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Summary. In this paper, we mainly consider the three dimensional Neumann problem
in linear elasticity, which is reduced to a system of integro-differential equations
on the boundary based on a new representation of the derivatives of the double-
layer potential. Furthermore a new boundary finite element method for this Neumann
problem is presented.
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1. Introduction

We mainly consider the three dimensional Neumann problems in linear elasticity in
this paper.

Let £2 denote a bounded domain i with boundaryX, which is a sufficiently
smooth closed surfacél. denotes the unbounded domain with boundarywWe now
recall a few of notions of linear elasticity [4]. Le{x) = (ui(z), ua(z), us(z))" be the
displacement vector u and;(u) be the stress field corresponding to the displacement
vector u. The stress-displacement relationships for an isotropic elastic material are

(11) o4 (u) = A8 diva + 1 (g“i + O

1<4,5<3
_Tj axZ)J 717.]7 Y

where \ and i are Lame constants;; is the Kronecker delta. The strain tensgy
in terms of displacements is given by

+

(12) = 5 (o *

)7 1§27]§37

For 2z € R® and an arbitrary unit vecton(z) = (n1(z), na(x), na(z))" the matrix
differential operator
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(1.3) T(0x,n(x)) = (Ti5(0r, n(7))3x3
is defined by
0 0
(1.4) T35 (02, n(x)) = )\nz(m) o+ ,unj(x) . 10 on(z)’ 1<4,j <3

T(0.,n(x)) is called the stress Operatd]ﬂ(amn(x))u(x) denotes the stress at the
point = along the directiom(z) in terms of the displacemeni(x). Furthermore we
introduce the differential operator

(1.5) U0z, n(x)) = (Ui (0z, n(x))3x3
with
0 0 o
(1.6) Uij(Ou,n(@)) = ny(2) ,  —milx),, . 1<4,j<3
axi ij

Now giving ¢« and j in (1.6) the values 1,2 and 3, we can write out the following
operators
U11(0z, n(z)) = U22(0z, n(x)) = Uszs(0z, n(z)) = 0

Usz(@:, (2)) = ~Uzs(0s, n(x)) = na(x) aig - nale) aiz = as?(x)’
_ B 0 0 0

Usa(0r,n(a)) = ~Var(0r, nla)) = nala) ) —mal@) o = po o

U2a(D, n(x)) = ~Uso(0s, n(2)) = na(2) aiz —alo) 821 - 8S§(w)'

Here Si(z) = (0, —ng(x), n2())", Sa(x) = (na(x), 0, —na(2))T, and Sa(x) = (~nz(2),
ni(z),0)", which are perpendicular to the vectefr). U(0,,n(z)) is an antisymmet-
rical matrix differential operator.

The equilibrium equations without the body force in elastostatics are

80”(u) o
(1.7) Z or, 0, =123
or
(1.8) pAu+ (A +p) grad dive =0

in terms of displacements.
We now consider the following Neumann problems:

pAu+ (A +p) grad dive =0, in (2,

(2.9) T(Op,n(x))u =g, on X

and
nAu+ (A +p) grad dive = 0, in £,

T(Op,n(x))u =g, on X
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(1.10) u(xz) — 0, when |z| — +oo,

where n(z) denotes the unit outward normal vector anfor the domain{? and
g = (91, 92, g3)" is a given vector valued function satisfying

(1.12) / g(x)dS =0 and / x X g(x)dS =0.
= by

Under the condition (1.11), the external problem (1.10) has a unique solution and
the internal problem (1.9) has a unique solution apart from a difference of a rigid
displacement [4, P.312].

Let I'(x — y) denote the fundamental solution matrix of the Navier system (1.8),
then we have

Fz—y)=TNe—y), M@ —y), ¥ —y) = (@ — y)axs
with

lij(x —y) = {()\+3u)xéij +(A+M)(xi — i), —yj)}.

1
8rp(A + 2u) yl lz —y|?

The matrixI"(x) is symmetric and every column and row Bx) satisfy the equations
(1.8) at every point: € 23, except the origin. Furthermore we note that

1 0 1

(1.12) div I (z) = A0+ 1) O [ 1=1,2,3,
(1.13) o=y _ o=y, _4,4
Ox; y;
Consider the double-layer potential
(1.14) u(z, ) = / (T@y, n) T (x — v)) o (y)dS,,
X

wheren(y) denotes the unit outward normal vectoryae X' for the domains2? and
© = (1, P2, ¢3)" is a vector valued function oA’ to be determined. We know that
for a giveny(r) € CLA(X), u(r) is a solution of (1.8) [4]. For every ¢ X and an
arbitrary unit vectom(x), we have

(1.15) T(0z, n(x))u = /2 T(0z, n(@))(T @y n) (@ = y) T p(y)dSy,  Va ¢ .

For z € X', the kernel in the integral of (2.2) has a singularity which is of order

|z — y|~2 whenz andy are close. Thus the integral in the right-hand side of (2.2) is
defined as a finite part in the sense of Hadamard. The double-layer potential (2.1) has
been used to reduce the Neumann problems (1.9) and (1.10) to the boundary integral
equation with non integrable kernels [6],

(1.16) /E T(0z, ()T @y ny) (@ — y) o (y)dS, = g(x), Yz e X

assuming that the following formulas hold:
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lim /2 IOz, (@) (T Dy, ()T (o — y)) @(y)dS,

roEN—zEX

= /Z T(0z, n())(T @y n) (@ — ) (y)dS,, Vee X

and
odim /2 T(@z, n(@)(T @y n)T (w0 — y)) o (w)dS,
= A T 0z, n(x))(T Oy, n)I (@ — ) o (y)dS,,
2.17) Ve X .

From the mathematical point of view it is not obvious that equalities (1.17) hold.
Also, the integral equation (1.16) is quite difficult to approximate because of the hy-
persingular kernel. Hence a modified formulation of the hypersingular integral (1.16)
using weakly singular integrals was given by Nedelec [6], based on equalities (1.17)
again. But his formula is extremely complicated. It involve a tensor of order 4 which
is a sum of 9 terms and up to 6 derivative have to be applied to these terms. It
therefore remains an open problem to derive an integral equation for the equations of
three-dimensional elasticity with Neumann boundary conditions which is convenient
for numercial wish. These problems are important, for example, in crack propagation.

In this paper, a new representation of the derivative of the double-layer potential
will be presented. Based on this new representation, Neumann problems (1.9) and
(1.120) will be reduced to a system of boundary integro-differential equations, which
is equivalent to the hypersingular integral equation (1.16) given by Nedelec [6], under
the assumption that equalities (1.17) hold. This system of boundary integro-differential
equations is a much simpler formula for solving Neumann problems (1.9) and (1.10)
that uses a weakly singular kernal and tangential derivatives of the test and trial func-
tions. The derivatives of the test and trial functions can be easily expressed using
a given parametrization of the surface. This new representation of the derivative of
double layer potential is of high practical importance, especially for crack problems
and coupling of finite element method and boundary element method. Similar repre-
sentations of the derivative of double layer potentials in two dimensional case can be
found in [2,3]. Finally, we mention that as a consequence of our new representation,
the limits that occur on the left side (1.17) exist.

2. A new representation of the derivative of double-layer potential

In this section, a new representation of (1.15) will be presented, which will play an
important role throughout this paper. A computation shows [4, p.282]

Lemma 2.1.
(T(0y, )T (z — y))" = 20Uy, n(y))I"(z — y))"
1 1o} 1 1
@ O (TR RLCR O §

wherel is the unit matrix.
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Substituting (2.1) into (1.15) and applying Stokes Theorem, we obtain [4, p. 283]:

Lemma 2.2. The double-layer potential (1.14) may be expressed in the following
form:

1 )
ez g [opr D ods—y [T U@na)as,

(2.2) +2u /E I(z — y)(U0y, n(y))p(y))dSy.

In (2.2) the double-layer potential(x, ) is expressed as a sum of the harmonic
double-layer potential, the harmonic single-layer potential and the single-layer poten-
tial. Based on the representation (2.2), we calculg{,, n(z))u(x, ¢) for = ¢ X.

We have

1

1Ot )= o [ (TOnir, St ) s,

yl
¢ [ 7@rne) (M(x -
b
(2.3) =lh+J VYa¢x

! ) U0y, ()¢ (1),
4r |z —y|

By the definition ofT'(9,,, n(x)), we get

_ M H? 1
Io = 4r /2 <8n(a:)8n(y) Iz — |) (y)dS,

+ ’\4;“ / n(x) ((graq Iny) v — ! y) -w(y)) dSy

1
24) P RUCRTE B O

By Lemma 2.1 we have
T, () (x — y) = 2uU(0a, ()] (2 — )

1 0 1 1

Substituting (2.5) into/ and using the definition df'(0,., n(z)) we obtain
3
v= [ 0@ty (ire - -3 LY ue,neus,
x 4t | — y|
O oo (ored, 0@, ) a5,
I 0 1
@)+ 4t [ oty oy VO DS,

Thus we have
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02 1
1Ol )= 41 [ ey PO

3 1
- L V@) (421 -0 - 34 1)U, nteas,

2.7) + E+ B>,
with

A 1 1
Bzt [awfeed 0 T e-arad T 06,000 s,

_ W 1 0 1
Er= / {(uwz,n(x)) on) o — 917D on@) e -y U(ay,nw»sa(y)}dsy.
For the further simplication of (2.7), we have the following lemma

Lemma 2.3.  The following equalities hold fat % y

52 1 o2 1
(28) on(z)on(y) |x — y\ Z OSk(x)0Sk(Y) |z — yl
o 1 1
(2.9) grad, o) e -yl U(dy, n(y))grad, z— y|
1 1
U(am’”(x))a W) |z — | U(ay’”(x»a (@) |z — o]
(2.10) = {U(ay, n(y))U(0x, () — U(Ox, n(x))U(0y, n(y))} B i Yl

Proof. The proof of (2.8) can be found in [4]. To prove (2.9), let

1
U(8y> n(y))gra(in |.’,U _ y| = (H17 H23 H3)T7
then we have
3
0 1
H; = Uii(0y,
; [( Y n(y))axl |$ _ yl

3
_ 0 0 1
-y <m(y) o ) 8%) ol

H? 1
= an(y)axiayz |z — m(y)z ﬁxzayl |z — ?J|

0 0 1
= . i=1,23.
Ox; <5n(y) |z — yl)

The equality (2.9) is proved completely. To prove (2.10), let
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—{U(@y, n(¥)U(0z, n(x)) — U(0x, n(z))U(0y, n(y)) } iz i Y = (Hij)3xs,
then we obtain

=1

: 9 1
=3 (g iy ) (gm0 )T

: 9 ) ) o) 1
=3 (g iy ) (e o)) )

|z — |
3 P 1
= Z m(@)n; () 5 our | — Z ng(x)n(y)

3 3
= {Z Uit (@, n(@))U1; @y, n(@)) = D Vir(@y, n())Ui; (D, n(x))} o f "
=1

ax 105 |z — yl
1 1
- an(y)ng(x) 6y oy |z — Zm(y)nz(x) 8y o, | — o]
0 1 0 1
”J(y)ayz on(z) |z -y * " )aa on(y) |z — y]
0 1 0 1
— e )8951 on(y) |x yl ,(y) Oy, on(x) |z — y|
U @) gty 1 T = U@t T 1<

The equality (2.10) follows immediately.

Now we return to simplify (2.7). From the equality (2.9) we have

0 1
[ o) jw—y| Py

- /. U(ay,n(y»grad%f s,

3
-/ Z( s@ 0 L) eias,
X J

1,7

Jj=

/ Z < Oz o —y| <Z Uji(0y, n(y))%(y)> ds,

= /Zgradl oyl U0y, n(y))e(y)dsS,

Hence we havdy; = 0 . An application of (2.10) yields

3
i /2 Z 8?6 |z — (Z Ui 9y, n(:‘/))@i(?l)) ds,
J _



276 H. Han

Bom [ 0@ ) 700 - O ) o, L e s,
= o [ {1 nnoe. e - v e, o | Letas,

H 1 T

1
+ M U(@in(2)) / U@, n(u))e(4)dS, -
4 X |5U - y\
Finally we obtain

3
_ 0 po 1 Op(y)
1Oz, n(z))u(z, ) = ; 9S,(z) /2 4 |z — y| OSK(Y) 45y

0 [ (aire-n- g 1) uo,nees,

1 1 ;
T Ar [: [U(aw,n(x))m —yl U(awn(y))} ©(y)dS,

(2.11) Ve g X

HenceT (9., n(x))u(x, ) is presented as a sum of the derivative of single-layer
potentials with respect t8;(z)(k = 1, 2, 3). By the continuity of the tangential deriva-
tives of the single-layer potential on the boundary4, p. 312], we obtain

3
_ ) o1 O0p(y)
T(0z, n(x))u(z, p) = ; 9Sk(z) /2 47 |z — y| Sk(y) 45y

0@ [ (4fre-n- 1 b YU, s,

H 1 T
-0 /2 {U(&r,n(x))u_y|U(8y,n(y))] o(y)ds,

(2.12) Vo e X,

providedp(y) € CHP(X), wheren(x) denote the unit outward normal vectorat X
for domaing?2. In particular, we conclude that the limits on the left side of (1.17) exist

and are equal to the right side of (2.12).
Let u(x, ¢) given by (1.14) be the solution of problem (1.9), then the unknown
function o(y) satisfies the following system of boundary integro-differential equations

_23: o /u 1 90y) g
= 0S1(x) Js Am |z — y| OSk(y) "
1

~V@nn) [ (4ere-n - 1) ue,atws,
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T

Af;/z {U@I’”(x))miyU(ay’”(y)) o(y)dS,
(213) =-g(@), Ve

Similarly let u(x, ¢) given by (1.14) be the solution of (1.10), then the unknown
function (y) satisfies (2.13) also. We have therefore obtained a system of boundary
integro-differential equations under the assumptios C*4(X). The kernels contain
weak singularities. In the next section we weaken the assumptign and we show
how to find by solving (2.13).

3. The system of boundary integro-differential equations (2.13)

Let H™(£2), H*(X) be the usual Sobolev spaces with ndfm|,.,., and|| - ||, » and
Wm™($2) = (H™(£2))3, W(X) = (H*(X))®, wherem and a are two real numbers
[5]. Furthermore let [7]

HY(2) = {v(w) . v(a)

(1 +]z[2)2
W) = (HX(£2))°,

_1
W, Z(E)Z{LpGW%(E) and /Zapdszo, /Exxgodszo,},

€ LA, Vve (L2<Qc))3},

1
W*2(2)={90€W%(2) and /gods=0, /xxapd8=0}.
s s

Suppose that a function defined in{2 (£2.) is continuously extendible to a point
z € X, we letv*(z)(v—(x)) denote the limit and we set]= v*(z) — v~ (z) on X.

For any givenp(z) € C14(X), the double-layer potential(z, ) given by (1.14)
is the solution of the following problem:

Z 80:](”) in 2 and (2, =123,
O0x;

[T(0y,n(x))u] =0 on X

1
B1) u@) =o) =0 , i=1,23,  when |z| — +oc.
ox; ||

Furthermore, for giverp € W%(E) we consider the problem (3.1). Leg(x) denote
the weak solution of the following problem with givene W%(Z):

Z 0o _ g in

)
0z

(3.2) up(x) = p(x) onX.
We know [5] that problem (3.2) has a unique solutiyfz) € W(£2) and
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(3:3) [uolls.e < Clielly 5

where(' is a constant and’ will also denote a constant in the following, which may
have different values at different places. Moreover from trace theorem we have

(34) lelly 5 < Clluolls,e;
(35) 170z, n(@uo(@)l| 5 5 < Clluollz, -
Setting

iw={ugt o

Thenu{x) satisfies the following problem:
Za"”(u) 0 in 2 and Q, =123
O0x;
[u]= , on XY
[T(0z, n(x))a] = h(x),  on X

i 1
(36) )=o), 0=, , i=123  when |z| — +cc.
Ox; ||

with h(x) = T'(0., n(x))uo(z)| 5. Introduce spaces

1
X={v]vle e WHR), vla, € Wi(2) and ]z € W2(D)},
Xo={ve X, and p]=0 onX}.

with norm HU”%( = anf/‘/l(g) + ||’UH$/V*1(QC)

Then the problem (3.6) is reduced to the following variational problem:

Find 7 € Xy, such that

(3.7) a(t,v) = / h vds, Yv € Xo,
by

with

(38) atw.)= [ N ”Zf”(u)g”(v)dx

It is straightforward to check thai(v,v)% is a norm on the spac& and it can be

shown, using the Korn inequalities, thgb, v)% is an equivalent norm oX . From the
Lax-Milgram lemma [1], the variational problem (3.7) has a unique solutien Xy
1

for given h(z) € W, ?(X) and
(3.9) la@)lx < Cllhll 1 5
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et i) —uole)  in 2
_(a(x) — ug(x ,
ulw) = {ﬂ(x) ° in 2.

Thenuw is the unique weak solution of problem (3.1) and
(3.10) lullx < Cllelly 5

Thus for giveny € W%(E) the equality (1.14) is meaningful and the equality (2.13)
1
holds in the weak sense for givgne W, 2(X). Furthermore from Green's formula,

(3.11) — /Z(T(a%7 n(x))u(x)) - Y(x)dSy = a(u,v),

whereu(xz) and v(z) are the solutions of problem (3.1) corresponding to the given

functionsp(z) andy(z) € W%(E). Substituting (2.11) into (3.11) and integrating by
parts we obtain

oY(x)  Op(y)
) =bp = [ |x,y| (Z 951(a) ask(y)>dsﬂ”d5y

-] (U(ax,n(x»w(x)f( T ) U0 ). ds,

/ / Z(ukj(ax,n(x»wz(x»‘ fy|(um(ay,n(y)m(y)dszdsy

i,5,k=1

(3.12)
For the bilinear formb defined by (3.12), we have

Lemma 3.1. (i) b(p, ) is a bounded symmetric bilinear form (Wi%(E) X W%(E),
namely there is a constadt/ > 0O, such that

(313) b, )l < Mllglly sllvlly 5 Vi, v € WE(E).

(i) There exists a constant > 0, such that

1
(3.14) b ) > allelf o, Ve € WE).

Proof. (i) Sincea(u,v) = b(p, ¥), we have
b(e, )| = |a(u, v)| < Cllul|x|Jv]lx,

whereu, v are the solutions of problem (3.1) corresponding to the functiorasd
1. From the estimate (3 10), the inequality (3.13) follows immediately.

(i) For giveny € WZ(E) the solutionu of (3.1), is in X. Sincea(u, u)z is an
equivalent norm ofX, we have

(3.15) by, ) = a(u,u) > aollull%.
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On the other hand,

— ot .
lelly = llu” —u”lly 5
<l o+ lu”lly 5
(3.16) < Cllullx.

The last inequality is from the trace theorem. Combining (3.15) and (3.16), the in-
equality (3.14) is proved.

We now return to the system of the boundary integro-differential equations (2.13).

1
For any giveng € W, 2(X) , the problem (2.13) is equivalent to the following
variational problem:

1
Find ¢(y) € W.2(Y), such that

1
(3.17) Moy == [ guas,  vwew o)
X
An application of the Lax-Milgram lemma yeilds the following theorem.

Theorem 3.1. For anyg € W*_%(E), the variational problem (3.7) has a unique
solutiony € W*% (2.

As a consequence of Theorem 3.1, Eq. (2.13) has a unique solution for any
W[%(E), so (1.9) has a unique weak solutionc W2(£2;), and (1.10) has a weak
solutionu € W(£2) that unique up to rigid displacements, for any W[%(E).

1
Suppose that}, is a finite dimensional subspace 16f? (X), then we consider the
discrete problem of (3.17):

Find ¢}, € V},, such that

(3.18) Wonin) =~ [ g-undS. Vi € Vi
X
We obtain
Theorem 3.2. The discrete problem (3.18) has a unique solutione v}, and

M
_ < _
le=enlly o= 0t o = nlly 5

1
wherep € W,2(X) is the solution of (3.18).

This conclusion follows immediately from Lemma 3.1, the Lax-Milgram lemma
and tha Cea Lemma [1].
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