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1. Introducing the problem

Numerical locking has received much attention recently, the most comprehensive
study being probably the article of Batka and Suri [1] where different examples
are considered.

We consider here the Kirchhoff-Love approximation to the clamped arch problem.
This appears not to be a very difficult one, as we are dealing with a system of ordinary
differential equations. However it is more complicated than the beam problem which
is studied in [1] and its study may shed some light on more general and complex
problems. On the other hand, arch optimization requires pretty robust methods.

Chenais and Paumier [2] have considered a class of problems of which the arch
problem is a member. Namely:

(Pg) Findu €V suchthat Vv eV, t~HAut, Av)x + ar(ut,v) = (f, V)yry
Here and in what followsV is a Banach spacé;’ its dual as usualX some Hilbert
space,A a linear continuous application froiii into X anda; a continuous bilinear
symmetric form onl/. Setting:

at(uv ’U) = til(Auv AU)X + CL]_(U, U) 5

it is assumed that? is uniformly coercive ori/ for ¢ €]0, 1]. We say that the sequence
of linear subspaceky approximated/ iff:

Yu € VN!Im dv(u7 VN) =0.



118 M. Zerner

Chenais and Paumier give a necessary and sufficient condition for the Ritz-Galerkine
procedure associated with such a sequence to convergeuniformly in ¢ for any
second membef € V. Let us denote by~ the kernel ofA and byG y its intersection

with V. The condition is thaGy approximateG.

Let us now specialize this to the arch problem. The arch profile is parametrized
by the linear ascissa. Let denote the thickness of the arch,its length,¢(s) the
curvature of the arch profile at abscissahe functionc is assumeds 4[0, L]. After
proper scaling, we set:

t= 62
V = H3(0, L) x H3(0, L)
X =120, L)

Av = Ko(vy + cvp)
L
ar(u,v) = K3 / (1 — cu)/ (v — cvn)ds |
0

where Ky and K; are positive constants, depending only on the material. Here, the
kernel of A is easily described:

L
G= {(vl,vg); vy € HS,/ c(s)va(s)ds =0,
0

v(s) = — /0 ’ c(x)vz(x)d:c} .

We assume from now on thaf is the dimension ol/y and thatf belongs to some
fixed ball of W = L? x H~1. Denote byu?, the solution of the discrete problem:

(Pn) uly € Vv, Yo € Vat(uly,v) = (f,v)vr v -

Under these assumptions, Chenais and the author [3] have proved that the best order
of convergence in bothV and ¢ which can be obtained for every € W is in

1/N. Schemes which give uniform convergence iare known, at least for constant
curvature, but one does not know whether they are asymptotically optimal. In this
article a finite element scheme will be proposed for more general arch profiles and it
will be proved to satisfy the asymptotically optimal estimate:

lu' —ui|| < C/N

where(' is independant of andt.

2. The scheme

This scheme is directly suggested by the condition of Chenais and Paumier. We first
reformulate the problem, taking as our unknown function (., @) where:

ﬂl=u1
ﬂz =Cuz .
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Setting:

L
a(@,v) = 115 / (% + G2) (0 + v2)ds)
0

L
# Ko [ (/e — e (@a/e) — cvyds
0
our problem becomes:

. Find« € V such thatvv € V :

() a'(ii,v) = (fr,01) g1 g * (Fofesv2) g2 gz -

Of coursey is easily recovered from. We shall assume positive; roughly speaking,
this means that the arch profile has no inflexion point. So, fot § < 4, both
multiplication and division bye are linear continuous applications &f] into itself
and this is true forH’ as well.« and« have exactly the same regularity properties
and the new problem is as coercive as the initial one.

We divide the interval [DL] into NV subintervals with end pointsy = 0 < s; <
... < sy = L. We assume this sequence of subdivisions quasi-regular in the sense
that the product ohx = max(s; — s;—1) by N remains bounded.

It remains to define the approximation spaée for &@. We set:

VN =VE xVE.

We take forVZ the usual approximation space: continuously differentiable functions
which are polynomials of degree at most three on each subinterval and vanish with
their derivative at the end points. FofL, we have to take polynomials of degree

at most four on each subinterval in order to satisfy the condition of Chenais and
Paumier. We take them continuously differentiable too. This leads us to determine a
functionv in Vi by vi(s;), va(s;), vs(s;) for j=1to N — 1, vi(s;) for j =0 to N
andvl(%'j”j) for j =1 to N. All told, we have 3V — 2 degrees of freedom.

3. The error estimate
Theorem. With the notations and under the assumptions of the preceding sections,
defineuly = (il ;, i}y o/c), whereiiy is the solution of the problem:
5 Find @ity € Vv such thatvv € Vi |
( N) at(ﬂ);v, ’U) = <f]_7 vl>H_1,Hé + <f2/c, U2>H_2,Hc2] .
Then:
lu* — uy|lv < C/N,
whereC does not depend annor f.

Proof. The relation between the&'s and theu’s shows that it is as good to prove:
|a" — @y |lv < C/N .

It is well known (see e.g. Ciarlet [4]) that, in view of the uniform coerciveness, this
amounts to:
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dy (@, V) < C/N .
Let us define the following functions and subspace¥ of

L s
G= {(vl,vz); vy € HS,/ va(s)ds =0, wi(s) = —/ vz(x)dx} ,
0 0
é]v = é NVy,
€ G suchthat Vo € G a1(u®,v) = (f,0)vr v
i° = (uf, cug) ,
@ € Gy suchthat Vv e Gy :

L
K /0 (/) — ciin) ((va/c) — cvn)ds
= <f17U1>H—1,H3 + <f2/0a U2>H—2,H§ .

Let us agree that the letter will denote constants in the sense that they do not
depend on eithet or f (as long as this last is restricted to a fixed balllig); these
constants may differ from one relation to the next.

The following sections will prove the inequalities:

1) |[uf —u°|| < Ct

(2) dy (@, Gy) < C/N

(31) |lwa|| g2 < C

(32) uz = wy +wz With [[ws|[ gz < C and|jwz||zs < C/t .

Notice that inequalities (1) and (3) imply the same witheplaced byu"everywhere.
We get by (1), this remark and (2):

dv (@, Vy) < Ct+N7Y) .

From thew version of the inequalities (3) and standard approximation properties
(again see e.g. Ciarlet [4]):

dy (@, Vy) < O(N"*+ N2 Y .

We complete the proof using the first inequality fo 1/N and the last one for
t>1/N.

4. Proof of inequality (1)

u? is defined as the Ritz-Galerkine approximatiorubfcorresponding to the approxi-
mating subspacé: (the fact that it is infinite dimensional is immaterial here). From
this and the uniform coerciveness @f, it follows that:
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|[ul —ul||y < Cdy(ut,G) .

We now prove thatd has a right inversed—. Choose a fixedp € H3 such that
fOL c(x)p(x)dx = 1. Then for anyy € L?, set:

A7) = (vy,v2)  with
L s
w=¢éw@@ mdm@=£W@%¢Mw@H%

You are done.
Let ¢ € L. We have:

(Au', ¥) 2 = t[(f, A" )yr v — as(u’, A)]
from which follow:

dy(u',G) is the norm of the image:’ of u! in the quotient spac& /G and the
operatorA from this space td.? such thatdv = Av is continuously invertible so
that:

dy (', V) < C||Aut|| 2 -

Putting together these inequalities, we get (1).
5. Proof of inequality (2)

H:{weHg;/Lw(s)ds=0},
0

Hy=VZNH.

Define:

It is enough to approximatedby Hy. Indeed, ifw € Hy, setW(s) = fos w(x)dx.
ThenW belongs toV} and||ady — W||Hg < Ol|a - wHHg-

As the restriction ofi; to G is coercive,ug is bounded ind2. As a consequence,
u3 is bounded inf3. As:

Ug(4) = fr+ (Cu(l))///

andu satisfies Dirichlet boundary conditions, it is bounded#f, and so isu8. This
implies:

(4) ng(ﬂ% Vi) <C/N .
Let noww be the orthogonal projection af on V2, i the vector inHZ such that:
L
@)= [ (s
0

andiy its orthogonal projection ofvZ. As V2 approximates{3:
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lim iy =4 and NIETO]OHZNHH(%:HZHHS'

N—o0
By (4):
"L
|/ w(s)ds| < C/N ,
0
but the distance fronw to Hy is
‘fOL w(s)ds‘ .
linllgz

whence finally:
dp2(ig, Hy) < dppa(@ig, Vi) + dyz(w, Hy) < C/N

which implies (2) as we have seen.

6. Proof of the inequalities (3)
Introduce the auxiliary function

y = (uz —cui)’,
we write the differential system satisfied by

ty/
(Aty

-
: Y = f1

(5)

1
(6) jeAdu' +y" = fo.
In view of the uniform coercivenesg, and Au! are bounded inL?, and, to take
advantage of (6), we can use the following lemma, to be proved at the end:

Lemma. There exists a constant such that ifz is bounded inH~(]0, L[) and
2" = fo+ fi wherefo € L? and f; € H* then:

z2=z0t 21
with [[zo|| 2 < e(l[ 2l -1 * [| fall -1) @nd [z g2 < e[ fol[ 2.
So we get:
v =go+gr with [gol[,2 <C and [lgaf|n < C/t.

From the definition ofy and the fact that:; and «}, vanish at the end points, it
follows:

uf —cul =hy+hy with ||hal2 <C and ||ho||ys < C/t.

This and (5) prove (3. Finally (3) follows by the formula:
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u(s) = /0 eyl () + /0 [} () — cul(2)]de

!:tfroof of the lemmaDefine z1(x) = fol' foly)dy andzg = z — z;. We have the inequal-
ities:

2ol -1 < |zl -1 + call fol| L2

20l l -1 < 12l -2 + [1.foll 2 -

Let ¢g € & be such thangL ¢o(x)dz = 1. For anyp € &, set:

L
1= 6— ¢0/0 $(2)dz .

We have:

/O ¥ (@)da)ds = /0 (@)l /O " papda + /0 @)@

The first term is no larger thdrhgbOHHé l|1z0|| 71 ||¢||2; call the second ond. There
is a uniqueyy € H} such that)’ = ¢; and we have:

A= (20,¢0) = —(20,¥)

Al < 191l allz0ll -2 < calléall allzoll -1 < ealldll rallzoll -1 ;

together with the inequalities which we already proved ahguthis ends the proof.
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