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Summary. The design of cost-efficient networks satisfying certain survivability con-
straints is of major concern to the telecommunications industry. In this paper we study
a problem of extending the capacity of a network by discrete steps as cheaply as pos-
sible, such that the given traffic demand can be accommodated even when a single
edge or node in the network fails. We derive valid and nonredundant inequalities for
the polyhedron of capacity design variables, by exploiting its relationship to connec-
tivity network design and knapsack-like subproblems. A cutting plane algorithm and
heuristics for the problem are described, and preliminary computational results are
reported.
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1. Introduction

It is of major concern to telecommunication operators to design networks with a suit-
able degree of survivability towards component failures, cable cuts etc. Motivated
by this, there has been a large amount of recent research on the design of networks
satisfying specified connectivity constraints. Most of this research concentrates on
uncapacitated networks.e., where each link can support all the traffic at once. How-
ever, for many important present and future telecommunication networks, capacities
play a fundamental role.

In this paper we study an integer programming model for the following integrated
planning problem: decide which links to install in the network and which capacities
to install on these links such that the network allows routing of point-to-point traffic
even under single node or edge failures. Thus the model addresses MULTIcommodity
SUrvivable Network design, for short: MULTISUN.

More specifically, we have given a sEt of nodes and traffic demands between
certain pairs of these nodes. Each demand represents a certain amount of point-to-
point traffic to be routed in the network between origin and destination nodes. In
addition, a set of edges joining pairs of nodes/irare given; these represent direct
physical links (e.g., a fiber cable or a radio relay system). For each edge one wants
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to decide which capacity to install, chosen among a discrete set of alternatives, each
with an associated building cost. The number of such alternatives depends on the
application and the desired level of detail. We are interested in capacity extensions
such that all demands can be routed simultaneously in the resulting network. Such a
routing is called a multicommodity flow. Especially, we may require that the network
allows a multicommaodity flow also in certain failure situations, e.g., when a single
edge or node fails. In our model, we allow traffic demands to be split up and routed on
several paths, i.e., we consider continuous flows. The discreteness of the model lies
in deciding the design/capacity extension. The optimization problem in MULTISUN

is to find such a feasible network extension of minimum total building cost.

The purpose of this paper is to present and analyze an integer linear programming
model for the MULTISUN problem using a polyhedral approach. We study properties
of polytopes that are naturally associated with the model. Specifically, we present
classes of nonredundant inequalities that strengthen the original formulation and may
be (in fact, are) used in a cutting plane algorithm for solving real-world planning
problems. In deriving these inequalities, we exploit relations to the knapsack problem
and also the design of (uncapacitated) networks with connectivity constraints.

A large amount of work has been done by Minoux and others on the related
model with acontinuouscost function, see [15] and the references given there. Mi-
noux [15] introduced a general survivability framework for multicommodity flow
network design, based on telecommunication studies. Gavish et al. [8] considered an
even more general model arising in fiber optic networks involving selection of dif-
ferent cable types and a discrete cost function. They developed bounding procedures
using Lagrangian relaxation. Balakrishnan and Graves [2] considered the problem of
designing a (directed) network supporting multicommodity flow without survivability
constraints and with a continuous piecewise linear cost function on each arc. A spe-
cial case of the MULTISUN problem is the well known fixed charge network flow
problem (assuming that only design costs are present), see e.g., [16]. For work on the
design of uncapacitated networks satisfying connectivity constraints, see the work of
Grotschel, Monma, and Stoer [9, 11, 19], and for directed networks, see Dahl [6].

This paper is organized as follows. The integer linear programming formulation of
the MULTISUN problem is given in Sect. 2. Two models are introduced, one with and
one without survivability requirements, and associated 0/1-polytopes are defined. We
discuss basic properties (dimension and trivial facets) of these polytopes in Sect. 3.
The remaining part of the paper discusses stronger formulations of the problem. In
Sect. 4 classes of facet defining inequalities are derived from underlying knapsack
structures of the original model. We then, in Sect. 5, exploit the mentioned relation of
MULTISUN to connectivity design problems, and derive facet defining inequalities,
so-called partition and lifted two-cover inequalities, from this. In Sect.6 a cutting
plane algorithm using some of these inequalities is described together with a few
computational results. Some suggestions for further work are given in the concluding
section.

We use fairly standard notation from graph theory and polyhedral theory, see
[4, 18], but a few notions need to be explaingd’ denotes the set of real vectors
indexed byE, whereF is a finite set. LetG = (V, E)) be an undirected graph without
loops and multiple edges. i is a node inG, we letG —w denote the graph obtained
from G by removingw and its incident edges fro¥. Similarly, G — e is the graph
obtained by removing the edge The cut (W) induced by a subsdtd” of V is
the set of edges with one end nodelin and the other outsid&; W andV \ W
are calledshoresof the cut. ByG[W] = (W, E(W)) we denote the graph induced
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by node setV. For two nodes: andv, a [u,v]-path P is a sequence of nodes and
edges (o, €1, v1, €2, - . ., V11, €, V), Where each edge is incident to the nodes;_;
andv; (1 =1,...,1), wherevy = v andv; = v, and where no node or edge appears
more than once inP. A graphG is said to be2-edge(or 2-nodg connectedwith
respect to some given node det if between any two nodes, v € R there exist at
least two edge- (or node-)disjoint,[v]-paths. Similarly, we say tha¥ is connected
with respect toR, if G contains a4, v]-path for each pair of nodes,v € R. If G

is moreover an edge-minimal connected graph wit,tthenG is a Steiner treewith
terminal setR.

A network 1" = (G, ¢) is a graphG with weights (capacities or demands) > 0
associated with the edges Finally, given asupply network (,c) and ademand
network (H,d), where G and H have the same node set,naulticommodity flow
(w.r.t. (H,d)) is defined as a collection ofi[v]-paths P!, of G together with numbers
X, >0 (foralluv € E(H),i=1,...),such thal, X%, = d.,, for eachuv € E(H).
The network G, ¢) or the capacity vector is said toallow a multicommodity flow
w.r.t. (H,d), if, moreover, for each edge € E(G) the sum of)\!, over all paths
containinge is at most its capacity..

Given a vector: € R! indexed by some sdtand given a subsed of I, we write
z(S) instead of} ;s ;. By x° € B! we denote the incidence vector &f

2. Mathematical model

We present a mathematical model for the MULTISUN problem. In fact, we will study
two models; Model 1, which does not take survivability into account, and Model 2,
which does.

2.1. Model 1

The existing lines (for example transmission links), plus the lines that can be estab-
lished, are given as supplygraphG = (V, F) with node setl and edge seE. The
traffic demands are given asdemandgraph H = (V, D) whose edges represent the
different demands, and the amount of traffic, > 0 for each demand edgey € D.
For each edge € E one has to choose a capacity from among a small set
of discrete capacity extensions with associated costs, such that the so constructed
network satisfies all traffic demands and is of minimum total cost. Below we describe
in detail how the cost function and the multicommaodity flow constraints are modeled.
The discrete capacities for each edge E are given by numbers & M} <
M? < ... < MZTe (whereT. > 1), denoting, for instance, sizes of cables and/or
of terminal equipment. The capacify/’« is supposed to be at least as large as the
sum of all demands. This can always be achieved with a sufficiently high cost, if
necessary. Defind/? to be 0. Letm! denote the extension stepg! — M!~1, for
t=1,...,T.. The cost of extending the capacity frabi’~* to M? fort=1,..., T,
is given byc! > 0. So the cost of installing capacify/! on edgee is Zizl crmy.
One can view the capacity/cost function on each edgs a step function with
step lengthsn! and step heights.. In [7] we introduced a more general model with
a piecewise linear cost function, where sloped steps are allowed. But in this paper we
only consider step functions.
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The cost function is modeled with binadesign variables:! (sometimes written
x(e, t)) for all edgese € F, indicating the incremental capacity installations. The
values ofz! are required to be nonincreasing with increaging/e definel := { (e, t) |
t=1,...,T.,e € E} as the index set of all the design variablés and letz € R’
be the vector of all these variables. For a design veectar R’ the corresponding
cost isc"z and theassociated capacity vectaris given byy, = ZtTgl mizt.

Let y be the capacity vector associated with some design vectdhe network
(G, y) is supposed to allow a multicommaodity flow carrying all traffic. The feasibility
of a capacity vectory can be expressed in terms of linear inequalities as follows.
For some given nonnegative vecterc R and demand edg¢ € D let wjf denote
the shortest path length i@ between the two end nodes @fwith respect to edge
lengths.. It can be shown (see [12]) thatis feasible if and only if

1) Z [eYe > Z mhdy  forall p>0.

ecE feD

The necessity of these inequalities stems from the fact that the cheapest way to route a
multicommaodity flow, if no capacity constraints but edge cestare given, is to route
each flow individually on its shortest path w.r.io Thus a lower bound fou"y is the
sum of the shortest-path-lengths multiplied with the demand value. The sufficiency
of the system (1) comes from linear programming duality. This characterization of
feasible capacities is known as the “Japanese theorem”, first stated in [12, 17]. The
inequalities (1) are callenhetric inequalitiesThis name is motivated by the fact that,
for complete input and demand graphs, any vegter R defining a nonredundant
inequality in (1) induces a (pseudo-)metric @nthat is, it is nonnegative, symmetric
and satisfies the triangle inequality,, + p1yw > iy fOr any three nodes, v, w.
(Here, 1., is supposed to be 0).

In the inequality system (1) we can restrict ourselves to the inequalities defined
by vectors [, ) in the setl] of extreme rays of the cone

{perf recrP|u>0, mp =} forall f e D}.

The extreme rays of this cone were investigated in [1, 13].
A special type of metric inequality is the so-calledt inequalitydefined by a
node setV # 0, W #V B
(2) y(6a(W)) = d(6u(W)).
This can be seen to be a metric inequality whers set as the incidence vector of
6 (W), and when we assume th@f1¥’] and G[V'\ W] are connected. Cut inequalities
express the fact that the total demand crossing a cut should not exceed its capacity.
Model 1 with cost function and multicommodity flow constraints can now be
stated by inserting,. == 3,5, m!z! into the equation system (1):
Model 1
min ¢'z
subject to
3

(i) 1>at>22>...>z1->0 foralle e E

>
(i) Yeepte Yimmiat > Y cpalidy forall (u,m) e I
(i) ! integer for all ¢,t) € I.



Multicommodity survivable network design 153

The constraints (i) are calleardering constraintsand the constraints (ii) are called
metric inequalities as inequalities (1). IS C I is such that its incidence vectgs®
satisfies all the constraints in Model 1, we say thétand S arefeasible

This concludes the discussion of the validity of Model 1 as an integer linear
programming formulation of the MULTISUN problem when no survivability is taken
into account.

2.2. Model 2

The second model includes survivability constraints, which means that if any single
line or node of the network fails all the traffic should still be accommodated in the
remaining operating network. More precisely, we require that the installed capacity
vectory satisfies the following constraints:

(i) for eache € E the capacity vectoy restricted toF'\ {e} allows a multicommodity
flow w.r.t. (H,d),

(i) for eachv € V the capacity vectoy restricted toE \ 6 (v) allows a multicom-
modity flow w.r.t. (H — v, d).

The constraints (i), calleddge failure constraintsassure that the network:(y) has
sufficient reserve capacity to protect against any single edge failure. Similarly, the
node failure constraintgii) protect the network against any single node failure. Note
that if a node fails, then all the demands originating in this node are deleted from
the demand graph. In some applications one may have more complex changes of the
demand graph in case of node failures (see [7]), but this is not considered here.

It is convenient to introduce index sets representingdperating stateof the
network. LetS® (SV) have one element for eaehc E (v € V) corresponding to the
failure of e (v, resp.), and les° represent the case without any node or edge failure.
In the following, we are interested in the following subsets of operating states, namely
S5:=89 8:=50USF, andS = S°U ST U SY. Furthermore, for an operating state
s € SOUSF U SY we define setd(s) and D(s) of operating supply and demand
edges:

— Fors € S, let E(s) := E and D(s) := D.

— For s € S¥ representing the failure of edge define E(s) := E \ {e}, and
D(s) :=D.

— For s € SV representing the failure of edge define E(s) := E \ 65(v), and
D(s) := D\ 6g(v).

For any operating state the shortest-path valueg‘ are defined with respect to the
graph of operating supply edge, (£(s)), and the sefl(s) is defined analogous t&
in Model 1.

The integer linear programming formulation of the MULTISUN problem with
survivability constraints now becomes:
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Model 2
min ¢'z
subject to
(4) _
(i) 1>al>22>...>2 >0 forallee E

. Te
(i) ZeeE(s) e Doy mibal > ZfeD(s) w}‘df forall mw € II(s), s € S
(i) ! integer for all ¢,t) € 1.

We remark that this model could be used for more general failure situations as
well, for example the simultaneous failure of two or more nodes. This would be
reflected in other choices df(s) and D(s). For S := S°, Model 2 is equivalent with
Model 1.

2.3. Polytopes associated with the models

We introduce the polytopes associated with the MULTISUN models.
MSUNg(G, m, H,d) := cony{ = € R | z satisfies (4)(i)—(iii)}

If no misunderstanding is possible, we drop the parameter list and write MSUN
When we consider only edge failurés:= S° U S¥, we also write MSUN;; when
S :=85°USFuUSY, we write MSUNg -, and forS := S° we denote the polytope
by MSUNy.

Since the vertices of the polytope MSYNire exactly the feasible with integer
components, the MULTISUN problem can now also be written as

minc'z  subject tox € MSUNg.

To optimize over a polyhedron using a linear programming code, one needs to
know all, or at least “sufficiently” many, of its defining inequalities. The inequalities
in (4) are generally not enough to achieve good lower bounds. So, a main purpose of
the subsequent study is to find more classes of valid and nonredundant inequalities
for MSUNg.

3. Basic properties of MULTISUN polyhedra

We begin the polyhedral investigations of MULTISUN polyhedra by a study of their
dimension. Let a supply grap&f = (V, F) and a demand grapK = (V, D) with
demand vectot! be given.

Proposition 5. Let MSUN; be one of the polytopes MSWNVISUNg or MSUNg v
Then MSUN(G, m, H, d) is full-dimensional if and only if MSUNG —e, m, H, d)
is nonempty for alk € E.
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Proof. Assume that MSUN(G — e, m, H,d) is empty for some: € E. Then ei-
ther MSUNs(G, m, H, d) is empty, or each feasible € R’ satisfiesz! = 1, hence
MSUNg is not full-dimensional.

To prove the sufficiency, we assume that MSWJI not full-dimensional, i.e.,
there is a linear equation’ = = a with nonzeroa satisfied by each point in MSUN
Let f € E. By hypothesis, there exists a solutiane MSUNg with x} = 0 for

t = 1,...,Ts. By monotonicity, the solutions” obtained fromz by changingx?}

to1fort=1,... k are feasible. Thus we havéz = a"z' =a"22=--. = o, and by
subtraction, we get’, = 0 for allt = 1,...,Ty. Sincef was chosen arbitrarily i,
we geta = 0, a contradiction. Thus the equality system of MSUN empty, and the
polyhedron is full-dimensional. O

We hereafter assume that each MSUN-polytope under consideration is full-
dimensional; this simplifies polyhedral arguments. In most applications the supply
graph will be sufficiently connected anyway.

Proposition 6. Let MSUN; be one of the polytopes MSWYNVISUNg or MSUNg v .

() The inequalitiesl > 2! > 22 > ... > 2T define facets of MSUNfor all ¢ € E.
(i) The inequalityx(e, T.) > 0 defines a facet of MSUNIif and only if for all f #Z e
the polytope MSUNG — f,m, H,d) N {z € R | 2(e, T.) = O} is nonempty.

Proof. (i): For each , k) € I, define the vector’* ¢ {0,1}! by settingz’"*(e, t) :=

1 foralle # f and allt, 255(f,t) .= 1if k < t, andafF(f,t) := 0 if k > t. Define
furthermorez’ € R! to be the vector of all 1s. Thesé| + 1 points are feasible and
affinely independent. Each inequality in (i) holds with equality for exaf|yof the
points. Thus the face induced by this inequality is a facet.

(i): If MSUN (G — f,m, H,d) N {z | z(e,T.) = O} is empty for somef, then
xz(e, T.) = 0 implies x} = 1, therefore the nonnegativity inequality cannot define a
facet. If, on the other hand, the given condition holds, ther) theectorsy/-* derived
from =/-F for all (f,k) € I by setting the component(e, 7..) to 0 are feasible and
affinely independent. O

The inequalities (4)(ii) do not define facets of MSIYNexcept in very special
cases. This indicates the need of stronger formulations than the LP relaxation given
by (4). In the remaining part of the paper we therefore give different classes of
inequalities that lead to improved LP formulations of the MULTISUN problem.

4. Improved formulations based on Knapsack substructures
4.1. Band inequalities

Several ideas may lead to improved, i.e., stronger, formulations of the MULTISUN
problem. We describe a class of valid inequalities for Mgdlledband inequalities
They are derived as facet-defining inequalities for a relaxation of MSUhe so-
called ICOV-polytope.

Let > . cp ZtT;l gtxl > b be a metric inequality (3)(ii), wherg! is defined as
uemt. We will assume thag’e > b for all e € E. This can be done without loss of
generality, because we assume that the highest capacity of each edge is “large”. Let
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be the support of a given metric inequality, that is, the set of edges with pogltive
and consider the following polytope

ICOV(g,b) :=con{ (z!: t=1,...,T.,ec€ F) |

T,
(7) ZeEF ZtZlgéxé 2 b7
1>2t>22>...>2%- >0 foralle€F,
x integral}.

The polytope ICOV{, b) can be viewed as a knapsack polytope with additional order-
ing constraints. Facial properties of knapsack polytopes have been studied in recent
years, see e.g., [3, 5]. Knapsack polytopes with the additional constpajnis < 1
(for all e € F), andz > 0, have been studied in [14, 20] under the names “multiple-
choice knapsack problem” or “knapsack problem with generalized upper bounds”
(which is actually a larger class of problems). The polytope ICQ¥) can be lin-
early transformed into a knapsack polytope with generalized upper bounds, so all
results pertaining to that polytope apply also to the ICOV-polytope.

Any inequality that is valid for ICOV4, b) is clearly also valid for MSUR, if the
missing coefficients (fore( t) with e ¢ F) are filled up with zeros.

To describe the band inequalities we introduce some notation. Define the index
setI(A) ={(e,t) eI |t=1,...,T,,e € A} for eachA C E. For simplicity, we
write I(e) in stead ofI({e}). A band B of F is a subset of () containing exactly
one elementd t*<) in eachl(e), e € F. Given a bandB C I(F), we will from now
on write t2 instead oftke. Let B< := {(e,t) € I(F) | t < tB}, and define similarly
B~. A band B is calledvalid if g(B<) < b. We say that a ban@&’ of F is abovea
bandB of F if t? <P for all e € F, andt? < 2’ for at least one € F.

WheneverB is a valid band, the inequality

t) wB)= Y w>1,

(e,t)eB

is valid for ICOV(g, b). It is called aband inequality The band inequalities are, after
transformation, equivalent to the GUB cover inequalities (in [20]) for the knapsack
problem with generalized upper bounds, but their nonredundancy is not proved there.

Figure 1 illustrates a band inequality with = {ej,...,e4} andb = 4. Each
column depicts a different edge. The {) are represented by a box of width 1 and
heightg%. For eache, the boxesd, 1), (e, 2), ..., (e, T.) are stacked on top of each
other, with ¢, 1) being lowest, ande(T,) being highest. In our example; =1 for
eache, andb = 4. The 1-coefficients of the band inequality are depicted inside the
boxes. The valug(B<) equals the area below the 1's.

We next characterize when a band inequality defines a facet of IG@®) which
is of some interest for the strength of the similar MSUN inequality. First, however, we
remark that ICOV4, b) is full-dimensional. This follows from the assumptigf > b
and|F| > 2, using the same construction as in the proof of Proposition 5.

Proposition 9. Let B be a band inF, where|F| > 2. Then the band inequality
x(B) > 1 defines a facet of ICQY, b) if and only if there is no valid band abowe.

Proof. Assume thatB’ is a valid band abové. It follows from the ordering con-
straints thate(B) > z(B’) for eachz € ICOV(g, b), sox(B) > 1 is implied by other
valid inequalities and therefore redundant.
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t="Te

e1 €2 €3 es4
Fig. 1. Band inequality

To prove the converse, assume that there is no valid band aBoVais implies
that, for alle € F and allt > tZ, the incidence vectors of

B<U{(e,1),(e,2),...,(e,t)}

lie in the face defined by the present band inequality. Moreover, by the assumption
that g7« > b, we have that, for alk, f € F and allt < tZ, the incidence vectors of

I(f)U{(e,1),(e,2),...,(e, 1)}

lie in the face. These are sufficiently many affinely independent vectors to prove (by
standard polyhedral methods) that the band inequality defines a facet of §CEV(
O

A special case are the band inequalities derived from cut inequalities (2). They
are a subclass of the partition inequalities for Model 1 studied in Subsect.5.1, many
of which define facets also for MSUN

The separation problem for band inequalities for IC@Q\§ or MSUN; is easily
seen to be equivalent to the NP-complete multiple-choice knapsack problem. Thus it
is not easy to determine, for a given vectore /() whether there exists a band
inequality that is violated by but valid for ICOV(g, b).

Besides the band inequalities there are other nonredundant inequalities for ICOV
(g,b). Some properties of their coefficient structure are stated in the next proposition.

Proposition 10. (i) All nonredundant inequalities for ICQ(Y, b) that are not equiva-
lent to any of the ordering constrains > z1 > 22 > ... > zI* have nonnegative
coefficients. The same holds for nonredundant inequalities of \JSUN

(ii) For all nonredundant inequalities of ICQY, b) that are not equivalent to any
ordering constraint, the sum of coefficients ové¢) is equal to its right-hand side,
forall e € F.

Proof. (i): If the inequality has a negative coefficient for somet}, and ift > 1,

then any vector satisfying the given nonredundant inequality with equality must also
satisfyz{ =1 = z¢. Otherwise we could construct a contradiction to the validity of the
inequality by increasing’. Since the given inequality is nonredundant, it is equivalent
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to the ordering constraint'~* > 2. By a similar argument, if the coefficient of some
(e, 1) is negative then the inequality is equivalentfo< 1.

(ii): Since the incidence vector af(e) is feasible for alle € F', and the given
inequality is valid, the sum of coefficients for each fixed edge is not less than the
right-hand side. Suppose that for sorthe F it is strictly larger than the right-hand
side. Since the fac# defined by the given inequality is not contained in the face
defined byz(f,T¢) > O there exists a sef C I whose incidence vector is i#®
and satisfiesc(f,Tr) > 0, which implies that/(f) is contained inZ. By (i), the
inequality has nonnegative coefficients, so the incidence vectdf cénnot satisfy
the inequality with equality. This contradicts our choice/f Therefore the sum of
coefficients overl(e) is equal to the right-hand side of the inequality, foral E.

O

The band inequalities (8) are exactly those nonredundant inequalities with integral
coefficients whose coefficients if{¢) sum up to 1 for each edgec F.

The band inequalities can be generalizedktband inequalitieswhose integer
coefficients sum up té for each fixed edge, but we do not discuss this generalization
further in this paper.

4.2. Strengthened band inequalities (model 2)

Unfortunately, the band inequalities for Model 1 are not facet-defining for MGUN
(with edge survivability constraints). But it is possible, as can be seen in the next
lemma, to raise the right-hand side of a band inequality for MgUdI 2 to achieve

a valid inequality (under some further assumptions).

Lemma 11. Letg"z > b > 0 be a metric inequality for MSUNG, m, H, d), let F be
the set of edges with positiyé, and letB be a band ofF’. We suppose thaf’| > 2.
If g(B<\ I(e)) < bforall e € F then

(12) z(B) = 2
is a valid inequality for MSUIN.

Proof. First note thay"2z > b is also a valid inequality for MSUNG — e, m, H, d),
for all e € F. Since g(B< \ I(e)) < ¢g(B<) < b, the inequalityz(B) > 1
is valid for MSUNy(G — e, m, H,d), for all e € F. Suppose there is a ver-
tex xZ of MSUNg(G,m, H,d) satisfying x?(B) = 1, sayB N Z = {f}. Then
ppp Zf;lggxz(e,t) < g(B<\ I(f)) < b, which contradicts the survivability con-
dition when edgef is deleted from the supply graph. S& (B) > 2 for all vertices
xZ of MSUNg. O

We call inequality (12)strengthened band inequality

If the given band was derived from a cut inequality, then the strengthened band
inequality can be shown to define a facet of MSEJkh many cases. This is done in
Subsect. 5.2.
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5. Improved formulations based on relations to connectivity network design

In this section we exploit the relation of the MULTISUN problem to the design of
uncapacitated networks satisfying connectivity requirements. This leads to several
classes of facet defining inequalities for the MSUN-polytopes.

First, we give a simple but useful lemma. It describes the main relations between
the two classes of problems and will be used in later facet proofs. To simplify the
presentation, we assume throughout this section that the set of demand edges and
its adjacent nodes induce a connected graph with nodé& séie terminal set We
assume that the supply graghis connected as well. Let the polytope CONI#F
be the convex hull of incidence vectors of subgraph&7othat are connected with
respect toR, that is, those subgraphs containing a Steiner tree with terminak.set
Similarly, let 2ZECON (2NCON) be the polytope associated with 2-edge connected
(2-node connected) subgraphs with respecktd-or F' C E and a bandB of F, let
I(F), B< and B~ be defined as in Sect. 4.

Lemma 13. Let F* C E. Then the following statements hold.

(i) If (V,F)is connected w.r.tR, thenI(F) is feasible for MSUR\

@iy If (V,F)is 2-edge connected (2-node connected) wi,tthenI(F) is feasible
for MSUNg (MSUNgzyv).

(i) If a'y > « is a valid inequality for CON (or 2ECON, 2NCON, resp.), then
e a.zl > o is a valid inequality for MSU (MSUNg, MSUNg, v resp.)

Proof. Straightforward, using the fact that we can install a sufficiently “large” capacity
on each edge. O

In the following we will exploit fact (iii) of this lemma to derive valid and nonre-
dundant inequalities for MSUN polyhedra from inequalities for CON and 2ECON
polyhedra. We will concentrate on some nonredundant inequalities listed in [9, 11]:
partition, cut, and lifted two-cover inequalities.

Partition inequalitiesfor CON are defined as

(14) z(UL6(V) >p—1

for all partitions>” = {V1,...,V,} of V (herep > 2) where eaclV; contains some
node of R. Such partitions are callegkoper partitions Associated with” we have
the graphG = (V, F) obtained by shrinking each node $étinto one node and then
deleting parallel edges.

Remark 15.By [9], partition inequalities define facets of CON if and only if G] V;]
is connected for alf, (i) G[V;] is 2-edge connected w.r.R for all ¢, and (iii) G is
2-node connected.

Cut inequalitiesfor 2ECON are defined as
(16) z(6(W)) = 2
for all subsetg¥” of V' such that botli¥” and V' \ W contain nodes of.

Remark 17.By [11, 19], the cut inequality defines a facet of 2ECONGifIW] and
G[V \ W] are 2-edge connected ard is 3-edge connected. (Actually, somewhat
weaker conditions are already sufficient and at the same time necessary).
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Lifted two-cover inequalitieBr 2ECON are defined by pairwise disjoint nonempty
node setsiVy, ..., W,, each containing some node &f, and edgesy, ..., e
B <k <p)with e € 6(W;)no(W) fori =1,...,k. HereW # V denotes the
union of all W;, andk is assumed to be odd. The lifted two-cover inequalities have
the form

(18) (U 6(Wi) \ {er, ... ex}) > p — [k/2].

Remark 19.In [19] it was shown that the lifted two-cover inequality defines a facet
of 2ECON if G is complete, and the graphs induced By, W and by allWW; are
three-edge connected.

By Lemma 13 (iii) any valid inequality,"y > o for CON (2ECON, 2NCON)
can be transformed to a valid inequality for the respective MSUN-polyhedron. When
a is a 0/1-vector, the seB := {(e,1) € I | a. > 0} can be interpreted as a band
of the support ofa"y > «. In the next subsections we will see how the inequality
Y. a.zl > o can be made facet-inducing for the respective MSUN-polyhedron by
finding a band abové3 such that the inequality stays valid. Certainly this technique
can be applied as well to other valid inequalities for CON (or 2ECON, 2NCON) not
listed here. Especially we observe that it can be applied to the so-called node-partition
inequalities (in [11]) valid for 2NCON, but not 2ECON. They are a generalization of
partition inequalities (14).

5.1. Partition inequalities

ConS|der a proper partitios” of V" into node setd/;, i = 1,..., p, calledshores Let

= (V E) be defined as above, and similarly, Igt= (V D) be obtained fromH
by shrinking each node séf into one node. Note that the edge detconsists of
those edges i’ with end nodes belonging to different shores.

Definition 20. A bandB in E is called a valid="-band if for each nonempty/ C v
with connected shores (i. EG[W] and G[V \ W] are connected) we have that

(21) m({(e,t) € B~ [e € 6a(W)}) < d(67(W)).
A valid #°-band B is called maximal if no validZ’-band aboveB exists.

Proposition 22. Let & be a proper partition and assume thatis a valid &’-band.
Then the partition inequality
(22) z(B)>=p-1

is valid for MSUN (G, m, H, d).

Proof. Let u andv be two distinct nodes iV, and let/’ be a node subset df
such thatu € W’ andv ¢ W’. We observe that if, sayiG[IW'] is not connected,
then we can find?” C W’ or W O W' such that the cubs(W) is a subset of
6a(W'), has connected shores and separatesd v (recall thatG is connected).
Since B is a valid ’-band, each feasibl& C I satisfies ¢,tZ) € Z for at least
one edge: € 6(W) C 64(W'), otherwise the capacity across this cut would be too
small. Thus, by Menger’s theorem, the subgrapk@bf:onsisting of those edges
with (e, t?) € Z contains a4, v]-path, and, since: andv were arbitrary, this graph
contains a spanning tree pf- 1 edges. This proves that the partition inequality holds
for x#, and, by convexity, the inequality is valid for MSYN 0O
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We next discuss those partition inequalities that define facets of MSUN

Theorem 24. Let & be a proper partition and assume that is a valid &’-band.
Then the partition inequality (22) defines a facet of MQUithe following conditions
hold:

(i) The partition inequality (14) defined by partitio®’ induces a facet of CON (see
Remark 15), and
(i) B is maximal.

Moreover, condition (i) is necessary for (22) to define a facet of MGUN

Proof. Necessity of (ii) can be seen by adding ordering constraints to a partition
inequality defined by a maximal band.

To prove sufficiency, assume that both conditions hold, and'let> o be the
inequality (22), witha =p — 1. Let F(a,a) = {x € MSUNy | "z = o} be the face
of MSUNy induced by this inequality. We may assume thé#, o) C F'(b, 3), where
F(b, ) is the facet of MSUN induced by some inequality’z > 3. We prove now
that ¢, 3) is a scalar multiple ofd ).

First, consider an edge ¢ E, which is contained in, say, shofi§. There is
a Steiner tree’” C E \ {e} such thaty!" satisfies (14) with equality, because this
inequality defines a facet of CON different from a nonnegativity constraint. Thus we
see from Lemma 13 (i) that’") € F(a, ). Fort =1,...,T., the incidence vector
of I(F) = I(F)U{(e,1),..., (e t)} also lies inF(a, o), hence inF'(b, 5). Thend?,
must be zero fot = 1,...,T,. By similar arguments one can show tlgt= 0 for
each ¢,t) € B<. R

Consider an edge € E for which tZ < T.. Since B is assumed maximal, the
band obtained fromB by replacing ¢,tZ) by (e,t? + 1) is not a valid &>-band.
Thus there exists a nonempty node BétC V with connected shores and an edge
e € 6a(W), such that

(25) m({(g.t) € BX | g € 8c(W)}) + mle,tg) = d(65(W).

Now, choose a spanning trgein G that containg: but no other edge af (V).
This is possible since the shores of this cut both are connected. Défiae the
union of the four index set$(E \ E), I(T' \ {e}), {(g9,t) € B< | g € 6a(W)},
and{(e,t2)}. We claim thatZ is feasible for MSUN. To prove this, we describe a
feasible multicommodity flow in the networkl” = (G, y), wherey is the capacity
vector associated with the desigh By connectedness of eacH[V;] and G[W]
(and the “large” capacities there), we can clearly route wittiin(or V' \ W) all
demands with both end nodes belongingito(or V' \ W). All demands inéx (W)
can be routed across the cut, since the capacity of the cut is at least as large as
the sum of crossing demands, by (25). THiss feasible. Furthermorey? satisfies
a'x > o with equality. By monotonicityZ’ := Z U {(e, tZ + 1)} is also feasible and
its incidence vector also lies ifi(a, o), from which we obtain thab(e, tZ + 1) = 0,
as above. Continuing in this manner, we conclude that O for ¢ > t2 ande € E.

Thus, so far we have shown thgt = O for each §,t) € I\ B. Finally we
prove that allb! with (e,t) € B must be equal. In fact, since (14) defines a facet of
CON, whose affine hull does not contain the origin, there| Bidinearly independent
incidence vectors of edge sets containing Steiner trees such that each of these vectors
satisfies (14) with equality. Lett be a nonsingulafE| x | E|-dimensional submatrix



162 M. Stoer and G. Dahl

whose columns correspond to spanning tree& oAlso let v/ (resp.a’) be the|E’\—
dimensional vector obtained froin(resp.a) by removing the components fot, ) €
I'\ B; all shown above to be zero. Thus we hat®'(4 = 31 and @')TA = (p — 1)1,
which implies that ¢, ) is a scalar multiple ofy, 3). ThereforeF'(a, o) is a facet.

O

Unfortunately, it may not be easy to check algorithmically whether a band is
a valid #’-band. However, for smalb it can be done by simply checking all cuts
explicitly. Furthermore, we remark that a band is valid provided that the following
multicommodity flow problem is feasible. First, we define a capacity vegttny
increasing with (a suitably smalh the total capacity below the banB on each
edge, and letl be the demand vector as usual. The multicommodity flow problem of
interest is then obtained by reversing the roleg @ndd, and of G and H (that is,
viewing y as demands and as capacities).

5.2. Cut inequalities

In the following sections we consider the polytope MSEF, H, m, d) associated
with Model 2. Let R be the terminal set, and lei(6(11)) > 2 be a cut inequality
(16) for 2ECON, defined by node sBf such that boti¥ andV \ W contain nodes
of R (the terminal set). LeB be a band obs (W) with the property

(26) m(B<\ I(e)) < d(6g(W)) forall e € 6q(W).
Then thecut inequalityfor MSUNg defined bylW and B is
(27) z(B) > 2.

Since this inequality can also be seen as a strengthened band inequality derived from
the metric inequality(6(W)) > d(6y(W)), it is valid for MSUNg (by Lemma 11)
and therefore also for MSUN,v .

The next theorem gives a sufficient condition for a cut inequality (27) to define a
facet of MSUNg.

Theorem 28. The cut inequality defined By and B defines a facet of MSUNG, H,
m, d) if the following conditions are satisfied:

(i) The cut inequalityy(6(W)) > 2 defines a facet for 2ECON (see Remark 17).
(i) For g € §(W) minimizingm(B<N1(g)) and for all f € §(W)\ {g}, the edge set

EW)UEV\W)U{f, g} defines a 2-edge connected graph with respedt.to
(iii) There is no band abové satisfying condition (26).

Proof. Let b"2 > 8 be a valid inequality defining a facet of MSUNthat contains
the face defined by:(B) > 2.

With condition (i) and Lemma 13 (ii) one can prowé = 0 for all (e,t) €
I(E(W)U E(V \ W)) and for all ¢,t) € B< in much the same way as demonstrated
in the proof of the previous theorem.

Let f be some edge iAg (V) with t’;" < Ty and letg minimize m(B< N I(g)).

If g = f, choose g # f minimizing m((B<\ I(f))N1(g)). Since, by condition (iii),
it is not possible to replace? by ¢f + 1 without violating (26), we haven(B=< \
1(9)) + m(f, tf) > d(6y(W)). Condition (ii) ensures that the incidence vector of
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IEW)UEV\W)) U BS U {(f,t{)} U 1(9)

is feasible and satisfies(B) = 2. Especially, if edge; is failing, the cutéq (W)

has still sufficiently high capacity to route all demands betwBérand V' \ W. By

increasing the capacity of edgé we can provd)’} =0 forallt> th. This shows
thatb!, = 0 for all (e, t) € B~.

With condition (i) one can now prove that @il with (e,) € B have the same
value, as in the last part of the proof of Theorem 24. Therefore all coefficients of the
band must be the same. This implies that > 3 is a positive scalar multiple of
z(B) > 2 as desired. O

5.3. Lifted two-cover inequalities

The lifted two-cover inequalities (18) for the 2ECON polytope can be generalized in
much the same way as the cut and partition inequalities.

Let Wy, ..., W, ex, ..., ex define a lifted two-cover inequality (18). We assume
thats(W;) N D #(, for:=1,...,p (recall thatD is the set of demand edges). Now
define, for each < k, a bandB; of 6(W;) \ {e;} such thatx(B;) > 1 is valid for
MSUNy(G — e;, m, H,d). Define also, fori = k+1,...,p, a bandB; of §(W;), such
that z(B;) > 2 is valid for MSUNg (G, m, H, d).

Moreover, we assume that these bands are “consistent” in the sense that if an
edgee lies in two bandsB; and B;, thent?’ = 5. Denote the union of alB; by B.

Then thelifted two-cover inequalitydefined by alli;, e; and B is

(29) 2(B) > p— |k/2].
Lemma 30. The lifted two-cover inequality (29) is valid for MSYN

Proof. Note thatxz(B;) > 1 fori =1, ..., k, is valid for MSUNg. Let W be the
union of all W;. Add the valid inequalities

x(B;)) > 1 fori=1...k,
x(B;) 2 fori=k+1,...,p,
z(e, tB) 0 forallee 6(W)\ {e1,...,ex},

divide the result by 2, and round up the coefficients of the right-hand side. The
resulting valid inequality is the lifted two-cover inequality (29).0

>
>

From the validity proof it can be seen that the lifted two-cover inequality is valid,
but redundant, ift is even. Note that, for od@, an integer vectorr € MSUNg
satisfies (29) with equality if and only if it satisfies with equality all except one of
the inequalities used in the validity proof. The next theorem gives a sufficient facet
condition for the lifted two-cover inequalities.

Theorem 31. The lifted two-cover inequality (29) defines a facet of MGUN

(i) the lifted two-cover inequality (18) defined by tHé and e; induces a facet of
2ECON (see Remark 19);

(i) foranyi=Fk+1,...,pand forany two edgeg, g € (W), there exists a vertex
of 2ECON withy; =y, = 1, satisfying (18) and,(6(17;)) > 2 with equality; and

(iii) the band B is maximal in the sense that it is not possible to increase t3hy
without violating the conditions of the definition Bf
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Proof. Let {z € MSUNg | z(B) =p — |k/2] } C {z € MSUNg | bz = 3}, where
the last set is a facet of MSUN Since (18) defines a facet of 2ECON, it is possible
to provedb. =0 for all e € E andt < t& (ort < T, if t¥ does not exist).

To prove b? = 0 for all (f,t) € B~, pick some edgef € U;6(W;). By the
maximality of B it is not possible to increas!'—’jB by 1, so there exist$V; adjacent
to f such thate(5;) > 1 or 2 is not valid any more. Suppose p > k. ThenB,, must
violate (26), that is, there must exist an edgg f such thain (B, \ 1(g))+m(f, tjf?) >
d(6x(Wp)) > 0. Now, construct a feasible solutionwith bz = 3 by equipping
edge f with exactly capacitym(f, tj?), edgeg with highest capacity, and all other
edges ins(W,) with capacitym(e,tZ — 1). (So far, exactly two nonzero coefficients
of the lifted two-cover inequality have been “used”.) To complete the present solution
with high-capacity edges, we use condition (ii) for p. Furthermore all edges with
b(I(e)) = 0 can be equipped with high capacity. The so constructed vedtoieasible
for MSUNg, because when edgefails, only the demands originating i, need
to be routed on low-capacity edges, and the capacity(Bf,) is high enough to
make this possible. Moreovef[IV,] is connected, otherwise (18) would not define
a facet of 2ECON. Since any further capacity extension of efigdso leads to a
feasible solution withh"= = 3 we haveb’ = 0 for all ¢ > ¢7. Similar constructions
can be done for all other edggsin U6(W;) \ {es,...,ex}. SO we have proved that
all coefficients of value 0 in the lifted two-cover inequality have also value 0O in
bTz > 3. To prove that both inequalities are in fact equivalent, we can usé¢fthe
affinely independent integer vectors in 2ECON multiplied with the high capacity (and
proceed as in the last part of the proof of Theorem 241

Concerning the separation problems for the inequalities listed here, it was shown
in [10] that the problem of determining a violated partition inequality (14) for CON
and a violated lifted two-cover inequality (18) for 2ECON, given some nonnegative
vectory € ¥, is NP-complete. Therefore the separation problems for inequalities
(22) and (29) are NP-complete, too. The NP-complete separation problem of band
inequalities (8) for ICOV{, b) can be reduced to separation of cut inequalities (27)
for MSUNEg (G, m, H, d) with suitably defined@, m, H, d), hence the latter problem
is also NP-complete.

Despite these negative results, it is possible to design heuristics to determine
violated inequalities for MSUN-polyhedra. Since partition, cut, and lifted two-cover
inequalities played a major role in solving connectivity problems to optimality, see
[10], the corresponding inequalities will probably be useful in finding good lower
bounds for MULTISUN-problems. Our computational results for MSUJising only
cut inequalities (27) and band inequalities (8) were already quite encouraging, as is
reported in the next section.

6. Computational results

We describe in this section the main features of a cutting plane algorithm and heuristics
for Model 2, where the failure of any single node or link is considered. Furthermore,
some preliminary computational results are given.

The basic idea of the cutting plane algorithm is to solve a sequence of ever tighter
LP-relaxations of the problem at hand, by generating linear inequalities as they are
needed to ensure feasibility. The algorithm is as follows:
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1. solve an initial LP containing a few valid inequalities for MSkNising the cost
function ¢;

2. if the optimal solutionz of the current LP is integral and satisfies all inequalities
of (4), outputz as an optimal solution to Model 2; otherwisds not feasible for
MSUNg, so try to find strengthened band inequalities and other inequalities valid
for MSUNg that are violated byt;

3. if violated inequalities were found, add them to the current LP, solve this new LP,
and go to Step 2; otherwise stop and outplit as the best lower bound found
for the problem.

This approach is called a cutting plane algorithm, because geometrically, in Step 3
the infeasiblezis cut off by hyperplanes, so called cutting planes, from the region
of feasible solutions MSURN. Unfortunately, we do not have a complete linear de-
scription of MSUNs;, so we have to settle with a partial linear description of this
polytope given by the inequalities in this paper. But the hope is that this is sufficient
to produce good lower bounds for the optimal value of the problem.

We next explain how the subproblems are solved. In Step 1 the inequalities of
the initial LP are chosen by approximately “solving” in greedy fashion the dual LP
of min ¢"z, wherez satisfies all cut inequalities (27). Whatever inequality is “used”
in the greedy solution is placed into the initial LP.

In Step 2, the feasibility check of is done as follows: ifr defines a network
that is not two-node connected, violated cut inequalities (27) can be derived from
the two-connected components of the network. These inequalities are added to the
current LP. If this simple connectivity test fails to produce inequalities, we compute
the capacity vectoy € R” from z by v, := ZtT;l miz! for all e € E. Now it needs
to be decided whether the netwagkwith capacityy allows a multicommodity flow
in each failure situation. This can be done by solving, for each failure situation, a
certain LP, which gives back either the routings for each traffic demand, or a violated
metric inequality (1), if a multicommodity flow does not exist. Since all these LPs
are very similar, they can be efficiently solved by using the knowledge of previously
found optimal solutions. If the violated metric inequality is a cut inequality (2) (most
of them are), we rewrite it in terms af asg"= > b and try to heuristically identify
a band inequality (8) of ICO\, b) that is violated byz. After this, we attempt to
strengthen the found band inequality of right-hand side 1 to a band inequality (12)
valid for MSUNg with right-hand side 2. This is then a cut inequality of type (16),
which is often facet-defining.

Lifted two-cover inequalities are so far not identified by our program.

Since the cutting plane approach is not guaranteed to produce a feasible and
optimal solution, we implemented several heuristics to find feasible and hopefully
good solutions. Basically these heuristics first “blow up” an (infeasibl@ptained
at some step of the algorithm until it becomes feasible, and afterwards attempt to
sequentially reduce overflow capacities.

Unfortunately, we have not yet got hold of a real-world test example, but it was
possible to determine a quite realistic test example with the following characteristics.
The underlying graph has 27 nodes (denoting some cities in southern Norway), 51
edges, and its demand graph contains 19 demands, three of them of size 100, the
others of size 6. For each line one has the choice between four different capacities:
the already existing (free) capacity, 63, 252, and 1008, whose costs depend on the
physical length of the cable. By varying the free capacity between 0 and 6, we obtained
different versions of the problem. The relative gaps between the best heuristic and
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Fig. 2. An optimal solution

and the best lower bound ranged between 0 and 5 percent (of the lower bound value).
The running times of the cutting plane stage are between 15 seconds and 2 minutes on
a Solbourne work station with a Sparc 10 processor using CPLEX as the LP solver.
The time for the heuristics was between one and five minutes.

When the free capacity was set to 6, the algorithm terminated with an optimal
solution, depicted in Fig. 2. There, the broken lines denote demands, with thick lines
for high demands, and the unbroken lines define the network. The ring of thick lines
is of capacity 252, except for four lines that have capacity 1008, the single thick line
on the upper right is of capacity 63, and all other lines only use the already existing
capacity of 6.

7. Conclusions and future work

We have studied an integer linear programming model for the multicommodity surviv-
able network design problem (MULTISUN): find a minimum cost capacitated network
that allows certain multicommodity flows under single edge and node failures. By ex-
ploiting connections to both knapsack-like problems and uncapacitated connectivity
design problems, we found several classes of valid inequalities (band-, partition and
lifted two-cover inequalities) for MULTISUN polytopes. Furthermore we discussed
facet conditions for these inequalities. We presented some preliminary computational
results with a cutting plane algorithm for solving MULTISUN problems, based on the
polyhedral results in this paper. Further tests will be reported in a forthcoming paper.

Another interesting area is to develop fast heuristics for the MULTISUN problem
accompanied with worst-case analysis. (For connectivity design problems, empirical
good heuristic methods have been found).

The models presented here can be extended or varied in various ways. For in-
stance, one may include flow (routing) costs in the objective function. Also, from
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an algorithmic point of view, it may be useful to exploit possible further structure
on the cost function in certain applications. We would also like to study additional
constraints on the routing, like regional constraints and diversification (saying that,
for each demand, only a certain fraction of the flow may go through each node or
edge, see [7]). These modifications are interesting from an applied point of view and
are worthwhile to be investigated theoretically.
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