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Summary. Many interesting and important constrained optimization problems in
mathematical programming can be translated into an equivalent linear projection equa-
tion

u = PΩ [u− (Mu + q)].

Here,PΩ(·) is the orthogonal projection on some convex setΩ (e.g.Ω = Rn+ ) andM
is a positive semidefinite matrix. This paper presents some new methods for solving
a class of linear projection equations. The search directions of these methods are
straighforward extensions of the directions in traditional methods for unconstrained
optimization. Based on the idea of a projection and contraction method [7] we get a
simple step length rule and are able to obtain global linear convergence.
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1. Introduction

We consider a class of linear projection equations (abbreviated to LPE)

(1) (LPE) u = PΩ [u− (Mu + q)],

whereM ∈ Rn×n is a positive semidefinite matrix (i.e.uTMu ≥ 0 ∀u, but M not
necessarily symmetric),q ∈ Rn, Ω ⊂ R

n is a closed convex set andPΩ(·) denotes
the projection on the setΩ. It is well known [2], that the linear projection equation
(1) is equivalent to the following linear variational inequality

(2) (LVI) u ∈ Ω, (v − u)T(Mu + q) ≥ 0 for all v ∈ Ω.
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Linear projection equations arise in numerous fields and play a significant role in
mathematical programming. The linear complementarity problem

(3) (LCP) u ≥ 0, (Mu + q) ≥ 0, uT(Mu + q) = 0

is equivalent to a special (LPE) withΩ = {u ∈ Rn | u ≥ 0} [15]. Various constrained
least squares problems [19] and convex quadratic programming problems can be
tranlated into a linear projection equation (1) in whichΩ is a general orthant [7].

The complementarity problem has been studied starting with the works of Cottle,
Dantzig [3], and Lemke [12,13] and has been developed by many others. There is
already a substantial number of algorithms for solving linear projection equations [1,
4-11, 15-19], especially for linear complementarity problems and linear constrained
least squares problems. Let

Ω∗ = {u∗ |u∗ is a solution of (LPE)}
be the solution set of (1) and

(4) e(u) := u− PΩ [u− (Mu + q)].

be the “error” by which a given pointu fails to satisfy (1). In the projection and
contraction method of [7, 8], the vector

(5) g(u) = MTe(u) + (Mu + q)

is used as the search direction. The recursion

(6) uk+1 = PΩ [uk − ρ(uk)g(uk)]

with

(7) ρ(u) =
‖e(u)‖2

‖(MT + I)e(u)‖2

produces a sequence{uk} ⊂ Ω, which satisfies

(8) ‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − ρ(uk)‖e(uk)‖2.

The main advantages of this method are its simplicity and ability to handle the linear
projection equation (1) while some other algorithms (e.g. [14]) can only solve special
cases of (1). Each iteration of this method consists essentially of only two matrix
vector products and two projections of a vector ontoΩ. Therefore the method allows
the optimal exploitation of the sparsity of the matrixM and may thus be efficient for
large sparse problems [10]. Since the method is easy to parallelise, it may be even
more favorable for parallel computation. However, for ill-conditioned problems, the
search direction (5) may lead to a very slow convergence.

Our objective in this paper is to find better search directions and thereby to
construct more efficient methods for solving problem (1). Throughout this paper we
assume thatΩ∗ /= ∅ and that the projection ontoΩ is simple to carry out (e.g. when
Ω is a general orthant, a box, a sphere, a cylinder or a subspace).

The paper is organized as follows. In Sect. 2 we illustrate our motivation. The
main theorem is proved in Sect. 3. In Sect. 4 some new methods are presented and
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their contractive properties are shown. In Sect. 5 we prove convergence. Finally, in
Sect. 6, we give some extensions and conclusions.

We use the following notation. Foru ∈ Rn, the componenti is denoted byui.
A superscript such as inuk refers to a specific vector and usually denotes iteration
index. The Eucliden norm and the max-norm will be denoted by‖ · ‖ and ‖ · ‖∞,
respectively. Throughout this paper,G denotes a positive definite matrix and‖u‖G
denotes (uTGu)

1
2 .

2. Motivation

In order to illustrate our motiviation, we let

f (u) =
1
2
uTMu + qTu

andM be symmetric positive definite, and consider the following unconstrained op-
timization problem

(9) min
u∈Rn

f (u).

Solving problem (9) is equivalent to finding a zero point of∇f (u). The search direc-
tion in classical methods for unconstrained optimization is

(10) d(u) = Q∇f (u)

with different matricesQ. If Q = I, we obtain the direction of the steepest descent
method. SettingQ = [∇2f (u)]−1 yields the direction of Newton’s method. When
Q = σI + (∇2f (u))−1 or Q = [σI +∇2f (u)]−1 for some nonegative value ofσ > 0,
the search direction can be regarded as some combination of steepest descent (σ very
large) and Newton’s method (σ = 0).

For the convex constrained optimization problem

(11) min{f (u) | u ∈ Ω},
the Kuhn-Tucker theorem tells us thatu∗ is a minimum ifu∗ ∈ Ω and it satisfies

(u− u∗)T∇f (u∗) ≥ 0 for all u ∈ Ω.

This means thatu∗ is a zero point of the functione(u). Note that in the case of
Ω = Rn, e(u) = ∇f (u). Since most search directions in unconstrained optimization
are constructed from∇f (u), a natural question is whether we can build useful search
directions for the constrained optimization problem (11) based one(u). Further, for
problem (1), if we take

(12) d(u) = Qe(u)

as the search direction, which step length should be taken?
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3. The main theorem

The following theorem plays an important role in our new methods.

Theorem 1. Let u∗ ∈ Ω∗. Then

(13) (u− u∗)T(I +MT)e(u) ≥ ‖e(u)‖2 + (u− u∗)TM (u− u∗) ∀u ∈ Rn.

Proof. SinceΩ ⊂ Rn is a closed convex set andu∗ ∈ Ω, we know by the properties
of a projection on a closed convex set [14, Appendix B] that

{v − PΩ(v)}T{PΩ(v) − u∗} ≥ 0 ∀v ∈ Rn.
By settingv := u− (Mu + q) we obtain

(14) {e(u) − (Mu + q)}T{PΩ [u− (Mu + q)] − u∗} ≥ 0.

SincePΩ(·) ∈ Ω, it follows from (2) that

(15) (Mu∗ + q)T{PΩ [u− (Mu + q)] − u∗} ≥ 0.

Adding (14) and (15) we get

(16) {e(u) −M (u− u∗)}T{u− u∗ − e(u)} ≥ 0

and it follows that

(u−u∗)T(I +MT)e(u)

≥ ‖e(u)‖2 + (u− u∗)TM (u− u∗).

A similar but weaker result of Theorem 1 was given in [9]. The above proof is an
improved version of the one in [9]. We point out that inequality (16) is sharp. This can
easily be seen by settingM = I. We then obtain{e(u)−(u−u∗)}T{u−u∗−e(u)} = 0.
This implies that also the result of Theorem 1 is tight.

Remark. The methods in [7] and [8] takeg(u) as the search direction. It was shown
that

(u− u∗)Tg(u) ≥ e(u)T(Mu + q).

But only under the assumption thatu ∈ Ω can we prove

e(u)T(Mu + q) ≥ ‖e(u)‖2.

Therefore,−g(u) is a descent direction ofF (u) = 1
2‖u − u∗‖2 at u ∈ Ω. However,

here the assertion (13) in Theorem 1 is true for allu ∈ R
n. Although, as in [9],

−(I +MT)e(u) can be taken as a descent direction ofF (u) for all u ∈ Rn, Theorem
1 offers us the possibility to construct better search directions.

4. The methods and their contractive properties

In this section, based on Theorem 1, we give some new methods for solving linear
projection equations and show their contractive properties. The iterative scheme of
these methods is
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(17) uk+1 = uk − ρ(uk)Qe(uk)

with different matricesQ and steplengthsρ(u).

Method 1. (for symmetricM ≥ 0)

Q = I, ρ(u) =
‖e(u)‖2

e(u)T(I +M )e(u)
.

Method 2. (for symmetricM > 0)

Q = M−1 , ρ(u) =
‖e(u)‖2

e(u)T(I +M−1)e(u)
.

Method 3. (for symmetricM > 0)

Q = I +M−1 , ρ(uk) =
‖e(u)‖2

‖(I +M−1)e(u)‖2
M

.

Method 4. (for M ≥ 0 but not necessarily symmetric)

Q = (I +M )−1 , ρ(u) = 1.

The first method can be viewed as an extention of the steepest descent method
for unconstrained optimization, because we takee(u) as the search direction ande(u)
is the residue of the projection equation. Obviously, each iteration of this method
consists essentially of only a projection toΩ and the computation ofMu andMe(u).

The second method can be viewed as an extention of Newton’s method for un-
constrained optimization. As in Method 1, each iteration of this method consists
essentially of only a projection toΩ and the computation ofMu andM−1e(u).

Method 3 can be regarded as a combination of steepest descent and Newton’s
method for unconstrained optimization. Method 4 can be viewed as an extention of
the Levenberg-Marquardt method for unconstrained optimization.

Theorem 2. The sequence{uk} generated by each method of methods 1–4 for (LPE)
satisfies

(18)
‖uk+1 − u∗‖2

G ≤ ‖uk − u∗‖2
G − ρ(uk)‖e(uk)‖2

− 2ρ(uk) · (uk − u∗)M (uk − u∗) ∀u∗ ∈ Ω∗

where

G =


I +M in Method 1
(I +M )M in Method 2
M in Method 3
(I +MT)(I +M ) in Method 4

Proof. First,

‖uk+1 − u∗‖2
G = ‖(uk − u∗) − ρ(uk)Qe(uk)‖2

G

= ‖uk − u∗‖2
G − 2ρ(uk)(uk − u∗)GQe(uk)

+ ρ2(uk)e(uk)TQTGQe(uk).
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Note that in all cases

GQ = I +MT

and

ρ(u) · e(u)TQTGQe(u) = ‖e(u)‖2.

Using (13) the theorem is proved.

The sequence{uk} generated by these methods does not necessarily lie inΩ. In
general, (becauseG /= I and the projection is an orthogonal projection with respect
to the Euclidean norm), we can not prove that{uk} satisfies‖PΩ [uk+1] − u∗‖G ≤
‖uk − u∗‖G even if uk ∈ Ω. Note that in all of these methods, the steplengthρ is
bounded below. Therefore, there is ac > 0, so that the sequence{uk} generated by
each of these methods satisfies

(19) ‖uk+1 − u∗‖2
G ≤ ‖uk − u∗‖2

G − c‖e(uk)‖2 ∀u∗ ∈ Ω∗.

Due to (19) and the fact that each iteration performs a projection ontoΩ (in the
computation ofe(u)), we call these methods the projection and contraction methods
(PC methods).

5. Convergence

The PC methods in this paper generate an infinite sequence{uk}, which is not neces-
sarily contained in the feasible setΩ, but, will be asymptotically feasible ase(uk) → 0,
and, in fact converges to a solution of (LPE).

Theorem 3. If the sequence{uk} satisfies (19), then it converges to a solution point
u∗.

Proof. See [9], Theorem 3.

In [9] we have also proved that an inequality of the form (19) implies the global
linear convergence in the case thatΩ is an orthant.

Theorem 4. If the sequence{uk} satisfies (19) andΩ = {u |u ≥ 0}, then{uk}
converges to a solution pointu∗ ∈ Ω∗ globally linearly.

Proof. See [9], Theorem 4.

The iterative scheme of the fundamental projection method (see [2])

(20) uk+1 = PΩ [uk − (Muk + q)],

belongs to the class of steepest descent methods. In the case thatM is positive
semidefinite, we denote the largest and the smallest eigenvalue of the matrixM by
λmax(M ) andλmin(M ), respectively. If 0< δ ≤ λmin(M ) ≤ λmax(M ) ≤ 2− δ, then
the sequence{uk} generated by the fundemental projection method (20) satisfies
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(21)

‖e(uk+1)‖ = ‖uk+1 − PΩ [uk+1 − (Muk+1 + q)]‖
= ‖PΩ [uk − (Muk + q)] − PΩ [uk+1 − (Muk+1 + q)]‖
≤ ‖(I −M )(uk − uk+1)‖
= ‖(I −M )e(uk)‖
≤ (1− δ)‖e(uk)‖

and

(22)

‖uk+1 − u∗‖ = ‖PΩ [uk − (Muk + q)] − u∗‖
= ‖PΩ [uk − (Muk + q)] − PΩ [u∗ − (Mu∗ + q)]‖
≤ ‖(I −M )(uk − u∗)‖
≤ (1− δ)‖uk − u∗‖.

In the following we prove that the PC methods in this paper have similar proper-
ties. Under the assumptions thatM is positive definite and‖M‖ ≤ 2, the seqeunce
{‖e(uk)‖} generated by Method 1 or Method 4 is monotonically decreasing. More
precisely, we have the following theorem:

Theorem 5. LetM be positive semidefinite and symmetric. Ifλmax(M ) ≤ 2, then the
sequence{e(uk)} generated by Method 1 or Method 4 for (LPE) satisfies

(23) ‖e(uk+1)‖ ≤ ‖e(uk)‖.
Moreover, ifδ ≤ λmin(M ) ≤ λmax(M ) ≤ 2− δ for someδ > 0, then the sequence
{e(uk)} satisfies

(24) ‖e(uk+1)‖ ≤ (1− δ

3
)‖e(uk)‖.

Proof. First, in Method 1, under the assumptions we have1
3 ≤ ρ(uk) ≤ 1. By using

uk+1 = uk − ρ(uk)e(uk),

we get

‖e(uk+1)‖ = ‖uk − ρ(uk)e(uk) − PΩ [uk+1 − (Muk+1 + q)]‖
= ‖(1− ρ(uk))e(uk) + uk − e(uk) − PΩ [uk+1 − (Muk+1 + q)]‖
≤ ‖(1− ρ(uk))e(uk)‖ + ‖PΩ [uk − (Muk + q)] − PΩ [uk+1 − (Muk+1 + q)]‖
≤ (1− ρ(uk))‖e(uk)‖ + ‖(I −M )(uk − uk+1)‖
≤ (1− ρ(uk))‖e(uk)‖ + ρ(uk)‖(I −M )‖ · ‖e(uk)‖.

Since 0≤ λmin(M ) ≤ λmax(M ) ≤ 2, it follows that‖I −M‖ ≤ 1 and‖e(uk+1)‖ ≤
‖e(uk)‖. Moreover, ifδ ≤ λmin(M ) ≤ λmax(M ) ≤ 2− δ, then‖I −M‖ ≤ 1− δ, and
it follows that

‖e(uk+1)‖ ≤ (1− ρ(uk))‖e(uk)‖ + (1− δ)ρ(uk)‖e(uk)‖ ≤ (1− δ

3
)‖e(uk)‖.

In Method 4, usinguk+1 = uk − (I +M )−1e(uk) we get
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‖e(uk+1)‖ = ‖uk − (I +M )−1e(uk) − PΩ [uk+1 − (Muk+1 + q)]‖
= ‖e(uk) − (I +M )−1e(uk) + uk − e(uk) − PΩ [uk+1 − (Muk+1 + q)]‖
≤ ‖(I +M )−1Me(uk)‖ + ‖PΩ [uk − (Muk + q)] − PΩ [uk+1 − (Muk+1 + q)]‖
≤ ‖(I +M )−1Me(uk)‖ + ‖(I −M )(uk − uk+1)‖
= ‖(I +M )−1Me(uk)‖ + ‖(I −M )(I +M )−1e(uk)‖.

Let M = UTΣU be the Schur normal form ofM with Σ = diag(σ1, . . . , σn). Then

‖e(uk+1)‖ ≤ ‖(I +M )−1Me(uk)‖ + ‖(I −M )(I +M )−1e(uk)‖
= ‖(I +Σ)−1ΣUe(uk)‖ + ‖(I −Σ)(I +Σ)−1Ue(uk)‖.

Since 0≤ σi ≤ 2, it follows that

σi
1 +σi

+
|1− σi|
1 +σi

≤ 1

and
‖e(uk+1)‖ ≤ ‖(I +Σ)−1ΣUe(uk)‖ + ‖(I −Σ)(I +Σ)−1Ue(uk)‖

≤ ‖Ue(uk)‖ = ‖e(uk)‖.
Moreover, if δ ≤ σi ≤ 2− δ, it is straightforward to prove that

σi
1 +σi

+
|1− σi|
1 +σi

≤ 1− δ

3

and it follows that

‖e(uk+1)‖ ≤ (1− δ

3
)‖e(uk)‖.

The following theorem contrasts the convergence proofs for the fundamental pro-
jection methods, in that no advance knowledge of the largest and smallest eigenvalue
of M is required.

Theorem 6. LetM be positive definite, then all four PC methods are globally linearly
convergent.

Proof. From (18) (Theorem 2) we have

‖uk+1 − u∗‖2
G ≤ ‖uk − u∗‖2

G − 2c(uk − u∗)TM (uk − u∗).

SinceM is positive definite, there exists aτ > 0, such that

(u− u∗)TM (u− u∗) ≥ τ‖u− u∗‖2
G.

It follows that
‖uk+1 − u∗‖2

G ≤ (1− 2cτ )‖uk − u∗‖2
G,

which implies that{uk} converges tou∗ globally and linearly.

6. Extensions and conclusions

Let α > 0 be a constant. It is easy to see that problem (1) is equivalent to the
following problem
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(25) (LPEα) u = PΩ [u− α(Mu + q)].

Therefore, instead of takingM andq, we can useαM andαq in our PC methods.
In addition, for some parameterγ, 0 < γ < 2, with the same directiond(u) and

its relevant steplengthρ(u), the iterative scheme

(26) uk+1 = uk − γρ(uk)d(uk)

produces a sequence{uk}, which satisfies

(27) ‖uk+1 − u∗‖2
G ≤ ‖uk − u∗‖2

G − γ(2− γ)ρ(uk)‖e(uk)‖2

and thus also converges to a solution pointu∗. A close look at the inequalities used
in the proof of Theorem 1 shows that the best choice ofγ should be≥ 1.

The search directions of the presented methods are the extensions of those in
unconstrained optimization. IfΩ = Rn, then the search direction in [7] is

g(u) = (MT + I)(Mu + q).

In this special case, the search directions in our new methods are

d1(u) = (Mu + q), (in Method 1)

d2(u) = M−1(Mu + q), (in Method 2)

d3(u) = (I +M−1)(Mu + q), (in Method 3)

d4(u) = (I +M )−1(Mu + q), (in Method 4)

respectively. Although we have only proved linear convergence, by comparing anal-
ogous direction for unconstrained optimization we are convinced that the directions
d(u) developed in this paper are better than the directiong(u) in the original PC meth-
ods [7,8]. We believe that the use of Newton-like directions will lead to a substantial
improvement in computational efficiency.

Developing these methods for nonlinear problems is a topic of further research .
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