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Summary. The design of cost-efficient networks satisfying certain survivability con-
straints is of major concern to the telecommunications industry. In this paper we study
a problem of extending the capacity of a network by discrete steps as cheaply as pos-
sible, such that the given traffic demand can be accommodated even when a single
edge or node in the network fails. We derive valid and nonredundant inequalities for
the polyhedron of capacity design variables, by exploiting its relationship to connec-
tivity network design and knapsack-like subproblems. A cutting plane algorithm and
heuristics for the problem are described, and preliminary computational results are
reported.
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1. Introduction

It is of major concern to telecommunication operators to design networks with a suit-
able degree of survivability towards component failures, cable cuts etc. Motivated
by this, there has been a large amount of recent research on the design of networks
satisfying specified connectivity constraints. Most of this research concentrates on
uncapacitated networks, i.e., where each link can support all the traffic at once. How-
ever, for many important present and future telecommunication networks, capacities
play a fundamental role.

In this paper we study an integer programming model for the following integrated
planning problem: decide which links to install in the network and which capacities
to install on these links such that the network allows routing of point-to-point traffic
even under single node or edge failures. Thus the model addresses MULTIcommodity
SUrvivable Network design, for short: MULTISUN.

More specifically, we have given a setV of nodes and traffic demands between
certain pairs of these nodes. Each demand represents a certain amount of point-to-
point traffic to be routed in the network between origin and destination nodes. In
addition, a set of edges joining pairs of nodes inV are given; these represent direct
physical links (e.g., a fiber cable or a radio relay system). For each edge one wants
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to decide which capacity to install, chosen among a discrete set of alternatives, each
with an associated building cost. The number of such alternatives depends on the
application and the desired level of detail. We are interested in capacity extensions
such that all demands can be routed simultaneously in the resulting network. Such a
routing is called a multicommodity flow. Especially, we may require that the network
allows a multicommodity flow also in certain failure situations, e.g., when a single
edge or node fails. In our model, we allow traffic demands to be split up and routed on
several paths, i.e., we consider continuous flows. The discreteness of the model lies
in deciding the design/capacity extension. The optimization problem in MULTISUN
is to find such a feasible network extension of minimum total building cost.

The purpose of this paper is to present and analyze an integer linear programming
model for the MULTISUN problem using a polyhedral approach. We study properties
of polytopes that are naturally associated with the model. Specifically, we present
classes of nonredundant inequalities that strengthen the original formulation and may
be (in fact, are) used in a cutting plane algorithm for solving real-world planning
problems. In deriving these inequalities, we exploit relations to the knapsack problem
and also the design of (uncapacitated) networks with connectivity constraints.

A large amount of work has been done by Minoux and others on the related
model with acontinuouscost function, see [15] and the references given there. Mi-
noux [15] introduced a general survivability framework for multicommodity flow
network design, based on telecommunication studies. Gavish et al. [8] considered an
even more general model arising in fiber optic networks involving selection of dif-
ferent cable types and a discrete cost function. They developed bounding procedures
using Lagrangian relaxation. Balakrishnan and Graves [2] considered the problem of
designing a (directed) network supporting multicommodity flow without survivability
constraints and with a continuous piecewise linear cost function on each arc. A spe-
cial case of the MULTISUN problem is the well known fixed charge network flow
problem (assuming that only design costs are present), see e.g., [16]. For work on the
design of uncapacitated networks satisfying connectivity constraints, see the work of
Grötschel, Monma, and Stoer [9, 11, 19], and for directed networks, see Dahl [6].

This paper is organized as follows. The integer linear programming formulation of
the MULTISUN problem is given in Sect. 2. Two models are introduced, one with and
one without survivability requirements, and associated 0/1-polytopes are defined. We
discuss basic properties (dimension and trivial facets) of these polytopes in Sect. 3.
The remaining part of the paper discusses stronger formulations of the problem. In
Sect. 4 classes of facet defining inequalities are derived from underlying knapsack
structures of the original model. We then, in Sect. 5, exploit the mentioned relation of
MULTISUN to connectivity design problems, and derive facet defining inequalities,
so-called partition and lifted two-cover inequalities, from this. In Sect. 6 a cutting
plane algorithm using some of these inequalities is described together with a few
computational results. Some suggestions for further work are given in the concluding
section.

We use fairly standard notation from graph theory and polyhedral theory, see
[4, 18], but a few notions need to be explained.R

E denotes the set of real vectors
indexed byE, whereE is a finite set. LetG = (V,E) be an undirected graph without
loops and multiple edges. Ifw is a node inG, we letG−w denote the graph obtained
from G by removingw and its incident edges fromG. Similarly, G− e is the graph
obtained by removing the edgee. The cut δG(W ) induced by a subsetW of V is
the set of edges with one end node inW and the other outsideW ; W andV \W
are calledshoresof the cut. ByG[W ] = (W,E(W )) we denote the graph induced
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by node setW . For two nodesu andv, a [u, v]-pathP is a sequence of nodes and
edges (v0, e1, v1, e2, . . . , vl−1, el, vl), where each edgeei is incident to the nodesvi−1
and vi (i = 1, . . . , l), wherev0 = u and vl = v, and where no node or edge appears
more than once inP . A graphG is said to be2-edge(or 2-node) connectedwith
respect to some given node setR, if between any two nodesu, v ∈ R there exist at
least two edge- (or node-)disjoint [u, v]-paths. Similarly, we say thatG is connected
with respect toR, if G contains a [u, v]-path for each pair of nodesu, v ∈ R. If G
is moreover an edge-minimal connected graph w.r.t.R, thenG is a Steiner treewith
terminal setR.

A networkN = (G, c) is a graphG with weights (capacities or demands)ce ≥ 0
associated with the edgese. Finally, given asupply network (G, c) and ademand
network (H, d), whereG and H have the same node set, amulticommodity flow
(w.r.t. (H, d)) is defined as a collection of [u, v]-pathsP i

uv of G together with numbers
λiuv ≥ 0 (for all uv ∈ E(H), i = 1, . . .), such that

∑
i λ

i
uv = duv, for eachuv ∈ E(H).

The network (G, c) or the capacity vectorc is said toallow a multicommodity flow
w.r.t. (H, d), if, moreover, for each edgee ∈ E(G) the sum ofλiuv over all paths
containinge is at most its capacityce.

Given a vectorx ∈ RI indexed by some setI and given a subsetS of I, we write
x(S) instead of

∑
i∈S xi. By χS ∈ RI we denote the incidence vector ofS.

2. Mathematical model

We present a mathematical model for the MULTISUN problem. In fact, we will study
two models; Model 1, which does not take survivability into account, and Model 2,
which does.

2.1. Model 1

The existing lines (for example transmission links), plus the lines that can be estab-
lished, are given as asupplygraphG = (V,E) with node setV and edge setE. The
traffic demands are given as ademandgraphH = (V,D) whose edges represent the
different demands, and the amount of trafficduv > 0 for each demand edgeuv ∈ D.

For each edgee ∈ E one has to choose a capacityye from among a small set
of discrete capacity extensions with associated costs, such that the so constructed
network satisfies all traffic demands and is of minimum total cost. Below we describe
in detail how the cost function and the multicommodity flow constraints are modeled.

The discrete capacities for each edgee ∈ E are given by numbers 0< M1
e <

M2
e < · · · < MTe

e (whereTe ≥ 1), denoting, for instance, sizes of cables and/or
of terminal equipment. The capacityMTe

e is supposed to be at least as large as the
sum of all demands. This can always be achieved with a sufficiently high cost, if
necessary. DefineM0

e to be 0. Letmt
e denote the extension stepsM t

e −M t−1
e , for

t = 1, . . . , Te. The cost of extending the capacity fromM t−1
e to M t

e for t = 1, . . . , Te
is given bycte ≥ 0. So the cost of installing capacityM t

e on edgee is
∑t

τ=1 c
τ
em

τ
e .

One can view the capacity/cost function on each edgee as a step function with
step lengthsmt

e and step heightscte. In [7] we introduced a more general model with
a piecewise linear cost function, where sloped steps are allowed. But in this paper we
only consider step functions.
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The cost function is modeled with binarydesign variablesxte (sometimes written
x(e, t)) for all edgese ∈ E, indicating the incremental capacity installations. The
values ofxte are required to be nonincreasing with increasingt. We defineI := { (e, t) |
t = 1, . . . , Te, e ∈ E } as the index set of all the design variablesxte, and letx ∈ RI
be the vector of all these variables. For a design vectorx ∈ RI the corresponding
cost iscTx and theassociated capacity vectory is given byye =

∑Te
t=1m

t
ex

t
e.

Let ȳ be the capacity vector associated with some design vectorx. The network
(G, ȳ) is supposed to allow a multicommodity flow carrying all traffic. The feasibility
of a capacity vector ¯y can be expressed in terms of linear inequalities as follows.
For some given nonnegative vectorµ ∈ RE and demand edgef ∈ D let πµf denote
the shortest path length inG between the two end nodes off with respect to edge
lengthsµe. It can be shown (see [12]) that ¯y is feasible if and only if∑

e∈E
µeȳe ≥

∑
f∈D

πµf df for all µ ≥ 0.(1)

The necessity of these inequalities stems from the fact that the cheapest way to route a
multicommodity flow, if no capacity constraints but edge costsµe are given, is to route
each flow individually on its shortest path w.r. toµ. Thus a lower bound forµTȳ is the
sum of the shortest-path-lengths multiplied with the demand value. The sufficiency
of the system (1) comes from linear programming duality. This characterization of
feasible capacities is known as the “Japanese theorem”, first stated in [12, 17]. The
inequalities (1) are calledmetric inequalities. This name is motivated by the fact that,
for complete input and demand graphs, any vectorµ ∈ RE defining a nonredundant
inequality in (1) induces a (pseudo-)metric onG, that is, it is nonnegative, symmetric
and satisfies the triangle inequalityµuv + µvw ≥ µuw for any three nodesu, v, w.
(Here,µuu is supposed to be 0).

In the inequality system (1) we can restrict ourselves to the inequalities defined
by vectors (µ, π) in the setΠ of extreme rays of the cone

{µ ∈ RE , π ∈ RD | µ ≥ 0, πf = πµf for all f ∈ D }.
The extreme rays of this cone were investigated in [1, 13].

A special type of metric inequality is the so-calledcut inequalitydefined by a
node setW 6= ∅, W 6= V

ȳ(δG(W )) ≥ d(δH (W )).(2)

This can be seen to be a metric inequality whenµ is set as the incidence vector of
δG(W ), and when we assume thatG[W ] andG[V \W ] are connected. Cut inequalities
express the fact that the total demand crossing a cut should not exceed its capacity.

Model 1 with cost function and multicommodity flow constraints can now be
stated by inserting ¯ye :=

∑Te
t=1m

t
ex

t
e into the equation system (1):

Model 1

min cTx

subject to

(i) 1 ≥ x1
e ≥ x2

e ≥ · · · ≥ xTee ≥ 0 for all e ∈ E

(ii)
∑

e∈E µe
∑Te

t=1m
t
ex

t
e ≥ ∑f∈D πµf df for all (µ, π) ∈ Π

(iii) xte integer for all (e, t) ∈ I.

(3)
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The constraints (i) are calledordering constraints, and the constraints (ii) are called
metric inequalities, as inequalities (1). IfS ⊆ I is such that its incidence vectorχS

satisfies all the constraints in Model 1, we say thatχS andS are feasible.
This concludes the discussion of the validity of Model 1 as an integer linear

programming formulation of the MULTISUN problem when no survivability is taken
into account.

2.2. Model 2

The second model includes survivability constraints, which means that if any single
line or node of the network fails all the traffic should still be accommodated in the
remaining operating network. More precisely, we require that the installed capacity
vector ȳ satisfies the following constraints:

(i) for eache ∈ E the capacity vector ¯y restricted toE\{e} allows a multicommodity
flow w.r.t. (H, d),

(ii) for eachv ∈ V the capacity vector ¯y restricted toE \ δG(v) allows a multicom-
modity flow w.r.t. (H − v, d).

The constraints (i), callededge failure constraints, assure that the network (G, ȳ) has
sufficient reserve capacity to protect against any single edge failure. Similarly, the
node failure constraints(ii) protect the network against any single node failure. Note
that if a node fails, then all the demands originating in this node are deleted from
the demand graph. In some applications one may have more complex changes of the
demand graph in case of node failures (see [7]), but this is not considered here.

It is convenient to introduce index sets representing theoperating statesof the
network. LetSE (SV ) have one element for eache ∈ E (v ∈ V ) corresponding to the
failure of e (v, resp.), and letS0 represent the case without any node or edge failure.
In the following, we are interested in the following subsets of operating states, namely
S := S0, S := S0 ∪ SE , andS := S0 ∪ SE ∪ SV . Furthermore, for an operating state
s ∈ S0 ∪ SE ∪ SV we define setsE(s) andD(s) of operating supply and demand
edges:

– For s ∈ S0, let E(s) := E andD(s) := D.
– For s ∈ SE representing the failure of edgee, defineE(s) := E \ {e}, and
D(s) := D.

– For s ∈ SV representing the failure of edgev, defineE(s) := E \ δG(v), and
D(s) := D \ δH (v).

For any operating states, the shortest-path valuesπµf are defined with respect to the
graph of operating supply edges (V,E(s)), and the setΠ(s) is defined analogous toΠ
in Model 1.

The integer linear programming formulation of the MULTISUN problem with
survivability constraints now becomes:
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Model 2

min cTx

subject to

(i) 1 ≥ x1
e ≥ x2

e ≥ · · · ≥ xTee ≥ 0 for all e ∈ E

(ii)
∑

e∈E(s) µe
∑Te

t=1m
t
ex

t
e ≥
∑

f∈D(s) π
µ
f df for all π ∈ Π(s), s ∈ S

(iii) xte integer for all (e, t) ∈ I.

(4)

We remark that this model could be used for more general failure situations as
well, for example the simultaneous failure of two or more nodes. This would be
reflected in other choices ofE(s) andD(s). ForS := S0, Model 2 is equivalent with
Model 1.

2.3. Polytopes associated with the models

We introduce the polytopes associated with the MULTISUN models.

MSUNS(G,m,H, d) := conv{x ∈ RI | x satisfies (4)(i)–(iii)}

If no misunderstanding is possible, we drop the parameter list and write MSUNS .
When we consider only edge failuresS := S0 ∪ SE , we also write MSUNE ; when
S := S0 ∪ SE ∪ SV , we write MSUNE∪V , and forS := S0, we denote the polytope
by MSUN∅.

Since the vertices of the polytope MSUNS are exactly the feasiblex with integer
components, the MULTISUN problem can now also be written as

mincTx subject tox ∈ MSUNS .

To optimize over a polyhedron using a linear programming code, one needs to
know all, or at least “sufficiently” many, of its defining inequalities. The inequalities
in (4) are generally not enough to achieve good lower bounds. So, a main purpose of
the subsequent study is to find more classes of valid and nonredundant inequalities
for MSUNS .

3. Basic properties of MULTISUN polyhedra

We begin the polyhedral investigations of MULTISUN polyhedra by a study of their
dimension. Let a supply graphG = (V,E) and a demand graphH = (V,D) with
demand vectord be given.

Proposition 5. Let MSUNS be one of the polytopes MSUN∅, MSUNE or MSUNE∪V .
Then MSUNS(G,m,H, d) is full-dimensional if and only if MSUNS(G−e,m,H, d)

is nonempty for alle ∈ E.
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Proof. Assume that MSUNS(G − e,m,H, d) is empty for somee ∈ E. Then ei-
ther MSUNS(G,m,H, d) is empty, or each feasiblex ∈ RI satisfiesx1

e = 1, hence
MSUNS is not full-dimensional.

To prove the sufficiency, we assume that MSUNS is not full-dimensional, i.e.,
there is a linear equationaTx = α with nonzeroa satisfied by each point in MSUNS .
Let f ∈ E. By hypothesis, there exists a solutionx ∈ MSUNS with xtf = 0 for
t = 1, . . . , Tf . By monotonicity, the solutionsxk obtained fromx by changingxtf
to 1 for t = 1, . . . , k are feasible. Thus we haveaTx = aTx1 = aTx2 = · · · = α, and by
subtraction, we getatf = 0 for all t = 1, . . . , Tf . Sincef was chosen arbitrarily inE,
we geta = 0, a contradiction. Thus the equality system of MSUNS is empty, and the
polyhedron is full-dimensional. ut

We hereafter assume that each MSUN-polytope under consideration is full-
dimensional; this simplifies polyhedral arguments. In most applications the supply
graph will be sufficiently connected anyway.

Proposition 6. Let MSUNS be one of the polytopes MSUN∅, MSUNE or MSUNE∪V .

(i) The inequalities1 ≥ x1
e ≥ x2

e ≥ · · · ≥ xTee define facets of MSUNS for all e ∈ E.
(ii) The inequalityx(e, Te) ≥ 0 defines a facet of MSUNS if and only if for all f 6= e

the polytope MSUNS(G− f,m,H, d) ∩ {x ∈ RI | x(e, Te) = 0} is nonempty.

Proof. (i): For each (f, k) ∈ I, define the vectorxf,k ∈ {0, 1}I by settingxf,k(e, t) :=
1 for all e 6= f and all t, xf,k(f, t) := 1 if k < t, andxf,k(f, t) := 0 if k ≥ t. Define
furthermorex′ ∈ RI to be the vector of all 1s. These|I| + 1 points are feasible and
affinely independent. Each inequality in (i) holds with equality for exactly|I| of the
points. Thus the face induced by this inequality is a facet.

(ii): If MSUN S(G − f,m,H, d) ∩ {x | x(e, Te) = 0} is empty for somef , then
x(e, Te) = 0 impliesx1

f = 1, therefore the nonnegativity inequality cannot define a
facet. If, on the other hand, the given condition holds, then the|I| vectorsyf,k derived
from xf,k for all (f, k) ∈ I by setting the componentx(e, Te) to 0 are feasible and
affinely independent. ut

The inequalities (4)(ii) do not define facets of MSUNS except in very special
cases. This indicates the need of stronger formulations than the LP relaxation given
by (4). In the remaining part of the paper we therefore give different classes of
inequalities that lead to improved LP formulations of the MULTISUN problem.

4. Improved formulations based on Knapsack substructures

4.1. Band inequalities

Several ideas may lead to improved, i.e., stronger, formulations of the MULTISUN
problem. We describe a class of valid inequalities for MSUN∅ calledband inequalities.
They are derived as facet-defining inequalities for a relaxation of MSUN∅, the so-
called ICOV-polytope.

Let
∑

e∈E
∑Te

t=1 g
t
ex

t
e ≥ b be a metric inequality (3)(ii), wheregte is defined as

µem
t
e. We will assume thatgTee ≥ b for all e ∈ E. This can be done without loss of

generality, because we assume that the highest capacity of each edge is “large”. LetF
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be the support of a given metric inequality, that is, the set of edges with positiveg1
e,

and consider the following polytope

ICOV(g, b) := conv{ (xte : t = 1, . . . , Te, e ∈ F ) |∑
e∈F
∑Te

t=1 g
t
ex

t
e ≥ b,

1 ≥ x1
e ≥ x2

e ≥ · · · ≥ xTee ≥ 0 for all e ∈ F ,

x integral}.

(7)

The polytope ICOV(g, b) can be viewed as a knapsack polytope with additional order-
ing constraints. Facial properties of knapsack polytopes have been studied in recent
years, see e.g., [3, 5]. Knapsack polytopes with the additional constraints

∑
t x

t
e ≤ 1

(for all e ∈ F ), andx ≥ 0, have been studied in [14, 20] under the names “multiple-
choice knapsack problem” or “knapsack problem with generalized upper bounds”
(which is actually a larger class of problems). The polytope ICOV(g, b) can be lin-
early transformed into a knapsack polytope with generalized upper bounds, so all
results pertaining to that polytope apply also to the ICOV-polytope.

Any inequality that is valid for ICOV(g, b) is clearly also valid for MSUN∅, if the
missing coefficients (for (e, t) with e 6∈ F ) are filled up with zeros.

To describe the band inequalities we introduce some notation. Define the index
set I(A) := { (e, t) ∈ I | t = 1, . . . , Te, e ∈ A } for eachA ⊆ E. For simplicity, we
write I(e) in stead ofI({e}). A bandB of F is a subset ofI(F ) containing exactly
one element (e, tkee ) in eachI(e), e ∈ F . Given a bandB ⊆ I(F ), we will from now
on write tBe instead oftkee . Let B< := {(e, t) ∈ I(F ) | t < tBe }, and define similarly
B>. A bandB is calledvalid if g(B<) < b. We say that a bandB′ of F is abovea
bandB of F if tBe ≤ tB

′
e for all e ∈ F , andtBe < tB

′
e for at least onee ∈ F .

WheneverB is a valid band, the inequality

x(B) :=
∑

(e,t)∈B
xte ≥ 1,(8)

is valid for ICOV(g, b). It is called aband inequality. The band inequalities are, after
transformation, equivalent to the GUB cover inequalities (in [20]) for the knapsack
problem with generalized upper bounds, but their nonredundancy is not proved there.

Figure 1 illustrates a band inequality withF = {e1, . . . , e4} and b = 4. Each
column depicts a different edge. The (e, t) are represented by a box of width 1 and
heightgte. For eache, the boxes (e, 1), (e, 2), . . . , (e, Te) are stacked on top of each
other, with (e, 1) being lowest, and (e, Te) being highest. In our example,g1

e = 1 for
eache, and b = 4. The 1-coefficients of the band inequality are depicted inside the
boxes. The valueg(B<) equals the area below the 1’s.

We next characterize when a band inequality defines a facet of ICOV(g, b), which
is of some interest for the strength of the similar MSUN inequality. First, however, we
remark that ICOV(g, b) is full-dimensional. This follows from the assumptiongTee ≥ b
and |F | ≥ 2, using the same construction as in the proof of Proposition 5.

Proposition 9. Let B be a band inF , where |F | ≥ 2. Then the band inequality
x(B) ≥ 1 defines a facet of ICOV(g, b) if and only if there is no valid band aboveB.

Proof. Assume thatB′ is a valid band aboveB. It follows from the ordering con-
straints thatx(B) ≥ x(B′) for eachx ∈ ICOV(g, b), sox(B) ≥ 1 is implied by other
valid inequalities and therefore redundant.
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1

1 1
1

e1 e2 e3 e4

t = 1

t = Te

Fig. 1. Band inequality

To prove the converse, assume that there is no valid band aboveB. This implies
that, for alle ∈ F and all t ≥ tBe , the incidence vectors of

B< ∪ {(e, 1), (e, 2), . . . , (e, t)}
lie in the face defined by the present band inequality. Moreover, by the assumption
that gTee ≥ b, we have that, for alle, f ∈ F and all t < tBe , the incidence vectors of

I(f ) ∪ {(e, 1), (e, 2), . . . , (e, t)}
lie in the face. These are sufficiently many affinely independent vectors to prove (by
standard polyhedral methods) that the band inequality defines a facet of ICOV(g, b).
ut

A special case are the band inequalities derived from cut inequalities (2). They
are a subclass of the partition inequalities for Model 1 studied in Subsect. 5.1, many
of which define facets also for MSUN∅.

The separation problem for band inequalities for ICOV(g, b) or MSUN∅ is easily
seen to be equivalent to the NP-complete multiple-choice knapsack problem. Thus it
is not easy to determine, for a given vector ¯x ∈ RI(F ), whether there exists a band
inequality that is violated by ¯x but valid for ICOV(g, b).

Besides the band inequalities there are other nonredundant inequalities for ICOV
(g, b). Some properties of their coefficient structure are stated in the next proposition.

Proposition 10. (i) All nonredundant inequalities for ICOV(g, b) that are not equiva-
lent to any of the ordering constraints1 ≥ x1

e ≥ x2
e ≥ . . . ≥ xTee have nonnegative

coefficients. The same holds for nonredundant inequalities of MSUN∅.
(ii) For all nonredundant inequalities of ICOV(g, b) that are not equivalent to any

ordering constraint, the sum of coefficients overI(e) is equal to its right-hand side,
for all e ∈ F .

Proof. (i): If the inequality has a negative coefficient for some (e, t), and if t > 1,
then any vector satisfying the given nonredundant inequality with equality must also
satisfyxt−1

e = xte. Otherwise we could construct a contradiction to the validity of the
inequality by increasingxte. Since the given inequality is nonredundant, it is equivalent
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to the ordering constraintxt−1
e ≥ xte. By a similar argument, if the coefficient of some

(e, 1) is negative then the inequality is equivalent tox1
e ≤ 1.

(ii): Since the incidence vector ofI(e) is feasible for alle ∈ F , and the given
inequality is valid, the sum of coefficients for each fixed edge is not less than the
right-hand side. Suppose that for somef ∈ F it is strictly larger than the right-hand
side. Since the faceP defined by the given inequality is not contained in the face
defined byx(f, Tf ) ≥ 0 there exists a setZ ⊆ I whose incidence vector is inP
and satisfiesx(f, Tf ) > 0, which implies thatI(f ) is contained inZ. By (i), the
inequality has nonnegative coefficients, so the incidence vector ofZ cannot satisfy
the inequality with equality. This contradicts our choice ofZ. Therefore the sum of
coefficients overI(e) is equal to the right-hand side of the inequality, for alle ∈ E.
ut

The band inequalities (8) are exactly those nonredundant inequalities with integral
coefficients whose coefficients inI(e) sum up to 1 for each edgee ∈ F .

The band inequalities can be generalized tok-band inequalitieswhose integer
coefficients sum up tok for each fixed edge, but we do not discuss this generalization
further in this paper.

4.2. Strengthened band inequalities (model 2)

Unfortunately, the band inequalities for Model 1 are not facet-defining for MSUNE

(with edge survivability constraints). But it is possible, as can be seen in the next
lemma, to raise the right-hand side of a band inequality for MSUNE to 2 to achieve
a valid inequality (under some further assumptions).

Lemma 11. LetgTx ≥ b > 0 be a metric inequality for MSUN∅(G,m,H, d), letF be
the set of edges with positiveg1

e, and letB be a band ofF . We suppose that|F | ≥ 2.
If g(B< \ I(e)) < b for all e ∈ F then

x(B) ≥ 2(12)

is a valid inequality for MSUNE .

Proof. First note thatgTx ≥ b is also a valid inequality for MSUN∅(G− e,m,H, d),
for all e ∈ F . Since g(B< \ I(e)) < g(B<) < b, the inequalityx(B) ≥ 1
is valid for MSUN∅(G − e,m,H, d), for all e ∈ F . Suppose there is a ver-
tex χZ of MSUNE(G,m,H, d) satisfying χZ(B) = 1, sayB ∩ Z = {f}. Then∑

e6=f
∑Te

t=1 g
t
eχ

Z(e, t) ≤ g(B< \ I(f )) < b, which contradicts the survivability con-
dition when edgef is deleted from the supply graph. SoχZ(B) ≥ 2 for all vertices
χZ of MSUNE . ut

We call inequality (12)strengthened band inequality.
If the given band was derived from a cut inequality, then the strengthened band

inequality can be shown to define a facet of MSUNE in many cases. This is done in
Subsect. 5.2.
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5. Improved formulations based on relations to connectivity network design

In this section we exploit the relation of the MULTISUN problem to the design of
uncapacitated networks satisfying connectivity requirements. This leads to several
classes of facet defining inequalities for the MSUN-polytopes.

First, we give a simple but useful lemma. It describes the main relations between
the two classes of problems and will be used in later facet proofs. To simplify the
presentation, we assume throughout this section that the set of demand edges and
its adjacent nodes induce a connected graph with node setR, the terminal set. We
assume that the supply graphG is connected as well. Let the polytope CON inRE

be the convex hull of incidence vectors of subgraphs ofG that are connected with
respect toR, that is, those subgraphs containing a Steiner tree with terminal setR.
Similarly, let 2ECON (2NCON) be the polytope associated with 2-edge connected
(2-node connected) subgraphs with respect toR. ForF ⊆ E and a bandB of F , let
I(F ), B< andB> be defined as in Sect. 4.

Lemma 13. LetF ⊆ E. Then the following statements hold.

(i) If (V, F ) is connected w.r.t.R, thenI(F ) is feasible for MSUN∅.
(ii) If (V, F ) is 2-edge connected (2-node connected) w.r.t.R, thenI(F ) is feasible

for MSUNE (MSUNE∪V ).
(iii) If aTy ≥ α is a valid inequality for CON (or 2ECON, 2NCON, resp.), then∑

e aex
1
e ≥ α is a valid inequality for MSUN∅ (MSUNE , MSUNE∪V resp.)

Proof. Straightforward, using the fact that we can install a sufficiently “large” capacity
on each edge. ut

In the following we will exploit fact (iii) of this lemma to derive valid and nonre-
dundant inequalities for MSUNS polyhedra from inequalities for CON and 2ECON
polyhedra. We will concentrate on some nonredundant inequalities listed in [9, 11]:
partition, cut, and lifted two-cover inequalities.

Partition inequalitiesfor CON are defined as

x(∪pi=1δ(Vi)) ≥ p− 1(14)

for all partitionsP = {V1, . . . , Vp} of V (herep ≥ 2) where eachVi contains some
node ofR. Such partitions are calledproper partitions. Associated withP we have
the graphĜ = (V̂ , Ê) obtained by shrinking each node setVi into one node and then
deleting parallel edges.

Remark 15.By [9], partition inequalities define facets of CON if and only if (i)G[Vi]
is connected for alli, (ii) G[Vi] is 2-edge connected w.r.t.R for all i, and (iii) Ĝ is
2-node connected.

Cut inequalitiesfor 2ECON are defined as

x(δ(W )) ≥ 2(16)

for all subsetsW of V such that bothW andV \W contain nodes ofR.

Remark 17.By [11, 19], the cut inequality defines a facet of 2ECON ifG[W ] and
G[V \ W ] are 2-edge connected andG is 3-edge connected. (Actually, somewhat
weaker conditions are already sufficient and at the same time necessary).
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Lifted two-cover inequalitiesfor 2ECON are defined by pairwise disjoint nonempty
node setsW1, . . . , Wp, each containing some node ofR, and edgese1, . . . , ek
(3 ≤ k ≤ p) with ei ∈ δ(Wi) ∩ δ(W ) for i = 1, . . . , k. HereW 6= V denotes the
union of allWi, andk is assumed to be odd. The lifted two-cover inequalities have
the form

x((∪pi=1δ(Wi)) \ {e1, . . . , ek}) ≥ p− bk/2c.(18)

Remark 19.In [19] it was shown that the lifted two-cover inequality defines a facet
of 2ECON if G is complete, and the graphs induced byV \W and by allWi are
three-edge connected.

By Lemma 13 (iii) any valid inequalityaTy ≥ α for CON (2ECON, 2NCON)
can be transformed to a valid inequality for the respective MSUN-polyhedron. When
a is a 0/1-vector, the setB := { (e, 1) ∈ I | ae > 0} can be interpreted as a band
of the support ofaTy ≥ α. In the next subsections we will see how the inequality∑

e aex
1
e ≥ α can be made facet-inducing for the respective MSUN-polyhedron by

finding a band aboveB such that the inequality stays valid. Certainly this technique
can be applied as well to other valid inequalities for CON (or 2ECON, 2NCON) not
listed here. Especially we observe that it can be applied to the so-called node-partition
inequalities (in [11]) valid for 2NCON, but not 2ECON. They are a generalization of
partition inequalities (14).

5.1. Partition inequalities

Consider a proper partitionP of V into node setsVi, i = 1, . . . , p, calledshores. Let
Ĝ = (V̂ , Ê) be defined as above, and similarly, letĤ = (V̂ , D̂) be obtained fromH
by shrinking each node setVi into one node. Note that the edge setÊ consists of
those edges inE with end nodes belonging to different shores.

Definition 20. A bandB in Ê is called a validP -band if for each nonemptyW ⊂ V̂
with connected shores (i.e.,̂G[W ] and Ĝ[V̂ \W ] are connected) we have that

m({ (e, t) ∈ B< | e ∈ δĜ(W ) }) < d(δĤ (W )).(21)

A valid P -bandB is called maximal if no validP -band aboveB exists.

Proposition 22. Let P be a proper partition and assume thatB is a validP -band.
Then the partition inequality

x(B) ≥ p− 1(22)

is valid for MSUN∅(G,m,H, d).

Proof. Let u and v be two distinct nodes in̂V , and letW ′ be a node subset of̂V
such thatu ∈ W ′ and v 6∈ W ′. We observe that if, say,̂G[W ′] is not connected,
then we can findW ⊆ W ′ or W ⊇ W ′ such that the cutδĜ(W ) is a subset of
δĜ(W ′), has connected shores and separatesu and v (recall thatĜ is connected).
SinceB is a valid P -band, each feasibleZ ⊆ I satisfies (e, tBe ) ∈ Z for at least
one edgee ∈ δĜ(W ) ⊆ δĜ(W ′), otherwise the capacity across this cut would be too
small. Thus, by Menger’s theorem, the subgraph ofĜ consisting of those edgese
with (e, tBe ) ∈ Z contains a [u, v]-path, and, sinceu andv were arbitrary, this graph
contains a spanning tree ofp−1 edges. This proves that the partition inequality holds
for χZ , and, by convexity, the inequality is valid for MSUN∅. ut
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We next discuss those partition inequalities that define facets of MSUN∅.

Theorem 24. Let P be a proper partition and assume thatB is a valid P -band.
Then the partition inequality (22) defines a facet of MSUN∅ if the following conditions
hold:

(i) The partition inequality (14) defined by partitionP induces a facet of CON (see
Remark 15), and

(ii) B is maximal.

Moreover, condition (ii) is necessary for (22) to define a facet of MSUN∅.

Proof. Necessity of (ii) can be seen by adding ordering constraints to a partition
inequality defined by a maximal band.

To prove sufficiency, assume that both conditions hold, and letaTx ≥ α be the
inequality (22), withα = p− 1. Let F (a, α) = {x ∈ MSUN∅ | aTx = α} be the face
of MSUN∅ induced by this inequality. We may assume thatF (a, α) ⊆ F (b, β), where
F (b, β) is the facet of MSUN∅ induced by some inequalitybTx ≥ β. We prove now
that (b, β) is a scalar multiple of (a, α).

First, consider an edgee 6∈ Ê, which is contained in, say, shoreV1. There is
a Steiner treeF ⊆ E \ {e} such thatχF satisfies (14) with equality, because this
inequality defines a facet of CON different from a nonnegativity constraint. Thus we
see from Lemma 13 (i) thatχI(F ) ∈ F (a, α). For t = 1, . . . , Te, the incidence vector
of I(F )(t) := I(F )∪ {(e, 1), . . . , (e, t)} also lies inF (a, α), hence inF (b, β). Thenbte
must be zero fort = 1, . . . , Te. By similar arguments one can show thatbte = 0 for
each (e, t) ∈ B<.

Consider an edgee ∈ Ê for which tBe < Te. SinceB is assumed maximal, the
band obtained fromB by replacing (e, tBe ) by (e, tBe + 1) is not a valid P -band.
Thus there exists a nonempty node setW ⊂ V̂ with connected shores and an edge
e ∈ δĜ(W ), such that

m({ (g, t) ∈ B< | g ∈ δĜ(W ) }) + m(e, tBe ) ≥ d(δĤ (W )).(25)

Now, choose a spanning treeT in Ĝ that containse but no other edge ofδĜ(W ).
This is possible since the shores of this cut both are connected. DefineZ as the
union of the four index setsI(E \ Ê), I(T \ {e}), { (g, t) ∈ B< | g ∈ δĜ(W ) },
and{(e, tBe )}. We claim thatZ is feasible for MSUN∅. To prove this, we describe a
feasible multicommodity flow in the networkN = (G, y), wherey is the capacity
vector associated with the designZ. By connectedness of eachG[Vi] and Ĝ[W ]
(and the “large” capacities there), we can clearly route withinW (or V \ W ) all
demands with both end nodes belonging toW (or V \W ). All demands inδH (W )
can be routed across the cut, since the capacity of the cut is at least as large as
the sum of crossing demands, by (25). ThusZ is feasible. Furthermore,χZ satisfies
aTx ≥ α with equality. By monotonicity,Z ′ := Z ∪ {(e, tBe + 1)} is also feasible and
its incidence vector also lies inF (a, α), from which we obtain thatb(e, tBe + 1) = 0,
as above. Continuing in this manner, we conclude thatbte = 0 for t > tBe ande ∈ Ê.

Thus, so far we have shown thatbte = 0 for each (e, t) ∈ I \ B. Finally we
prove that allbte with (e, t) ∈ B must be equal. In fact, since (14) defines a facet of
CON, whose affine hull does not contain the origin, there are|E| linearly independent
incidence vectors of edge sets containing Steiner trees such that each of these vectors
satisfies (14) with equality. LetA be a nonsingular|Ê| × |Ê|-dimensional submatrix
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whose columns correspond to spanning trees ofĜ. Also let b′ (resp.a′) be the|Ê|-
dimensional vector obtained fromb (resp.a) by removing the components for (e, t) ∈
I \B; all shown above to be zero. Thus we have (b′)TA = β1 and (a′)TA = (p− 1)1,
which implies that (a, α) is a scalar multiple of (b, β). ThereforeF (a, α) is a facet.

ut

Unfortunately, it may not be easy to check algorithmically whether a band is
a valid P -band. However, for smallp it can be done by simply checking all cuts
explicitly. Furthermore, we remark that a band is valid provided that the following
multicommodity flow problem is feasible. First, we define a capacity vectory by
increasing with (a suitably small)ε the total capacity below the bandB on each
edge, and letd be the demand vector as usual. The multicommodity flow problem of
interest is then obtained by reversing the roles ofy andd, and ofG andH (that is,
viewing y as demands andd as capacities).

5.2. Cut inequalities

In the following sections we consider the polytope MSUNE(G,H,m, d) associated
with Model 2. LetR be the terminal set, and lety(δ(W )) ≥ 2 be a cut inequality
(16) for 2ECON, defined by node setW such that bothW andV \W contain nodes
of R (the terminal set). LetB be a band ofδG(W ) with the property

m(B< \ I(e)) < d(δH (W )) for all e ∈ δG(W ).(26)

Then thecut inequalityfor MSUNE defined byW andB is

x(B) ≥ 2.(27)

Since this inequality can also be seen as a strengthened band inequality derived from
the metric inequalityy(δG(W )) ≥ d(δH (W )), it is valid for MSUNE (by Lemma 11)
and therefore also for MSUNE∪V .

The next theorem gives a sufficient condition for a cut inequality (27) to define a
facet of MSUNE .

Theorem 28. The cut inequality defined byW andB defines a facet of MSUNE(G,H,
m, d) if the following conditions are satisfied:

(i) The cut inequalityy(δ(W )) ≥ 2 defines a facet for 2ECON (see Remark 17).
(ii) For g ∈ δ(W ) minimizingm(B<∩ I(g)) and for allf ∈ δ(W )\{g}, the edge set

E(W )∪E(V \W )∪ {f, g} defines a 2-edge connected graph with respect toR.
(iii) There is no band aboveB satisfying condition (26).

Proof. Let bTx ≥ β be a valid inequality defining a facet of MSUNE that contains
the face defined byx(B) ≥ 2.

With condition (i) and Lemma 13 (ii) one can provebte = 0 for all (e, t) ∈
I(E(W )∪E(V \W )) and for all (e, t) ∈ B< in much the same way as demonstrated
in the proof of the previous theorem.

Let f be some edge inδG(W ) with tBf < Tf and letg minimizem(B< ∩ I(g)).
If g = f , choose ag 6= f minimizingm( (B< \ I(f ))∩ I(g) ). Since, by condition (iii),
it is not possible to replacetBf by tBf + 1 without violating (26), we havem(B< \
I(g)) +m(f, tBf ) ≥ d(δH (W )). Condition (ii) ensures that the incidence vector of
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I(E(W ) ∪ E(V \W )) ∪ B< ∪ {(f, tBf )} ∪ I(g)

is feasible and satisfiesx(B) = 2. Especially, if edgeg is failing, the cutδG(W )
has still sufficiently high capacity to route all demands betweenW andV \W . By
increasing the capacity of edgef , we can provebtf = 0 for all t > tBf . This shows
that bte = 0 for all (e, t) ∈ B>.

With condition (i) one can now prove that allbte with (e, t) ∈ B have the same
value, as in the last part of the proof of Theorem 24. Therefore all coefficients of the
band must be the same. This implies thatbTx ≥ β is a positive scalar multiple of
x(B) ≥ 2 as desired. ut

5.3. Lifted two-cover inequalities

The lifted two-cover inequalities (18) for the 2ECON polytope can be generalized in
much the same way as the cut and partition inequalities.

Let W1, . . . , Wp, e1, . . . , ek define a lifted two-cover inequality (18). We assume
that δ(Wi) ∩D 6= ∅, for i = 1, . . . , p (recall thatD is the set of demand edges). Now
define, for eachi ≤ k, a bandBi of δ(Wi) \ {ei} such thatx(Bi) ≥ 1 is valid for
MSUN∅(G− ei,m,H, d). Define also, fori = k + 1, . . . , p, a bandBi of δ(Wi), such
thatx(Bi) ≥ 2 is valid for MSUNE(G,m,H, d).

Moreover, we assume that these bands are “consistent” in the sense that if an
edgee lies in two bandsBi andBj , thentBi

e = t
Bj
e . Denote the union of allBi by B.

Then thelifted two-cover inequalitydefined by allWi, ei andB is

x(B) ≥ p− bk/2c.(29)

Lemma 30. The lifted two-cover inequality (29) is valid for MSUNE .

Proof. Note thatx(Bi) ≥ 1 for i = 1, . . . , k, is valid for MSUNE . Let W be the
union of allWi. Add the valid inequalities

x(Bi) ≥ 1 for i = 1, . . . , k,
x(Bi) ≥ 2 for i = k + 1, . . . , p,

x(e, tBe ) ≥ 0 for all e ∈ δ(W ) \ {e1, . . . , ek},

divide the result by 2, and round up the coefficients of the right-hand side. The
resulting valid inequality is the lifted two-cover inequality (29).ut

From the validity proof it can be seen that the lifted two-cover inequality is valid,
but redundant, ifk is even. Note that, for oddk, an integer vectorx ∈ MSUNE

satisfies (29) with equality if and only if it satisfies with equality all except one of
the inequalities used in the validity proof. The next theorem gives a sufficient facet
condition for the lifted two-cover inequalities.

Theorem 31. The lifted two-cover inequality (29) defines a facet of MSUNE if

(i) the lifted two-cover inequality (18) defined by theWi and ei induces a facet of
2ECON (see Remark 19);

(ii) for any i = k+1, . . . , p and for any two edgesf , g ∈ δ(Wi), there exists a vertexy
of 2ECON withyf = yg = 1, satisfying (18) andy(δ(Wi)) ≥ 2 with equality; and

(iii) the bandB is maximal in the sense that it is not possible to increase anytBe
without violating the conditions of the definition ofB.
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Proof. Let {x ∈ MSUNE | x(B) = p− bk/2c } ⊆ {x ∈ MSUNE | bTx = β }, where
the last set is a facet of MSUNE . Since (18) defines a facet of 2ECON, it is possible
to provebte = 0 for all e ∈ E and t < tBe (or t ≤ Te if tBe does not exist).

To prove btf = 0 for all (f, t) ∈ B>, pick some edgef ∈ ∪iδ(Wi). By the
maximality of B it is not possible to increasetBf by 1, so there existsWi adjacent
to f such thatx(Bi) ≥ 1 or 2 is not valid any more. Supposei = p > k. ThenBp must
violate (26), that is, there must exist an edgeg 6= f such thatm(B<

p \I(g))+m(f, tBf ) ≥
d(δH (Wp)) > 0. Now, construct a feasible solutionx with bTx = β by equipping
edgef with exactly capacitym(f, tBf ), edgeg with highest capacity, and all other
edges inδ(Wp) with capacitym(e, tBe − 1). (So far, exactly two nonzero coefficients
of the lifted two-cover inequality have been “used”.) To complete the present solution
with high-capacity edges, we use condition (ii) fori = p. Furthermore all edges with
b(I(e)) = 0 can be equipped with high capacity. The so constructed vectorx is feasible
for MSUNE , because when edgeg fails, only the demands originating inWp need
to be routed on low-capacity edges, and the capacity ofδ(Wp) is high enough to
make this possible. Moreover,G[Wp] is connected, otherwise (18) would not define
a facet of 2ECON. Since any further capacity extension of edgef also leads to a
feasible solution withbTx = β we havebtf = 0 for all t > tBf . Similar constructions
can be done for all other edgesf in ∪δ(Wi) \ {e1, . . . , ek}. So we have proved that
all coefficients of value 0 in the lifted two-cover inequality have also value 0 in
bTx ≥ β. To prove that both inequalities are in fact equivalent, we can use the|E|
affinely independent integer vectors in 2ECON multiplied with the high capacity (and
proceed as in the last part of the proof of Theorem 24).ut

Concerning the separation problems for the inequalities listed here, it was shown
in [10] that the problem of determining a violated partition inequality (14) for CON
and a violated lifted two-cover inequality (18) for 2ECON, given some nonnegative
vector y ∈ RE , is NP-complete. Therefore the separation problems for inequalities
(22) and (29) are NP-complete, too. The NP-complete separation problem of band
inequalities (8) for ICOV(g, b) can be reduced to separation of cut inequalities (27)
for MSUNE(G,m,H, d) with suitably defined (G,m,H, d), hence the latter problem
is also NP-complete.

Despite these negative results, it is possible to design heuristics to determine
violated inequalities for MSUN-polyhedra. Since partition, cut, and lifted two-cover
inequalities played a major role in solving connectivity problems to optimality, see
[10], the corresponding inequalities will probably be useful in finding good lower
bounds for MULTISUN-problems. Our computational results for MSUNE using only
cut inequalities (27) and band inequalities (8) were already quite encouraging, as is
reported in the next section.

6. Computational results

We describe in this section the main features of a cutting plane algorithm and heuristics
for Model 2, where the failure of any single node or link is considered. Furthermore,
some preliminary computational results are given.

The basic idea of the cutting plane algorithm is to solve a sequence of ever tighter
LP-relaxations of the problem at hand, by generating linear inequalities as they are
needed to ensure feasibility. The algorithm is as follows:
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1. solve an initial LP containing a few valid inequalities for MSUNS , using the cost
function c;

2. if the optimal solution ¯x of the current LP is integral and satisfies all inequalities
of (4), outputx̄ as an optimal solution to Model 2; otherwise ¯x is not feasible for
MSUNS , so try to find strengthened band inequalities and other inequalities valid
for MSUNS that are violated by ¯x;

3. if violated inequalities were found, add them to the current LP, solve this new LP,
and go to Step 2; otherwise stop and outputcTx̄ as the best lower bound found
for the problem.

This approach is called a cutting plane algorithm, because geometrically, in Step 3
the infeasible ¯x is cut off by hyperplanes, so called cutting planes, from the region
of feasible solutions MSUNS . Unfortunately, we do not have a complete linear de-
scription of MSUNS , so we have to settle with a partial linear description of this
polytope given by the inequalities in this paper. But the hope is that this is sufficient
to produce good lower bounds for the optimal value of the problem.

We next explain how the subproblems are solved. In Step 1 the inequalities of
the initial LP are chosen by approximately “solving” in greedy fashion the dual LP
of min cTx, wherex satisfies all cut inequalities (27). Whatever inequality is “used”
in the greedy solution is placed into the initial LP.

In Step 2, the feasibility check of ¯x is done as follows: if ¯x defines a network
that is not two-node connected, violated cut inequalities (27) can be derived from
the two-connected components of the network. These inequalities are added to the
current LP. If this simple connectivity test fails to produce inequalities, we compute
the capacity vector ¯y ∈ RE from x̄ by ȳe :=

∑Te
t=1m

t
ex̄

t
e for all e ∈ E. Now it needs

to be decided whether the networkG with capacity ¯y allows a multicommodity flow
in each failure situation. This can be done by solving, for each failure situation, a
certain LP, which gives back either the routings for each traffic demand, or a violated
metric inequality (1), if a multicommodity flow does not exist. Since all these LPs
are very similar, they can be efficiently solved by using the knowledge of previously
found optimal solutions. If the violated metric inequality is a cut inequality (2) (most
of them are), we rewrite it in terms ofx asgTx ≥ b and try to heuristically identify
a band inequality (8) of ICOV(g, b) that is violated by ¯x. After this, we attempt to
strengthen the found band inequality of right-hand side 1 to a band inequality (12)
valid for MSUNE with right-hand side 2. This is then a cut inequality of type (16),
which is often facet-defining.

Lifted two-cover inequalities are so far not identified by our program.
Since the cutting plane approach is not guaranteed to produce a feasible and

optimal solution, we implemented several heuristics to find feasible and hopefully
good solutions. Basically these heuristics first “blow up” an (infeasible) ¯x obtained
at some step of the algorithm until it becomes feasible, and afterwards attempt to
sequentially reduce overflow capacities.

Unfortunately, we have not yet got hold of a real-world test example, but it was
possible to determine a quite realistic test example with the following characteristics.
The underlying graph has 27 nodes (denoting some cities in southern Norway), 51
edges, and its demand graph contains 19 demands, three of them of size 100, the
others of size 6. For each line one has the choice between four different capacities:
the already existing (free) capacity, 63, 252, and 1008, whose costs depend on the
physical length of the cable. By varying the free capacity between 0 and 6, we obtained
different versions of the problem. The relative gaps between the best heuristic and
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Fig. 2. An optimal solution

and the best lower bound ranged between 0 and 5 percent (of the lower bound value).
The running times of the cutting plane stage are between 15 seconds and 2 minutes on
a Solbourne work station with a Sparc 10 processor using CPLEX as the LP solver.
The time for the heuristics was between one and five minutes.

When the free capacity was set to 6, the algorithm terminated with an optimal
solution, depicted in Fig. 2. There, the broken lines denote demands, with thick lines
for high demands, and the unbroken lines define the network. The ring of thick lines
is of capacity 252, except for four lines that have capacity 1008, the single thick line
on the upper right is of capacity 63, and all other lines only use the already existing
capacity of 6.

7. Conclusions and future work

We have studied an integer linear programming model for the multicommodity surviv-
able network design problem (MULTISUN): find a minimum cost capacitated network
that allows certain multicommodity flows under single edge and node failures. By ex-
ploiting connections to both knapsack-like problems and uncapacitated connectivity
design problems, we found several classes of valid inequalities (band-, partition and
lifted two-cover inequalities) for MULTISUN polytopes. Furthermore we discussed
facet conditions for these inequalities. We presented some preliminary computational
results with a cutting plane algorithm for solving MULTISUN problems, based on the
polyhedral results in this paper. Further tests will be reported in a forthcoming paper.

Another interesting area is to develop fast heuristics for the MULTISUN problem
accompanied with worst-case analysis. (For connectivity design problems, empirical
good heuristic methods have been found).

The models presented here can be extended or varied in various ways. For in-
stance, one may include flow (routing) costs in the objective function. Also, from
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an algorithmic point of view, it may be useful to exploit possible further structure
on the cost function in certain applications. We would also like to study additional
constraints on the routing, like regional constraints and diversification (saying that,
for each demand, only a certain fraction of the flow may go through each node or
edge, see [7]). These modifications are interesting from an applied point of view and
are worthwhile to be investigated theoretically.
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