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Summary. In this paper, we mainly consider the three dimensional Neumann problem
in linear elasticity, which is reduced to a system of integro-differential equations
on the boundary based on a new representation of the derivatives of the double-
layer potential. Furthermore a new boundary finite element method for this Neumann
problem is presented.
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1. Introduction

We mainly consider the three dimensional Neumann problems in linear elasticity in
this paper.

Let Ω denote a bounded domain inR3 with boundaryΣ, which is a sufficiently
smooth closed surface.Ωc denotes the unbounded domain with boundaryΣ. We now
recall a few of notions of linear elasticity [4]. Letu(x) = (u1(x), u2(x), u3(x))T be the
displacement vector u andσij(u) be the stress field corresponding to the displacement
vector u. The stress-displacement relationships for an isotropic elastic material are

(1.1) σij(u) = λδijdivu + µ

(
∂ui
∂xj

+
∂uj
∂xi

)
, 1≤ i, j ≤ 3,

whereλ andµ are Lame constants,δij is the Kronecker delta. The strain tensorεij
in terms of displacements is given by

(1.2) εij(u) =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
, 1≤ i, j ≤ 3,

For x ∈ R
3 and an arbitrary unit vectorn(x) = (n1(x), n2(x), n3(x))T the matrix

differential operator
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(1.3) T (∂x, n(x)) = (Tij(∂x, n(x))3×3

is defined by

(1.4) Tij(∂x, n(x)) = λni(x)
∂

∂xj
+ µnj(x)

∂

∂xi
+ µδij

∂

∂n(x)
, 1≤ i, j ≤ 3.

T (∂x, n(x)) is called the stress operator.T (∂x, n(x))u(x) denotes the stress at the
point x along the directionn(x) in terms of the displacementu(x). Furthermore we
introduce the differential operator

(1.5) U(∂x, n(x)) = (Uij(∂x, n(x))3×3

with

(1.6) Uij(∂x, n(x)) = nj(x)
∂

∂xi
− ni(x)

∂

∂xj
, 1≤ i, j ≤ 3.

Now giving i and j in (1.6) the values 1,2 and 3, we can write out the following
operators

U11(∂x, n(x)) = U22(∂x, n(x)) = U33(∂x, n(x)) ≡ 0,

U32(∂x, n(x)) = −U23(∂x, n(x)) = n2(x)
∂

∂x3
− n3(x)

∂

∂x2
≡ ∂

∂S1(x)
,

U13(∂x, n(x)) = −U31(∂x, n(x)) = n3(x)
∂

∂x1
− n1(x)

∂

∂x3
≡ ∂

∂S2(x)
,

U21(∂x, n(x)) = −U12(∂x, n(x)) = n1(x)
∂

∂x2
− n2(x)

∂

∂x1
≡ ∂

∂S3(x)
.

HereS1(x) = (0,−n3(x), n2(x))T, S2(x) = (n3(x), 0,−n1(x))T, andS3(x) = (−n2(x),
n1(x), 0)T, which are perpendicular to the vectorn(x). U(∂x, n(x)) is an antisymmet-
rical matrix differential operator.

The equilibrium equations without the body force in elastostatics are

(1.7)
3∑
j=1

∂σij(u)
∂xj

= 0, i = 1, 2, 3

or

(1.8) µ∆u + (λ + µ) grad divu = 0

in terms of displacements.
We now consider the following Neumann problems:

µ∆u + (λ + µ) grad divu = 0, in Ω,

(1.9) T (∂x, n(x))u = g, on Σ

and
µ∆u + (λ + µ) grad divu = 0, in Ωc,

T (∂x, n(x))u = g, on Σ
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(1.10) u(x) → 0, when |x| → +∞,

where n(x) denotes the unit outward normal vector onΣ for the domainΩ and
g = (g1, g2, g3)T is a given vector valued function satisfying

(1.11)
∫
Σ

g(x)dS = 0 and
∫
Σ

x× g(x)dS = 0.

Under the condition (1.11), the external problem (1.10) has a unique solution and
the internal problem (1.9) has a unique solution apart from a difference of a rigid
displacement [4, P.312].

Let Γ (x− y) denote the fundamental solution matrix of the Navier system (1.8),
then we have

Γ (x− y) ≡ (Γ 1(x− y), Γ 2(x− y), Γ 3(x− y)) ≡ (Γij(x− y))3×3

with

Γij(x− y) =
1

8πµ(λ + 2µ)

{
(λ + 3µ)

δij
|x− y| + (λ + µ)

(xi − yi)(xj − yj)

|x− y|3
}
.

The matrixΓ (x) is symmetric and every column and row ofΓ (x) satisfy the equations
(1.8) at every pointx ∈ R3, except the origin. Furthermore we note that

(1.12) div Γ i(x) =
1

4(λ + µ)
∂

∂xi

1
|x| , i = 1, 2, 3,

(1.13)
∂Γ (x− y)

∂xi
= −∂Γ (x− y)

∂yi
, i = 1, 2, 3.

Consider the double-layer potential

(1.14) u(x, ϕ) =
∫
Σ

(T (∂y, n(y))Γ (x− y))Tϕ(y)dSy,

wheren(y) denotes the unit outward normal vector aty ∈ Σ for the domainΩ and
ϕ = (ϕ1, ϕ2, ϕ3)T is a vector valued function onΣ to be determined. We know that
for a givenϕ(x) ∈ C1,β(Σ), u(x) is a solution of (1.8) [4]. For everyx /∈ Σ and an
arbitrary unit vectorn(x), we have

(1.15) T (∂x, n(x))u =
∫
Σ

T (∂x, n(x))(T (∂y, n(y))Γ (x−y))Tϕ(y)dSy, ∀x /∈ Σ.

For x ∈ Σ , the kernel in the integral of (2.2) has a singularity which is of order
|x− y|−3 whenx andy are close. Thus the integral in the right-hand side of (2.2) is
defined as a finite part in the sense of Hadamard. The double-layer potential (2.1) has
been used to reduce the Neumann problems (1.9) and (1.10) to the boundary integral
equation with non integrable kernels [6],

(1.16)
∫
Σ

T (∂x, n(x))(T (∂y, n(y))Γ (x− y))Tϕ(y)dSy = g(x), ∀x ∈ Σ

assuming that the following formulas hold:
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lim
x0∈Ω→x∈Σ

∫
Σ

T (∂x, n(x))(T (∂y, n(y))Γ (x0 − y))Tϕ(y)dSy

=
∫
Σ

T (∂x, n(x))(T (∂y, n(y))Γ (x− y))Tϕ(y)dSy, ∀x ∈ Σ

and

lim
x0∈Ωc→x∈Σ

∫
Σ

T (∂x, n(x))(T (∂y, n(y))Γ (x0 − y))Tϕ(y)dSy

=
∫
Σ

T (∂x, n(x))(T (∂y, n(y))Γ (x− y))Tϕ(y)dSy,

(1.17) ∀x ∈ Σ .

From the mathematical point of view it is not obvious that equalities (1.17) hold.
Also, the integral equation (1.16) is quite difficult to approximate because of the hy-
persingular kernel. Hence a modified formulation of the hypersingular integral (1.16)
using weakly singular integrals was given by Nedelec [6], based on equalities (1.17)
again. But his formula is extremely complicated. It involve a tensor of order 4 which
is a sum of 9 terms and up to 6 derivative have to be applied to these terms. It
therefore remains an open problem to derive an integral equation for the equations of
three-dimensional elasticity with Neumann boundary conditions which is convenient
for numercial wish. These problems are important, for example, in crack propagation.

In this paper, a new representation of the derivative of the double-layer potential
will be presented. Based on this new representation, Neumann problems (1.9) and
(1.10) will be reduced to a system of boundary integro-differential equations, which
is equivalent to the hypersingular integral equation (1.16) given by Nedelec [6], under
the assumption that equalities (1.17) hold. This system of boundary integro-differential
equations is a much simpler formula for solving Neumann problems (1.9) and (1.10)
that uses a weakly singular kernal and tangential derivatives of the test and trial func-
tions. The derivatives of the test and trial functions can be easily expressed using
a given parametrization of the surface. This new representation of the derivative of
double layer potential is of high practical importance, especially for crack problems
and coupling of finite element method and boundary element method. Similar repre-
sentations of the derivative of double layer potentials in two dimensional case can be
found in [2,3]. Finally, we mention that as a consequence of our new representation,
the limits that occur on the left side (1.17) exist.

2. A new representation of the derivative of double-layer potential

In this section, a new representation of (1.15) will be presented, which will play an
important role throughout this paper. A computation shows [4, p. 282]

Lemma 2.1.

(T (∂y, n(y))Γ (x− y))T = 2µ(U(∂y, n(y))Γ (x− y))T

+
1

4π

(
I

∂

∂n(y)
1

|x− y| + U(∂y, n(y))
1

|x− y|
)
,(2.1)

whereI is the unit matrix.
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Substituting (2.1) into (1.15) and applying Stokes Theorem, we obtain [4, p. 283]:

Lemma 2.2. The double-layer potential (1.14) may be expressed in the following
form:

u(x, ϕ) =
1

4π

∫
Σ

ϕ
∂

∂n(y)
1

|x− y|dSy −
1

4π

∫
Σ

1
|x− y| (U(∂y, n(y))ϕ(y))dSy

+ 2µ
∫
Σ

Γ (x− y)(U(∂y, n(y))ϕ(y))dSy.(2.2)

In (2.2) the double-layer potentialu(x, ϕ) is expressed as a sum of the harmonic
double-layer potential, the harmonic single-layer potential and the single-layer poten-
tial. Based on the representation (2.2), we calculateT (∂x, n(x))u(x, ϕ) for x /∈ Σ.
We have

T (∂x, n(x))u(x, ϕ) =
1

4π

∫
Σ

(
T (∂x, n(x))I

∂

∂n(y)
1

|x− y|
)
ϕ(y)dSy

+
∫
Σ

T (∂x, n(x))

(
2µΓ (x− y)− 1

4π
I

|x− y|
)

U(∂y, n(y))ϕ(y)dSy

≡ I0 + J. ∀x /∈ Σ(2.3)

By the definition ofT (∂x, n(x)), we get

I0 =
µ

4π

∫
Σ

(
∂2

∂n(x)∂n(y)
1

|x− y|
)
ϕ(y)dSy

+
λ + µ

4π

∫
Σ

n(x)

((
gradx

∂

∂n(y)
1

|x− y|
)
· ϕ(y)

)
dSy

+
µ

4π

∫
Σ

U(∂x, n(x))
∂

∂n(y)
1

|x− y|ϕ(y)dSy.(2.4)

By Lemma 2.1 we have

T (∂x, n(x))Γ (x− y) = 2µU(∂x, n(x))Γ (x− y)

+
1

4π

(
I

∂

∂n(x)
1

|x− y| − U(∂x, n(x))
1

|x− y|
)
.(2.5)

Substituting (2.5) intoJ and using the definition ofT (∂x, n(x)) we obtain

J =
∫
Σ

U(∂x, n(x))

(
4µ2Γ (x− y)− 3µ

4π
I

|x− y|
)

U(∂y, n(y))ϕ(y)dSy

− λ + µ
4π

∫
Σ

n(x)

(
gradx

1
|x− y| · U(∂y, n(y))ϕ(y)

)
dSy

+
µ

4π

∫
Σ

∂

∂n(x)
1

|x− y|U(∂y, n(y))ϕ(y)dSy.(2.6)

Thus we have
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T (∂x, n(x))u(x, ϕ) =
µ

4π

∫
Σ

∂2

∂n(x)∂n(y)
1

|x− y|ϕ(y)dSy

+
∫
Σ

U(∂x, n(x))

(
4µ2Γ (x− y)− 3µ

4π
I

|x− y|
)

U(∂y, n(y))ϕ(y)dSy

+E1 +E2,(2.7)

with

E1 =
λ + µ

4π

∫
Σ

n(x)

{
(gradx

∂

∂n(y)
1

|x− y| ·ϕ(y)−gradx
1

|x− y| ·U(∂y, n(y))ϕ(y)

}
dSy,

E2 =
µ

4π

∫
Σ

{
(U(∂x, n(x))

∂

∂n(y)
1

|x− y|ϕ(y) +
∂

∂n(x)
1

|x− y|U(∂y, n(y))ϕ(y)

}
dSy.

For the further simplication of (2.7), we have the following lemma

Lemma 2.3. The following equalities hold forx 6= y

(2.8)
∂2

∂n(x)∂n(y)
1

|x− y| = −
3∑
k=1

∂2

∂Sk(x)∂Sk(y)
1

|x− y|

(2.9) gradx
∂

∂n(y)
1

|x− y| = U(∂y, n(y))gradx
1

|x− y|

U(∂x, n(x))
∂

∂n(y)
1

|x− y| − U(∂y, n(x))
∂

∂n(x)
1

|x− y|
=

{
U(∂y, n(y))U(∂x, n(x))− U(∂x, n(x))U(∂y, n(y))

}
1

|x− y|(2.10)

Proof. The proof of (2.8) can be found in [4]. To prove (2.9), let

U(∂y, n(y))gradx
1

|x− y| = (H1, H2, H3)T,

then we have

Hi =
3∑
l=1

Uil(∂y, n(y))
∂

∂xl

1
|x− y|

=
3∑
l=1

(
nl(y)

∂

∂yi
− ni(y)

∂

∂yl

)
∂

∂xl

1
|x− y|

=
3∑
l=1

nl(y)
∂2

∂xi∂yl

1
|x− y| − ni(y)

3∑
l=1

∂2

∂xl∂yl

1
|x− y|

=
∂

∂xi

(
∂

∂n(y)
1

|x− y|
)
, i = 1, 2, 3.

The equality (2.9) is proved completely. To prove (2.10), let
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−{U(∂y, n(y))U(∂x, n(x))− U(∂x, n(x))U(∂y, n(y))} 1
|x− y| = (Hij)3×3,

then we obtain

Hij =

{
3∑
l=1

Uil(∂x, n(x))Ulj(∂y, n(y))−
3∑
l=1

Uil(∂y, n(y))Ulj(∂x, n(x))

}
1

|x− y|

=
3∑
l=1

(
nl(x)

∂

∂xi
− ni(x)

∂

∂xl

)(
nj(y)

∂

∂yl
− nl(y)

∂

∂yj

)
1

|x− y|

−
3∑
l=1

(
nl(y)

∂

∂yi
− ni(y)

∂

∂yl

)(
nj(x)

∂

∂xl
− nl(x)

∂

∂xj

)
1

|x− y|

=
3∑
l=1

nl(x)nj(y)
∂2

∂xi∂yl

1
|x− y| +

3∑
l=1

ni(x)nl(y)
∂2

∂xl∂yj

1
|x− y|

−
3∑
l=1

nl(y)nj(x)
∂2

∂yi∂xl

1
|x− y| −

3∑
l=1

ni(y)nl(x)
∂2

∂yl∂xj

1
|x− y|

= nj(y)
∂

∂yi

∂

∂n(x)
1

|x− y| + ni(x)
∂

∂xj

∂

∂n(y)
1

|x− y|
− nj(x)

∂

∂xi

∂

∂n(y)
1

|x− y| − ni(y)
∂

∂yj

∂

∂n(x)
1

|x− y|
= Uij(∂y, n(y))

∂

∂n(x)
1

|x− y| − Uij(∂x, n(x))
∂

∂n(y)
1

|x− y| , 1≤ i, j ≤ 3.

The equality (2.10) follows immediately.

Now we return to simplify (2.7). From the equality (2.9) we have∫
Σ

gradx
∂

∂n(y)
1

|x− y| · ϕ(y)dSy

=
∫
Σ

U(∂y, n(y))gradx
1

|x− y| · ϕ(y)dSy

=
∫
Σ

3∑
i,j=1

(
Uij(∂y, n(y))

∂

∂xj

1
|x− y|

)
ϕi(y)dSy

= −
∫
Σ

3∑
j=1

∂

∂xj

1
|x− y|

( 3∑
i=1

Uij(∂y, n(y))ϕi(y)

)
dSy

=
∫
Σ

3∑
j=1

∂

∂xj

1
|x− y|

( 3∑
i=1

Uji(∂y, n(y))ϕi(y)

)
dSy

=
∫
Σ

gradx
1

|x− y| · U(∂y, n(y))ϕ(y)dSy

Hence we haveE1 = 0 . An application of (2.10) yields
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E2 =
µ

4π

∫
Σ

{
(U (∂x, n(x))

∂

∂n(y)
1

|x− y| )ϕ(y)− (U
(
∂y, n(y)

) ∂

∂n(x)
1

|x− y| )ϕ(y)

}
dSy

=
µ

4π

∫
Σ

{
[U(∂y, n(y))U(∂x, n(x))− U(∂x, n(x))U(∂y, n(y))]

1
|x− y|

}
ϕ(y)dSy

= − µ

4π

∫
Σ

[
U(∂x, n(x))

1
|x− y|U(∂y, n(y))

]T

ϕ(y)dSy

+
µ

4π
U(∂x, n(x))

∫
Σ

1
|x− y|U(∂y, n(y))ϕ(y)dSy .

Finally we obtain

T (∂x, n(x))u(x, ϕ) =
3∑
k=1

∂

∂Sk(x)

∫
Σ

µ

4π
1

|x− y|
∂ϕ(y)
∂Sk(y)

dSy

+ U(∂x, n(x))
∫
Σ

(
4µ2Γ (x− y)− µ

2π
I

|x− y|
)

U(∂y, n(y))ϕ(y)dSy

− µ

4π

∫
Σ

[
U(∂x, n(x))

1
|x− y|U(∂y, n(y))

]T

ϕ(y)dSy

(2.11) ∀x 6∈ Σ .

HenceT (∂x, n(x))u(x, ϕ) is presented as a sum of the derivative of single-layer
potentials with respect toSk(x)(k = 1, 2, 3). By the continuity of the tangential deriva-
tives of the single-layer potential on the boundaryΣ [4, p. 312], we obtain

T (∂x, n(x))u(x, ϕ) =
3∑
k=1

∂

∂Sk(x)

∫
Σ

µ

4π
1

|x− y|
∂ϕ(y)
∂Sk(y)

dSy

+ U(∂x, n(x))
∫
Σ

(
4µ2Γ (x− y)− µ

2π
I

1
|x− y|

)
U(∂y, n(y))ϕ(y)dSy

− µ

4π

∫
Σ

[
U(∂x, n(x))

1
|x− y|U(∂y, n(y))

]T

ϕ(y)dSy

(2.12) ∀x ∈ Σ,
providedϕ(y) ∈ C1,β(Σ), wheren(x) denote the unit outward normal vector atx ∈ Σ
for domainΩ. In particular, we conclude that the limits on the left side of (1.17) exist
and are equal to the right side of (2.12).

Let u(x, ϕ) given by (1.14) be the solution of problem (1.9), then the unknown
functionϕ(y) satisfies the following system of boundary integro-differential equations

−
3∑
k=1

∂

∂Sk(x)

∫
Σ

µ

4π
1

|x− y|
∂ϕ(y)
∂Sk(y)

dSy

− U(∂x, n(x))
∫
Σ

(
4µ2Γ (x− y)− µ

2π
I

|x− y|
)

U(∂y, n(y))ϕ(y)dSy
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µ

4π

∫
Σ

[
U(∂x, n(x))

1
|x− y|U(∂y, n(y))

]T

ϕ(y)dSy

= −g(x), ∀x ∈ Σ.(2.13)

Similarly let u(x, ϕ) given by (1.14) be the solution of (1.10), then the unknown
functionϕ(y) satisfies (2.13) also. We have therefore obtained a system of boundary
integro-differential equations under the assumptionϕ ∈ C1,β(Σ). The kernels contain
weak singularities. In the next section we weaken the assumption onϕ, and we show
how to findϕ by solving (2.13).

3. The system of boundary integro-differential equations (2.13)

Let Hm(Ω), Hα(Σ) be the usual Sobolev spaces with norm‖ · ‖m,Ω and‖ · ‖α,Σ and
Wm(Ω) = (Hm(Ω))3,Wα(Σ) = (Hα(Σ))3, wherem and α are two real numbers
[5]. Furthermore let [7]

H1
∗(Ωc) =

{
v(x) | v(x)

(1 + |x|2)
1
2

∈ L2(Ωc); ∇v ∈ (L2(Ωc))3

}
,

W 1
∗ (Ωc) = (H1

∗(Ωc))3,

W
− 1

2∗ (Σ) =

{
ϕ ∈W− 1

2 (Σ) and
∫
Σ

ϕds = 0,
∫
Σ

x× ϕds = 0,

}
,

W
1
2∗ (Σ) =

{
ϕ ∈W 1

2 (Σ) and
∫
Σ

ϕds = 0,
∫
Σ

x× ϕds = 0

}
.

Suppose that a functionv defined inΩ (Ωc) is continuously extendible to a point
x ∈ Σ, we letv+(x)(v−(x)) denote the limit and we set [v] = v+(x)− v−(x) onΣ.

For any givenϕ(x) ∈ C1,β(Σ), the double-layer potentialu(x, ϕ) given by (1.14)
is the solution of the following problem:

3∑
j=1

∂σij(u)
∂xj

= 0 in Ω and Ωc, i = 1, 2, 3,

[u] = −ϕ on Σ

[T (∂x, n(x))u] = 0 on Σ

u(x) = o(1),
∂u

∂xi
= o

(
1
|x|
)
, i = 1, 2, 3, when |x| → +∞.(3.1)

Furthermore, for givenϕ ∈W 1
2 (Σ) we consider the problem (3.1). Letu0(x) denote

the weak solution of the following problem with givenϕ ∈W 1
2 (Σ):

3∑
j=0

∂σij(u0)
∂xj

= 0, in Ω,

(3.2) u0(x) = ϕ(x) onΣ.

We know [5] that problem (3.2) has a unique solutionu0(x) ∈W 1(Ω) and
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(3.3) ‖u0‖1,Ω ≤ C‖ϕ‖ 1
2 ,Σ

,

whereC is a constant andC will also denote a constant in the following, which may
have different values at different places. Moreover from trace theorem we have

(3.4) ‖ϕ‖ 1
2 ,Σ

≤ C‖u0‖1,Ω ,

(3.5) ‖T (∂x, n(x))u0(x)‖− 1
2 ,Σ

≤ C‖u0‖1,Ω .

Setting

ũ(x) =

{
u(x) + u0(x) in Ω,
u(x) in Ωc,

Then ũ(x) satisfies the following problem:

3∑
j=1

∂σij(ũ)
∂xj

= 0, in Ω and Ωc, i = 1, 2, 3,

[ũ] = 0, on Σ

[T (∂x, n(x))ũ] = h(x), on Σ

ũ(x) = o(1),
∂ũ

∂xi
= o

(
1
|x|
)
, i = 1, 2, 3, when |x| → +∞.(3.6)

with h(x) = T (∂x, n(x))u0(x)|Σ . Introduce spaces

X = {v | v|Ω ∈W 1(Ω), v|Ωc ∈W 1
∗ (Ωc) and [v]Σ ∈W

1
2∗ (Σ)},

X0 = {v ∈ X, and [v] = 0 onΣ}.
with norm ‖v‖2

X = ‖v‖2
W 1(Ω)

+ ‖v‖2
W 1∗ (Ωc)

.

Then the problem (3.6) is reduced to the following variational problem:

Find ũ ∈ X0, such that

(3.7) a(ũ, v) =
∫
Σ

h vds, ∀v ∈ X0,

with

(3.8) a(u, v) =
∫
Ω∪Ωc

3∑
i,j=1

σij(u)εij(v)dx.

It is straightforward to check thata(v, v)
1
2 is a norm on the spaceX and it can be

shown, using the Korn inequalities, thata(v, v)
1
2 is an equivalent norm onX. From the

Lax-Milgram lemma [1], the variational problem (3.7) has a unique solution ˜u ∈ X0

for givenh(x) ∈W− 1
2∗ (Σ) and

(3.9) ‖ũ(x)‖X ≤ C‖h‖− 1
2 ,Σ

.
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Let
u(x) =

{
ũ(x)− u0(x) in Ω,
ũ(x) in Ωc.

Thenu is the unique weak solution of problem (3.1) and

(3.10) ‖u‖X ≤ C‖ϕ‖ 1
2 ,Σ

.

Thus for givenϕ ∈W 1
2 (Σ) the equality (1.14) is meaningful and the equality (2.13)

holds in the weak sense for giveng ∈W− 1
2∗ (Σ). Furthermore from Green’s formula,

(3.11) −
∫
Σ

(T (∂x, n(x))u(x)) · ψ(x)dSx = a(u, v),

whereu(x) and v(x) are the solutions of problem (3.1) corresponding to the given

functionsϕ(x) andψ(x) ∈W 1
2 (Σ). Substituting (2.11) into (3.11) and integrating by

parts we obtain

a(u, v) = b(ϕ,ψ) ≡
∫
Σ

∫
Σ

µ

4π
1

|x− y|
( 3∑
k=1

∂ψ(x)
∂Sk(x)

· ∂ϕ(y)
∂Sk(y)

)
dSxdSy

+
∫
Σ

∫
Σ

(U(∂x, n(x))ψ(x))T
(
µ

2π
I

|x− y| − 4µ2Γ (x− y)

)
U(∂y, n(y))ϕ(y)dSxdSy

+
∫
Σ

∫
Σ

3∑
i,j,k=1

(Ukj(∂x, n(x))ψi(x))
1

|x− y| (Uki(∂y, n(y))ϕj(y)dSxdSy

(3.12)

For the bilinear formb defined by (3.12), we have

Lemma 3.1. (i) b(ϕ,ψ) is a bounded symmetric bilinear form onW
1
2 (Σ)×W 1

2 (Σ),
namely there is a constantM > 0, such that

(3.13) |b(ϕ,ψ)| ≤M‖ϕ‖ 1
2 ,Σ

‖ψ‖ 1
2 ,Σ

, ∀ϕ,ψ ∈W 1
2 (Σ).

(ii) There exists a constantα > 0, such that

(3.14) b(ϕ,ϕ) ≥ α‖ϕ‖2
1
2 ,Σ

, ∀ϕ ∈W
1
2∗ (Σ).

Proof. (i) Sincea(u, v) = b(ϕ,ψ), we have

|b(ϕ,ψ)| = |a(u, v)| ≤ C‖u‖X‖v‖X ,
whereu, v are the solutions of problem (3.1) corresponding to the functionsϕ and
ψ. From the estimate (3.10), the inequality (3.13) follows immediately.

(ii) For givenϕ ∈ W
1
2∗ (Σ), the solutionu of (3.1), is inX. Sincea(u, u)

1
2 is an

equivalent norm ofX, we have

(3.15) b(ϕ,ϕ) = a(u, u) ≥ α0‖u‖2
X .
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On the other hand,

‖ϕ‖ 1
2 ,Γ

= ‖u+ − u−‖ 1
2 ,Σ

≤ ‖u+‖ 1
2 ,Σ

+ ‖u−‖ 1
2 ,Σ

≤ C‖u‖X .(3.16)

The last inequality is from the trace theorem. Combining (3.15) and (3.16), the in-
equality (3.14) is proved.

We now return to the system of the boundary integro-differential equations (2.13).

For any giveng ∈ W
− 1

2∗ (Σ) , the problem (2.13) is equivalent to the following
variational problem:

Find ϕ(y) ∈W
1
2∗ (Σ), such that

(3.17) b(ϕ,ψ) = −
∫
Σ

g · ψdS, ∀ψ ∈W− 1
2∗ (Σ)

An application of the Lax-Milgram lemma yeilds the following theorem.

Theorem 3.1. For any g ∈ W
− 1

2∗ (Σ), the variational problem (3.7) has a unique

solutionϕ ∈W
1
2∗ (Σ).

As a consequence of Theorem 3.1, Eq. (2.13) has a unique solution for anyg ∈
W
− 1

2∗ (Σ), so (1.9) has a unique weak solutionu ∈ W 1
∗ (Ωc), and (1.10) has a weak

solutionu ∈W 1(Ω) that unique up to rigid displacements, for anyg ∈W− 1
2∗ (Σ).

Suppose thatVh is a finite dimensional subspace ofW
1
2∗ (Σ), then we consider the

discrete problem of (3.17):

Find ϕh ∈ Vh, such that

(3.18) b(ϕh, ψh) = −
∫
Σ

g · ψhdS, ∀ϕh ∈ Vh,

We obtain

Theorem 3.2. The discrete problem (3.18) has a unique solutionϕh ∈ Vh and

‖ϕ− ϕh‖ 1
2 ,Σ

≤ M

α
inf

ψh∈Vh
‖ϕ− ψh‖ 1

2 ,Σ
,

whereϕ ∈W
1
2∗ (Σ) is the solution of (3.18).

This conclusion follows immediately from Lemma 3.1, the Lax-Milgram lemma
and tha Cea Lemma [1].



Three-dimensional Neumann problem 281

References

1. Ciarlet, P.G. (1978): The finite element method for elliptic problems. North-Holland, Amsterdam
2. Han, H. (1988): Boundary integro-differential equations of elliptic boundary value problems and their

numerical solutions. Sci. Sin. Ser. A31 (10), 1153–1165
3. Han, H.: The boundary integro-differential equations of boundary value problems in linear elasticity.

To appear
4. Kupradze, V.D. (1979): Three-dimensional problems of the mathematical theory of elasticity and

thermoelasticity. North-Holland, Amsterdam
5. Lions, J.L., Magenes, E. (1972): Non-homogeneous boundary value problems and applications, vol. 1.

Springer, Berlin Heidelberg New York
6. Nedelec, J.C. (1982): Integral equations with nonintegrable kernels. Integral Equations Oper. Theory

5, 562–572
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