) (i) [[DGw) Y zx||Gw)|z < 6/2
whereé > 0is such that

(2.3) sup |DG(w) — DG(x)|xz < | DGw) Y| zx)~ .

zeX, lw—z| x <8
Then there exists a uniquec X satisfying
(2.4) G)=0 and |lw—ov|x <$é.
Moreover we have the estimate:

(2.5) lw = vllx < 2| DGw) | zx |Gz -

Proof. Let § > 0 be given by (2.3). If we define the mapping
L(z) =z — DG(w) 1G(x), zeX,

we have forz,y € X such thatl|w — x| x <6,

w—yllx <8

1
I2G) = L) = [DGG)™ [ (DG(w) = DG(sa + (L= )b = 1) x

< | DG(w) | zx @IDGw) ) zx) = =yl x

< 2z~

=~ 2 r—YI|x -
By using the above inequality withh = w together with (2.2) we have:

[w— L(z)|lx < [w— L{w)lx + || L(w) — L(z)] x
1

(2.6) < |IDGw) | zx|Gw)| 2 + Hllw—zlx <6
We conclude that is a contracting mapping from the ball centereduatind with
radiusé into itself. Consequently there exists a unique fixed poinf L in this ball,

i.e.v = L(v), and (2.4) is proved. Estimate (2.5) is a direct consequence of (2.6) with
xTr =.

A consequence of Theorem 1 is

Corollary 1. LetG : X — Z be aC?-mapping such that its second&ahet derivative
is bounded on all bounded subsets¥bfWe assume there exist a sequefeg} 2, C
X and constantg’, M, independent of, satisfying:

@) Jim |GGz =0

(@) lunllx <C, n=123, ...,
(iii) DG(u,) is anisomorphism fronX onto Z and || DG (u,) Y |zx < M .

Then there exists € X such thatG(u) = 0.

Proof. Since the second derivative Gfis bounded on all bounded subsetsioand by
using (i), we can find > 0 such that SUR. x ||, —z |y <s [ PG (un) — DG(z)| zx <
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1/(2M). By using (i) and (iii) there exist&V such that| DG (u,,) Y| zx ||G(un)|| z <
6/2 for all n > N. Theorem 1 allows to conclude.

Let us remark that Corollary 1 applied to concrete nonlinear elliptic problems gives,
in several situations, a numerical proof of existence in the same way as Bamberger
[2].

Now we consider an element € X and a family{ £}, }o<n<1 of C1-mappings
from X into Z parametrized by:. In concrete examples,will be a zero of a mapping
F: X — Z and F}, will be an approximation of.

We assume that the familfyF}, }o<,<1 and the pointu € X are satisfying:
(H1) there exists a constant > 0 and for allh € (0, 1] there exists a positive

numberL; such that

|DFp(u) — DE,(v)||xz < Lpllu — v||x for all v € X with ||ju —v||x <eo;

(HZ) |Imh_,0(1 +L;,,)||Fh(u)|\z =0;
(H3) DFy(u) is an isomorphism fronX onto Z for all h € (0, 1] and there exists a
constantM, independent of, such that

|DE(u) Yzx <M, Yhe(01].

Let us note that if: is a zero of a mapping which is approximated by}, Hypothesis
(H3) is a stability assumption and Hypothesis (H2) is a consistency assumption. In
fact if L, is bounded with respect tb (which is realized in a lot of applications)
then it is sufficient to assume lim,o || Fr(u)|| z = 0 which is the standard consistency
hypothesis ifF}, is an approximation of a mapping.

Now we establish the two main results of this section.

Theorem 2. Assume that the family of mapping$}, }o<n<1 satisfies Hypotheses
(H1), (H2) and (H3). Then there exigt > 0 and §y > 0 such that for allh € (0, hg]
there is a unique:, € X satisfying

(2.7) Fr(up) =0 and |[ju—uplx < do/(1+Ls) .
Moreover, forh < hg we have the estimate:

(2.8) u—upllx < 2|DFp(u) Y zx | Fr(w)|z -

Proof. We setéo = min(eo, ,3,) and we define, = 6o/(1 + Ly). By using (H1) we
verify that, for allv € X such that|u — v|x < &, we have:

1
(2.9) |DFy(u) = DFL(v)||xz < oM -
It follows, by using (H3), that for alk € (0,1] and ||u — v||x < ép:
1
2.10 DF, — DF; < .
( ) H h(u) h(U)”XZ = 2||DFh(U)_lHZX
Now using Hypothesis (H2), there exisig > 0 such that forh < hg

(211) A+ Lp) | Fr(u)llz < bo/(2M) .
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Since Hypothesis (H3) implies

IDFu(u) | zx | Fu(u)] z < M| Fu(u) 2 ,
it is easy to verify by using (2.11) that, fér < ho:
(2.12) | DFnu) zx | Fr(w)lz < 61/2.

Theorem 2 is a direct consequence of (2.10), (2.12) and of Theorem 1GwittF?},
andw = u.

Remark 1. If L; is bounded, we can see that, in a fixed neighborhood, dhere
exists a unique zera,, of Fj, if A is small enough.

Let us observe that, under Hypotheses of consistency and stability (H2) and (H3),
we have

(2.13) Ju —up||x < 2M||Fp(u)|z -

Consequently, converges ta,; whenh tends to zero with the same order as the one
of the consistency. Inequality (2.13) is an a priori error estimate since it depends on
U.

Now, if u is a zero of aCt-mappingF : X — Z, we have the following a posteriori
error estimate which does not dependwon

Theorem 3. Assume that the family of mapping$y, }o<n<1 Satisfies (H1), (H2),
(H3). Moreover we assume that we havé'amappingF : X — Z such that:

(H4) F(u) = 0and DF(u) is an isomorphism fronX onto Z.

If ho, 6o andu,, are given by Theorem 2, there exigts< hg such that for allh < hy
we have:

(2.14) lu — un||x < 2|[DF(up) | zx||F(un)z -

Proof. SinceF is a C'-mapping, there exist§ > 0 such that
1

(2.15) sup D) = DE@)xz < g p -

veX,|lu—vl| x <26 lHZX .

A consequence of Theorem 2 is that converges ta: whenh tends to zero and so
there existsi; < hg such that

(2.16) lu—unllx <6, Vh<h.

Now, if h < hy andz € X satisfies|u, — z|x < 6, then|lu — z||x < 26 and by
using (2.15) we obtain:

1
(2.17) sup DF(up) — DF(z)|| < .
sexy P IS 4Dy )2x

Besides, there exists < 711 such that for allh < h; we have:
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(2.18) IDF(un) | zx < 2| DF(w) | zx
and
(2.19) IDF(up) Y zx | F(un)l|z < 6/2.

By using Relations (2.17), (2.18) and (2.19) we can conclude from Theorem 1 with
G = F andw = uy: there is a uniquer € X satisfying

Fv)=0 and |jv—upllx <6.
Moreover the following estimates hold:
(2.20) lun — vl x < 2[DF(un) | zx | F(un)] z -
Inequality (2.14) is a direct consequence of Inequality (2.20) if we proveuthat:.
In fact we havel|lu — v||x < 26 and F'(u) = F(v) = 0. From the identity

(u—v) = DF(u)? /l(DF(u) — DF(su+ (1— s)v))(u — v)ds
0

and from Inequality (2.15) we dedudlee — v||x = 0.

3. Petrov-Galerkin methods

Let X andY be two reflexive real Banach spaces equipped respectively with the
norms|| - ||x and|| - ||y and we denote by:|-) the duality pairing betweel” andY.

In all the following, F : X — Y is a C*-mapping defined oX (or eventually
on an open subset of) with values inY”’. We call the exact problem, the following
one: findu € X satisfying

(3.1) F(u)=0,
or equivalently
(3.2) (F(u)lvy =0, VoveY.

If {Xh}ocn<1 and {Y3}o<n<1 are respectively two families of finite dimensional
subspaces oK andY, we shall say that the problem of finding € X} such that

(33) (F(uh)|vh> =0 R Yo, €Yy

is a Petrov-Galerkin approximation of Problem (3.2).

In this section, we build, under suitable assumptions, a fafifily}o<,<1 of C*-
mapping fromX into Y’ which allows to obtain the solutions of (3.3) as the zeros
of F}. Next using the results established in Sect.2, we get error estimates for the
Petrov-Galerkin approximation of the exact problem.

We start by assuming there is a solutiore X of Problem (3.1), i.eF'(u) = 0,
and we define the continuous bilinear fobm X x Y — R by the following relation:

(3.4) b(z,y) = (DF(u)zly), VeeX, VyeY.
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We denote byi|b|| the norm ofb, i.e. [|b]| = supyeyy|y=1 b(x,y) = | DF(u)| xy
wEX,||z|| x=1
and we assume the “inf-sup” conditions dmold (see [}i] for instance), i.e.

(3.5) sup  b(z,y) =6 >0,

XiH fHX Y,
zeX, |z :1y€ lylly =1
(l |5)

(3.6) sup  b(z,y) >0, VyeY, 6 y#0.
zeX,||z| x=1

Hypothesis (H5) is equivalent to assume thef'(u) is an isomorphism fronk onto
Y’ sinceY is a reflexive space (Hypothesis (H4) with = Y’) ; the norm of its
inverse is given by

(37) IDE@) lyrx =87

Concerning the spaceX}, Y; and the formb, we assume the “discrete inf-sup”
conditions hold:

(3.8) . ir‘llf et sup  b(xz,y)=p0r >0, and
rEXp,||x|| x= Yy || =1
€Y llylly (H6)
(3.9 dim X, =dimY}, ,
whereg;,, for h € (0, 1], is a positive constant which could possibly tend to zero when
h tends to zero. For this reason we assume in addition the following approximation
property:

(3.10) ;L'Lnoﬁh xhrry)rghnu ap|lx =0. (H7)

Let us remark thats;, < ||b|] and if 35, is bounded from below, then (3.10) is
a consequence of the standard hypothesis for the approximation loy X, i.e.
lim;_o minxhexh ||.T — thX =0,Vze X.

If 85, is not bounded from below we shall see, in concrete applications related to
elliptic problems, that: must be sufficiently regular to obtain (3.10).

Now we give the main result of this section.

Theorem 4. We suppose Hypotheses (H5), (H6) and (H7) are fulfilled. Moreover we
assume thaDF is Lipschitzian atu, i.e.

Jdeg > 0 and L such that for allv € X, ||lu —v||x < €o: (H8)

(311) IDF(u) = DF(v)||xy’ < Lllu — vl|x .

Then there exisky > 0 andnp > 0 such that for allh € (0O, ho] there is a unique
up, € X, satisfying

(312) <F(uh)|vh> = 07 Yo, €Yy and ||'LL — uhHX < noﬂh .

Moreover we have the error estimates:

3.13 uUu—1u < 1+ min jjlu— R
( ) H h”X = 6 ﬁh XhEX), || Xh”X

4
(3.14) lu = unllx < ﬁHF(Uh)Hy' , Vh<he.
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Before to prove Theorem 4, we build a mappifg : X — Y, the zeros of which
will be the solutions of (3.3).

It is well known (see [1] for instance) that Hypotheses (H6), that is to say (3.8),
(3.9), imply the existence of two projectors

n:X - X, and II7:Y - Y,

defined by
(3.15) bz — iz, y,) =0, Yy, €Y,, VzeX,
(3.16) b(zn,y — 2y)=0, VYa,e€X,, VYycY.

It is easy to verify that

_ ol

@17 178 < 191

In order to give a bound fol{772||yy, we use Relations (3.4), (3.7), (3.15), (3.16);
we write fory € Y

IM7ylly = sup < @|fy)=  sup  b(DF(u) o, I}y)
peY’, |lollyr=1 peY’, |lollyr=1

= sup BT DF(u) e, y) < Il - lylly - [[HT3llxx - 87
eeY" lollys=1

Finally, we use (3.17) in order to obtain

b|?
3.18 2 < | .
(3.18) | h”YY—ﬁ.ﬁh

Now, for all & € (0, 1], we build F}, : X — Y’ in the following way:
def
(319)  (Fu(@)ly) =(F@)|T}iy) +b(e,y — ITfy), YoeX, VyeY.

Let us notice that}, depends on the solutiom of (3.1) through the bilinear forrh.
We have

Lemma 1. If u;, € X}, is a solution of Problem (3.3), than, is such thatF}, (u;) = 0.
Conversely, ifu € X is such thatF, () = 0, theny € X}, andwy, = p is a solution of
Problem (3.3).

Proof. It is easy to show that all the solutions of Problem (3.3) are zeros of the
mappingFj,. Conversely, lef. € X be a zero of the mapping},, i.e.

(3.20) (F()|I7y) + b,y — [I7y) =0, VyeY.
If w belongs toY and if we choosey = w — H,le in (3.20), we obtain
(3.21) b(p,w — IM2w)=0, YweY.

By using definitions (3.15), (3.16) of projectof} and I7Z, we can see that (3.21)
implies
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(3.22) b(p — I, w)=0,YweY .

Hypothesis (H5) together with (3.22) imply= I} € Xj,.
By settingy = v, € Y}, in (3.20), we obtain

(F()|vn) =0, Vo, €Yy,

and consequently;, = u is a solution of Problem (3.3).

Now we are in position to derive the proof of our main result as a consequence of
Theorems 2 and 3 thanks to Lemma 1.

Proof of Theorem 4According to Lemma 1 we can deal with the fam{ly), }o<n<1
defined by (3.19) instead of considering Problem (3.3). Let us check that the Hy-
potheses (H1), (H2), (H3) and (H4) are fulfilled by the fam{ly}} in order to
apply Theorems 2 and 3. From the definition (3.19Fpfwe easily deduce that for:
v, € X,y €Y, we have:

(DFy(u) — DE,(0)¢ly) = (DF(u) — DEW))¢|H}y) -

Thanks to (3.18), (3.11) and to inequalitiés< ||b||, 3, < ||b]|, it follows that for
veX, |lu—v|x <eo

b 2
IDEW@) ~ D@y < ) IDFG) - DFG)xy
(323 <1 PP o < e P ] ol
B B B B
So, we have proven Hypothesis (H1) of Sect. 2 witls Y/ and
(3.24) Ly =(L+1) [ 1.
B B
In order to verify Hypothesis (H2) of Sect. 2, we use (3.19), (3.2), (3.15), (3.16) to
obtain:
[Fn()llyr = sup  (Fn(u)|v)
veY,|jv]y=1
= sup b (u, v — Hﬁv)
veY,|jv]y=1
= sup b(u—H,%um)
veY|v|ly=1

< |[bll[lu — Myul|x -
Considering the inequality

lu = Myullx < llu—xallx + [0 = Wllx .V xn € Xa

and Relation (3.17), we conclude that:

Ibll) -
3.25 Fr)|ly < ||o|| {1+ min ||lu — .
(3:25) [En)lyr < ||( g ) min e = lx

Inequality (3.25) together with (3.24) and the relatign< ||b|| imply:
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u— ’
B . B}Zl neXn, Xhll X

thus Hypothesis (H2) wittZ = Y” is a consequence of (H7).

Hypothesis (H3) of Sect.?2 is a direct consequence of (H5), or equivalently of
(3.7), because we can easily verify that our choiceFpfand of formb implies
DFy(u) = DF(u).

Theorem 2 withZ =Y’ can be applied in this particular situation. We obtain the
existence offy > 0 andhg > 0 such that for allh < hg, there is a uniquey, € X,

o _ 8 ; _ 6 ;
satisfying F,(up,) = 0 and|ju — up||x < 1+£h' By settingng = (L+lo)ﬁb\|2 we obtain

|lu —up||lx < mnoBr. By Lemma 1, the element;, belongs toX;, and is solution to
Problem (3.3). A priori error estimate (3.13) is a direct consequence of (2.8), (3.7),
(3.25) together withD Fj,(u) = DF'(u). A posteriori error estimate (3.14) is derived
from Inequality (2.14) and (3.7) if we prove that

(3.26) A +Lp)||Fr@)llyr <

(3.27) IDE(un)yrx < 2| DF @) lyrx

for h < hg even if it means to takéy smaller. In fact Relations (3.13), (3.10) and
Br < ||b]|, imply thatu;, converges ta: whenh tends to zero thus (3.27) is true.

Let us terminate this section with two remarks.

Remark 2. According to Remark 1 of Sect. 2, we can see thaifis bounded from
below, then, in a fixed neighborhood ofin X, there exists a unique solutian, of
the Petrov-Galerkin approximation of the exact Problem (3.1).

Remark 3. 1f X =Y and if the bilinear formb(-, -) defined in (3.4) is coercive, then
the constanfi in equality (3.14) can be evaluated.

4. An example and practical considerations

In this section, we investigate a stationary heat problem with convection. We show
how the formalism previously developed applies to this problem and to its numerical
approximation.

Let £2 =(0,1) x (0,1) C ®? be the unit square, the boundary of which is denoted
by 0(2. The notationdV "™ P((2) will denote the usual standard Sobolev’'s spaces of
functions equipped with the normfis ||,, ,,» and the semi-norms |, , . Forp = 2,
we will write H™(£2) for W™2(£2) and we miss out the index in the norms and
semi-norms, that is to say - ||m.2 = || - |lm.2e and| - [;m.o = |- |m,2,e. Finally,
Wolm((z) denotes the subspade € Wir(£2), ¢ = 0 on 92}, and if ¢ is such that
T+ 1=1, thenW~19(02) is the dual space dfi’y”(£2).

The problem we want to discuss, is to finds H(£2) such that:

(4.2) —div(k(uw)Vu)+c-Vu=f, in 2,

where the functiong’ € L>(2), ¢ € [C°(£2)]? are given, and € C?(R) is a positive
mapping satisfying:
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(4.2) k(s)>a>0, Vselk, (HO)

(4.3) KOG <, VseR, V0=0,1,2

wherea, 7o, 71, andy, are positive constants ad” stands for the" derivative of
k.

If we define the functionk by K(s) = fos k(t)dt, using the property (4.2) we
deduce thatK is increasing, thusz the inverse ofK exists, i.e. K(G(s)) = s,
Vs € &, andG is aC? mapping which first derivative is defined byG’(s) = g(s) =
k(G(s))~1. Moreover, estimate (4.2) implies thatis bounded. Set/ = K (u), then
V K (u) = k(u)Vu and Problem (4.1) is equivalent to fiid € H(£2) such that:

(4.4) —AU+gU)c-VU=Ff, inf2.

Since the functiory is bounded, Problem (4.4) is equivalent to fitide H}(£2) such
that:

(4.5) /VU~V<pdx+/g(U)C-VU<pdx=/fcpdx, Ve HY ).
Q Q Q

Theorem 5. Assume Hypothesis (H9) holds and tleat [C*(£2)]? with divc = 0.
Then Problem (4.5) has at least one solutidne H3(£2). Moreover,U € W2P(§2)
for all p, 2 < p < +oo, andu = G(U) € W2P(£2) N H}(£2) for all p, 2 < p < +oo is
a solution to Problem (4.1).

Proof. We know that- A is an isophormism fron#73(£2) onto H ~(£2), then denoting
by T its inverse, we easily verify that (4.5) is equivalent to:

(4.6) U=T(f —g(U)c-VU).

The mapping/ — g(U) c- VU is continuous and compact frobd(£2) into H~1(£2),
so by settingS(U) = T'(f — g(U)c- VU), we have thatS is a compact continuous
mapping fromHg({2) into itself.

It is not difficult to check that problem (4.5) is equivalent to find a fixed point
of the operatorS. It is well known (see for example Gilbarg-Trudinger [8]) th&t
has at least one fixed point if there exists a constarsiuch that for all solutions of
V = AS(V) with X € [0, 1], we have||V||1,» < C. ConsiderV satisfyingV = AS(V)
for A € [0,1] that is to sayV € H3(£2) and verifies:

(4.7) /Q VV - Vipdz + A /Q g(V)c-VVidr = )\ /Q fbdz ¥ o € HAR) .

If we prove thath g(V)c-VVVdx = 0, then Equality (4.7) with) =V combined
with Poincaé and Schwarz inequalities provide a bound [fdf||1 ; independent of
A

Let M be defined byM(s) = [, g(t)tdt. We verify thatM (V) € Wy (2) if
V € H(2) sinceg is bounded, and we havéM (V) = g(V)VVV. It follows that

/ g(V)c-VVVdr = / c-VM(V)dz = — / diveM(V)dz =0,
2 2 2

which proves the existence &f solution of (4.5). Since the functiog is bounded,
g(U)c - VU belongs toL?(§2); the elliptic regularity of the laplacian operator in a
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square implieg/ € H?(12) (see for example Grisvard [10]). The embedding#1(2)
into WL2(£2) for all p,2 < p < +oo and one more time the elliptic regularity of the
laplacian operator lead t§ € W2P(£2) N H3(£2) for all p,2 < p < +cc.

It is easy to show that = G(U) is a solution of (4.1) and € W?2P(2) N H}($2)
forall p, 2<p < +o0.

Remark 4. In fact, by using a maximum principle, we can generalize Theorem 5 as
follows: If c € [C°(£2]?, Problem (4.1) has always a solutiore 1W2?(£2). Moreover,
if ¢ [CY(£2)]? is such that die = 0, then the solution is unique.

In all the following, we will deal with Problem (4.1) instead of Problem (4.4) or
Problem (4.5). In fact, for theoretical reasons, it is easier to control Problem (4.4)
because the nonlinearity does not take place in the principal part of the operator.
However, it is Problem (4.1) which is discretized in practice, when seeking for a
numerical approximation of.. It is the reason why we are interested in Problem
(4.12).

In all the following, u € W2P(£2) N H3(£2), 2 < p < +co will be a solution of
Problem (4.1) and” will be the mapping defined by:

F(v) = —div(k(v)Vv)+c- Vv —f, Yovec H} D).

Clearly, F is well defined as a mapping frofi}(£2) into its dual H~1(£2) when
hypothesis (H9) holds, and we ha¥&u) = 0. Unfortunately this mapping is nat.
To overcome this difficulty we introduce the standard Sobolev’s stcesI/Vol’p(Q)
with p > 2, Y = Wy (2) with 1 + 1 = 1, and their dual spaces’ = W~1(2),
Y’ = W-L(2). Clearly Wy (£2) — C°(£2) and we have:

Theorem 6. Under Hypothesis (H9), the mappirfg considered from¥X into Y’ is a
C*-mapping. Moreover there existg such that if||c|lo..o.» < co, then DF(u) is an
isomorphism fromX ontoY”.

Proof. If we denote by(-|-) the duality pairing betweel’” andY’, we have, for all
Y eY andv € X:

(4.8) (F(v)|y) = /Q kE()Vov - Vidr + /Q c- Vuydr — /Q fudx .
We easily check thaf is C* and that for allv, w € X, ¢ € Y we have:
(DF (v)wy) = / k(v)Vw - Vipdzx + / k (w)wVv - Vipdx +/ c- Vwipdx
Q Q Q

(4.9) = /Q V(k(v)w) - Vipdx + /Q c- Vwypdx .

Now we show thatD F'(u) is an injective operator i€ is small enough. lfw € X is
such thatD F'(u)w = 0, we have:

(4.10) /Q V(k(w)w) - Vipdz + /Q c-Vwydxr =0, VyeY.

By settingw = k(u)w, we can choosé = w in (4.10), then using Blder’s inequality
we get:
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(4.11) w

10 < lclloss.2llwlon

w
v .
k(u) 0.2

Poincag’s inequality and Hypothesis (H9) give the existence of a constdimde-
pendent ofv) such that

< d|w|in .
0.9

w
lwllo, e Vk(u)

It follows that for d||c|/o,.0.2 < 1 we havew = 0 and consequently = 0, this means
that D F(u) is injective when||c||o,«0,s2 iS Small enough.

Combining the characterization & —17(£2) given in [10], p.17, the result of
regularity given in Dautray-Lions [7], p. 538, and a symmetry method for the square
(see [7], p-652), we can prove that the laplacian operator is an isomorphism from
WOLP(Q) onto W~1P(£2), the inverse of which is denoted i (see also item (5.5)
of Dau [6], p.241). From relation (4.9) it follows:

T DF(u)w = k(u)w +T(c- Vw) .

Since the mapping : ¢ € WP (2) — Ry = ¢/k(u) € WyP(£2) is an isomorphism,
the inverse of which is the multiplying operator kyu), we have:

(4.12) T DF(u)Rp =p+T(c- VRy) .

Since the operatofl’ is compact fromLP({2) into Wol’p(!Z) (due to the elliptic
regularity of the laplacian operator and the compact embedding/ &f(2) into
Whr(02)), thenT DF(u)R is a Fredholm’s operator with index zero froiffziol”’((z)
onto W~=17(£2) when DF(u) is injective.

Since R is an isomorphism OWOl”’(Q) and sinceT" is an isomorphism from
W=LP(£2) onto W;*(82), it follows that DF(u) is an isomorphism fromiVy " (£2)
onto W —1P(£2) when DF(u) is injective.

Remark 5. In fact, in Theorem 6, it is not necessary to assume ¢hatsmall in the
C%-norm. By using a maximum principle, we can prove that i€ C(£2) is such
that divc = 0, thenD F'(u) is an isomorphism fronX ontoY”.

Remark 6. By considering (4.9), it is easy to see thAtF'(u) admits a contin-
uous extension fromH3((2) into the dual spaced —1(£2). Moreover, using Lax-
Milgram theorem, it is standard to define the continuous one-to-one linear operator
T, : H-Y(2) — H}(2) as the inverse of the laplacian operator. The oper&iais
compact fromZL?(£2) into H3(£2). It follows that the operatof>DF(u)R, defined

in the proof of Theorem 6, is a Fredholm’s operator with index zero figg( ?)

into itself. The density oW()l’p(Q) into H3(¢2) implies that the range dfDF(u)R
considered inH(£2) is all the spaced}(£2). Thus,T>DF(u)R is an isomorphism of
H3(£2) and consequently) F'(u) is an isomorphism fronfi3(£2) onto H~1(£2). We
conclude that

(4.13) inf sup (DF(u)v|w) =+ >0.
UEH&(Q) wEHcl)(Q)
L0 jwl; g=1
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Now we can use the abstract framework of Sect. 3 for treating an approximation of
Problem (4.1) by finite element method. To do this, we assume in the following that
Problem (4.1) has a solution such thatDF'(u) is an isomorphism fromX onto

Y’ (this hypothesis is not void because it is the case when [C(£2)]? is such

that divc = 0 or ¢||o,«,2 IS small enough (Theorems 5 and 6)). As in Sect. 3 we set
b(w,¥) = (DF(u)w|y) and we have (see (4.9)):

b(w, ) = ‘/!2V(k(u)w)v¢dm+/ﬂc~ Vwdzr .

Naturally Hypothesis (H5) of Sect. 3 is true with= ||DF(u)—1||;,1X.

Let now #;, be a quasi-uniform regular triangulation ©f (see [4] for the defini-
tion) and letV}, be the finite element subspace defined by

Vi ={p € C%N) : ¢/K is a polynomial of degree< 1, V K € ¢, ;¢ =00ndN} .

Clearly v, C Wol’s((z), s > 1, and we choos&;, =Y}, =V}, as finite dimensional
subspaces oK andY respectively.

It follows that a finite element aproximation of Problem (4.1) consists on finding
up, €V}, satisfying:

(4.14) / k(up)Vuyp, - Vopdr +/ c- Vupvpdr = / fopdx , Yo, €V .
2 2 2

Note that, in practice, we compute these terms by using numerical integration. For
the sake of simplicity, we analyze the approximate problem (4.14) without numerical
integration. In the following, we verify Hypotheses (H6) and (H7) of Sect. 3.

Theorem 7. Under Hypothesis (H9) and #'(u) = 0 and D F'(u) is an isomorphism
from W P (£2) onto W ~L2(£2) with p > 2, then we have

(4.15) inf sup  blup, wp) > ERPTA/P
vp €V wp €Vy
1on 11,071 |wylq,q, 0=t

where¢ is a positive constant independent®f, and s is the maximum of diameters
of trianglesK € ¢;,.

Proof. By considering thaf) F'(u) is an isomorphism fronWOL”(Q) onto W —1P(£2)
and by taking into account Remark 6, we state that:

(4.16) DF(u) is an isomorphism fronf/3(£2) onto H ~(£2).

We now define the operatdi, : H~1(2) — V,, by the following relation:

/ V(Thg) - Vndsr = / gondz, VeneVi. geHYQ),
(94 N

where the second integral means the duality pairing betwéeh((2) and H(12).

If T is the inverse of the laplacian operator with homogeneous boundary conditions
and if R is the mapping defined bRy = ¢/k(u), then we have seen in Remark 6
that the operatof’ DF(u)R is an isomorphism froniZ}(£2) onto itself. Moreover we
have seen that



Petrov-Galerkin methods 227

(4.17) T DF(uw)Rp=p+T(c-VRy), Ve H),
and we can verify that

(4.18) ThDF(u)Rpn = ¢n +Th(c- VRer), Vn € Vy.

It is well known that the hypothesis about the triangulation implies

From relations (4.16), (4.17), (4.18) and (4.19), we conclude thatl{,(c- VR)) is
an isomorphism off7}(£2) with uniformely bounded inverse with respect /p and
there exists a positive constapt> 0 such that:

(4.20) | T, DF(u)Ren|1,0 > Ylenlne, YVen € Vi

For v, andw;, € V}, we obtain:
b(Rup, wp) = (DF(u)Rup|wp) = / V(TnDF(uw)Rvp) - Vwpdzr .
Q

By taking the supremum ow;,, and by using (4.20) we have:

(4.21) SU‘E) b(Rup, wy) = [T DF(u)Rup|1,0 > Y|vnlio -
wy €
\whhll,ﬁhzl

By using Hypothesis (H9) ok, the regularity of the triangulation and the regularity

of the solutionu (see the arguments of Theorem 5), we can easily prove, by standard
calculations on the reference triangle, that the multiplying oper&tor satisfies the
following properties:

(422) I|1|Ln0 XTea‘é |R71Xh — ’I”hRilxh‘l’_Q =0
Ixpl1,0=1

wherery, is the interpolation operator ovj,.
Relations (4.21) and (4.22) lead to the existence of a positive congténté-
pendent ofh) such that forh < hg small enough we have:

(4.23) inf sup  b(vp,wr) > .
vhEV, wp €V,
1vR11,071 jwy |y o=t

Taking into account the following inverse inequality (see [4], p. 140):

C1h®= 2P\l 0 < |vnlre, Yo, €V,
where(1 is a positive constant independent/gfwe deduce (4.15) from (4.23).
Remark 7. After this article has been submitted, the result of Theorem 7 has been

improved. For two dimensional convex polygonal domains Inf-Sup conditions
(4.15) can be replaced by:
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inf sup  b(vp,wn) > &,
vhE€Vh wp, €V,
PRILpQ=L w1 g, 051

where¢ is a positive constant independent@f and wherep > 2.

Theorem 7 implies Hypothesis (H6) of Sect.3 with = ¢h®~2/?. On the other
hand, we have the following interpolation inequalityuifc 1?27 (£2):

(424) |’LL - rhu\l,p“o S Ch”qu,p?_(Z .

It follows that Hypothesis (H7) of Sect. 3 is satisfied fox 4. Moreover we verify
from relation (4.9) thatDF' is Lipschitzian inw and the hypotheses of Thereom 4
hold. Consequently, we obtain the main result:

Theorem 8. We assume that Hypothesis (H9) holds, that the triangula#ipis quasi-
uniform, that the solution: of Problem (4.1) belongs té/%7(£2) with p €]2,4[ and
that D F'(u) is an isomorphism frorwol’p((z) onto W ~1P(£2) (see Theorems 5 and 6
which prove these hypotheses are not void).

Then there exisbg > 0 andny > 0 such that forh < hg there exists a unique
uy, € V;, solution of Problem (4.14) satisfying — up|1,.0 < noh®~2/P. Moreover
we have the error estimates:

(4.25) lu — upl1,p.0 < ch?/?
and
1/p
(4.26) lu —upl1p0 <c Z n(K)P
Ke7;,

wherec is a constant independent of the triangulatisn and n(K) is the local esti-
mator given by

N(K) = hil| — div (k(up)Vur) + ¢ - Vuy — fllop,x

3
+ h%—p)/p Z h(szzfl)/p [/f(uh)aauh}

i=1 "

0,p,S;

herehg is the diameter oK € %, h,, are the lengths of edges of the trianglek,
1 < ¢ < 3, and[v] denotes the jump af across the considered edge (we adopt the
convention3” = 0 outside the domaiti2).

Proof. Theorem 8 is a consequence of Theorems 4 and 8 if we prove the two following
error estimates:

(4.27) ﬂ];L v,trlelgh lu— vp|1p.0 < ch?/P
and

1/p
(4.28) IFn)llyr <c| Y n(K)

Ke?y,
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Inequality (4.27) is a direct consequence of (4.24) gpd chP—2/P,

Let us show how we can compute the residual ndififu, )|y (see for instance
[3] or [14)).

Forv €Y, v, € Y, we have (using (4.14)):
(F(up)|v) = (F(un)|v — vn)

= KEZ[}L {/K k(up)Vuy, - V(v — vp)dx + /K c- Vup(v —vp)dx — /K flo— vh)dx}

= 3 { [ aw )T +e- Vi - o - v)ia
K

Kezy,

o k) 0 o - vh)ds} 7
9K ong

where gs;, is the exterior normal derivative af;, on the boundary K of K.
By applying Hilder’s inequalities, we obtain:

(Flun)lo) < > {(H — div (k(un)Vup) + ¢ Vup = fllop,x llv —vn

KEZ}L
8uh
[k(uh) 5 } v —vnllo,g,s;
" 1Hlop,s;

0,q,K
3

+>

i=1

where, here %;’}] is the jump of a normal derivative af with the conventiorfg;f =0
outside the domair?.

It is known (see [3] for instance) that if € Y and if r,v is the Clement’s
interpolate ofv on V},, we have:

[v=rnvllogx < chi Y |vllugxs Sk ={UK/KNEK' = ¢}
K'eSk

1/q,1-2 .
v —rnvllog,s; < Chs/l.th /” Z [vll1,q,57s i=1,2,3,
K/ESK

where, here is independent of the triangl&. It follows that

(Flun)lv) < e Y { hi|| — div (k(up)Vup) + ¢ - Vur, — fllop.x

KE[h
3
8uh
) |
< ( Z {hK” — div (k(un)Vun) + ¢ Vup, — fllop,x

D
=1
py\ 1/p
1/q,1-2/q
hg, Iy V1,9, -
0,p,S;

0,p,S;

1/q;1-2
hs/ith /q} Z [v]l1,q, 57

K'eSk

8uh
on
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Finally let us show how to obtain a priori and a posteriori error estimates in
H'-norm similar to estimates (4.25) and (4.26) wjih= 2. To do this we use the
following arguments for obtaining a posteriori error estimates:

(i) Forp €]2,4[ we have lim,_|u — up|1,p,2 = 0 (see (4.25));

(ii) for p €]2, oo andw € Wy (£2), the mappingD F(w) € % (Wy(£2), W ~12(£2))
admits a continuous extensiaBF(w) € £ (H($2), H~1(£2)); moreover the
functionw € W, ?(£2) — DF(w) € £ (H&($2), H~1(£2)) is continuous;

(iii) since F'(u) = 0 we can write

1
u—up = DF(u)*l/ (DF(u)—DF(sut+(1—s)up))(u—up)ds—DF(u) " F(up) .
0

It is clear that items (i)—(iii) give rise to a posteriori error estimate of type
lu = unlr,e < Cl[F(un)|-1,0

where
C =2|DF(u)}|

2 (H-Y02), HY(2) if h < hgis small enough.

Such a posteriori error estimates have been used in adaptive mesh refinement tech-
nigues applied to a 2D-regularized Stefan problem (see [13]) and yield excellent
results.

Remark 8. According to Remark 7, estimate (4.25) can be improved and becomes:

lu— up|1,p.0 <ch.
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