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1. Introducing the problem

Numerical locking has received much attention recently, the most comprehensive
study being probably the article of Babuška and Suri [1] where different examples
are considered.

We consider here the Kirchhoff-Love approximation to the clamped arch problem.
This appears not to be a very difficult one, as we are dealing with a system of ordinary
differential equations. However it is more complicated than the beam problem which
is studied in [1] and its study may shed some light on more general and complex
problems. On the other hand, arch optimization requires pretty robust methods.

Chenais and Paumier [2] have considered a class of problems of which the arch
problem is a member. Namely:

(Pg) Findu ∈ V such that ∀v ∈ V, t−1(Aut, Av)X + a1(ut, v) = 〈f, v〉V ′,V .

Here and in what follows,V is a Banach space,V ′ its dual as usual,X some Hilbert
space,A a linear continuous application fromV into X anda1 a continuous bilinear
symmetric form onV . Setting:

at(u, v) = t−1(Au,Av)X + a1(u, v) ,

it is assumed thatat is uniformly coercive onV for t ∈]0, 1]. We say that the sequence
of linear subspacesVN approximatesV iff:

∀u ∈ V lim
N→∞

dV (u, VN ) = 0 .
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Chenais and Paumier give a necessary and sufficient condition for the Ritz-Galerkine
procedure associated with such a sequence to converge tout uniformly in t for any
second memberf ∈ V ′. Let us denote byG the kernel ofA and byGN its intersection
with VN . The condition is thatGN approximateG.

Let us now specialize this to the arch problem. The arch profile is parametrized
by the linear ascissa. Lete denote the thickness of the arch,L its length,c(s) the
curvature of the arch profile at abscissas, the functionc is assumedC 4[0, L]. After
proper scaling, we set:

t = e2

V = H1
0(0, L) ×H2

0(0, L)

X = L2(0, L)

Av = K0(v′1 + cv2)

a1(u, v) = K1

∫ L

0
(u′2 − cu1)′(v′2 − cv1)′ds ,

whereK0 andK1 are positive constants, depending only on the material. Here, the
kernel ofA is easily described:

G =

{
(v1, v2); v2 ∈ H2

0 ,

∫ L

0
c(s)v2(s)ds = 0 ,

v1(s) = −
∫ s

0
c(x)v2(x)dx

}
.

We assume from now on thatN is the dimension ofVN and thatf belongs to some
fixed ball ofW = L2 ×H−1. Denote byutN the solution of the discrete problem:

(PN ) utN ∈ VN , ∀v ∈ VNat(utN , v) = 〈f, v〉V ′,V .

Under these assumptions, Chenais and the author [3] have proved that the best order
of convergence in bothN and t which can be obtained for everyf ∈ W is in
1/N . Schemes which give uniform convergence int are known, at least for constant
curvature, but one does not know whether they are asymptotically optimal. In this
article a finite element scheme will be proposed for more general arch profiles and it
will be proved to satisfy the asymptotically optimal estimate:

||ut − utN || ≤ C/N

whereC is independant off and t.

2. The scheme

This scheme is directly suggested by the condition of Chenais and Paumier. We first
reformulate the problem, taking as our unknown function ˜u = (ũ1, ũ2) where:

ũ1 = u1

ũ2 = cu2 .



An asymptotically optimal finite element scheme for the arch problem 119

Setting:

ãt(ũ, v) = t−1K0

∫ L

0
(ũ′1 + ũ2)(v′1 + v2)ds)

+K1

∫ L

0
((ũ2/c)

′ − cũ1)′((v2/c)
′ − cv1)′ds ,

our problem becomes:

(P̃a)
Find ũ ∈ V such that∀v ∈ V :

ãt(ũ, v) = 〈f1, v1〉H−1,H1
0

+ 〈f2/c, v2〉H−2,H2
0
..

Of course,u is easily recovered from ˜u. We shall assumec positive; roughly speaking,
this means that the arch profile has no inflexion point. So, for 0≤ j ≤ 4, both
multiplication and division byc are linear continuous applications ofHj

0 into itself
and this is true forHj as well.u and ũ have exactly the same regularity properties
and the new problem is as coercive as the initial one.

We divide the interval [0, L] into N subintervals with end pointss0 = 0 < s1 <
... < sN = L. We assume this sequence of subdivisions quasi-regular in the sense
that the product ofhN = max(sj − sj−1) by N remains bounded.

It remains to define the approximation spaceṼN for ũ. We set:

ṼN = V 1
N × V 2

N .

We take forV 2
N the usual approximation space: continuously differentiable functions

which are polynomials of degree at most three on each subinterval and vanish with
their derivative at the end points. ForV 1

N , we have to take polynomials of degree
at most four on each subinterval in order to satisfy the condition of Chenais and
Paumier. We take them continuously differentiable too. This leads us to determine a
function v in ṼN by v1(sj), v2(sj), v′2(sj) for j = 1 toN − 1, v′1(sj) for j = 0 toN
andv1(

sj−1+sj
2 ) for j = 1 toN . All told, we have 5N − 2 degrees of freedom.

3. The error estimate

Theorem. With the notations and under the assumptions of the preceding sections,
defineutN = (ũtN,1, ũ

t
N,2/c), whereũtN is the solution of the problem:

(P̃N )
Find ũtN ∈ ṼN such that∀v ∈ ṼN ,

ãt(ũtN , v) = 〈f1, v1〉H−1,H1
0

+ 〈f2/c, v2〉H−2,H2
0
.

Then:
||ut − utN ||V ≤ C/N ,

whereC does not depend ont nor f .

Proof. The relation between theu’s and the ˜u’s shows that it is as good to prove:

||ũt − ũtN ||V ≤ C/N .

It is well known (see e.g. Ciarlet [4]) that, in view of the uniform coerciveness, this
amounts to:
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dV (ũt, ṼN ) ≤ C/N .

Let us define the following functions and subspaces ofV :

G̃ =

{
(v1, v2); v2 ∈ H2

0 ,

∫ L

0
v2(s)ds = 0 , v1(s) = −

∫ s

0
v2(x)dx

}
,

G̃N = G̃ ∩ VN ,

u0 ∈ G such that ∀v ∈ G a1(u0, v) = 〈f, v〉V ′,V ,

ũ0 = (u0
1, cu

0
2) ,

ũ0
N ∈ G̃N such that ∀v ∈ G̃N :

K1

∫ L

0
((ũ2/c)

′ − cũ1)′((v2/c)
′ − cv1)′ds

= 〈f1, v1〉H−1,H1
0

+ 〈f2/c, v2〉H−2,H2
0
.

Let us agree that the letterC will denote constants in the sense that they do not
depend on eithert or f (as long as this last is restricted to a fixed ball ofW ); these
constants may differ from one relation to the next.

The following sections will prove the inequalities:

(1) ||ut − u0|| ≤ Ct

(2) dV (ũ0, G̃N ) ≤ C/N

(31) ||u1||H2 ≤ C

(32) u2 = w1 +w2 with ||w1||H3 ≤ C and||w2||H4 ≤ C/t .

Notice that inequalities (1) and (3) imply the same withu replaced by ˜u everywhere.
We get by (1), this remark and (2):

dV (ũt, ṼN ) ≤ C(t +N−1) .

From the ũ version of the inequalities (3) and standard approximation properties
(again see e.g. Ciarlet [4]):

dV (ũt, ṼN ) ≤ C(N−1 +N−2t−1) .

We complete the proof using the first inequality fort ≤ 1/N and the last one for
t > 1/N .

4. Proof of inequality (1)

u0 is defined as the Ritz-Galerkine approximation ofut corresponding to the approxi-
mating subspaceG (the fact that it is infinite dimensional is immaterial here). From
this and the uniform coerciveness ofat, it follows that:
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||ut − u0||V ≤ CdV (ut, G) .

We now prove thatA has a right inverseA−. Choose a fixedφ ∈ H2
0 such that∫ L

0 c(x)φ(x)dx = 1. Then for anyψ ∈ L2, set:

A−ψ = (v1, v2) with

v2 = φ
∫ L

0
ψ(s)ds and v1(s) =

∫ s

0
[ψ(x) − c(x)v2(x)]dx .

You are done.
Let ψ ∈ L2. We have:

(Aut, ψ)L2 = t[〈f,A−ψ〉V ′,V − a1(ut, A−ψ)]

from which follow:

(Aut, ψ)L2 ≤ Ct||ψ||L2 and ||Aut||L2 ≤ Ct .

dV (ut, G) is the norm of the imageut of ut in the quotient spaceV/G and the
operatorA from this space toL2 such thatAv = Av is continuously invertible so
that:

dV (ut, V ) ≤ C||Aut||L2 .

Putting together these inequalities, we get (1).

5. Proof of inequality (2)

Define:

H =

{
w ∈ H2

0;
∫ L

0
w(s)ds = 0

}
,

HN = V 2
N ∩H .

It is enough to approximate ˜u0
2 by HN . Indeed, ifw ∈ HN , setW (s) =

∫ s
0 w(x)dx.

ThenW belongs toV 1
N and ||ũN1 −W ||H1

0
≤ C||ũN2 − w||H2

0
.

As the restriction ofa1 to G is coercive,u0
2 is bounded inH2. As a consequence,

u0
1 is bounded inH3. As:

u0(4)
2 = f2 + (cu0

1)′′′

andu0
2 satisfies Dirichlet boundary conditions, it is bounded inH3, and so is ˜u0

2. This
implies:

(4) dH2
0
(ũ0

2, V
2
N ) ≤ C/N .

Let noww be the orthogonal projection of ˜u0
2 on V 2

N , i the vector inH2
0 such that:

(φ, i)H2
0

=
∫ L

0
φ(s)ds

and iN its orthogonal projection onV 2
N . As V 2

N approximatesH2
0:
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lim
N→∞

iN = i and lim
N→∞

||iN ||H2
0

= ||i||H2
0
.

By (4): ∣∣∣∣∣
∫ L

0
w(s)ds

∣∣∣∣∣ ≤ C/N ,

but the distance fromw to HN is ∣∣∣∫ L0 w(s)ds
∣∣∣

||iN ||H2
0

;

whence finally:

dH2
0
(ũ0

2, HN ) ≤ dH2
0
(ũ0

2, V
2
N ) + dH2

0
(w,HN ) ≤ C/N

which implies (2) as we have seen.

6. Proof of the inequalities (3)

Introduce the auxiliary function

y = (ut′2 − cut1)′ ,

we write the differential system satisfied byut:

(5) − (Aut)′

t
+ cy′ = f1

(6)
1
t
cAut + y′′ = f2 .

In view of the uniform coerciveness,y andAut are bounded inL2, and, to take
advantage of (6), we can use the following lemma, to be proved at the end:

Lemma. There exists a constantc such that ifz is bounded inH−1(]0, L[) and
z′ = f0 + f1 wheref0 ∈ L2 andf1 ∈ H−1 then:

z = z0 + z1

with ||z0||L2 ≤ c(||z||H−1 + ||f1||H−1) and ||z1||H1 ≤ c||f0||L2.

So we get:

y′ = g0 + g1 with ||g0||L2 ≤ C and ||g1||H1 ≤ C/t .

From the definition ofy and the fact thatu1 and u′2 vanish at the end points, it
follows:

ut′2 − cut1 = h1 + h2 with ||h1||H2 ≤ C and ||h2||H3 ≤ C/t .

This and (5) prove (31). Finally (32) follows by the formula:
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ut2(s) =
∫ s

0
c(x)ut1(x)dx +

∫ s

0
[ut′2 (x) − cut1(x)]dx .

Proof of the lemma.Definez1(x) =
∫ x

0 f0(y)dy andz0 = z− z1. We have the inequal-
ities:

||z0||H−1 ≤ ||z||H−1 + c1||f0||L2

||z′0||H−1 ≤ ||z′||H−1 + ||f0||L2 .

Let φ0 ∈ D be such that
∫ L

0 φ0(x)dx = 1. For anyφ ∈ D , set:

φ1 = φ− φ0

∫ L

0
φ(x)dx .

We have:∫ L

0
z0(x)φ(x)dx =

∫ L

0
z0(x)φ0(x)dx

∫ L

0
φ(x)dx +

∫ L

0
z0(x)φ1(x)dx .

The first term is no larger than||φ0||H1
0
||z0||H−1 ||φ||L2; call the second oneA. There

is a uniqueψ ∈ H1
0 such thatψ′ = φ1 and we have:

A = 〈z0, ψ
′〉 = −〈z′0, ψ〉

|A| ≤ ||ψ||H1
0
||z′0||H−1 ≤ c2||φ1||L2||z′0||H−1 ≤ c3||φ||L2||z′0||H−1 ;

together with the inequalities which we already proved aboutz0, this ends the proof.

References
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