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Summary. In this paper we study the numerical behaviour of elliptic problems in
which a small parameter is involved and an example concerning the computation of
elastic arches is analyzed using this mathematical framework. At first, the statements
of the problem and its Galerkin approximations are defined and an asymptotic analysis
is performed. Then we give general conditions ensuring that a numerical scheme will
converge uniformly with respect to the small parameter. Finally we study an example
in computation of arches working in linear elasticity conditions. We build one finite
element scheme giving a locking behaviour, and another one which does not.
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1. Introduction

The locking phenomenon is well known in the world of engineering. It generally
consists in a loss of meaning of numerical results when the computations are made
for some values of the parameters, while the results of the computations remain valid
for a wide range of other values (we are refering to themeaning of the numerical
resultswith regard to a supposed suitable model representing a physically unknown
quantity).

This phenomenon appears in elastic structures such as plates and shells where
the parameter is the thickness of the structure and the unknown is its displacement.
It happens that common numerical schemes modeling the elastic behavior of the
structure give wrong displacements if the thickness is too small.

For example, when we consider the so called Mindlin-Reissner model for mod-
erately thin plates which is often used by engineers, it is well known that many
numerical schemes for this model are satisfactory only when the thickness parameter
ε is not too small. But, for a very smallε, some bad behavior (such as the ”locking”
phenomenon) can occur. The problem is to present methods which are uniformly
good asε approaches zero and to show how error estimates remain independent of
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ε. This problem is solved in the following papers: a thorough analysis is provided
by Arnold in [2] for the one -dimensional case (Timoshenko model) and in [3] for
the two -dimensional case; Brezzi and Fortin [8] give a mixed formulation of the
Mindlin-Reissner plate model and derive uniform error estimates from a F. E. M.

The locking effects may appear in the finite element approximation of elasticity
problems when the Poisson ratioν is close to 0.5 : it is well-known that the perfor-
mance of certain commonly used finite elements deteriorates asν goes to 0.5 (see
[5]).

The locking phenomenon also might occur in three-dimensional elasticity when we
compute the displacement of a thick plate (thickness parameterε). As a matter of fact,
M. Vidrascu [20] uses prismatic finite elements Q2 of heightε and obtains, for small
values ofε, a very poor behaviour of the displacement compared to the associated
two-dimensional thin plate displacement given by the asymptotic theory developped
by Ciarlet [11] (Kirchhoff Love model). An analysis of this locking phenomenon is
carried out in [15] for the Galerkin method.

J.-L. Akian and E. Sanchez-Palencia give in [1] a phenomenon of membrane
locking in the approximation of thin elastic shells by flat elements. In this work the
mean surfaceof the shell (with kinematic boundary conditions) admits inextensional
displacements and is approximated by a polyhedral surface where the edges enjoy
stiffness properties causing a phenomenon of membrane locking.

Another example concerns arches studied under the Kichhoff-Love model. It is
standard to compute the displacement field using an approximation of the arch by
straight beam elements of small length. For a fixed thickness, the convergence of
this scheme is studied in [6] :if h denotes the length of a beam, the displacement
converges inO(h) but when the thickness is very small, the numerical results are
wrong. This phenomenon has been specialy studied in [13] :examples are given where
the numerical results deteriorate when the mesh size is fixed and the thickness becomes
small and it is proved thatif h is taken in the order of the square of the thickness,
the convergence is insured. But this is numerically prohibitive. For this arch problem,
F. Kikuchi [14] gives an answer, exhibiting a uniformly converging scheme. The
question of finding the best possible behaviour with respect to the thickness for a
scheme which has a chosen order with respect to the mesh size becomes essential
and is studied in [9].

At last, in a recent paper, Ivo Babuška and Manil Suri [4] develop precise mathe-
matical definitions for locking and robustness, give their quantitative characterization,
and prove some general theorems. Moreover a model problem involving heat transfer
is analyzed using this mathematical framework, and various related computational
results are described.

Let us briefly outline the content of this paper.
In Sect. 2 we give the statements of the class of considered problems and we

perform an asymptotic analysis. In Sect. 3 we define a family of Galerkin approxima-
tions in which there might happen a loss of convergence when the small parameter
reaches zero. In Sect. 4 we give general conditions ensuring that a numerical scheme
will converge uniformly with respect to the small parameter without needing the use
of a mixed formulation.

In Sect. 5 we study the example of the computation of arches working in linear
elasticity conditions, under the Kirchhoff-Love model. The uniform error estimates
was already considered by Kikuchi [14] using direct computations. Our present anal-
ysis is quite different because we apply the result of the previous sections and we
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give some sufficient conditions to get uniform convergence. We build one finite el-
ement scheme giving a locking behaviour (Subsect. 5.2), and one which does not
(Subsect. 5.3). Both do not need the use of mixed formulations.

2. The continuous problem. General setting and limit whenε goes to zero

Let V be a real Hilbert space where the inner product is denoted< u, v > and the
associated norm||u||. We are given two bilinear continuous symmetric forms defined
on V , say:

a0 : V × V → R, a1 : V × V → R.

Let ε ∈]0, 1] be a small real parameter. We defineaε : V × V → R by:

aε(u, v) =
1
ε
a0(u, v) + a1(u, v).

The fundamental hypothesisin this paper are the following:

(H1) For eachε ∈]0, 1], aε(u, v) is coercive:

∀ ε ∈ ]0, 1], ∃ α(ε) > 0 such that ∀v ∈ V, aε(v, v) ≥ α(ε) ||v||2.
(H2) The bilinear forma0 is positive and its kernel:

G = {w ∈ V ; a0(w, v) = 0, ∀v ∈ V }
is not reduced to the origin.

We remark that the kernelG is also equal to the set{w ∈ V ; a0(w,w) = 0} since we
have the inequality|a0(w, v)|2 ≤ a0(v, v) a0(w,w) which holds for anyv ∈ V and
anyw ∈ G.

Under these hypotheses it is clear that:

– all the formsaε, for ε ∈]0, 1] are uniformlyα - coercive where we denoteα for
α(1):

∀ ε ∈ ]0, 1], ∀ v ∈ V, aε(v, v) ≥ a1(v, v) ≥ α||v||2,
– the bilinear forma1 is G - elliptic since we have:

∀ w ∈ G, a1(w,w) = a1(w,w) ≥ α||w||2.
Let l : V → R be a given linear form defined onV . From the Lax-Milgram theorem,
for eachε ∈]0, 1], the equation:

uε ∈ V, aε(uε, v) = l(v), ∀v ∈ V,(1)

has one and only one solution as well as the equation:

u0 ∈ G, a1(u0, w) = l(w), ∀w ∈ G.(2)

We are interested in the limit ofuε whenε goes to zero. We have the following result:

Theorem 1. Whenε → 0, the solutionuε of the Eq. (1) strongly converges inV to
the unique solution of the Eq. (2). The limitu0 is equal to 0 if and only ifl ∈ G⊥.
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Proof. It is classical. It is very similar, for instance to the proof of Theorem 3.3.1 in
[11]. It is done in several steps:

1. A priori estimate and weak limit:from the inequalities

∀ε ∈]0, 1], α||uε||2 ≤ aε(uε, uε) ≤ ||l||V ′ ||uε||
we deduce that the family (uε)ε>0 is bounded. There exists a subsequence that we
still denote by (uε)ε>0 which converges weakly in the spaceV . We denote byw0 its
limit. We will prove that it is the strong limit ofuε whenε→ 0.

2. Properties ofw0: we first multiply the Eq. (1) byε. Using the bounded linear
operatorsA0 andA1 defined onV by:

< A0.u, v >= a0(u, v), < A1.u, v >= a1(u, v),

we get:

< uε, A0.v > +ε < uε, A1.v >= ε l(v), ∀v ∈ V.
Passing to the limit whenε→ 0, we get:

< w0, A0.v >= a0(w0, v) = 0, ∀v ∈ V,
which says thatw0 is in the kernelG of A0. Now, in Eq. (1), we choosew ∈ G as
test functions. We get:

uε ∈ V, a1(uε, w) = l(w), ∀w ∈ G,
and passing to the limit as previously:

w0 ∈ G a1(w0, w) = l(w), ∀w ∈ G,
which is Eq. (2). Since this equation has one and only one solution we havew0 = u0.
Moreover,u0 = 0 if and only if l(w) is equal to zero for allw ∈ G. This means that
l ∈ G⊥.

3. Strong convergence:Considering the previous subsequence (uε)ε>0 which con-
verges weakly tou0 we have:

α||uε − u0||2 ≤ aε(uε − u0, uε − u0) = aε(uε, uε)− 2aε(uε, u0) + aε(u0, u0).

As we have :

aε(u0, u0) = a1(u0, u0) = l(u0) aε(uε, u0) = l(u0),

passing to the limit, we obtain:

lim
ε→0

aε(uε, uε) = lim
ε→0

l(uε) = l(u0),

so:
lim
ε→0

||uε − u0||2 = 0.

Hence the subsequence (uε)ε>0 converges strongly tou0. Then, as any cluster point
of the family uε has to satisfy Eq. (2) which hasu0 as a unique solution, the whole
family converges tou0 in V . This ends the proof of the Theorem 1.ut

Remark 1.We also have1
εa0(uε, uε) → 0 because1

εa0(uε, uε) = l(uε) − a1(uε, uε)
which tends to 0 withε.



On the locking phenomenon for a class of elliptic problems 431

3. A family of discrete problems

We are now interested in the following problem: we want to find a way to compute
an approximate solution of Eq. (1). As explained in the introduction, one of our aims
is to prove that there exists aGalerkin methodsuch thatuε be approximated byuεh
with:

||uεh − uε|| → 0 whenh→ 0, uniformly in ε ∈]0, 1].

So, let (Vh)h>0 be a family of finite dimensional subspaces ofV . For everyε ∈]0, 1]
we use the Galerkin method for the Eq. (1). For a fixedε, we have to solve the
following equations:

∀h > 0, uεh ∈ Vh, aε(uεh, vh) = l(vh), ∀vh ∈ Vh.(3)

Obviously each one has a unique solution. LetGh := G ∩ Vh. We have:

Gh = {wh ∈ Vh; a0(wh, vh) = 0, ∀vh ∈ Vh} = {wh ∈ Vh; a0(wh, wh) = 0}.

We also consider the Galerkin method for the Eq. (2), which requires to solve :

∀h > 0, u0
h ∈ Gh, a1(u0

h, vh) = l(vh), ∀vh ∈ Gh.(4)

Each of these equations has one and only one solution. We study first the two following
limits:

lim
ε→0

uεh for a fixedh,

lim
h→0

uεh for a fixedε.

We have:

Theorem 2. For a givenh > 0, whenε → 0, the solutionuεh of (3) converges inVh
to the unique solutionu0

h of Eq. (4).

Proof. This is exactly the same proof as Theorem 1. It is just a little simplified because
weak and strong convergence are the same in finite dimensional spaces.ut

Now, in order to pass to the limit whenh goes to zero we recall thata family of
finite dimensional subspaces(Xh)h>0 of a Hilbert spaceX is said to approachX if
and only if:

∀u ∈ X, lim
h→0

inf
vh∈Xh

||u− vh|| = 0.

The following result is classical [10]:

Proposition 1. i. If the family (Vh)h>0 approachesV , then for any givenε > 0, the
solutionuεh of the Eq. (3) converges to the solutionuε of (1) whenh→ 0,

ii. If the family(Gh)h>0 approachesG, then the solutionu0
h of the Eq. (4) converges

to the solutionu0 of (2) whenh→ 0.
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4. Uniform convergence whenh goes to zero

The aim of this section is the proof of the following result:if the family (Vh)h>0
approachesV and the associated family(Gh)h>0 approachesG, thenuεh converges
to uε whenh goes to zero, uniformly inε ∈ [0, 1].

This will be proved in several steps. In particular, we separate the study of a
neigbourhood ofε = O, and the study on intervals of the form [ε0, 1] with ε0 > 0.

Proposition 2. If (Vh)h>0 approachesV , then:

∀ε0 > 0, lim
h→0

sup
ε0≤ε≤1

||uεh − uε|| = 0.

Proof. Let C0([ε0, 1]) be the space of continuous real valued functions defined on
[ε0, 1], equipped with the norm of the uniform convergence. We have to prove that
for any sequence (hn) converging to zero:

φn(ε) → 0 in C0([ε0, 1]), whereφn(ε) = ||uε − uεhn ||.
Considering that this sequence converges ponctually to 0 whenn→∞ (see Proposi-
tion 1), in order to get a uniform convergence, it is sufficient to show that this family
is equicontinuous (Ascoli Theorem). This can be done for instance showing that the
mappingε 7→ uε − uεh is differentiable and that its differential is uniformly bounded
in ε andh.

Let Aε = 1
εA0 +A1 (see the proof of Theorem 1) andAε

h = 1
εA0,h +A1,h be the

bounded linear operators respectively defined by :

< Aε.u, v >= aε(u, v), ∀u, v ∈ V < Aε
h.uh, vh >= aε(uh, vh), ∀uh, vh ∈ Vh,

andL ∈ V , Lh ∈ Vh be defined by:

< L, v >= l(v), ∀v ∈ V, < Lh, vh >= l(vh), ∀ vh ∈ Vh.
Considering the Eqs. (1) and (3), we can see thatAε uε = L andAε

h u
ε
h = Lh. Clearly,

the mappingsε 7→ Aε andε 7→ Aε
h are indefinitely differentiable on the interval [ε0, 1]

with values in the Banach space of bounded linear operators respectively onV and
Vh. So by the implicit functions theorem,ε 7→ uε and ε 7→ uεh are also indefinitely
differentiable on the interval [ε0, 1] with values respectively inV and Vh, and we
have :

aε(
duε

dε
, v) =

1
ε2
a0(uε, v), ∀v ∈ V, aε(

duεh
dε

, vh) =
1
ε2
a0(uεh, vh), ∀vh ∈ Vh.

Choosingv = duε

dε andvh = duεh
dε , we get:

α||du
ε

dε
|| ≤ 1

ε2
||a0|| ||uε|| ≤ 1

ε2
0

||a0|| ||f ||V
′

α

α||du
ε
h

dε
|| ≤ 1

ε2
||a0|| ||uεh|| ≤

1
ε2

0

||a0|| ||f ||V
′

α
.

Thus,||duεdε || and||duεhdε || are bounded, uniformly inh andε ∈ [ε0, 1].The familyφn(ε)
is then equicontinuous, therefore it converges uniformly to zero on the compact set
[ε0, 1]. ut
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Let us now study the neighbourhood ofε = 0. This is where the fundamental
hypothesis requiring that (Gh)h>0 approachesG interferes. We have :

Proposition 3. If (Gh)h>0 approachesG, then:
for all η > 0 there existε0 = ε0(η) > 0 andh0 = h0(η) > 0 such that:

∀h ∈]0, h0[, ∀ε ∈]0, ε0[, ||uε − uεh|| < η.

Proof. we know thatuεh is the orthogonal projection ofuε onVh for the inner product
associated to the bilinear formaε. Therefore :

aε(uε − uεh, u
ε − uεh) = inf

vh∈Vh
aε(uε − vh, u

ε − vh).

Using the uniform coerciveness ofaε and choosingvh = wh ∈ Gh, we get:

α ||uε − uεh||2 ≤
1
ε
a0(uε, uε) + a1(uε − wh, u

ε − wh), ∀wh ∈ Gh.

Let us estimate the first term. As we have seen in the Remark 1, we know that
1
ε a0(uε, uε) tends to 0 withε. So:

∀η > 0, ∃ε1(η) > 0 such that 0< ε < ε1(η) ⇒ 1
ε
a0(uε, uε) <

η

2
.

Let us now consider the second term. As the bilinear forma1 is continuous, there
exists a constantC which does not depend onε, h andwh ∈ Gh such that

∀wh ∈ Gh, a1(uε−wh, uε−wh) ≤ C||uε−wh||2 ≤ C(||uε−u0||+||u0−wh||)2.

Moreover, we have the following estimates:

– asuε → u0 whenε→ 0:

∀η > 0 ∃ε2(η) > 0 such that 0< ε < ε2(η) ⇒ ||uε − u0|| <
√

η

8C

– asGh approachesG:

∀η > 0 ∃h0(η) > 0 s.t.

0< h < h0 ⇒
{
∃ wh ∈ Gh such that||u0 − wh|| <

√
η

8C

}
.

Putting these two conditions together, we get the result withε0 = min{ε1, ε2} . ut
Now, with Propositions 3 and 2, it is staightforward to get:

Theorem 3. If (Vh)h>0 approachesV and (Gh)h>0 approachesG, then:

lim
h→0

sup
0<ε<1

||uεh − uε|| = 0.
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5. Example, the arch problem

In this paragraph, we show that an arch working in linear elasticity conditions is an
example of the general framework studied in this paper. The small parameter is the
thickness of the arch. It is well-known that classical numerical methods often give a
locking behaviour when the thickness is too small (see [14], [17], [2], [12], [13]).

In this section, we are going to show a standard finite element procedure, and see
that it is likely to lock for a small thickness. Then, we will modify it to get another
procedure which converges uniformly when the thickness is small.

In the first subsection, we give the description of the continuous model, and show
that it is an example of the general framework described in the previous sections.
Then, both finite element procedures will be described.

5.1. The continuous problem

An arch is a solid three dimensional body, built around a midcurve. It is supposed
to be invariant in one direction, and it has a thickness

√
ε, which is supposed to be

small compared to its other dimensions. The midcurve is generated by a plane curve
that we parametrize with the curvilinear abscissas. As in classical litterature, we
suppose that it is aC3 curve. The arch is submitted to a loading that we also suppose
invariant in one direction. So, this becomes a plane problem. Moreover, considering
the small thickness, it is standard to reduce the linear elasticity equations to a system
of differential equations written on the midcurve. The problem is finally reduced to a
one dimensional variational equation. Several models can be considered, coresponding
to different types of loadings, for a given geometry. We consider here the standard
Kirchhoff-Love model, in which normal and shear stresses are neglected.

When it is loaded, a displacement fieldu(s) appears on the arch. In the Kirchhoff-
Love model, it is decomposed on the local basis (t(s), n(s)) made of the tangent and
normal unit vectors at the point of local coordinates. So the unknowns are two scalar
functionsu1(s), u2(s) such that:

u(s) = u1(s)t(s) + u2(s)n(s).

We suppose that the arch length is 1. We also suppose that it is clamped at its ends.
The notations are the following:

– V = H1
0(]0, 1[)×H2

0(]0, 1[) where the Sobolev spaces are defined as follows:

H1
0(]0, 1[) = {v ∈ L2(]0, 1[); v′ ∈ L2(]0, 1[) andv(0) = v(1) = 0},

H2
0(]0, 1[) = {v ∈ L2(]0, 1[); v′, v′′ ∈ L2(]0, 1[)

andv(0) = v(1) = v′(0) = v′(1) = 0}
(by v’ and v” we mean the first and second derivatives of v in the sense of
distributionssee[7]) .

– For v = (v1, v2) ∈ V we denote:

γ(v) = v′1 + cv2 and ρ(v) = (cv1 − v′2)′

wherec ∈ C1([0, 1]) is the curvature of the midcurve.
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– We define the bilinear form:

∀u, v ∈ V, aε(u, v) =
C

ε
a0(u, v) +D a1(u, v)

with:

a0(u, v) =
∫ 1

0
γ(u)γ(v) ds, a1(u, v) =

∫ 1

0
ρ(u)ρ(v) ds.

C andD are mechanical constants that we will suppose to be equal to 1 in the
sequel.

Let fε be a given loading to which the arch is submitted. It has to belong toV ′. The
displacement field which appears in the arch is the solution of the following problem:

uε ∈ V, ε3/2 aε(uε, v) = fε(v), ∀v ∈ V.
It is known (see [10]) that this equation has one and only one solution. Actuallyaε

is coercive, uniformly inε ∈]0, 1], and it satisfies the hypothesis (H1,H2) required
in the general setting (Sect. 2) of this article. Let us make some comments about the
loadingfε. Usually it is of the form:

fε = f0 +
√
εf1.

The termf0 comes from surface loadings, like a pressure produced by wind, the other
term comes from volume loadings, like the self-weight of the arch. Anyway, as the
equation is linear, these two types of loadings can be studied separately. Moreover,
still using arguments of linearity, the study of the equation:

uε ∈ V, aε(uε, v) = l(v), ∀v ∈ V,
where l does not depend onε is sufficient to get a full information for realistic
loadings, because the real displacement fielduε in the arch can be deduced fromuε

multiplying this one by a proper power ofε. Now the last thing we have to look at,
in order to show that we are in the general setting of this paper, is the kernel of the
bilinear forma0(u, v). As before, we denote it byG = {w ∈ V ; a0(w, v) = 0, ∀v ∈
V }. We have :

Proposition 4. Assume that the curvaturec is not identical to0. We have:

G = {w = (w1, w2); w2 ∈ H2
0(]0, 1[),

∫ 1

0
(cw2)(s) ds = 0, w1(s) = −

∫ s

0
(cw2)(t) dt},

and this space is isomorphic to a closed hyperplan ofH2
0(]0, 1[).

Proof. A function w is in G if and only if γ(w) = 0. As γ(w) = w′1 + cw2, we have:

w ∈ G⇐⇒ {w1 ∈ H1
0(]0, 1[), w2 ∈ H2

0(]0, 1[), w′1 = −cw2}.
But, asc ∈ L∞, if w2 is in H2 andw′1 = −cw2, w1 will be in H1. So, ifw1 has been
defined by:

w1(s) = −
∫ s

0
(cw2)(t) dt
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the pair (w1, w2) will belong toG if and only if:

w1(1) =−
∫ 1

0
(cw2)(t) dt = 0.

This achieves the description ofG.
Moreover, the mappingw2 7→ ( − ∫ s0 (cw2)(t)dt, w2(s) ) is clearly linear con-

tinuous from the space{w2 ∈ H2
0(]0, 1[);

∫ 1
0 (cw2)(t) dt = 0} into the spaceG. This

achieves the proof of the proposition.ut
Remark 2.If the curvaturec of the arch is identical to 0 (which means that the arch
is a beam),

G = {0} ×H2
0(]0, 1[).

5.2. A locking discrete model

Let us first discretize the interval [0, 1]. We choose an integerN > 0, defineh = 1/N ,
and:

x0 = 0, xi = ih, i = 1, ..., N, xN+1 = 1.

We denote byPk the space ofpiecewise polynomialsdefined on this discretization,
of degree not greater thank.

We define the spaceVh = Vh1 × Vh2 by:

Vh1 = P1 ∩H1
0(]0, 1[), Vh2 = P3 ∩H2

0(]0, 1[).

It is wellknown (see [10]) that (Vh)h>0 approaches V. So we get:

∀ε > 0, uεh → uε, whenh→ 0.

Let us now look at the spacesG and (Gh)h>0. If the curvature is identical to 0,
which means that the arch is a beam, then:

G = {0} ×H2
0 Gh = {0} × Vh2

so that (Gh)h>0 approachesG, and the convergence is uniform for small thicknesses.
Actually, in this very particular case, the componentsuε1 anduε2 are decoupled, which
gives very special properties.

On the other hand, let us consider an arch which does have curvature. We have
seen in proposition 4 thatG is isomorphic to a closed hyperplan ofH2

0. Moreover:

Gh = {wh ∈ Vh; γ(wh) = 0}, with γ(wh) = w′h1 + cwh2.

As wh1 is piecewiseP1, its first derivative is piecewise constant, and ifwh belongs
to Gh, thencwh2 is piecewise constant. Moreover, asc is continuous, we also have:

cwh2 ∈ C0([0, 1]), cwh2(0) = cwh2(1) = 0

and if c is nonzero except at isolated points:

wh2 = 0.

Then, still using the relationw′h1 + cwh2 = 0, we deduce that:
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w′h1 = 0, wh1 ∈ C0([0, 1]), wh1(0) =wh1(1) = 0.

Therefore we have:
wh1 = 0,

and consequently, for allh > 0 the spaceGh is reduced to the origin:

Gh = {0}.

As the spaceG obviously contains nonzero elements, it is clear that:

(Gh)h>0 does not approachG.

We even know that generally locking does occur. Actually, we know that to avoid it,
u0
h has to converge tou0 whenh → 0. But hereu0

h = 0 because it belongs toGh,
andu0 is not equal to 0, unless the loading functionall ∈ G⊥ (see Theorem 1). So
we have the following result:

Proposition 5. If the loading functionall does not belong toG⊥ and if the arch is not
a beam (the curvature is not identical to0) then the discretization scheme described
in this section does not converge whenh → 0 uniformly in ε ∈]0, 1]. A locking
phenomenon does occur and:

sup
0<ε<1

||uεh − uε|| ≥ ||u0|| > 0.

5.3. A nonlocking conforming model for a circular arch

The interval [0, 1] is discretized just like in the previous section. We still denote by
Pk the space of piecewise polynomials of degree not greater thank. We are going to
choose:

Vh1 ⊂ Pk ∩H1
0(]0, 1[), Vh2 = P3 ∩H2

0(]0, 1[)

with k ≥ 1. We want to prove that it is possible to adjustk and to choose the subset
Vh1 so that (Gh)h>0 approaches G.

The idea consists in finding spacesVh1 and Vh2 giving less restrictions than in
the previous case, so thatGh be bigger. Supposing that the curvature is constant, we
use the relation definingGh saying that aswh2 is P3 polynomial, we choosek such
thatw′h1 be of the same degree. We get:

Theorem 4. The curvature is supposed to be a nonzero constant. We define:

Vh1 = P4 ∩H1
0(]0, 1[), Vh2 = P3 ∩H2

0(]0, 1[).

Then(Vh)h>0 approachesV , and (Gh)h>0 approachesG. Therefore we have:

lim
h→0

sup
ε∈]0,1]

||uεh − uε|| = 0.

Remark 3.The approximation of arch equations studied in [14] fits in the family
described here.
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Proof of the Theorem.It is wellknown that the family (Vh)h>0 approaches the space
V (see [10]). Let us prove that (Gh)h>0 approachesG.

We have seen (Proposition 4) that:

G = {(w1, w2);w2 ∈ H2
0([0, 1]),

∫ 1

0
w2 = 0, w1(s) = −c

∫ s

0
w2(t) dt}.

Here the curvature is constant, we suppose that it is equal to 1. This space is isomor-
phic to:

F = {w2 ∈ H2
0([0, 1]);

∫ 1

0
w2 = 0}.

In the same way:

Gh = {(wh1, wh2);wh2 ∈ H2
0([0, 1]),

∫ 1

0
wh2 = 0, wh1(s) = −c

∫ s

0
wh2(t) dt}

is isomorphic to the following subspace ofH2
0(]0, 1[):

Fh = {wh2 ∈ Vh2;
∫ 1

0
wh2 = 0}.

Since the mappingv 7→ ∫ s
0 v(t) dt is linear and bounded fromF into H1

0(]0, 1[),
it is sufficient to prove that (Fh)h>0 approachesF in order to prove that (Gh)h>0
approachesG.

As it is known thatVh2 = P3 ∩H2
0(]0, 1[) approaches H2

0(]0, 1[) we only have
to prove the mean value compatibility. Letφ ∈ F be given. We have:

∀η > 0, ∃ h0 > 0, such that { 0< h < h0 ⇒ ∃ψh ∈ Vh2 : ||φ−ψh||2 ≤ η}

where||ψ||2 denotes the norm inH2. Let us then chooseθh ∈ Vh2 such that
∫ 1

0 θh = 1,
and consider:

φh = ψh − θh

∫ 1

0
ψh

which belongs toFh. It is easily checked that:

||φ− φh||2 ≤ ||φ− ψh||2[1 + ||θh||2].

So the Theorem will be proved if it is possible to chooseθh such that its norm (in
H2) remains bounded whenh→ 0. Let us build such a function.

We takeη ∈ H2
0 such that

∫ 1
0 η = 1. Then, there existsh1 > 0 such that, for allh

in ]0, h1[, there existsλh ∈ Vh2 such that||η − λh||2 < 1
2. If we choose:

θh =
λh∫ 1
0 λh

,

it is in Vh2 with meanvalue equal to 1, and:

||θh||2 =
1

| ∫ 1
0 λh|

||λh||2.
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Moreover, as| | ∫ 1
0 λh| − 1 | ≤ | ∫ 1

0 (λh − η) | ≤ ||λh − η||2, we have:

0< h < h1 ⇒ |
∫ 1

0
λh| > 1

2
.

Thus there existsC > 0 such that:

0< h < h1 ⇒ ||θh||2 ≤ C.

This ends the proof of the Theorem.ut

Remark 4.Generally the curvature is not constant and the spaceGh strongly depends
on the functionc. In this case and generally speaking, this space will not be big enough
to approachG. But if the curvaturec is approximated by a piecewise constant function
the above{P4, P3}-method may be valid.

6. Conclusion and perspective

We have studied the numerical behaviour of elliptic problems in which a small param-
eter is involved. We have given general conditions ensuring that a numerical scheme
will converge uniformly with respect to the small parameter, without needing the use
of mixed method.
An example is studied, concerning the computation of arches working in linear elastic-
ity conditions, studied under the Kirchhoff-Love model. The uniform error estimates
was already considered by Kikuchi [14] using direct computations. Our present anal-
ysis is different because we apply an asymptotic analysis on a finite dimensional
abstract model and we give some sufficient conditions to get uniform convergence
(this analysis has been already used in the case of a three dimensional elastic thin
plate [15]). In the case of the arch we have shown one finite element scheme giving
a locking behaviour, and one which does not. This one behaves as well as possible,
as shown in [9]: it converges uniformly with respect to the small parameter, which is
the thickness of the arch.
Another possibility is to use a mixed formulation. But this addition of a new field
complicates the implementation and its generalization to nonlinear problems.
It is known that a reduced integration is a good method to avoid a locking phe-
nomenon. In this way one computes the terms of the stiffness matrix arising from
the bilinear forma0 with a low-order quadrature (see [2] for the one dimensional
Midlin-Reissner model, [14] in the case of arches and [16] in the case of shells, ...).
Our present analysis could be extended to cover the case of the reduced integration
by redefining the finite dimensional problem (3) as:

uεh ∈ Vh, aεh(uεh, vh) = lh(vh), ∀vh ∈ Vh,(5)

whereaεh and lh are approximations of the formsaε and l, respectively. In this case
(Gh)h>0 would become anexternalapproximation of the spaceG.
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Nice
13. Habbal, A., Chenais, D. (1992): Deterioration of a finite element method for arch structures when

thickness goes to zero. Numer. Math.62, 321–341
14. Kikuchi, F. (1982): Accuracy of some finite element models for arch problems. Comput. Methods

Appl. Math. Engineer.35, 315–345
15. Paumier, J.-C. (1992): On the locking phenomenon for a linearly three dimensional elastic clamped

plate. Rapport de Recherche RT 76, LMC-IMAG. To be published
16. Pitkaranta, J. (1992): The problem of membrane locking in finite element analysis of cylindrical shells.

Numer. Math.61, 523–542
17. Reddy, B.D. (1988): Convergence of mixed finite element approximations for the shallow arch problem.

Numer. Math.
18. Sanchez-Palencia, E. (1992): Asymptotic and spectral properties of a class of singular stiff problems.

Jour. Math. Pures Appl.71, 379–406
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