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Summary. In this paper we study the numerical behaviour of elliptic problems in
which a small parameter is involved and an example concerning the computation of
elastic arches is analyzed using this mathematical framework. At first, the statements
of the problem and its Galerkin approximations are defined and an asymptotic analysis
is performed. Then we give general conditions ensuring that a numerical scheme will
converge uniformly with respect to the small parameter. Finally we study an example
in computation of arches working in linear elasticity conditions. We build one finite
element scheme giving a locking behaviour, and another one which does not.
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1. Introduction

The locking phenomenon is well known in the world of engineering. It generally
consists in a loss of meaning of numerical results when the computations are made
for some values of the parameters, while the results of the computations remain valid
for a wide range of other values (we are refering to theaning of the numerical
resultswith regard to a supposed suitable model representing a physically unknown
guantity).

This phenomenon appears in elastic structures such as plates and shells where
the parameter is the thickness of the structure and the unknown is its displacement.
It happens that common numerical schemes modeling the elastic behavior of the
structure give wrong displacements if the thickness is too small.

For example, when we consider the so called Mindlin-Reissner model for mod-
erately thin plates which is often used by engineers, it is well known that many
numerical schemes for this model are satisfactory only when the thickness parameter
¢ is not too small. But, for a very smadl some bad behavior (such as the "locking”
phenomenon) can occur. The problem is to present methods which are uniformly
good ase approaches zero and to show how error estimates remain independent of
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e. This problem is solved in the following papers: a thorough analysis is provided
by Arnold in [2] for the one -dimensional case (Timoshenko model) and in [3] for
the two -dimensional case; Brezzi and Fortin [8] give a mixed formulation of the
Mindlin-Reissner plate model and derive uniform error estimates from a F. E. M.

The locking effects may appear in the finite element approximation of elasticity
problems when the Poisson ratiois close to (6 : it is well-known that the perfor-
mance of certain commonly used finite elements deteriorates ges to 6 (see
[5]).

The locking phenomenon also might occur in three-dimensional elasticity when we
compute the displacement of a thick plate (thickness paramgetds a matter of fact,

M. Vidrascu [20] uses prismatic finite elements Q2 of heighind obtains, for small
values ofe, a very poor behaviour of the displacement compared to the associated
two-dimensional thin plate displacement given by the asymptotic theory developped
by Ciarlet [11] (Kirchhoff Love model). An analysis of this locking phenomenon is
carried out in [15] for the Galerkin method.

J.-L. Akian and E. Sanchez-Palencia give in [1] a phenomenon of membrane
locking in the approximation of thin elastic shells by flat elements. In this work the
mean surfacef the shell (with kinematic boundary conditions) admits inextensional
displacements and is approximated by a polyhedral surface where the edges enjoy
stiffness properties causing a phenomenon of membrane locking.

Another example concerns arches studied under the Kichhoff-Love model. It is
standard to compute the displacement field using an approximation of the arch by
straight beam elements of small length. For a fixed thickness, the convergence of
this scheme is studied in [6]if i denotes the length of a beam, the displacement
converges inO(h) but when the thickness is very small, the numerical results are
wrong This phenomenon has been specialy studied in [€8hmples are given where
the numerical results deteriorate when the mesh size is fixed and the thickness becomes
small and it is proved thatf & is taken in the order of the square of the thickness,
the convergence is insureBut this is numerically prohibitive. For this arch problem,

F. Kikuchi [14] gives an answer, exhibiting a uniformly converging scheme. The
guestion of finding the best possible behaviour with respect to the thickness for a
scheme which has a chosen order with respect to the mesh size becomes essential
and is studied in [9].

At last, in a recent paper, Ivo Babka and Manil Suri [4] develop precise mathe-
matical definitions for locking and robustness, give their quantitative characterization,
and prove some general theorems. Moreover a model problem involving heat transfer
is analyzed using this mathematical framework, and various related computational
results are described.

Let us briefly outline the content of this paper.

In Sect.2 we give the statements of the class of considered problems and we
perform an asymptotic analysis. In Sect. 3 we define a family of Galerkin approxima-
tions in which there might happen a loss of convergence when the small parameter
reaches zero. In Sect. 4 we give general conditions ensuring that a numerical scheme
will converge uniformly with respect to the small parameter without needing the use
of a mixed formulation.

In Sect.5 we study the example of the computation of arches working in linear
elasticity conditions, under the Kirchhoff-Love model. The uniform error estimates
was already considered by Kikuchi [14] using direct computations. Our present anal-
ysis is quite different because we apply the result of the previous sections and we
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give some sufficient conditions to get uniform convergence. We build one finite el-
ement scheme giving a locking behaviour (Subsect.5.2), and one which does not
(Subsect. 5.3). Both do not need the use of mixed formulations.

2. The continuous problem. General setting and limit where goes to zero

Let V be a real Hilbert space where the inner product is denetedv > and the
associated noriju||. We are given two bilinear continuous symmetric forms defined
onV, say:

ag .V xV =R, a1V xV —LR.

Let ¢ €]0, 1] be a small real parameter. We defiife: V x V — R by:
a®(u,v) = i' ao(u, v) + a(u, v).
The fundamental hypothesia this paper are the following:
(H1) For eacte €]0,1], a*(u,v) is coercive:
Ve €]0,1], J a(e) > 0 such that Yo €V, af(v,v) > ale) ||v|
(H2) The bilinear formag is positive and its kernel:
G={w e V; ap(w,v) =0,Yv € V}

is not reduced to the origin.

We remark that the kerné} is also equal to the sdtw € V; ap(w, w) = 0} since we
have the inequalityao(w, v)|?> < ag(v,v) aog(w,w) which holds for anyv € V and
anyw € G.

Under these hypotheses it is clear that:

— all the formsa®, for ¢ €]0, 1] are uniformlya - coercive where we denote for
a(l):

Ve €]0,1], VoeV, a*(v,v) > a'(v,0) > all|f,
— the bilinear forma, is G - elliptic since we have:
VweG, a'(w, w) = as(w,w) > allw|.

Let!:V — IR be a given linear form defined dri. From the Lax-Milgram theorem,
for eache €]0, 1], the equation:

(1) u® eV, a®(u®,v) =1(v), Yv eV,

has one and only one solution as well as the equation:

(2) uw e G, a1(u®, w) = l(w), Yw € G.

We are interested in the limit aff whene goes to zero. We have the following result:

Theorem 1. Whene — 0, the solutionu® of the Eq. (1) strongly converges In to
the unique solution of the Eq. (2). The linft is equal to 0 if and only it € G*.
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Proof. It is classical. It is very similar, for instance to the proof of Theorem 3.3.1 in
[11]. It is done in several steps:
1. A priori estimate and weak limittrom the inequalities

Ve €]0,1], al[u]|? < a®(u, u) < ||if]v][u°]]

we deduce that the familyuf).~o is bounded. There exists a subsequence that we
still denote by ().~ which converges weakly in the spate We denote by? its
limit. We will prove that it is the strong limit of.* whene — O.

2. Properties ofw?: we first multiply the Eq. (1) by. Using the bounded linear
operatorsdg and A; defined onV by:

< Aog.u, v >= ap(u, v), < Aru, v >= ag(u, v),
we get:
< uf, Ag.w > +e < uf, Ao >=¢ l(v), Yo e V.
Passing to the limit whea — 0, we get:
< w® Ag.v >= ap(w®,v) = 0, Yo eV,

which says that? is in the kernelG of Ag. Now, in Eq. (1), we choose € G as
test functions. We get:

u® €V, a(u®, w) = l(w), Yw € G,
and passing to the limit as previously:
wle G a1(w®, w) = l(w), Yw € G,

which is Eq. (2). Since this equation has one and only one solution wewfawe:°.
Moreover,u° = 0 if and only if /(w) is equal to zero for allv € G. This means that
le Gt

3. Strong convergenceéConsidering the previous subsequene® o which con-
verges weakly ta:° we have:

al|uf —ul|? < af(uf — u® uf —uP) = af(uf, uf) — 2a° (uf, ul) + af (ul, uO).
As we have :
a®(u®, u®) = a1 (u, 1) = 1(u°) a®(u®, u®) = 1(uP),
passing to the limit, we obtain:
lim af(u®, u) = lim {(u®) = [(u°),
e—0 e—0
SO:
lim ||Ju® —u°||? =0.
e—0

Hence the subsequence).-o converges strongly ta®. Then, as any cluster point
of the family ¢ has to satisfy Eq.(2) which hag as a unique solution, the whole
family converges ta:° in V. This ends the proof of the Theorem 10

Remark 1.We also have!ao(u®, u¥) — 0 because ap(u®, u®) = I(u) — as(uf, uf)
which tends to 0 witte.
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3. A family of discrete problems

We are now interested in the following problem: we want to find a way to compute
an approximate solution of Eq. (1). As explained in the introduction, one of our aims
is to prove that there exists @alerkin methodsuch thatu® be approximated by,
with:
[luf, —uf]| — O whenh — 0, uniformly in ¢ €]0, 1].
So, let (/4)n>0 be a family of finite dimensional subspaceslof For everye €]0, 1]
we use the Galerkin method for the Eg.(1). For a fixedve have to solve the
following equations:
(3) Vh > 07 U‘}i € ‘/h,v aE(uZ’ Uh) = l(’Uh), v’Uh € Vi.
Obviously each one has a unigue solution. Ggt:= G N'V;,. We have:
G ={wn € Viy; ao(wn,vy) =0, Yo, € Vi } = {wp, € Vi, ao(wy, ws) = 0}.
We also consider the Galerkin method for the Eqg. (2), which requires to solve :

(4) Vh > 07 ’U,?L c Gh, al(u%vh) = l(’l)h), Yy, € Gh.

Each of these equations has one and only one solution. We study first the two following
limits:

Iim0 uj, for a fixedh,

E—>

}Ilimo uj, for a fixede.
—

We have:

Theorem 2. For a givenh > 0, whene — 0, the solutionu;, of (3) converges iV},
to the unique solution? of Eq. (4).

Proof. This is exactly the same proof as Theorem 1. It is just a little simplified because
weak and strong convergence are the same in finite dimensional spaces.

Now, in order to pass to the limit whefn goes to zero we recall that family of
finite dimensional subspacéX}),~o of a Hilbert spaceX is said to approachX if
and only if:

Yu € X, lim in

f — =0
h—0v, X, e = vl

The following result is classical [10]:

Proposition 1. i. If the family (V})r >0 approaches/, then for any giver > 0, the
solutionw;, of the Eq. (3) converges to the solutiaf of (1) whenh — 0,

ii. If the family (G1,)1,>0 approaches, then the solution? of the Eq. (4) converges
to the solutionu® of (2) whenh — 0.
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4. Uniform convergence whenh goes to zero

The aim of this section is the proof of the following resuftthe family (V3)n~0
approaches/ and the associated familf=1,),~o0 approachess, thenu; converges
to u® whenh goes to zero, uniformly ia € [0, 1].

This will be proved in several steps. In particular, we separate the study of a
neigbourhood o = O, and the study on intervals of the formp[1] with g > 0.

Proposition 2. If (Vi,)r~0 approached/, then:

Veg > 0, lim sup [luj, —uf|| =0.
h—>0€0S5§1

Proof. Let C°([¢o, 1]) be the space of continuous real valued functions defined on
[€0, 1], equipped with the norm of the uniform convergence. We have to prove that
for any sequencehf,) converging to zero:

n(€) — 0 in C°([eo. 1), whereg, (e) = |[u —uj, ||

Considering that this sequence converges ponctually to 0 whernoo (see Proposi-
tion 1), in order to get a uniform convergence, it is sufficient to show that this family
is equicontinuous (Ascoli Theorem). This can be done for instance showing that the
mappinge — u® — uj is differentiable and that its differential is uniformly bounded
in € and h.

Let A° = 1Ag+ A; (see the proof of Theorem 1) ankf, = 1 A4q), + Ay, be the
bounded linear operators respectively defined by :

< Afu,v >=a(u,v), Yu,veV <A .up,vp >=a(up,vp), Yup,vn € Vi,
andL € V, Ly € V}, be defined by:
< L,v>=1), YveV, < Lp,vp >=1(vy), Y oy € V.

Considering the Egs. (1) and (3), we can see #fat® = L and A; uj = L;. Clearly,
the mappings — A® ande — Aj are indefinitely differentiable on the intervab[ 1]

with values in the Banach space of bounded linear operators respectivélyaom
V3. So by the implicit functions theorems, — u® ande — uj, are also indefinitely
differentiable on the intervalep, 1] with values respectively i and V;,, and we
have :

du® 1 dug,

1
aé‘( de 7U) = Ezao(u87v)7 \ORS ‘/7 aé‘( de 7Uh) = Ezao(u27vh)> V’Uh S Vh’

. — duf _ duj, .
Choosingv = ;. andwv, =, we get:

a1 Ll
ol‘ge 1< llell Il < llll
du, 1 Ll
allgr 1< g llaoll 1 < il

Thus, || || and||** || are bounded, uniformly ik ande € [0, 1]. The family,(¢)
is then equicontinuous, therefore it converges uniformly to zero on the compact set
[60, l]. O
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Let us now study the neighbourhood of= 0. This is where the fundamental
hypothesis requiring thatd},),~0 approaches: interferes. We have :

Proposition 3. If (G1,)r>0 approachesz, then:
for all n > 0 there existg = £o(n) > 0 and hg = ho(n) > 0 such that:
Vh €]0, hol, Ve €]0, &g, [|u® — uf|| <.

Proof. we know thatu;, is the orthogonal projection off onV}, for the inner product
associated to the bilinear foraf. Therefore :

a®(u® —uj,u® —uj) = 7J’ilén:/h a®(u® — vy, u® — vp).
v

Using the uniform coerciveness aof and choosing;, = w;, € Gj, we get:
€ 112 1 e , € € €
a |lu® —ujl| ggao(u,u)+a1(u — wp, u — wp), Ywy, € Gy,.

Let us estimate the first term. As we have seen in the Remark 1, we know that
1 ao(u®,u®) tends to 0 withe. So:

€

Ui

1
vn > 0, Je1(n) > 0 such that Ke<eln) = . ap(u®,u®) < o

Let us now consider the second term. As the bilinear faxms continuous, there
exists a constant’ which does not depend an h andw,, € G}, such that

Yy, € G, ay(u® —wp, u* —wy) < Cl[u® —wp|* < O(l[u® —u®[[+[Ju®—wp|])?.
Moreover, we have the following estimates:
— asu® — u® whene — 0:

Vn >0 Je2(n) > 0 such that e <exn) = |juf -l < \/8770
— as @Gy, approachess:

Vn >0 Jho(n) > 0 s.t.

O0<h<hy= {3 wy, € Gy, such thatl[u® — wy,|| < \/8@1}

Putting these two conditions together, we get the result wgth min{e1,e,} . O
Now, with Propositions 3 and 2, it is staightforward to get:

Theorem 3. If (V},)n>0 approaches” and(G},)n>o approachesz, then:

lim sup ||uj, — u®|| = 0.
h—0 p<e<1
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5. Example, the arch problem

In this paragraph, we show that an arch working in linear elasticity conditions is an
example of the general framework studied in this paper. The small parameter is the
thickness of the arch. It is well-known that classical numerical methods often give a
locking behaviour when the thickness is too small (see [14], [17], [2], [12], [13]).

In this section, we are going to show a standard finite element procedure, and see
that it is likely to lock for a small thickness. Then, we will modify it to get another
procedure which converges uniformly when the thickness is small.

In the first subsection, we give the description of the continuous model, and show
that it is an example of the general framework described in the previous sections.
Then, both finite element procedures will be described.

5.1. The continuous problem

An arch is a solid three dimensional body, built around a midcurve. It is supposed
to be invariant in one direction, and it has a thickngés which is supposed to be
small compared to its other dimensions. The midcurve is generated by a plane curve
that we parametrize with the curvilinear abscissaAs in classical litterature, we
suppose that it is &° curve. The arch is submitted to a loading that we also suppose
invariant in one direction. So, this becomes a plane problem. Moreover, considering
the small thickness, it is standard to reduce the linear elasticity equations to a system
of differential equations written on the midcurve. The problem is finally reduced to a
one dimensional variational equation. Several models can be considered, coresponding
to different types of loadings, for a given geometry. We consider here the standard
Kirchhoff-Love model, in which normal and shear stresses are neglected.

When it is loaded, a displacement fiel(k) appears on the arch. In the Kirchhoff-
Love model, it is decomposed on the local bas{s)(n(s)) made of the tangent and
normal unit vectors at the point of local coordinateSo the unknowns are two scalar
functionsui(s), ua(s) such that:

u(s) = ua(s)t(s) + ua(s)n(s).

We suppose that the arch length is 1. We also suppose that it is clamped at its ends.
The notations are the following:

— V = H}(]0, 1]) x HZ(]0, 1[) where the Sobolev spaces are defined as follows:

H3(0,1]) = {v € L?(J0, 1]); v’ € L?(10, 1]) andv(0) = (1) = O},

H§(0,1]) = {v € L*(0, 1]); ', v" € L?(0,1])
andv(0) =v(1) =+'(0) =v'(1) = 0}

(by v’ and v’ we mean the first and second derivatives of v in the sense of
distributionssee[7]) .
— Forv = (v1,v2) € V we denote:

y() =] +cvp and p(v) = (cvy — vp)

wherec € C*([0, 1]) is the curvature of the midcurve.
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— We define the bilinear form:
Yu,v €V, af(u,v) = S ao(u,v) + D ay(u,v)

with:

1 -1
ool 0) = [ 21 () ds au,0) = [ o) ds.
0 0
C and D are mechanical constants that we will suppose to be equal to 1 in the
sequel.
Let f¢ be a given loading to which the arch is submitted. It has to belorig/ t@he
displacement field which appears in the arch is the solution of the following problem:
u® eV, 32 af(uf,v) = f5(v), Yo e V.

It is known (see [10]) that this equation has one and only one solution. Actually

is coercive, uniformly ine €]0, 1], and it satisfies the hypothesis (H1,H2) required

in the general setting (Sect. 2) of this article. Let us make some comments about the
loading f¢. Usually it is of the form:

5= fotef.

The termfy comes from surface loadings, like a pressure produced by wind, the other
term comes from volume loadings, like the self-weight of the arch. Anyway, as the
equation is linear, these two types of loadings can be studied separately. Moreover,
still using arguments of linearity, the study of the equation:

u® €V, a®(u®,v) =1(v), Yv eV,

where | does not depend on is sufficient to get a full information for realistic
loadings, because the real displacement fi€ldn the arch can be deduced from
multiplying this one by a proper power ef Now the last thing we have to look at,

in order to show that we are in the general setting of this paper, is the kernel of the
bilinear formao(u, v). As before, we denote it b = {w € V; ap(w,v) =0, Vv €

V}. We have :

Proposition 4. Assume that the curvatureis not identical to0. We have:

1 s
G = {w = (w1, wy); wa € HE(O, 1[),/O (cwz)(s) ds =0, wq(s) = —/0 (cw2)(t) dt},

and this space is isomorphic to a closed hyperpla#gf]o, 1[).
Proof. A function w is in G if and only if y(w) = 0. Asy(w) = w] + cw,, we have:
we G {’U)j_ S H(%(]Oa 1[)7 w2 € Hg(]oa 1[),’(1)3_ = —sz}-

But, asc € L™, if wy is in H? andw) = —cws, wy will be in H*. So, ifw; has been
defined by:

me—AkwwMt
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the pair (w1, w) will belong to G if and only if:

1
wi(1) = —/0 (cwo)(t) dt = 0.

This achieves the description 6f. )
Moreover, the mapping, — ( — f;(cwz)(t)dt, wo(s) ) is clearly linear con-

tinuous from the spacéw, € H2(10, 1[); fol(cwz)(t) dt = 0} into the spacé. This
achieves the proof of the proposition.O

Remark 2.1f the curvaturec of the arch is identical to 0 (which means that the arch
is a beam),
G = {0} x H§(0, 1D.

5.2. A locking discrete model

Let us first discretize the interval [@]. We choose an integéY > 0, defineh = 1/N,
and:
SC():O, ZCizih, i=1,...,N, rn+ = 1

We denote byP;, the space opiecewise polynomialdefined on this discretization,
of degree not greater than
We define the spac®, = Vj,1 x Vj2 by:

Via = P10 H3(0, 1)), Va2 = P51 HZ(10,1]).
It is wellknown (see [10]) thatW(,),~0 approaches V. SO we get:
Ve > 0, uj, — u’, whenh — 0.

Let us now look at the spacé&s and (G)ro. If the curvature is identical to O,
which means that the arch is a beam, then:

GZ{O}XHS G = {0} X Vi2

so that Gr)n~0 approachess, and the convergence is uniform for small thicknesses.
Actually, in this very particular case, the componem{sandu; are decoupled, which
gives very special properties.

On the other hand, let us consider an arch which does have curvature. We have
seen in proposition 4 that is isomorphic to a closed hyperplan &2. Moreover:

Gy = {wp € Vi, v(wy) = 0}, with y(wp) = why + cwpa.

As wy, is piecewiseP}, its first derivative is piecewise constant, anduif belongs
to G, thencwy, is piecewise constant. Moreover, as continuous, we also have:

cwnz € C([0, 1]), cwp2(0) = cwp2(1) = 0
and if ¢ is nonzero except at isolated points:
WhH2 = 0.

Then, still using the relatiowy,, + cwy2 = 0, we deduce that:
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wyy =0, wpy € C°([0, 1), wr1(0) =wp1(1) = 0.

Therefore we have:
wp1 =0,

and consequently, for all > 0 the space&?;, is reduced to the origin:
Gy, ={0}.
As the spacé- obviously contains nonzero elements, it is clear that:
(Gr)n>o does not approacty.

We even know that generally locking does occur. Actually, we know that to avoid it,
u?L has to converge ta® whenh — 0. But hereu; = 0 because it belongs G},
andu? is not equal to 0, unless the loading functiohal G+ (see Theorem 1). So
we have the following result:

Proposition 5. If the loading functional does not belong t6:* and if the arch is not

a beam (the curvature is not identical @ then the discretization scheme described
in this section does not converge when— 0 uniformly ine €]0,1]. A locking
phenomenon does occur and:

sup [[uj, —u°[| > [[u%] > 0.
O<e<1

5.3. A nonlocking conforming model for a circular arch

The interval [Q1] is discretized just like in the previous section. We still denote by
Py, the space of piecewise polynomials of degree not greaterkh¥ve are going to
choose:

Vi C P, N H§(0, 1), Vie = P3N HE(JO, 1])

with & > 1. We want to prove that it is possible to adjésand to choose the subset
Vi1 so that Gr)n>o0 approaches G.

The idea consists in finding spac®s; and V},, giving less restrictions than in
the previous case, so thaY, be bigger. Supposing that the curvature is constant, we
use the relation defining;, saying that asv;, is P; polynomial, we choosé such
thatwj,, be of the same degree. We get:

Theorem 4. The curvature is supposed to be a nonzero constant. We define:
Vi1 = P40 Hg(10, 1), Vie = P3N HG(0, 1.
Then(Vy)n~0 approaches’, and (Gr)n~o0 approachess. Therefore we have:

lim sup ||uj, — u®|| = 0.
h—=0 c¢lo,1]

Remark 3.The approximation of arch equations studied in [14] fits in the family
described here.
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Proof of the Theoremlt is wellknown that the family ¥3,),~0 approaches the space
V (see [10]). Let us prove that(,); o approaches:.
We have seen (Proposition 4) that:

1 s
G = {(w1, wa); w2 € HE([0,1]), / wz =0, wis) =—c / wo(t) dt}.
0 0
Here the curvature is constant, we suppose that it is equal to 1. This space is isomor-
phic to:
1
F= {wz S HS([O, 1]);/ wy = 0}
0

In the same way:
1 s
Gy = {(whl,whz); Wh2 € Hg([O, 1]), / Wh2 = 07 whl(s) = —c / U}hz(t) dt}
JO 0

is isomorphic to the following subspace 8§(]0, 1[):

1
Fy ={wnz € th;/ wp2 = 0}.
0

Since the mapping — fos v(t) dt is linear and bounded from into H2(]0, 1)),
it is sufficient to prove thatK},),~o approaches” in order to prove that@y)n-o
approaches;.

As it is known thatVy,, = P3N H3(]0,1[) approaches HE(]0,1[) we only have
to prove the mean value compatibility. Lete F' be given. We have:

Vn > 0, 3 hg > 0, such that {0<h<hg =T € Viz i ||o—tnll2 <n}

where| |1, denotes the norm iff2. Let us then choos®, € Vj,» such thatfol 0, =1,
and consider:

1
On =P — 9h/ Yh
0
which belongs taFj,. It is easily checked that:
|6 — dnll2 < [|¢ — Pnll2Al + [104]]2]-

So the Theorem will be proved if it is possible to chodgesuch that its norm (in
H?) remains bounded wheiln — 0. Let us build such a function.

We taken € H§ such thatfoln = 1. Then, there exists; > 0 such that, for alh
in 10, hy[, there exists\;, € Vi, such that|n — A\y||2 < ; If we choose:

>\h
fol An ,

it is in V32 with meanvalue equal to 1, and:

Gh:

1
Onll2= 1 [A&ll2-
|fo)‘h|
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Moreover, ag | [y Anl = 1] <| foOn —n) | < |[An — n]l2, we have:

! 1
O<h<h = \/Ah|> .
0 2

Thus there exist§®’ > 0 such that:
O<h<h = [10nl]2 < C.
This ends the proof of the Theorem.O

Remark 4.Generally the curvature is not constant and the sgagcstrongly depends

on the functiore. In this case and generally speaking, this space will not be big enough
to approaclG. But if the curvature: is approximated by a piecewise constant function
the above{ P4, Ps3}-method may be valid.

6. Conclusion and perspective

We have studied the numerical behaviour of elliptic problems in which a small param-
eter is involved. We have given general conditions ensuring that a numerical scheme
will converge uniformly with respect to the small parameter, without needing the use
of mixed method.

An example is studied, concerning the computation of arches working in linear elastic-
ity conditions, studied under the Kirchhoff-Love model. The uniform error estimates
was already considered by Kikuchi [14] using direct computations. Our present anal-
ysis is different because we apply an asymptotic analysis on a finite dimensional
abstract model and we give some sufficient conditions to get uniform convergence
(this analysis has been already used in the case of a three dimensional elastic thin
plate [15]). In the case of the arch we have shown one finite element scheme giving
a locking behaviour, and one which does not. This one behaves as well as possible,
as shown in [9]: it converges uniformly with respect to the small parameter, which is
the thickness of the arch.

Another possibility is to use a mixed formulation. But this addition of a new field
complicates the implementation and its generalization to nonlinear problems.

It is known that a reduced integration is a good method to avoid a locking phe-
nomenon. In this way one computes the terms of the stiffness matrix arising from
the bilinear formag with a low-order quadrature (see [2] for the one dimensional
Midlin-Reissner model, [14] in the case of arches and [16] in the case of shells, ...).
Our present analysis could be extended to cover the case of the reduced integration
by redefining the finite dimensional problem (3) as:

(5) uj, € Vi, aj,(ujy,, vn) = ln(vn), Yoy, € Vi,

wherea$, andl;, are approximations of the formg and!, respectively. In this case
(Gr)n>o0 would become amxternalapproximation of the spacd@.
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