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Abstract. We examine the use of orthogonal spline collocation for the semi-discreti-
zation of the cubic Schrödinger equation and the two-dimensional parabolic equation
of Tappert. In each case, an optimal orderL2 estimate of the error in the semidiscrete
approximation is derived. For the cubic Schrödinger equation, we present the results
of numerical experiments in which the integration in time is performed using a routine
from a software library.
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1. Introduction

In this paper, we examine the use of orthogonal spline collocation, that is, spline
collocation at Gauss points, for the semi-discretization of two problems of Schrödinger
type. We first consider the initial value problem for the cubic Schrödinger equation

iut + uxx + q|u|2u = 0, (x, t) ∈ (−∞,∞)× (0, T ],
u(x, 0) = g(x), x ∈ (−∞,∞),

(1.1)

where i2 = −1, q is a given positive constant, the given functiong(x) is complex-
valued, and|g(x)| → 0 as |x| → ∞. This equation describes many physical phe-
nomena, including the behavior of a plane stationary light beam in a medium with a
nonlinear refractive index [33] and the evolution of deep water waves (see [11] and
references cited therein).

For the numerical solution of (1.1), one restrictsx to a finite interval [a, b] which
is chosen so that the modulus of the solutionu(x, t) is negligible forx outside [a, b].
By imposing homogeneous Dirichlet or homogeneous Neumann boundary conditions
at x = a andx = b, the pure initial value problem (1.1) is converted into an initial
boundary-value problem (IBVP). Since the choice of Neumann or Dirichlet boundary
conditions is not significant, we consider the IBVP
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iut + uxx + q|u|2u = 0, (x, t) ∈ (a, b)× (0, T ],(1.2a)

u(x, 0) = g(x), x ∈ (a, b),(1.2b)

u(a, t) = u(b, t) = 0, t ∈ [0, T ].(1.2c)

Several numerical studies have examined the use of finite difference methods and finite
element methods based on theL2-Galerkin semi-discretization for solving IBVPs of
this form; see, for example, [1, 2, 6, 11, 12, 14, 23–28, 30 and 31]. In [20], both the
L2-Galerkin method and theH−1-Galerkin method were considered.

The second Schrödinger-type equation which we consider is the two-dimensional
parabolic equation (PE) of Tappert [29]

ρ−1(x)ut =
i
2
k0ρ

−1(x)
[
n2(x, t)− 1 + iν(x, t)

]
u +

i
2k0

(ρ−1(x)ux)x,(1.3)

which has been used effectively in many problems involving long-range, low-
frequency underwater acoustic wave propagation. In (1.3),x andt represent the depth
and range, respectively,u(x, t) is the pressure field,k0 is a given positive constant,
ρ(x) is the density, andn(x, t) and ν(x, t) are prescribed functions. Previous stud-
ies of this equation have employed various numerical schemes including split-step
Fourier methods, explicit and implicit finite difference schemes, the method of lines
with finite-difference semi-discretizations with respect to depth, and finite element
Galerkin methods; see, for example, [15] and references therein, [10, 13, 19].

In the present study, we examine the use of orthogonal spline collocation for the
discretization with respect tox of (1.2) and (1.3). Numerical methods based on spline
collocation have proved to be exceedingly effective for the approximate solution of a
broad class of problems, particularly boundary value problems for ordinary differential
equations and in the method of lines solution of parabolic and hyperbolic initial-
boundary value problems; see [9] for a comprehensive survey. The popularity of
collocation methods is due in part to their conceptual simplicity, wide applicability,
and ease of implementation. The obvious advantage of spline collocation methods
over finite element Galerkin methods is that the calculation of the coefficients in the
equations determining the approximate solution is very fast since no integrals need
be evaluated or approximated. In comparison with finite difference methods, spline
collocation provides approximations to the solution and its derivative with respect tox
at all points of the domain of the problem. From the standpoint of solving a nonlinear
equation such as the cubic Schrödinger equation, the ease of implementation of the
collocation method makes it possible to achieve computational efficiency without
resorting to product approximation [5] as is usually done in finite element Galerkin
schemes, and enables one to obtain approximations of high order accuracy.

A brief outline of this paper is as follows. In Sect. 2, we introduce definitions,
notation, and other preliminaries. In Sect. 3, we describe the continuous-time orthog-
onal spline collocation method for the solution of (1.2), and derive an optimal order
L2 error estimate. In Sect. 4, we present numerical results which demonstrate the ef-
ficacy of the collocation method for the solution of the cubic Schrödinger equation.
In Sect. 5, an analysis similar to that of Sect. 3 is given for the collocation solution of
the PE of Tappert in horizontally stratified media, in which case the density function
ρ(x) is piecewise constant. It is shown that the interface conditions arising in such
problems can be incorporated into the collocation procedure in a very natural way.
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2. Preliminaries

Unless explicitly stated otherwise, functions considered in this paper are complex-
valued. For a given functionf , we denote byf1 andf2 its real and imaginary parts,
respectively. Given any spaceS of functions, letR(S) = {g ∈ S | Im g = 0}, that is,
the set of all real-valued functions inS.

In the analysis, we assume without loss of generality thata = 0 andb = 1 in (1.2).
We use (·, ·) to denote the usualL2 inner product for complex-valued functions on
the intervalI = (0, 1), namely,

(f, g) =
∫ 1

0
f (x)g∗(x)dx,

where * indicates complex conjugation, and let‖ · ‖ denote the correspondingL2

norm defined by

‖f‖ = ‖f‖L2(I) = (f, f )
1
2 .

In addition,
‖f‖L∞(I) = ess sup

x∈I
|f |.

For r a nonnegative integer, we denote by

‖v‖Hr(I) =

 r∑
j=0

∥∥∥∥djvdxj
∥∥∥∥2
 1

2

the norm on the usual Sobolev spaceHr(I). If X is a normed space with norm‖ ·‖X
andv : [0, T ] → X, then

‖v‖L2(X) =

(∫ T

0
‖v(t)‖2

Xdt

) 1
2

and
‖v‖L∞(X) = ess sup

t∈[0,T ]
‖v(t)‖X .

Throughout, we useC to denote a generic positive constant whose value is not
necessarily the same on each occurrence, and make repeated use of the inequality

de ≤ εd2 +
1
4ε
e2, ε > 0,

for d, e ∈ R, without explicit mention being made each time.
Given a partition

∆ : 0 = x1 < x2 < ... < xN+1 = 1(2.1)

of I, let Ij = (xj , xj+1), hj = xj+1 − xj , j = 1, 2, ..., N , andh = max1≤j≤N hj . A
family F of partitions is said to be quasi-uniform if there exists a finite positive
numberσ such that

max
1≤j≤N

h

hj
≤ σ



358 M.P. Robinson and G. Fairweather

for every partition inF (cf. [8]). We assume that the partition∆ is a member of a
quasi-uniform family. We define

Mp(∆) = {v|v ∈ C1(I); v|Ij ∈ Pp, j = 1, 2, ..., N} ∩ {v|v(0) = v(1) = 0},
wherep ≥ 3 andPp denotes the set of all polynomials of degree at mostp.

Let {λk}p−1
k=1 denote the nodes for the (p − 1)-point Gaussian quadrature rule on

the intervalI with corresponding weights{wk}p−1
k=1 , wk > 0, and set

λjk = xj + hjλk, j = 1, 2, ..., N, k = 1, 2, ..., p− 1.

We define the quadratic form{·, ·} by

{f, g} =
N∑
j=1

{f, g}j ,

where

{f, g}j = hj

p−1∑
k=1

wkf (λjk)g∗(λjk),

and set

|f |2D =
N∑
j=1

{f, f}j .

Since∆ belongs to a quasi-uniform family of partitions, it can be shown using results
of [7] and [18] that there exist positive constantsC1 = C1(p) andC2 = C2(p, σ) such
that, for anyψ ∈ Mp(∆),

C1|ψ|D ≤ ‖ψ‖ ≤ C2|ψ|D.(2.2)

In the remainder of this section, we introduce notation and some basic results
which are used in Sect. 5 when we consider the collocation solution of (1.3) with
piecewise constantρ(x). The corresponding results required in Sect. 3 are easily ob-
tained by settingρ = 1.

We assume that each partition∆ of I under consideration contains the points
defining the locations of the media interfaces. To simplify the exposition, we define
ρ(x) by

ρ(x) = ρj , xj < x < xj+1, j = 1, 2, ..., N,

whereρj > 0 for all j, noting, of course, that the only discontinuities inρ(x) occur
at the media interfaces. Then we define

M′
p(∆) = {v|v ∈ C0(I); v|Ij ∈ Pp, j = 1, 2, ..., N}

∩{v|ρ−1
j−1v

′(x−j ) = ρ−1
j v′(x+

j ), j = 1, 2, ..., N} ∩ {v|v(0) = v(1) = 0},
wherep ≥ 3. Note that ifρ = 1, thenM′

p(∆) = Mp(∆). Hence, any results derived
for the spaceM′

p(∆) also apply toMp(∆).
Minor extensions of results of [4] and [18] show that there exist positive constants

C1 = C1(p) andC2 = C2(p, σ, ρ̂), where

ρ̂ = maxj,k
ρj
ρk
,

such that (2.2) is satisfied forψ ∈ M′
p(∆).
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The following lemma is required in the analyses (cf. [4, 7]).

Lemma 2.1. For f, g ∈ R(M′
p(∆)),

−{ρ−1f, g′′} =
∫ 1

0
ρ−1f ′g′dx + µp

N∑
j=1

ρ−1
j f (p)

j g(p)
j h2p−1

j ,

wheref (p)
j (resp.g(p)

j ) is the constant value of thepth derivative off (resp.g) on Ij
andµp is a positive constant depending onp.

Proof. The argument given in [4, p.231] yields

−{ρ−1
j f, g′′}j = ρ−1

j

(∫ xj+1

xj

f ′g′dx + µpf
(p)
j g(p)

j h2p−1
j − fg′|x

−
j+1

x+
j

)
,

from which it follows that

−{ρ−1f, g′′} =
∫ 1

0
ρ−1f ′g′dx + µp

N∑
j=1

ρ−1
j f (p)

j g(p)
j h2p−1

j −
N∑
j=1

ρ−1
j fg′|x

−
j+1

x+
j
.

From this we obtain the desired result since the last sum on the right-hand side is zero
because of the boundary conditions, the continuity off , and the interface conditions
satisfied byg, namelyρ−1

j−1g
′(x−j ) = ρ−1

j g′(x+
j ). ut

In our analyses, we use a variant of an interpolation operator introduced in [7],
which we now describe. LetBp ∈ R(Pp+1(I)) be defined by

Bp(x) =
1

(2p− 2)!
dp−3

dxp−3
[xp−1(x− 1)p−1].

The roots ofBp(x) = 0 are double roots atx = 0 andx = 1 and exactlyp− 3 simple
roots at pointsγk such that

0< γ1 < γ2 < ... < γp−3 < 1.

For the partition∆ of (2.1), let

γjk = xj + hjγk, j = 1, 2, ..., N ; k = 1, 2, ..., p− 3.

Let

PC1(I) = {v|v ∈ C0(I); v ∈ C1(Īj), j = 1, 2, ..., N}
∩ {v|ρ−1

j−1v
′(x−j ) = ρ−1

j v′(x+
j ), j = 2, 3, ..., N} ∩ {v|v(0) = v(1) = 0}.

We defineIp,∆ to be the interpolation operator fromPC1(I) to M′
p(∆) given by

the conditions

(i) (Ip,∆v)(xj) = v(xj), j = 1, 2, ..., N + 1,

(ii) (Ip,∆v)(γjk) = v(γjk), j = 1, 2, ..., N, k = 1, 2, ..., p− 3,

(iii) (Ip,∆v)′(x+
j ) = v′(x+

j ), j = 1, 2, ..., N,

(iv) (Ip,∆v)′(x−j ) = v′(x−j ), j = 2, 3, ..., N + 1,
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for v ∈ PC1(I). Since locally onIj this is the same set of conditions satisfied by
the interpolation operator defined in [7, p.9], the local estimates of the interpolation
error resulting from Lemma 2.2 of that reference are valid here also.

We now prove the following theorem. It should be noted that, in the remainder
of the paper, when appropriate,‖v‖Hr(I) is meant in the piecewise sense

‖v‖Hr(I) =

 N∑
j=1

‖v‖2
Hr(Ij )

 1
2

.

Theorem 2.2. Let v ∈ R(PC1(I)) such thatv ∈ Hp+3(Ij), j = 1, 2, . . . , N, and
suppose thatV ∈ R(M′

p(∆)) satisfies

− (ρ−1V ′)′(λjk) + ρ−1V (λjk) = −(ρ−1v′)′(λjk) + ρ−1v(λjk),(2.3)

j = 1, 2, ..., N , k = 1, 2, ..., p− 1. Then

‖v − V ‖L∞(I) ≤ Chp+1‖v‖Hp+3(I).(2.4)

Proof. From (2.3) it follows that

{ρ−1(v′′ − V ′′), w} − {ρ−1(v − V ), w} = 0, w ∈ R(M′
p(∆)).(2.5)

If we let
α = Ip,∆v − V, β = Ip,∆v − v,(2.6)

and setw = α in (2.5), we have

− {ρ−1α′′, α} + {ρ−1α, α} = −{ρ−1β′′, α} + {ρ−1β, α}.(2.7)

Turning first to the left-hand side of (2.7), it is easily shown using Lemma 2.1
that

−{ρ−1α′′, α} ≥ C(ρ)‖α′‖2.

Also,
{ρ−1α, α} ≥ C(ρ)|α|2D.

Therefore

− {ρ−1α′′, α} + {ρ−1α, α} ≥ K
[‖α′‖2 + |α|2D

] ≥ K‖α′‖2,(2.8)

whereK is a constant depending onρ.
Using the approach in [7, pp.16-17], it is easy to show that

|{ρ−1β′′, α} − {ρ−1β, α}| ≤ 1
2
K‖α′‖2 +Ch2p+2‖v‖2

Hp+3(I).(2.9)

From (2.7), (2.8) and (2.9), we have

K‖α′‖2 ≤ 1
2
K‖α′‖2 +Ch2p+2‖v‖2

Hp+3(I),(2.10)

from which it follows on using Sobolev’s inequality that

‖α‖L∞(I) ≤ Chp+1‖v‖Hp+3(I).(2.11)

As was shown in [7, p.18] using a corollary of the Peano Kernel Theorem, we
have

‖β‖L∞(I) ≤ Chp+1‖v‖Hp+2(I).(2.12)
From the triangle inequality, (2.11) and (2.12), we obtain (2.4).ut
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3. The continuous-time orthogonal spline collocation method for the cubic
Schrödinger equation

The continuous-time orthogonal spline collocation approximation to the solutionu of
(1.2) is a differentiable mapU : [0, T ] → Mp(∆) such that

iUt(λjk, t) +Uxx(λjk, t) + q|U (λjk, t)|2U (λjk, t) = 0,
j = 1, 2, ..., N, k = 1, 2, ..., p− 1,

(3.1)

for t ∈ (0, T ]. An appropriate initial condition is specified later. An estimate of the
error in this approximation is given in the following theorem.

Theorem 3.1. Let u be the solution to (1.2) such thatu ∈ L∞(Hp+3) and ut ∈
L2(Hp+3), and let U be the solution to (3.1). Define the differentiable mapW :
[0, T ] → Mp(∆) by

−Wxx(λjk, t) +W (λjk, t) = −uxx(λjk, t) + u(λjk, t),(3.2)

j = 1, 2, ..., N, k = 1, 2, ..., p− 1. If

‖(U −W )(0)‖L∞(I) ≤ Chp+1,(3.3)

then, forh sufficiently small,

‖u− U‖L∞(L2) ≤ C{‖(U −W )(0)‖ + hp+1[‖u‖L∞(Hp+3) + ‖ut‖L2(Hp+3)]}.(3.4)

Proof. Let ξ = U −W and η = u −W. We assumea priori that, for h sufficiently
small,

‖ξ(t)‖L∞(I) ≤ h, t ∈ [0, T ].(3.5)

This can be justified by a continuity argument (cf. [32]), and is discussed at the end
of the proof. From the smoothness assumptions onu, it follows that

‖u‖L∞(L∞) ≤ C,(3.6)

and from (3.2) and Theorem 2.2 we have‖η‖L∞(L∞) ≤ C. Then, from the triangle
inequality and (3.5), it follows that

‖U‖L∞(L∞) ≤ C.(3.7)

It is shown in [21] that (3.1) is equivalent to the discrete Galerkin method

i{Ut, v} + {Uxx, v} + q{|U |2U, v} = 0, v ∈ Mp(∆).(3.8)

Then from (1.2a), (3.2) and (3.8), we obtain

{ξt, ξ} − i{ξxx, ξ} = iq{|U |2U − |u|2u, ξ} + {ηt, ξ} − i{η, ξ}.(3.9)

First note that

Rl{ξt, ξ} =
1
2
d

dt
|ξ|2D.(3.10)
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Secondly,

−i{ξxx, ξ} = {(ξ2)xx, ξ1} − {(ξ1)xx, ξ2} − i[{(ξ1)xx, ξ1} + {(ξ2)xx, ξ2}].

Then, from Lemma 2.1, we have

{(ξ2)xx, ξ1} = −((ξ2)x, (ξ1)x)− µp

N∑
j=1

(
∂pξ2

∂xp

)
j

(
∂pξ1

∂xp

)
j

h2p−1
j(3.11)

and

{(ξ1)xx, ξ2} = −((ξ1)x, (ξ2)x)− µp

N∑
j=1

(
∂pξ1

∂xp

)
j

(
∂pξ2

∂xp

)
j

h2p−1
j ,(3.12)

where

(
∂pξl
∂xp

)
j

, l = 1, 2, is the constant value of thepth partial derivative ofξl with

respect tox on Ij at time t. It follows from (3.11) and (3.12) that

{(ξ2)xx, ξ1} = {(ξ1)xx, ξ2},
and as a consequence−i{ξxx, ξ} is pure imaginary. Thus, taking the real part of (3.9)
and using (3.10), we obtain

1
2
d

dt
|ξ|2D = q[{|u|2u2 − |U |2U2, ξ1} − {|u|2u1 − |U |2U1, ξ2}]

+{(η1)t, ξ1} + {(η2)t, ξ2} + {η2, ξ1} − {η1, ξ2}.
(3.13)

To estimate the first term on the right hand side of (3.13), we use the Schwarz
inequality to obtain

q[{|u|2u2 − |U |2U2, ξ1} − {|u|2u1 − |U |2U1, ξ2}]

≤ C

[
2∑
l=1

∣∣ |u|2ul − |U |2Ul
∣∣2
D

+ |ξ|2D
]
.

(3.14)

Using the triangle inequality, (3.6) and (3.7), we have, forl = 1, 2,∣∣ |u|2ul − |U |2Ul
∣∣
D

≤ ∣∣ |u|2ul − |U |2ul
∣∣
D

+
∣∣|U |2ul − |U |2Ul

∣∣
D

≤ ‖u‖L∞(L∞)

∣∣ |u|2 − |U |2 ∣∣
D

+ ‖U‖2
L∞(L∞) |ul − Ul|D

≤ C{∣∣ |u|2 − |U |2 ∣∣
D

+ |ul − Ul|D},
which gives

2∑
l=1

∣∣ |u|2ul − |U |2Ul
∣∣2
D
≤ C{∣∣ |u|2 − |U |2 ∣∣2

D
+ |u− U |2D}.(3.15)

Using (3.6) and (3.7), it is easy to show that
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∣∣ |u|2 − |U |2 ∣∣2
D
≤ C|u− U |2D.(3.16)

On combining (3.14), (3.15) and (3.16), it follows that

q[{|u|2u2 − |U |2U2, ξ1} − {|u|2u1 − |U |2U1, ξ2}] ≤ C[|u− U |2D + |ξ|2D]

≤ C[|η|2D + |ξ|2D].
(3.17)

On substituting (3.17) in (3.13) and using the Schwarz inequality, we have

d

dt
|ξ|2D ≤ C{|η|2D + |ηt|2D + |ξ|2D}.(3.18)

Integrating (3.18) over the interval [0, t1], where 0< t1 ≤ T , we obtain

|ξ(t1)|2D ≤ |ξ(0)|2D +C

[∫ t1

0
[|η|2D + |ηt|2D]dt +

∫ t1

0
|ξ(t)|2Ddt

]
.

The use of the Gronwall inequality then gives

|ξ(t1)|2D ≤ C

{
|ξ(0)|2D +

[∫ T

0
[|η|2D + |ηt|2D]dt

]}
.(3.19)

We now turn our attention to the terms|η|2D and|ηt|2D. From (3.2) it follows that,
for any t ∈ [0, T ], Wl ∈ R(Mp(∆)) satisfies

−(Wl)xx(λjk, t) +Wl(λjk, t) = −(ul)xx(λjk, t) + ul(λjk, t),

l = 1, 2. Theorem 2.2 then implies that

‖ηl(t)‖L∞(I) ≤ Chp+1‖ul‖Hp+3(I),

from which we may conclude that

‖η(t)‖L∞(I) ≤ Chp+1‖u‖Hp+3(I),(3.20)

for any t ∈ [0, T ]. From (3.20), it follows that

‖η‖L∞(L2) ≤ Chp+1‖u‖L∞(Hp+3)(3.21)

and
|η(t)|D ≤ Chp+1‖u‖Hp+3(I).(3.22)

Also it is easy to show in a similar fashion that

|ηt(t)|D ≤ Chp+1‖ut‖Hp+3(I).(3.23)

From (3.19), (3.22) and (3.23), we obtain

|ξ(t1)|2D ≤ C{|ξ(0)|2D + h2p+2[‖u‖2
L2(Hp+3) + ‖ut‖2

L2(Hp+3)]},
and using (2.2),

‖ξ‖2
L∞(L2) ≤ C{‖ξ(0)‖2 + h2p+2[‖u‖2

L2(Hp+3) + ‖ut‖2
L2(Hp+3)]}.(3.24)
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The triangle inequality and the estimates (3.21) and (3.24) yield the desired result
(3.4).

At this point we show that thea priori assumption (3.5) is satisfied forh suffi-
ciently small, using the inverse property

‖ψ‖L∞(I) ≤ Ch−1/2‖ψ‖, ψ ∈ Mp(∆);(3.25)

cf. [32]. If h is sufficiently small, we can assume that (3.5) is satisfied for smallt > 0
since, from (3.3),‖ξ(0)‖L∞(I) ≤ Chp+1 and since (3.1) is a finite system of ordinary
differential equations for the coefficients ofU . We now show that the failure of (3.5)
for somet ∈ (0, T ] leads to a contradiction. For, suppose (3.5) does fail for some
t ∈ (0, T ]. Let

τ = inf {t ∈ (0, T ] | (3.5) fails to hold}.
Then by continuity, the inverse assumption (3.25), and (3.24),

h = ‖ξ(τ )‖L∞(I) ≤ Ch−1/2‖ξ(τ )‖ ≤ Chp+1/2,

which, sincep ≥ 3, produces a contradiction ifh is sufficiently small. Thus the
assumption (3.5) is valid fort ∈ [0, T ]. ut

In this theorem, we have assumed that the initial approximationU (0) is such that
‖(U −W )(0)‖L∞(I) ≤ Chp+1. One suitable choice ofU (0) is the interpolantIp,∆g
of the initial datag, since from (2.6) and (2.11), it follows that

‖(U −W )(0)‖L∞(I) ≤ Chp+1‖g‖Hp+3(I).(3.26)

Zakharov and Shabat [33] have shown that solutions of (1.1) satisfy an infinite
number of conservation laws, the two most commonly cited implying that

L =
∫ ∞

−∞
|u|2dx,(3.27)

the squaredL2 norm of the solution, and

H =
∫ ∞

−∞

(
|ux|2 − 1

2
q|u|4

)
dx,(3.28)

the Hamiltonian, are conserved. The collocation solutionU satisfies two conserva-
tion laws corresponding to those in (3.27) and (3.28). Takingv = U in (3.8) and
rearranging, we obtain

{Ut, U} = i{Uxx, U} + iq{|U |2U,U}.(3.29)

Taking the real part of (3.29) and using an argument similar to that employed in the
proof of Theorem 3.1, we obtain

d

dt
|U |2D = 0.(3.30)

This conservation of the squared discrete norm of the approximate solution is a discrete
analog of the conservation of the squaredL2 norm of the exact solution, (3.27). On
the other hand, takingv = Ut in (3.8), we obtain

|Ut|2D = i{Uxx, Ut} + iq{|U |2U,Ut}.(3.31)
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Using Lemma 2.1, we see that

Im[i{Uxx, Ut}] = −1
2
d

dt

[‖Ux‖2 + χh
]
,(3.32)

where

χh = µp

N∑
j=1

[(
∂pU1

∂xp

)
j

+

(
∂pU2

∂xp

)
j

]
h2p−1
j .

Direct calculation shows that

Im[iq{|U |2U,Ut}] =
1
4
q
d

dt

∣∣|U |2∣∣2
D
.(3.33)

Therefore, taking the imaginary part of (3.31) and using (3.32) and (3.33), we obtain

d

dt

[
‖Ux‖2 − 1

2
q
∣∣|U |2∣∣2

D
+ χh

]
= 0,

a discrete analog of the conservation law corresponding to (3.28).

4. Numerical experiments

In this section, we present numerical results obtained when the IBVP (1.2) is solved
using the orthogonal spline collocation method withp = 3. In this case,

λ1 =
1
2

(
1− 1√

3

)
, λ2 =

1
2

(
1 +

1√
3

)
.

We define the partition

∆ : a = x1 < x2 < ... < xN+1 = b

of [a, b], with Ij = (xj , xj+1) andhj = xj+1 − xj , j = 1, 2, ..., N , and let

λjk = xj + hjλk, j = 1, 2, ..., N, k = 1, 2.

The approximate solutionU : [0, T ] → M3(∆) is expressed using a monomial
representation (cf. [3, 17]). In this formulation,

U (x, t) =
4∑
l=1

Ujl(t)(x− xj)l−1

(l − 1)!
, x ∈ Ij ,(4.1)

where
Uj,1(t) = U (xj , t), Uj,2(t) = Ux(xj , t),

Uj,3(t) = Uxx(x+
j , t), Uj,4(t) = Uxxx(x+

j , t),
(4.2)

j = 1, 2, ..., N . We also define

UN+1,1(t) = U (xN+1, t), UN+1,2(t) = Ux(xN+1, t).(4.3)
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The coefficientsUjl(t) are complex-valued and are written in the form

Ujl(t) = Vjl(t) + iWjl(t).

For notational convenience, henceforth we do not indicate thet-dependence of the
coefficients explicitly; for example, we writeUjl instead ofUjl(t).

We take the Hermite cubic interpolantI3,∆g of the given functiong as the initial
approximationU (0). The requirement that the approximate solution satisfy the partial
differential equation at the collocation points yields the equations

4∑
l=1

U̇jl(hjλk)l−1

(l − 1)!
= i
[
Uj,3 + hjλkUj,4

]
+iq

∣∣∣∣∣
4∑
l=1

Ujl(hjλk)l−1

(l − 1)!

∣∣∣∣∣
2 4∑
l=1

Ujl(hjλk)l−1

(l − 1)!
,

(4.4)

j = 1, 2, ..., N , k = 1, 2, where a dot denotes differentiation with respect tot. TheC1

continuity ofU requires that

− Uj,1 − hjUj,2 −
h2
j

2
Uj,3 −

h3
j

6
Uj,4 +Uj+1,1 = 0, j = 1, 2, ..., N,(4.5a)

and

− Uj,2 − hjUj,3 −
h2
j

2
Uj,4 +Uj+1,2 = 0, j = 1, 2, ..., N.(4.5b)

Finally, the boundary conditions yield

U1,1 = 0, UN+1,1 = 0.(4.5c)

Combining equations (4.4) and (4.5), we obtain a differential-algebraic system

DU̇(t) = EU(t) + qF(U(t))(4.6)

of order 8N + 4, with

U = [(U1
1)T, (U2

1)T, (U1
2)T, (U2

2)T, ..., (U1
N )T, (U2

N )T, (U1
N+1)T]T

and
F = [0T

2 ,F
T
1 , 0

T
4 ,F

T
2 , 0

T
4 , ...,F

T
N , 0

T
4 , 0

T
2]T,

where
U1
j = [Vj,1,Wj,1, Vj,2,Wj,2]T, U2

j = [Vj,3,Wj,3, Vj,4,Wj,4]T,

04 = [0, 0, 0, 0]T, 02 = [0, 0]T,

and

Fj = [−(V̂ 2
j,1 + Ŵ 2

j,1)Ŵj,1, (V̂
2
j,1 + Ŵ 2

j,1)V̂j,1,−(V̂ 2
j,2 + Ŵ 2

j,2)Ŵj,2, (V̂
2
j,2 + Ŵ 2

j,2)V̂j,2]T,

with

V̂jk =
4∑
l=1

Vjl(hjλk)l−1

(l − 1)!
, Ŵjk =

4∑
l=1

Wjl(hjλk)l−1

(l − 1)!
,
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k = 1, 2, andD andE are almost block diagonal matrices which are described in
detail in [21].

For the solution of the differential-algebraic system (4.6), we employ the code
D02NNF from the NAG Library Mark 13, which has been used successfully in the
solution of the cubic Schrödinger equation by Galerkin methods [20, 23]. D02NNF
is a general purpose routine for integrating the initial value problem for a stiff system
of implicit differential equations coupled with algebraic equations of the form

A(t, y)ẏ = f(t, y).

The time stepping is done using backward differentiation formula (BDF) integrators.
Prior to calling D02NNF, calls are made to the appropriate linear algebra setup routine
and integrator setup routine. Since D02NNF cannot handle almost block diagonal
systems directly, the coefficient matricesD andE and the Jacobian of the functionF
are considered by the code as banded with upper bandwidth 5 and lower bandwidth
6. In each case, the linear algebra setup routine D02NTF is used. The integrator
setup routine used is D02NVF, which implements the family of BDF integrators. All
computations were performed on the University of Kentucky’s IBM 3090-600J in
double precision using its vectorization facilities.

In this numerical study, we consider two examples often studied in the literature,
namely, a bound state of two solitons (q = 8) and a bound state of three solitons
(q = 18), in which the initial condition is

g(x) = sech(x).

For these problems, the conserved quantities in (3.27) and (3.28) have the values

L = 2, H =
2
3

(1− q),(4.7)

respectively. Since the solution of each of these problems is an even function ofx and
negligible far fromx = 0, we allow for the use of a graded mesh in our calculations.
All of our numerical experiments were carried out on the region [−20, 20]× [0, 2.5],
and on the interval [−20, 20] we impose the mesh defined by

x0 = 0, xj = 20

(
j

J

)κ
= −x−j , j = 1, 2, ..., J.(4.8)

Here,κ ≥ 1 is a parameter which determines the degree of non-uniformity of the
mesh. Ifκ = 1, the mesh is uniform, and asκ increases the mesh becomes less uniform,
being finest aroundx = 0 and becoming progressively coarser as the endpoints of the
interval are approached.

In all of the experiments discussed here, the parameters RTOL and ATOL, toler-
ances used in a mixed relative and absolute local error test in D02NNF, are set at
10−5 and 10−8, respectively, and the maximum order of the integrator is set at 5. In
all cases, output is obtained from D02NNF at the time levels

tk = 0.05k, k = 1, 2, ..., 50.
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In each example, we graph the modulus of the approximate solution and the quantities
L′ andH ′, approximations to the two conserved quantitiesL andH defined by

L′ =
∫ 20

−20
|U |2dx and H ′ =

∫ 20

−20

(
|Ux|2 − 1

2
q|U |4

)
dx,

which are computed exactly using seven-point Gauss quadrature. For comparison, the
exact values ofL andH from (4.7) are graphed on the same set of axes asL′ and
H ′. For theq = 8 case, we use Gauss quadrature and the exact solution

-20

-10

0

10

20

x

0.0

0.5

1.0

1.5

2.0

2.5

t

|U|

0.0
0.5
1.0
1.5
2.0

Fig. 1. Bound state of two solitons,J = 40,κ = 1: graph of|U |

u(x, t) = eitsech(x)

[
1 + 3

4sech2(x)(e8it − 1)

1− 3
4sech4(x)sin2(4t)

]
,

given in [16], to estimate theL2 error in our approximations.
We first consider theq = 8 case, a bound state of two solitons. When using (4.8)

with J = 40 andκ = 1 (a uniform partition of 80 subintervals), we obtain the results
shown in Figs. 1–3. The graph of|U |, Fig. 1, exhibits the correct general qualitative
behavior but displays downstream ripples away from the central spine which the
exact solution does not possess. In Fig. 2, while the behavior ofL′ is quite good,H ′
deviates noticeably fromH in the vicinity of the periodic spikes in the graph of|U |.
The occurrence of these spikes also coincides with significant jumps in theL2 error
(Fig. 3); this error is also quite large.

When we use the same number of grid points but withκ = 1.5 in order to concen-
trate the grid points close tox = 0, the graphs of|U |, L′, andH ′ are indistinguishable
from their theoretical counterparts, and are not presented here. TheL2 error, while
still exhibiting jumps associated with the occurrence of the spikes in the graph of|U |,
is reduced by two orders of magnitude (Fig. 4).
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L
L´
H
H´
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-1

1

3

t

0.0 0.5 1.0 1.5 2.0 2.5

Fig. 2. Bound state of two solitons,J = 40,κ = 1: graphs of conserved quantities and approximations

We next turn to theq = 18 case, which presents a more stringent test of our
numerical scheme. UsingJ = 80 andκ = 1 (a uniform partition with 160 subintervals),
we obtain unsatisfactory results. In Fig. 5, it is shown that the time-periodic behavior
of the solution has broken down byt = 2, and, in Fig. 6, the graph ofH ′ exhibits
sharp deviations fromH. UsingJ = 80 but increasingκ to 1.2 produces a dramatic
improvement. The correct time-periodic behavior is shown by the graph of|U | in
Fig. 7; the graphs ofL′ andH ′ are not presented as they are essentially identical to
those ofL andH, respectively. These results are comparable to those obtained in
[20] with the L2-Galerkin method with continuous piecewise linear basis functions
and theH−1-Galerkin method with discontinuous piecewise linear functions using
far more mesh points. Of course, while part of this improvement may be attributed
to the use of piecewise cubics, the utilization of the graded mesh feature is clearly a
major factor also. Increasingκ to 1.3 produces results which are essentially indentical
to those obtained usingκ = 1.2.

5. Orthogonal spline collocation for the PE of Tappert

In this section, we consider (1.3), which we write in the form

ρ−1(x)ut − ρ−1(x)A(x, t)u− i
2k0

(ρ−1(x)ux)x = 0,(5.1)

where

A(x, t) =
i
2
k0
[
n2(x, t)− 1 + iν(x, t)

]
.
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L2 Error
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Fig. 3. Bound state of two solitons,J = 40,κ = 1: graph ofL2 error

The domain of the problem is the rectangular region [0, xB ] × [t0, T ] composed of
M horizontally stratified layers with top boundary at depthD1 = 0, bottom boundary
at depthDM+1 = xB , and interfaces at depthsDj , 2≤ j ≤M , where

0 =D1 < D2 < ... < DM < DM+1 = xB .

We assume that the density functionρ = ρ(x) is piecewise constant such that

ρ(x) = ρj , Dj < x < Dj+1, j = 1, 2, ...,M.

A homogeneous Dirichlet boundary condition is customarily imposed at the top bound-
ary, x = 0. Since the solution is negligible near the bottom boundary,x = xB , the
choice of a Dirichlet or Neumann bottom boundary condition is not critical, and we
assume in this analysis that a homogeneous Dirichlet boundary condition is imposed.
Also, we assume without loss of generality thatxB = 1 andt0 = 0. Thus we consider
the IBVP

ρ−1ut = ρ−1Au +
i

2k0
(ρ−1ux)x, x ∈

M⋃
j=1

(Dj , Dj+1), t ∈ (0, T ],(5.2a)

u(x, 0) = g(x), x ∈ (0, 1),(5.2b)
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Fig. 4. Bound state of two solitons,J = 40,κ = 1.5: graph ofL2 error

u(0, t) = 0, u(1, t) = 0, t ∈ [0, T ],(5.2c)

u(D−
j , t) = u(D+

j , t), 2≤ j ≤M, t ∈ (0, T ],(5.2d)

1
ρj−1

ux(D−
j , t) =

1
ρj
ux(D+

j , t), 2≤ j ≤M, t ∈ (0, T ].(5.2e)

Equations (5.2d) and (5.2e) express the continuity of the solution and of the normal
component of the particle velocity at the interface between two media.

To describe the collocation method, we introduce a quasi-uniform partition (2.1)
of [0, 1] containing the pointsDj , j = 1, 2, . . . ,M + 1, which define the locations of
the media interfaces. The continuous-time collocation approximation to the solution
u of (5.2) is a differentiable mapU : [0, T ] → M′

p(∆) such that

ρ(λjl)−1Ut(λjl, t) = ρ(λjl)−1A(λjl, t)U (λjl, t) +
i

2k0
(ρ−1Ux)x(λjl, t),

j = 1, 2, ..., N, k = 1, 2, ..., p− 1,
(5.3)
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Fig. 5. Bound state of three solitons,J = 80,κ = 1: graph of|U |

for t ∈ (0, T ]. An appropriate initial condition is specified later. The error estimate
for the continuous-time collocation approximation defined by (5.3) is given in the
following theorem.

Theorem 5.1. Let u be the solution to (5.2) such thatu ∈ L∞(Hp+3(Ij)) and
ut ∈ L2(Hp+3(Ij)), j = 1, 2, . . . , N , and letU be the solution to (5.3). Define the
differentiable mapW : [0, T ] → M′

p(∆) by

− (ρ−1Wx)x(λjk, t) + ρ−1W (λjk, t) = −(ρ−1ux)x(λjk, t) + ρ−1u(λjk, t),(5.4)

j = 1, 2, ..., N, k = 1, 2, ..., p− 1. Then

‖u− U‖L∞(L2) ≤ C{‖(U −W )(0)‖ + hp+1[‖u‖L∞(Hp+3) + ‖ut‖L2(Hp+3)]}.(5.5)

Proof. As before, to estimateu − U , we boundξ = U −W in terms ofη = u −W
and use the triangle inequality.

The proof parallels that of Theorem 3.1. First note that the collocation method
(5.3) is equivalent to the discrete Galerkin method

{ρ−1Ut, v} = {ρ−1AU, v} +
i

2k0
{(ρ−1Ux)x, v}, v ∈ M′

p(∆).(5.6)

Also, from (5.4),
{ρ−1ηxx, v} = {ρ−1η, v}, v ∈ M′

p(∆).(5.7)

Then from (5.2a), (5.6) and (5.7), we obtain, on settingv = ξ,
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Fig. 6. Bound state of three solitons,J = 80,κ = 1: graphs of conserved quantities and approximations

{ρ−1ξt, ξ} − {ρ−1Aξ, ξ} − i
2k0

{ρ−1ξxx, ξ}

= {ρ−1ηt, ξ} − {Aρ−1η, ξ} − i
2k0

{ρ−1η, ξ}.
(5.8)

If we proceed as in the proof of Theorem 3.1 and take the real part of (5.8), we obtain

1
2
d

dt
|ρ−1/2ξ|2D − {ρ−1A1ξ1, ξ1} − {ρ−1A1ξ2, ξ2}

= {ρ−1(η1)t, ξ1} + {ρ−1(η2)t, ξ2} − {ρ−1A1η1, ξ1} + {ρ−1A2η2, ξ1}
−{ρ−1A1η2, ξ2} − {ρ−1A2η1, ξ2} +

1
2k0

[{ρ−1η2, ξ1} − {ρ−1η1, ξ2}].

Using the Schwarz inequality and the fact that‖ρ−1‖L∞(I) and ‖A‖L∞(L∞) are
bounded, it is easy to show that

d

dt
|ρ−1/2ξ|2D ≤ C[|η|2D + |ηt|2D + |ξ|2D].

From Theorem 2.2 it follows that

|η|2D ≤ Ch2p+2‖u‖2
Hp+3(I), |ηt|2D ≤ Ch2p+2‖ut‖2

Hp+3(I),

and
‖η‖2

L∞(L2) ≤ Ch2p+2‖u‖2
L∞(Hp+3).

Using these estimates and the Gronwall inequality, we obtain
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Fig. 7. Bound state of three solitons,J = 80,κ = 1.2: graph of|U |

‖ξ‖2
L∞(L2) ≤ C{‖ξ(0)‖2 + h2p+2[‖u‖2

L2(Hp+3) + ‖ut‖2
L2(Hp+3)]}.

The final result (5.5) then follows on using the triangle inequality.ut
Note that if we takeU (0) =W (0), Theorem 5.1 provides us with an error estimate

which isO(hp+1).
The results of numerical experiments using the orthogonal spline collocation

method to solve test problems from the underwater acoustics literature are presented
in [22].

Acknowledgement.The authors wish to thank Bernard Bialecki for his assistance during the preparation of
this paper. This research was supported in part by funds from the National Science Foundation grants RII-
8610671 and CCR-9103451, and the Commonwealth of Kentucky through the University of Kentucky’s
Center for Computational Sciences.

References

1. Akrivis, G.D. (1993): Finite difference discretization of the cubic Schrödinger equation. IMA J.
Numer. Anal.13, 115–124

2. Akrivis, G.D., Dougalis, V.A., Karakashian, O.A. (1991): On fully discrete Galerkin methods of
second-order temporal accuracy for the nonlinear Schrödinger equation. Numer. Math.59, 31–53

3. Ascher, U., Pruess, S., Russell, R.D. (1983): On spline basis selection for solving differential equa-
tions. SIAM J. Numer. Anal.20, 121–142



Orthogonal spline collocation methods 375

4. Cerutti, J.H., Parter, S.V. (1976): Collocation methods for parabolic differential equations in one
space variable. Numer. Math.26, 227–254

5. Christie, I., Griffiths, D.F., Mitchell, A.R., Sanz-Serna, J.M: (1981): Product approximation for non-
linear problems in the finite element method. IMA J. Numer. Anal.1, 253–266

6. Delfour, M., Fortin, M., Payre, G. (1981): Finite-difference solutions of a non-linear Schrödinger
equation. J. Comput. Phys.44, 277–288

7. Douglas, J.Jr., Dupont, T. (1974): Collocation Methods for Parabolic Equations in a Single Space
Variable. Lect. Notes Math. vol. 385. Springer, New York

8. Fairweather, G. (1978): Finite Element Galerkin Methods for Differential Equations. Lect. Notes
Pure Applied Math. vol. 34. Marcel Dekker, New York

9. Fairweather, G., Meade, D. (1989): A survey of spline collocation methods for the numerical solution
of differential equations. In: J.C. Diaz, ed., Mathematics for Large Scale Computing. Lect. Notes
Pure Applied Math. vol. 120, pp. 297–341. Marcel Dekker, New York

10. Gribble, J. de G. (1984): Extending the finite difference treatment of interfaces when using the
parabolic wave equation. J. Acoust. Soc. Amer.76, 217–221

11. Griffiths, D.F., Mitchell, A.R., Morris, J.Ll. (1984): A numerical study of the nonlinear Schrödinger
equation. Comput. Methods Appl. Mech. Engrg.45, 177–215

12. Herbst, B.M., Morris, J.Ll., Mitchell, A.R. (1985): Numerical experiments with the nonlinear
Schr̈odinger equation. J. Comput. Phys.60, 282–305

13. Huang, D. (1988): Finite element solution to the parabolic wave equation. J. Acoust. Soc. Amer.84,
1405–1413

14. Karakashian, O.A., Akrivis, G.D., Dougalis, V.A. (1993): On optimal-order error estimates for the
nonlinear Schr̈odinger equation. SIAM J. Numer. Anal.30 377–400

15. Lee, D., McDaniel, S.T. (1987): Ocean acoustic propagation by finite difference methods. Comput.
Math. Appl. 14, 305–423

16. Miles, J.W. (1981): An envelope soliton problem. SIAM J. Appl. Math.41, 227–230
17. Osborne, M.R. (1975): Collocation, difference equations, and stitched function representations. In:

J.J.H. Miller, ed., Topics in Numerical Analysis II, pp. 121–132. Academic Press, New York
18. Percell, P., Wheeler, M.F. (1980): AC1 finite element collocation method for elliptic equations.

SIAM J. Numer. Anal.17, 605–622
19. Robertson, J.S., Arney, D.C., Jacobson, M.J., Siegmann, W.L. (1989): An efficient enhancement of

finite-difference implementations for solving parabolic equations. J. Acoust. Soc. Amer.86, 252–260
20. Robinson, M., Fairweather, G. (1989): On the use of the NAG routine D02NNF in the numerical

solution of the cubic Schrödinger equation in one space variable. Technical Report CCS–89–4, Center
for Computational Sciences, University of Kentucky, Lexington

21. Robinson, M.P. (1991): Numerical solution of Schrödinger equations using finite element methods.
Ph.D. thesis, University of Kentucky, Lexington

22. Robinson, M.P., Fairweather, G. (1993): Orthogonal cubic spline collocation solution of underwater
acoustic wave propagation problems. Journal of Computational Acoustics1, to appear

23. Robinson, M.P., Fairweather, G., Herbst, B.M. (1993): On the numerical solution of the cubic
Schr̈odinger equation in one space variable. J. Comput. Phys.104, 277–284

24. Sanz-Serna, J.M. (1984): Methods for the numerical solution of the nonlinear Schrödinger equation.
Math. Comp.43, 21–27

25. Sanz-Serna, J.M., Christie, I. (1986): A simple adaptive technique for nonlinear wave problems. J.
Comput. Phys.67, 348–360

26. Sanz-Serna, J.M., Manoranjan, V.S. (1983): A method for the integration in time of certain partial
differential equations. J. Comput. Phys.52, 273–289

27. Sanz-Serna, J.M., Verwer, J.G. (1986): Conservative and nonconservative schemes for the solution
of the nonlinear Schrödinger equation. IMA J. Numer. Anal.6, 25–42

28. Shamardan, A.B. (1990): The numerical treatment of the nonlinear Schrödinger equation. Comput.
Math. Appl. 19, 67–73

29. Tappert, F.D. (1977): The parabolic method. In: J.B. Keller, J.S. Papadakis, eds., Wave Propagation
and Underwater Acoustics. Lect. Notes Physics vol. 70, pp. 224–287. Springer, New York

30. Tourigny, Y. (1991): OptimalH1 estimates for two time-discrete Galerkin approximations of a
nonlinear Schr̈odinger equation. IMA J. Numer. Anal.11, 509–523

31. Tourigny, Y., Morris, J.Ll. (1988): An investigation into the effect of product approximation in the
numerical solution of the cubic nonlinear Schrödinger equation. J. Comput. Phys.76, 103–130



376 M.P. Robinson and G. Fairweather

32. Wahlbin, L.B. (1974): A dissipative Galerkin method for the numerical solution of first order hyper-
bolic equations. In: C. de Boor, ed., Mathematical Aspects of Finite Elements in Partial Differential
Equations, pp. 147–169. Academic Press, New York

33. Zakharov, V.E., Shabat, A.B. (1972): Exact theory of two-dimensional self-focusing and one-
dimensional self-modulation of waves in nonlinear media. Soviet Phys. JETP34, 62–69

This article was processed by the authors using the LaTEX style file pljour1 from Springer-Verlag.


