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Summary. Convergence estimates in terms of the data are shown for multistep meth-
ods applied to non-homogeneous linear initial-boundary value problems. Similar error
bounds are derived for a new class of time-discrete and fully discrete approximation
schemes for boundary integral equations of such problems, e.g., for the single-layer
potential equation of the wave equation. In both cases, the results are obtained from
convergence and stability estimates for operational quadrature approximations of con-
volutions. These estimates, which are also proved here, depend on bounds of the
Laplace transform of the (distributional) convolution kernel outside the stability re-
gion scaled by the time stepsize, and on the smoothness of the data.
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1. Introduction

The present article is about time discretization methods for linear time-invariant non-
homogeneous evolution equations. These include initial-boundary value problems for
partial differential equations of hyperbolic and parabolic type, and boundary integral
equations for such problems. A common feature is that the solution operator is a
temporal convolutionk ∗ g with the datag. Here, the (distributional) convolution
kernel k is not known explicitly, but various concepts of well-posedness can be
phrased in terms of bounds for its Laplace transformK(s), for s varying in a half-
plane Res > σ0. EvenK(s), which is the solution operator of the Laplace transformed
problem, is usually not known, but it is modeled implicitly in the time discretization
of partial differential equations by linear multistep methods (in fact, also by Runge-
Kutta methods), and it is a composition of boundary integral operators and inverses
of such operators in the case of time-dependent boundary integral equations. We thus
would like to have stable and convergent numerical methods when all the information
available is an implicit definition ofK(s), bounds ofK(s) for s varying in suitable
regions of the complex plane, and the time-dependent datag(t).
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In Sect. 2 we present in more detail the analytical background of the situation
sketched above. In Sect. 2.1 we consider one-sided convolutions. We find it conve-
nient to use the operational notationK(∂t)g := k ∗ g. This emphasizes the role of
K(s) instead ofk(t), and suggests by itself algebraic manipulations and discretiza-
tion schemes that would otherwise appear unmotivated. Section 2.2 deals with linear
initial-boundary value problems which are “strongly well-posed in the generalized
sense” according to the definition of Kreiss and Lorenz [KrL]. They fit perfectly into
the framework of Sect. 2.1. In Sect. 2.3 we discuss boundary integral equations for the
wave equation as a specific example, building upon the substantial work of Bamberger
and Ha Duong [BaH1].

In Sect. 3 we study “operational quadrature methods” which approximate the con-
volution K(∂t)g by a discrete convolution, using onlyK(s) and the datag(t). The
basic idea is intriguingly simple and can be traced back at least as far as Liouville’s
work on fractional derivatives: Replace the time derivative∂t by a finite difference
quotient∂ht and approximateK(∂t)g by K(∂ht )g (defined appropriately!). In [Lu1]
the author discussed the implementation of such methods, and proved optimal-order
convergence in the (parabolic) case whereK(s) is analytic and polynomially bounded
outside a sector of the complex plane with an acute angle to the negative real axis.
Here, we consider the (hyperbolic) case where bounds ofK(s) are available only
in a half-plane Res > σ0, and obtain sharp convergence estimates in terms of the
datag for A-stable discretizations∂ht . If in addition K(s) is analytic and bounded
as before outside a large circle (a situation typical for stable space discretizations),
then we get conditional convergence estimates of the same type for methods which
are not necessarily A-stable, but contain in their stability region a half-disk in the left
half-plane with center at the origin.

In Sect. 4 we use the results of Sect. 3 for standard linear multistep methods applied
to linear initial-boundary value problems, or to their (stable) space discretizations in
the method of lines. Here, the numerical solution is justK(∂ht )g in the notation of
Sect. 3, withK(s) denoting the solution operator of the Laplace transformed prob-
lem. Therefore the error bounds of Sect. 3 apply, and so we obtain conditional and
unconditional convergence estimates in terms of the data, i.e., of the inhomogeneities
in the differential equation and the boundary conditions.

In Sect. 5 we study full discretization of a boundary integral equation for the
Dirichlet problem of the (possibly dissipative) wave equation, as an illustration of
techniques which apply more generally. We use a Galerkin boundary element dis-
cretization in space, and operational quadrature in time. This leads to a method where
the time-dependent fundamental solution is not required at all (fortunately so, because
it is a very complicated expression for the dissipative wave equation and completely
unknown for other problems of interest to engineers). Only its Laplace transform
and the time-dependent boundary data are evaluated. The computational complexity
is nearly linear in the number of time steps. Such a method has been proposed and
analyzed in [LuS] for boundary integral equations of the heat equation (the exten-
sion to more general parabolic problems being straightforward), but the stability and
convergence properties for hyperbolic problems remained open. Here, this is studied
in detail for the wave equation. The algorithms and results extend without additional
difficulty to transient boundary integral equations of other well-posed problems, such
as those of elasticity (cf. [Be]), as soon as a-priori estimates for the solutions of the
Laplace transformed problem are available. Extensive numerical experiments with
the numerical methods discussed here are reported in [LuS] for a boundary integral
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equation of the heat equation, in [Lu2] for an integral equation for a time-dependent
Schr̈odinger equation, and in [EgL] for a Wiener-Hopf integral equation.

2. Analytical background

2.1. One-sided convolution

In this subsection we consider one-sided convolutionsk ∗g when only bounds for the
Laplace transformK(s) of the (distributional) convolution kernelk(t) are available,
which itself may be unknown. Instances of such situations will be discussed in the
following two subsections.

Let K(s) be an analytic function in a half-plane Res > σ0, which (for large
argumentss) is bounded by

(2.1) |K(s)| ≤M · |s|µ .

If we write K(s) = smKm(s) with m > µ + 1, then the Laplace inversion formula

km(t) =
1

2πi

∫
σ+iR

estKm(s) ds , t ∈ R (σ > σ0)

defines a continuous and exponentially bounded functionkm(t) which by Cauchy’s
integral theorem vanishes fort < 0. To emphasize the dependence onK(s) rather
than the possibly distributional kernelk = (d/dt)mkm, we denote the convolution
k ∗ g by

(2.2) (K(∂t)g) (t) :=

(
d

dt

)m ∫ t

−∞
km(t− τ ) g(τ ) dτ =

∫ ∞

0
km(τ ) g(m)(t− τ ) dτ .

This defines a smooth function on the real line for smooth datag whose support is
bounded to the left, and the definition is independent of the choice ofm andσ. An
important observation is thatK(∂t)g(t) does not depend on future valuesg(t′) with
t′ > t. A rationale for the notation (2.2) (which essentially dates back to O. Heaviside
a century ago) comes from the fact that forK(s) = s we have∂tg = g′, and from the
composition rule

(2.3) K2(∂t)K1(∂t)g = (K2 ·K1)(∂t)g ,

which expresses the associativity of convolution.
In the following we restrict our attention to functionsg which vanish on the

negative half-axist < 0. Then alsoK(∂t)g(t) = 0 for t < 0, and the Laplace
transforms are related by

(2.4) L (K(∂t)g)(s) = K(s) · (L g)(s) , Re s > σ0 ,

for smooth functionsg whose derivatives do not grow stronger than exponentially
with rateσ0. If µ = 0 in (2.1), then (2.4) and Parseval’s formula show theL2 bound

‖e−σtK(∂t)g‖L2(R+) ≤M · ‖e−σtg‖L2(R+) , σ > σ0 .
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For generalµ, we get similar bounds in Sobolev norms: For realr, we letHr(R) =
{g : (1 + |ω|)r ·F g(ω) ∈ L2(R)} (with F denoting the Fourier transform onR) be
the Sobolev space of orderr, and on finite intervals (0, T ) we denote1

(2.5) Hr
0 (0, T ) = {g|(0,T ) : g ∈ Hr(R) with g ≡ 0 on (−∞, 0)} .

An equivalent norm onHr
0 (0, T ) is ‖∂rt g‖L2(0,T ). For integerr, the spaceHr

0 (0, T )
consists of those functionsg whoser-th distributional derivative is inL2(0, T ) and
which haveg(0) = . . . = g(r−1)(0) = 0. Parseval’s formula gives us the following.

Lemma 2.1. If K(s) is bounded by (2.1) in a half-planeRe s > σ0, thenK(∂t)
extends by density to a bounded linear operator

(2.6) K(∂t) : Hr+µ
0 (0, T ) → Hr

0 (0, T )

for arbitrary real r.

In order to get pointwise estimates ofK(∂t)g(t), using only the bound (2.1), we can
apply the embeddingHr(0, T ) ⊂ C[0, T ] for r > 1

2. A simple alternative, which we
will later use to derive pointwise error bounds for the numerical methods, is to insert
(2.4) directly in the Laplace inversion formula:

K(∂t)g(t) =
1

2πi

∫
σ+iR

est
K(s)
sm

· sm(L g)(s) ds ,

to estimate

(2.7) sup
s∈σ+iR

|sm ·L g(s)| = sup
s∈σ+iR

|L (∂mt g)(s)| ≤
∫ ∞

0
e−σt|∂mt g(t)| dt ,

and to use the fact thatK(s)/sm is integrable alongσ + iR for m > µ + 1 by (2.1).
For simplicity, let nowm be a non-negative integer. We letWm,1

0 (0, T ) denote
the space of functionsg on (0, T ) with them-th distributional derivative inL1(0, T )
and withg(0) = . . . = g(m−1)(0) = 0, equipped with the norm‖g(m)‖L1(0,T ). We have
shown

Lemma 2.2. If K(s) is bounded by (2.1) in a half-planeRe s > σ0, thenK(∂t)
extends form > µ + 1 to a bounded linear operator

(2.8) K(∂t) : Wm,1
0 (0, T ) → C[0, T ] .

Remark.Similarly as above, we would get a bounded extensionK(∂t) : Aµ0 (0, T ) →
C[0, T ], with Aµ(R) = {g : (1 + |ω|)µ · ĝ(ω) ∈ L1(R)} andAµ0 (0, T ) defined analo-
gously as in (2.5). By embeddings of suitable smoothness spaces intoAµ0 (0, T ) (e.g.,
Hölder-type spaces using Bernstein’s or Zygmund’s theorem [Ka], Theorems I.6.3
and 4) further pointwise bounds can thus be obtained. We remark that stronger results

1 Compared to standard notation, this differs in that the subscript 0 inHr
0 only refers to the left end-point

of the interval instead of both end-points. Moreover, ifr−1/2 is integer, then the above space becomes
what is usually denotedHr

00(0,T ), cf. [LiM]
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can be shown ifK(s) is analytic and bounded by (2.1) not only in a half-plane, but
in a larger sector| arg(s− σ0)| < π − ϑ with ϑ < π/2.

An obvious, but important generalization of the preceding material concerns the sit-
uation whereK(s), Res > σ0, is an analytic family of linear operators between two
Hilbert spaces, whose operator norms are bounded by (2.1). As Parseval’s formula
is not used in Lemma 2.2, this lemma remains valid even in aBanach spacesetting.
Such generalizations will be used freely in the sequel. The corresponding spaces will
be denoted byHr

0 (0, T ;X) etc. to indicate the underlying spaceX when appropriate.

2.2. Initial-boundary value problems which are strongly well-posed in the
generalized sense(cf. [KrL])

On a smooth domainΩ ⊂ Rd with boundaryΓ we consider the linear initial-boundary
value problem foru(x, t) ∈ Rn, given by the system of differential equations

(2.9a) ∂tu = P (x, ∂x)u + f (x, t) , x ∈ Ω , t > 0 ,

with boundary conditions

(2.9b) L(x, ∂x, ∂t)u = g(x, t) , x ∈ Γ , t > 0 ,

and the special initial condition

(2.9c) u(x, 0) = 0 , x ∈ Ω .

(More general initial conditionsu(x, 0) = u0(x) can be reduced to this case by con-
sidering the equation foru(x, t) − u0(x).)

According to the definition in [KrL], p.227, the problem is calledstrongly well-
posed in the generalized sense, if for all smooth compatible dataf and g there is a
unique smooth solutionu, and for every finite time interval 0≤ t ≤ T there is a
constantCT such that∫ t

0
‖u(·, τ )‖2

Ω dτ +
∫ t

0
‖u(·, τ )‖2

Γ dτ

≤ CT ·
{∫ t

0
‖f (·, τ )‖2

Ω dτ +
∫ t

0
‖g(·, τ )‖2

Γ dτ

}
in 0≤ t ≤ T.(2.10)

Here the norms areL2 norms overΩ or Γ , as indicated by the subscripts. Examples
of hyperbolic, parabolic, and mixed systems satisfying these conditions can also be
found in [KrL].

If the constantsCT are allowed to grow only exponentially withT , then it follows
via Parseval’s formula that strong well-posedness in the generalized sense is equivalent
– or nearly so2 – to the following condition: The boundary value problem obtained
by formal Laplace transformation of (2.9),

(2.11)
sU = P (x, ∂x)U + F (x) , x ∈ Ω
L(x, ∂x, s)U = G(x) , x ∈ Γ

2 To infer the existence of smooth solutions from one problem (2.9) or (2.11) to the other, one needs
in addition bounds for the spatial derivatives of solutions: exponential growth at a fixed rate int,
polynomial growth conditions ins
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has a unique smooth solutionU (x, s) for complexs with sufficiently large real part
(Re s > σ0, say) and smooth dataF andG, and there is a constantM such that

(2.12) ‖U (·, s)‖2
Ω + ‖U (·, s)‖2

Γ ≤M2 · {‖F‖2
Ω + ‖G‖2

Γ

}
, Re s > σ0 .

Hence, the solution operator of (2.11) extends by density to a bounded linear operator

K(s) : L2(Ω)n × L2(Γ )m → L2(Ω)n × L2(Γ )n : (F,G) 7→ (U,UΓ )

with operator norms bounded independently ofs:

(2.13) ‖K(s)‖ ≤M , Re s > σ0 .

Transforming back, it follows that the solution of (2.9) is given for smooth compatible
dataf andg as

(2.14)
(
u
u|Γ

)
= K(∂t)

(
f
g

)
,

in the notation of formula (2.2). Via Parseval’s formula, the bound (2.13) yields the
well-posedness estimate (2.10). We are thus back in the framework of Subsect. 2.1,
with µ = 0 in (2.1).

2.3. Boundary integral equations for the wave equation(cf. [BaH1],[BaH2])

To determine the outgoing wave scattered by an acoustically soft obstacle occupying
a smooth bounded domainΩ0 ⊂ R3, one requires the solution of the exterior Dirichlet
problem for the wave equation (hereΩ = R3\Ω0, Γ = ∂Ω)

(2.15)
∂2
tu = ∆u , x ∈ Ω , 0< t < T ,

u = g(x, t) , x ∈ Γ , 0< t < T ,

with initial conditionsu(x, 0) = ∂tu(x, 0) = 0 for x ∈ Ω. For smooth compatible
boundary datag there exists a unique smooth solutionu with u(·, t) ∈ H1(Ω) for all
t, which can be represented as a single-layer wave potential

(2.16) u(x, t) =
∫ t

0

∫
Γ

k(x− ξ, t− τ )ϕ(ξ, τ ) dξ dτ , x ∈ Ω , 0< t < T .

Herek(x, t) is the fundamental solution of the wave equation, which is the weighted
and shifted delta-functionk(x, t) = 1

4π|x|δ(t − |x|). It has the Laplace transform

K(x, s) = 1
4π|x|e

−|x|·s which will be seen to play a more important role thank
itself. Letting in (2.16)x tend to the boundary, we see that the densityϕ has to solve
the integral equation

(2.17)
∫ t

0

∫
Γ

k(x− ξ, t− τ )ϕ(ξ, τ ) dξ dτ = g(x, t) , x ∈ Γ , 0< t < T ,

to which we refer as thesingle-layer potential equation of the wave equation. For
smooth compatible Dirichlet datag this equation has a smooth solution: Green’s
formula shows that the difference between the normal derivatives of the solutions of
the exterior and the interior Dirichlet problem of the wave equation satisfies (2.17).
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The further solution theory for equation (2.17) follows from that of the family of
equations

(2.18)
∫
Γ

K(x− ξ, s)Φ(ξ) dξ = G(x) , x ∈ Γ , Re s > σ0 > 0 .

This is the single-layer potential equation of the Helmholtz equation∆U − s2U = 0,
and we abbreviate it as

(2.19) V (s)Φ = G .

Mapping properties ofV (s) between suitable Sobolev spaces overΓ are quoted in
the following theorem.

Proposition 2.3. [BaH1, Prop.3]For Re s = σ > 0, the single-layer potential opera-
tor V (s) extends by density to an isomorphism

V (s) : H−1/2(Γ ) → H1/2(Γ )

which for allψ ∈ H−1/2(Γ ) satisfies

Re 〈sV (s)ψ,ψ〉 ≥ c · min(1, σ)
|s| ‖ψ‖2

H−1/2(Γ )

‖V (s)ψ‖H1/2(Γ ) ≤ C · |s| · max(1, σ−2)
σ

· ‖ψ‖H−1/2(Γ )

Here 〈·, ·〉 denotes the anti-duality betweenH1/2(Γ ) andH−1/2(Γ ), andc andC are
positive constants which depend only onΓ .

In particular, it follows that the operator norm ofV −1(s) : H1/2(Γ ) → H−1/2(Γ ) is
bounded by

(2.20) ‖V −1(s)‖ ≤M (σ0) · |s|2 , Re s > σ0 > 0 .

Since the single-layer potential equation (2.17) can be written in the notation of
formula (2.2) as

(2.21) V (∂t)ϕ = g ,

we get from the composition rule (2.3) that for temporally smooth datag(·, t) ∈
H1/2(Γ ) which vanish neart = 0, there exists a unique smooth solutionϕ(·, t) ∈
H−1/2(Γ ) which is given by

(2.22) ϕ = V −1(∂t)g .

Using the bound (2.20) in Lemma 2.1 (withV −1(s) in the role ofK(s) andµ = 2),
we obtain the a-priori estimate

(2.23) ‖ϕ‖Hr
0 (0,T ;H−1/2(Γ )) ≤ CT · ‖g‖Hr+2

0 (0,T ;H1/2(Γ )) (r ∈ R)

and thus also pointwise bounds in 0≤ t ≤ T :

(2.24) ‖ϕ(·, t)‖H−1/2(Γ ) ≤ CT · ‖g‖Hr
0 (0,T ;H1/2(Γ )) (r > 5

2)
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The solution operatorV −1(∂t) can clearly be extended to an operator between spaces
as indicated by the norms above. This defines generalized solutions of (2.17) for
nonsmooth datag. With the single-layer potential operatorS(s) onΩ defined by

(2.25) (S(s)Φ)(x) =
∫
Γ

K(x− ξ, s)Φ(ξ) dξ , x ∈ Ω

(like V (s), but for x off the boundary), the representation formula (2.16) becomes

(2.26) u = S(∂t)ϕ = (SV −1)(∂t)g ,

using (2.22) and the composition rule (2.3) in the second equality. The composed
operator (SV −1)(s) : G 7→ U , which maps Dirichlet data to the solution of the
Helmholtz equation∆U − s2U = 0 onΩ, extends to an operator fromH1/2(Γ ) to
H1(Ω) which for Res = σ > σ0 > 0 is bounded by [BaH1, Prop.1]:

(2.27) ‖U‖H1(Ω) + ‖sU‖L2(Ω) ≤ C(σ0)/σ · |s|3/2 · ‖G‖H1/2(Γ ) .

As before, this leads to estimates ofu(x, t) of (2.26) in terms of the datag(x, t).
This analysis can be considerably extended. For example, a nearly identical treat-

ment applies to the Dirichlet problem of thedissipativewave equation

∂2
tu + α∂tu = ∆u with α > 0 .

Here the time-dependent fundamental solutionkα(x, t) is of a very complicated nature,

but its Laplace transform is nearly as simple as before:Kα(x, s) = 1
4π|x|e

−|x|·
√
s2+αs =

K(x,
√
s2 + αs). With Vα(s) = V (

√
s2 + αs), the single-layer potential equation reads

Vα(∂t)ϕ = g, and since again‖V −1
α (s)‖ ≤M (σ0)·|s|2 for Re s > σ0 > 0, its solution

ϕ = V −1
α (∂t)g is bounded as in (2.23) and (2.24) above. The two-dimensional case

can be treated in the same way.
To mention further extensions: All the boundary integral equations of classical

potential theory have analogues for the (dissipative or pure) wave equation and the
heat equation, and their solution theory follows from the analysis of the correspond-
ing integral equations for complex Helmholtz equations3. See [BaH2] for the Neu-
mann problem of the wave equation, and [LuS] for the heat equation. Nonstationary
boundary integral equations of elasticity have been studied in [Be], again by trans-
lating properties of the Laplace transformed problems back into the time domain.
Concerning practical applications of time-dependent boundary integral equations in
engineering, we refer to [An],[Br], and the many references therein.

3 This is not to say, however, that they are all equally useful: Second-kind boundary integral equations
appear to have little to recommend for the wave equation, quite in contrast to the heat equation
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3. Convolution quadrature

3.1. Operational quadrature methods(cf. [Lu1])

In the situation of Sect. 2.1, we approximate the convolutionK(∂t)g = k ∗ g by a
discrete convolution which we denote

(3.1)
(
K(∂ht )g

)
(t) :=

∑
j≥0

ωjg(t− jh) .

Hereh > 0 is a time stepsize, and the convolution quadrature weightsωj ≡ ωj(h,K)
are defined as the coefficients of the generating power series

(3.2)
∞∑
j=0

ωjζ
j := K

(
δ(ζ)
h

)
, |ζ| small.

Hereδ(ζ) =
∑∞

0 δjζ
j is the quotient of the generating polynomials of a linear mul-

tistep method
∑k
j=0αjyn−j = h

∑k
j=0βjfn−j for differential equationsy′ = f (y):

(3.3) δ(ζ) =
α0 + α1ζ + . . . + αkζk

β0 + β1ζ + . . . + βkζk

We always assume thatα0/β0 > 0, so that (3.2) is well-defined at least for sufficiently
smallh.

The notation (3.1) is used because in analogy to (2.2),

(3.4) ∂ht g(t) =
1
h

∑
j≥0

δj g(t− jh)

is a backward difference approximation of∂tg = g′, and there is again the composition
rule

(3.5) K2(∂ht )K1(∂ht )g = (K2 ·K1)(∂ht )g ,

which follows from ωn(h,K2K1) =
∑n
j=0ωn−j(h,K2)ωj(h,K1), a direct conse-

quence of the definition (3.2).
As before, we restrict our attention to functionsg which vanish on the negative

half-axis t < 0 (and, for convenience, also for very large positive argumentst). On
the grid tn = n · h (n = 0, 1, 2, . . .) we then have

(3.6) yn := K(∂ht )g (nh) =
n∑
j=0

ωn−j g(jh) ,

and the generating functionsY (ζ) =
∑∞
n=0 ynζ

n andG(ζ) =
∑∞
n=0 g(nh)ζn are related

by

(3.7) Y (ζ) = K(δ(ζ)/h) ·G(ζ) ,

in analogy to (2.4).
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Our interest is in deriving convergence estimates forK(∂ht )g(t) whenK(s), Re s >
σ0, is bounded by (2.1), andg is a fairly smooth function. This will be possible under
the assumption that the multistep method isA-stable, i.e.,

(3.8) Reδ(ζ) > 0 for |ζ| < 1 .

The multistep method is oforder p if

(3.9)
1
h
δ(e−h) = 1 +O(hp) as h→ 0 .

We recall that the orderp cannot exceed 2 for A-stable multistep methods [Da].
Well-known examples of second-order A-stable methods are the backward difference
formulaδ(ζ) = 3

2−2ζ+ 1
2ζ

2, and the trapezoidal rule which corresponds toδ(ζ) = 21−ζ
1+ζ .

If K(s) is analytic and bounded by (2.1) in a larger sector| arg(s− σ0)| < π − ϑ
with ϑ < π

2 , thenA(α)-stability with α > ϑ is sufficient, and stronger convergence
results than those below can be derived, see [Lu1],[Eg].

Computationally, the quadrature weightsωn are obtained by approximating the
Cauchy integral

ωn =
1

2πi

∫
|ζ|=ρ

K(δ(ζ)/h) · ζ−n−1 dζ

by the trapezoidal rule

(3.10) ωn
.
=
ρ−n

L

L−1∑
`=0

K(δ(ζ`)/h) · e−2πi·n`/L , n = 0, 1, . . . , N ,

with ζ` = ρ · e2πi`/L.
Let us first consider the caseµ ≤ 0 in (2.1). If we assume that the values of

K in (3.10) are computed with an error bounded byε, then the choiceL = 2N and
ρn =

√
ε yields an error inωn of sizeO(

√
ε), see [Lu1, Sect.7]. The sums in (3.10) are

computed by FFT, and thus one obtainsω0, . . . , ωN usingO(N logN ) arithmetical
operations.

For µ > 0, it appears preferable to rewriteK(s) = Km(s)sm with m ≥
µ, to compute the backward difference quotients (∂ht )mg, and thenK(∂ht )g =
Km(∂ht )

(
(∂ht )mg

)
, using the weightsωn(h,Km) computed by (3.10).

3.2. Pointwise error bounds

We shall now give pointwise error bounds ofK(∂ht )g(t), uniformly over bounded
intervals. We are mainly interested in the case whereg is a smooth function on
[0, T ], whose extension by 0 to the negative half-axis need not necessarily be smooth
at t = 0. We may then splitg into its Taylor polynomial at 0 and the remainder whose
extension by 0 is sufficiently smooth. By linearity, we may study the error of the
parts separately.

Depending on the sign of the exponentµ in the bound (2.1) ofK(s), we will
make additional assumptions about the discretization method:

(3.11) δ(ζ) has no poles on the unit circle.
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(3.12) δ(ζ) has no zeros on the unit circle, with the exception ofζ = 1.

We note that condition (3.11) excludes the trapezoidal rule.

Theorem 3.1. Let K(s), Re s > σ0, be analytic and bounded by (2.1). Let the dis-
cretization method be A-stable, (3.8), and of orderp, (3.9). Ifµ > 0 (resp.µ < 0) in
(2.1), then condition (3.11) (resp. (3.12)) is to be satisfied.

(i) Let m ≥ max(p + 2 + µ, p). For smooth datag on [0, T ] with g(0) = . . . =
g(m−1)(0) = 0, we have in0 ≤ t ≤ T

(3.13) |K(∂ht )g(t) −K(∂t)g(t)| ≤ C · hp ·
∫ t

0
|g(m)(τ )|dτ .

(ii) For g(t) = tr (extended by 0 to negativet) with real r > µ andr ≥ 0, we have in
0 ≤ t ≤ T

(3.14) |K(∂ht )g(t) −K(∂t)g(t)| ≤ C · hα

with α = min((r − µ) p
p+1, r + 1, p).

These error bounds are valid for0 < h ≤ h0, whereh0 depends only onσ0 and
the discretization methodδ(ζ). The constantsC are proportional toM and depend on
µ, σ0, T, h0, and the method, and in (ii) additionally onr.

Proof. (a) In case (i), we first extendg(t) to t > T as the (m − 1)-st degree Taylor
polynomial ofg at T . The error function

(3.15) eh(t) = K(∂ht )g(t) −K(∂t)g(t)

has the Laplace transform

(3.16) L eh(s) =
{
K
(
δ(e−sh)/h

)−K(s)
} ·L g(s) .

The A-stability condition (3.8) implies that there existσ1 ≥ σ0 andh0 > 0 such that

(3.17) Reδ(e−sh)/h > σ0 for Re s > σ1 , 0< h < h0 .

Consequently,L eh(s) exists for Res = σ > max(σ1, 0). Provided that this is inte-
grable alongσ + iR, the Laplace inversion formula gives

(3.18) eh(t) =
1

2πi

∫
σ+iR

est
{
K
(
δ(e−sh)/h

)−K(s)
} ·L g(s) ds .

We will show in part (b) of the proof that forr > max(µ, 0) and for fixedσ >
max(σ1, 0) we have

(3.19)
∫
σ+iR

∣∣{K (δ(e−sh)/h
)−K(s)

} · s−r−1
∣∣ · |ds| = O(hα)

with α as in the theorem. SinceΓ (r + 1) · s−r−1 (with Euler’s Γ -function) is the
Laplace transform oftr, this yields statement (ii) of the theorem forr > 0. The case
r = 0 > µ will be studied in part (c) of the proof. The error bound in case (i) is
obtained from (3.19) withr + 1 =m, and from the estimate
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sup
Re s=σ

|smL g(s)| = sup
Re s=σ

|L g(m)(s)| ≤
∫ ∞

0
e−σt|g(m)(t)| dt .

By our extension ofg beyond [0, T ], this is actually the integral from 0 toT , and the
result follows.

(b) We now prove (3.19). We writes ≡ σ + iω, with fixed σ > max(σ1, 0). The
integral in question is bounded by

I + II + III =
∫
|ωh|≤π

∣∣{K (δ(e−sh)/h
)−K(s)

} · s−r−1
∣∣ dω

+
∫
|ωh|≤π

∣∣K (δ(e−sh)/h
)∣∣ ·∑

n/=0

|s + 2πi · n/h|−r−1
dω

+
∫
|ωh|≥π

|K(s) · s−r−1| dω .

By (2.1) we haveIII = O(hr−µ). For r > 0 the series inII converges, and so we
get

II ≤ C hr+1 ·
∫ π/h

−π/h

∣∣K (δ(e−sh)/h
)∣∣ dω ≤ C hr+1 ·

∫ π/h

−π/h
M · |δ(e−sh)/h|µ dω

Now the consistency condition (3.9) and condition (3.11) or (3.12) (depending on the
sign ofµ) imply

(3.20)
∣∣δ(e−sh)/h

∣∣µ ≤ C · |s|µ for s = σ + iω , |ωh| ≤ π .

It follows that

II =


O(hr+1) µ < −1

O(hr+1 logh) µ = −1

O(hr−µ) µ > −1 .

We still have to boundI. First we note that by Cauchy’s integral formula for the
derivative, alsoK ′(s) is bounded in the same way asK(s) over a half-plane:

(3.21) |K ′(s)| ≤ M

σ − σ0
· |s|µ , Re s = σ > σ0 .

By (3.20), we therefore have fors = σ + iω with |ωh| ≤ π

(3.22)
∣∣K (δ(e−sh)/h

)−K(s)
∣∣ ≤ C · |s|µ · ∣∣δ(e−sh)/h− s

∣∣ ≤ C ′ · hp · |s|p+1+µ ,

using (3.9) in the last inequality. By (2.1) and (3.20) we also have

(3.23)
∣∣K (δ(e−sh)/h

)−K(s)
∣∣ ≤ C · |s|µ ,

which is a tighter bound for|s| ≥ h−p/(p+1). We thus get

I ≤ C ·
∫
σ≤|s|≤h−p/(p+1)

hp · |s|p+1+µ · |s|−r−1 · |ds|

+C ·
∫
|s|≥h−p/(p+1)

|s|µ · |s|−r−1 · |ds| = O(hp) +O(h(r−µ)·p/(p+1)) .
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This yields (3.19).
(c) The caser = 0 > µ requires a separate treatment. We use (3.7) withG(ζ) =∑∞

0 1 · ζn = 1/(1− ζ) and apply Cauchy’s integral formula to obtain fornh ≤ t <
(n + 1)h

K(∂ht )1(t) =
1

2πi

∫
|ζ|=ρ

ζ−n−1K

(
δ(ζ)
h

)
1

1− ζ
dζ .

Substitutingζ = e−sh with s ≡ σ + iω, we thus have

K(∂ht )1(t) =
1

2π

∫
|ωh|≤π

estK

(
δ(e−sh)
h

)
h

1− e−sh
dω .

SubtractingK(∂t)1(t) expressed by the Laplace inversion formula, we get for the
error

|eh(t)| ≤ eσt

2π

(
I + III +

∫
|ωh|≤π

∣∣∣∣K (δ(e−sh)
h

){
h

1− e−sh
− s−1

}∣∣∣∣ dω
)
,

whereI and III are the same expressions as in part (b) of the proof. By (2.1) and
(3.20), the integrand in the last term is bounded byCh|s|µ, and hence the integral
is bounded likeII above, withr = 0. So we get the desired result also for the case
r = 0.

Theorem 3.2. Under the conditions of Theorem 3.1, we have for datag ∈ Hr+1/2
0 (0, T )

(see (2.5)) withr > max(µ, 0) the following error bound in0 ≤ t ≤ T :

(3.24) |K(∂ht )g(t) −K(∂t)g(t)| ≤ C · hβ | logh| · ‖g‖Hr+1/2

with β = min((r − µ) p
p+1, r, p). If the first two terms in the definition ofβ are strictly

greater thanp, then the factor| logh| can be omitted. The constantC depends on the
same quantities as in Theorem 3.1.

Proof. The Sobolev inequality gives|eh(t)| ≤ (C/ε) · ‖eh‖H1/2+ε for ε > 0. We use
Parseval’s formula in (3.16) to get the bound

‖eh‖H1/2+ε ≤ Cσ · sup
Re s=σ

∣∣{K(δ(e−sh)/h) −K(s)
} · s−r+ε

∣∣ · ‖g‖Hr+1/2 .

Estimating the supremum as in part (b) of the preceding proof and settingε = 1/| logh|
yields the result.
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Remarks.(a) If σ0 < 0 in (2.1), then a slight modification of the proof shows that the
bounds in Theorem 3.1(i) and Theorem 3.2 are valid uniformly over the whole half-
line t ≥ 0. The same is true for Theorem 3.1(ii) withtr replaced by the exponentially
decaying functiontr · e−t.

(b) If the derivative ofK(s) satisfies in Res > σ′0 a bound|K ′(s)| ≤ M ′ · |s|µ′
with µ′ < µ, then the error bounds hold withp/(p+ 1) replaced byp/(p+ 1 +µ′−µ)
in the definition ofα andβ (andγ below.) This follows easily from the estimation of
the termI in part (b) of the proof of Theorem 3.1. Note that alwaysµ− 1 ≤ µ′ ≤ µ.

3.3. `2 error bounds

For brevity, we denote the error at the grid points by

(3.25) en = yn − y(nh) = K(∂ht )g(nh) −K(∂t)g(nh) , n = 0, 1, 2, . . .

The following `2 error bounds are slightly more favorable than their pointwise coun-
terparts.

Theorem 3.3. Let the assumptions of Theorem 3.1 hold.
(i) For g ∈ Hr

0 (0, T ) with r > 1
2 + max(µ, 0), we have withβ = min

(
(r − µ) p

p+1, r, p
)

(3.26)
(
h
∑N
n=0 |en|2

)1/2
≤ C · hβ · ‖g‖Hr .

(ii) For g(t) = tr with r > µ andr ≥ 0, we have withγ = min
(
(r−µ+ 1

2) p
p+1, r+ 1, p

)
(3.27)

(
h
∑N
n=0 |en|2

)1/2
≤ C · hγ .

The bounds are valid uniformly for0< h ≤ h0 andNh ≤ T . The constantsC depend
on the same quantities as in Theorem 3.1.

Proof.The proof uses Poisson’s summation formula, Parseval’s formula, and estimates
from the proof of Theorem 3.1.

After extendingg to g ∈ Hr(R) with compact support int ≥ 0, we start from
the relation (3.7). By Poisson’s summation formula, the generating function of the
grid-values ofg at ζ = e−sh equals

h

∞∑
n=0

g(nh) e−shn =
∞∑

m=−∞
L g(s + 2πimh ) .

By (3.7) and (3.17), this gives for 0< h ≤ h0

(3.28) h
∞∑
n=0

yn e−shn = K
(
δ(e−sh)/h

) · ∞∑
m=−∞

L g(s + 2πimh ) , Re s > σ1 .

We use Poisson’s summation formula once more fory = K(∂t)g and insert (2.4) to
get
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(3.29) h
∞∑
n=0

y(nh) e−shn =
∞∑

m=−∞
K(s + 2πimh ) ·L g(s + 2πimh ) , Re s > σ0 .

The lower bounds onr required in the theorem guarantee the absolute convergence
of the right-hand series in (3.28) and (3.29) and the validity of Poisson’s summation
formula. (An exception is again the caser = 0 > µ of (ii). Here the infinite sum in
(3.28) has to be interpreted as the Abel mean.)

Parseval’s formula now shows that fors ≡ σ + iω with fixed σ > σ1(≥ σ0) we
have

h

∞∑
n=0

e−2σnh|yn − y(nh)|2

=
1

2π

∫
|ωh|≤π

∣∣∣∣∣
∞∑

m=−∞

{
K(δ(e−sh)/h) −K(s + 2πimh )

} ·L g(s + 2πimh )

∣∣∣∣∣
2

dω .

(3.30)

We extract the term form = 0 from the sum (according to|a + b|2 ≤ 2(|a|2 + |b|2))
and estimate its integral by(

sup
Re s=σ

∣∣{K(δ(e−sh)/h) −K(s)
} · s−r∣∣)2

· ‖e−σtg‖2
Hr (R) .

The supremum has already been seen to beO(hβ) in the proof of Theorem 3.2. We
apply the Cauchy-Schwarz inequality to the remaining term in (3.30) to get it bounded
by∫
|ωh|≤π

∑
m/=0

∣∣{K(δ(e−sh)/h) −K(s + 2πimh )
} · (s + 2πimh )−r

∣∣2 dω · ‖e−σtg‖2
Hr(R) .

The above integral is bounded by∫
|ωh|≤π

∣∣K (δ(e−sh)/h
)∣∣2 ·∑

m/=0

∣∣s + 2πimh
∣∣−2r

dω +
∫
|ωh|≥π

|K(s) · s−r|2 dω .

By the same arguments as in the proof of Theorem 3.1, we obtain that both these
terms areO(h2β). This gives (i).

In (ii), L g(s) is a multiple ofs−r−1. Here we bound the terms form /= 0 in the
same way as the above integrals, withr replaced byr + 1. The term coming from
m = 0 is now ∫

|ωh|≤π

∣∣{K(δ(e−sh)/h) −K(s)
} · s−r−1

∣∣2 dω ,

and the inequalities (3.22) and (3.23) imply that this isO(h2γ).

3.4. Conditional error bounds

The following situation typically arises from stable space discretizations:K(s) =
K∆(s) is parameterized by a small parameter∆ > 0 and is analytic and bounded by
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(2.1) not only in a half-plane Res > σ0, but additionally outside a circle with radius
1/∆ and center at the origin. In this case, we can weaken the A-stability assumption
to the following condition: There existsR > 0 such that

(3.31) Reδ(ζ) > 0 or |δ(ζ)| > R , for all |ζ| < 1 .

Equivalently, this states that the half-disk{Re z < 0} ∩ {|z| < R} is contained in
the stability region of the multistep method. Such methods are calledlocally stablein
[KrS], see also Sect. 5 of [ReT]. This class of methods includes explicit and implicit
multistep methods of arbitrary order. The arguments of the foregoing proofs apply
unchanged to give us the following result.

Theorem 3.4. LetK(s) be analytic and bounded by (2.1) on{Re s > σ0} ∪ {|s∆| >
1}. Under the stepsize restriction

h ≤ R∆

the error bounds of Theorems 3.1–3.3 remain valid when the A-stability assumption is
replaced by condition (3.31). The constants depend on the same quantities as previ-
ously, and in particular are independent of∆.

4. Multistep time discretization of linear initial-boundary value problems

We consider again the initial-boundary value problem (2.9) which we assume through-
out to be strongly well-posed in the generalized sense. We discretize in time by a linear
multistep method, with the special starting valuesun = 0 for n ≤ 0, compatible with
(2.9c). (More general starting values might be put into right-hand terms in equation
(4.1) below.) In the notation of (3.1), this can be equivalently written as a system of
the form (2.9) with∂t formally replaced by∂ht :

(4.1)
∂ht u

h = P (x, ∂x)uh + f (x, t) , x ∈ Ω , t = nh ≥ 0

L(x, ∂x, ∂
h
t )uh = g(x, t) , x ∈ Γ , t = nh ≥ 0 .

By considering the generating functionUh(x, ζ) =
∑∞

0 uh(x, nh)ζn and similarly
F (x, ζ), G(x, ζ) (to avoid convergence problems we may assume thatf andg vanish
for sufficiently larget), we get from (3.7) thatUh has to solve the boundary-value
problem

(4.2)

δ(ζ)
h

· Uh = P (x, ∂x)Uh + F in Ω

L(x, ∂x,
δ(ζ)
h

)Uh = G on Γ

which is (2.11) withs replaced byδ(ζ)/h. For spatially smooth dataf and g, we
obtain a unique solution in terms of the solution operatorK(s) of (2.11):(

Uh

Uh|Γ
)

= K

(
δ(ζ)
h

)(
F
G

)
.

Transforming back via (3.7), we thus get
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(4.3)
(
uh

uh|Γ
)

= K(∂ht )
(
f
g

)
.

For nonsmooth data, this defines generalized solutions (like in the time-continuous
case). As a first consequence of (4.3) and the bound (2.13) we can state the following
stability lemma.

Lemma 4.1. Consider the semi-discretization (4.1) by an A-stable multistep method.
For spatially smooth dataf andg, there exists a unique solutionuh = (un)n≥0 which
is bounded by

h

N∑
n=0

‖un‖2
Ω + h

N∑
n=0

‖un‖2
Γ ≤ C ·

{
h

N∑
n=0

‖f (·, nh)‖2
Ω + h

N∑
n=0

‖g(·, nh)‖2
Γ

}
.

This holds uniformly for0 ≤ Nh ≤ T and 0 ≤ h ≤ h0, whereh0 depends onσ0 of
(2.13) and the multistep method (h0 is arbitrary if σ0 ≤ 0.) The constantC can be
chosen to depend only onM of (2.13), onσ0, T , andh0.

Proof. For ease of exposition, let us first consider the caseσ0 ≤ 0 in (2.13). Then
Parseval’s formula implies that thè2 operator norm ofK(∂ht ) is bounded by

sup
|ζ|<1

‖K(δ(ζ)/h)‖ ≤ sup
Re s>0

‖K(s)‖ ≤M .

Here we have used A-stability (3.8) in the first inequality, and (2.13) in the second
inequality. This gives the stated result withC = M for σ0 ≤ 0.

For the general case we observe that Reδ(ζ) > hσ0 for |ζ| < e−γh, with γ =
cσ0 + O(h) and a positive constantc. (Actually, c = 1 if ζ = 1 is the only zero of
δ(ζ) on the unit circle, and ifδ(ζ) has no poles on the unit circle.) Again, we get via
Parseval’s formula

∞∑
n=0

e−2γnh
{‖un‖2

Ω + ‖un‖2
Γ

} ≤M2
∞∑
n=0

e−2γnh
{‖f (·, nh)‖2

Ω + ‖g(·, nh)‖2
Γ

}
which yields the stated bound.

Remark.For algebraically stable Runge-Kutta methods, a corresponding stability es-
timate follows with the proof of Proposition 10 in [LuO].

In the usual way, the stability bound leads to`2 convergence estimates in terms of
the solution. On the other hand, in view of (2.14) and (4.3), the convergence results
of the foregoing section yield error bounds in terms of the data. For example, we
get from Theorem 3.1 the following pointwise estimates. Further error estimates are
given by Theorems 3.2 and 3.3.
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Corollary 4.2. For smooth data(f, g) on [0, T ] with f (·, 0) = 0 inΩ andg(·, 0) = 0on
Γ , the error of the temporal semi-discretization (4.1) by an A-stable multistep method
of order 2 is bounded att = nh by

‖un − u(·, t)‖Ω + ‖un − u(·, t)‖Γ ≤C ·
3∑

m=1

h2m/3
{‖f (m)(·, 0)‖Ω + ‖g(m)(·, 0)‖Γ

}
+C · h2

∫ t

0

{‖f (4)(·, τ )‖Ω + ‖g(4)(·, τ )‖Γ
}
dτ

uniformly for boundedt andh ≤ h0.

Here, non-vanishing time derivatives off andg at 0 should be interpreted as violations
of compatibility conditions. Arbitrary starting values can be accounted for by adding
a polynomial of degree not exceeding the order of the multistep method to both the
exact and the time-discrete solution. These can then be interpreted as solutions of an
equation of the form (2.9) (with modifiedf and g) with arbitrary initial value and
starting values.

Stronger results are valid for parabolic problems where (2.13) (or equivalently
(2.12)) holds in a sector| arg(s − σ0)| < π − ϑ with ϑ < π

2 . For p-th order strongly
A(α)-stable methods withα > ϑ, the full order of convergencep can be restored on
time intervals bounded away from 0 in the case of smooth data which are incompatible
at t = 0, cf. [LuS].

As the constants in Lemma 4.1 and Corollary 4.2 depend only on bounds for the
solution operator of (2.11), the results extend to the fully discrete situation where
the multistep method is applied to stable space discretizations of the initial-boundary
value problem. Here, Theorem 3.4 yields in addition conditional convergence for
methods which are not necessarily A-stable.

5. Time discretization of boundary integral equations

In this section we study temporal and to some extent spatial discretization of the single-
layer potential equation of the (possibly dissipative) wave equation, as an instructive
example of time-dependent boundary integral equations.

5.1. Semi-discretization in time

We recall the single-layer potential equation of the wave equation (2.17) in the notation
of (2.2):

(5.1) V (∂t)ϕ = g on Γ × (0, T ) ,

whereV (s) : H−1/2(Γ ) → H1/2(Γ ) denotes the single-layer potential operator of the
Helmholtz equation∆U − s2U = 0, see (2.18) and Prop. 2.3. Given a time stepsize
h > 0, we obtain a semi-discretization in time by setting fort = nh (n = 0, 1, 2, . . .)

(5.2) V (∂ht )ϕh = g on Γ × (0, T ) ,
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in the notation of (3.1). Withϕj = ϕh(·, jh), this is written more explicitly as the
temporally discrete convolution equation

(5.3)
n∑
j=0

ωn−j(h, V )ϕj = g(·, nh) on Γ , for n = 0, 1, 2, . . .

Here the “quadrature weights” are linear operatorsωn(h, V ) : H−1/2(Γ ) → H1/2(Γ )
defined by (3.2), viz.,

(5.4)
∑∞
n=0ωn(h, V ) ζn = V (δ(ζ)/h) ,

with an A-stable discretization methodδ(ζ). Provided thatg(·, nh) ∈ H1/2(Γ ) for all
n, equation (5.3) defines recursivelyϕn ∈ H−1/2(Γ ), sinceω0(h, V ) = V (δ(0)/h) is
an isomorphism betweenH−1/2(Γ ) andH1/2(Γ ) by Proposition 2.3. The composition
rule (3.5) gives us that

(5.5) ϕh = V −1(∂ht )g .

Convergence of the semi-discretization (5.2) is therefore obtained by using the bound
(2.20) forV −1(s) in Theorems 3.1–3.3. In particular, Theorem 3.3 gives us the fol-
lowing `2 error bound. Here and in the sequel we denote for brevity the norm on
Hr

0 (0, T ;Hq(Γ )) by ‖ · ‖q,r.

Theorem 5.1. Let the discretization method be A-stable and of order 2 (see (3.8) and
(3.9)), and satisfy (3.11). For smooth compatible datag onΓ × [0, T ] (thus sufficiently
many time derivatives ofg vanish att = 0!) the error of the semi-discretization (5.2)
is bounded by

(5.6)
(
h
∑N
n=0‖ϕn − ϕ(·, nh)‖2

H−1/2(Γ )

)1/2
≤ C · h2 · ‖g‖ 1

2 ,5
,

uniformly for boundedT = Nh andh ≤ h0. The constantC is independent ofh and
g.

For datag which are less smooth or less compatible than indicated by the norm on
the right-hand side of (5.6), Theorems 3.1–3.3 predict an order reduction.

Once an approximationϕh of the density has been obtained, the solution of the
wave equation can be approximated as a semi-discrete single-layer potential, cf. (2.26),

(5.7) uh = S(∂ht )ϕh onΩ × (0, T ) ,

whereS(s) : H−1/2(Γ ) → H1(Ω) is defined by (2.25). This approximate solution is
now compared to direct multistep semi-discretization of the wave equation.
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Theorem 5.2. For smooth compatible Dirichlet datag, the approximate solutionuh =
(un)n≥0 given by (5.7) and (5.2) is identical to the multistep semi-discretization of the
wave equation (2.15):

(5.8)

(
∂ht
)2
uh = ∆uh in Ω × (0, T )

uh = g onΓ × (0, T )

(with starting valuesuh(·, t) = 0 for t < 0 anduh(·, t) ∈ H1(Ω) for all t.) Under the
method assumptions of Theorem 5.1, the error is bounded by

(5.9)
(
h
∑N
n=0‖un−u(·, nh)‖2

H1(Ω)
+‖∂ht un−∂tu(·, nh)‖2

L2(Ω)

)1/2
≤ C ·h2·‖g‖ 1

2 ,
9
2
,

and pointwise in time by

(5.10) ‖un − u(·, nh)‖H1(Ω) + ‖∂ht un − ∂tu(·, nh)‖L2(Ω) ≤ C · h2 | logh| · ‖g‖ 1
2 ,5

,

uniformly on bounded intervals0 ≤ nh ≤ Nh = T . The constants are again indepen-
dent ofh ≤ h0 andg.

Proof. We start from the multistep semi-discretization (5.8). Since every time step
requires the solution of a Dirichlet problem for a non-homogeneous Helmholtz equa-
tion ∆un − (δ(0)/h)2 · un = fn with fn a linear combination of previous solution
values, equation (5.8) has a unique, spatially smooth solutionun ∈ H1(Ω) (n ≥ 0).
The generating functionsUh(x, ζ) =

∑∞
0 un(x) ζn andG(x, ζ) =

∑∞
0 g(x, nh) ζn

(where again we may assume for convenience thatg vanishes for larget) are related
via

(δ(ζ)/h)2 · Uh = ∆Uh in Ω

Uh = G on Γ .

This Dirichlet problem for the Helmholtz equation has a unique smooth solution in
H1(Ω) which can be represented as a single-layer potential (2.25):

Uh = S(δ(ζ)/h)Φh ,

whereΦh satisfies the single-layer potential equation (2.19):

V (δ(ζ)/h)Φh = G .

Now (3.7) shows thatuh of (5.8) satisfies (5.7) with (5.2). The error estimates follow
from the bound (2.27) used in Theorems 3.2 and 3.3.



Multistep time discretization of boundary value problems 385

The above results extend immediately to the dissipative wave equation, cf. Sect. 2.3.
Similar results for the Neumann problem follow by combining the estimates given
in formulas (2.6) and (2.7) of [BaH2] with Theorems 3.1–3.3. For transient bound-
ary integral equations of elasticity, convergence of temporal semi-discretizations is
obtained by using the a-priori bounds of [Be] for the Laplace transformed problem
in our Theorems 3.1–3.3. Stronger results, in particular for incompatible data, are
available for boundary integral equations of parabolic problems [LuS].

5.2. Galerkin semi-discretization in space

To prepare for the fully discrete scheme, we study in this subsection space dis-
cretization by a Galerkin boundary element method. We write∆x for a small spatial
discretization parameter, and letX∆x ⊂ L2(Γ ) denote a family of finite-dimensional
approximation spaces of orderm, in the sense that

inf
ψ∆x∈X∆x

‖ψ∆x − ψ‖H−1/2(Γ ) ≤ C ·∆xm+ 1
2 · ‖ψ‖Hm(Γ ) , for all ψ ∈ Hm(Γ ) .

(5.11)

As shown in Sect. 1.1 of [Ne], this is satisfied withm = 1 orm = 2, respectively, for
approximation by piecewise constant or continuous piecewise linear functions over
non-degenerate triangulations of maximum meshwidth∆x.

A spatial semi-discretization of the single-layer potential equation (5.1) can be
done by a Galerkin method: Given smooth compatible datag on Γ × [0, T ], find
ϕ∆x(·, t) ∈ X∆x depending smoothly ont, such that in 0≤ t ≤ T

(5.12) 〈(V (∂t)ϕ∆x
)
(·, t), ψ∆x〉 = 〈g(·, t), ψ∆x〉 for all ψ∆x ∈ X∆x ,

with the L2(Γ ) scalar product. (One verifies that this spatial semi-discretization is
identical to that of formula (4.1) in [BaH1].) Stability and convergence are shown
next.

Lemma 5.3. For smooth compatible datag onΓ × [0, T ], the above time-continuous
Galerkin scheme has a unique solutionϕ∆x, which is bounded like (2.23) for arbitrary
r ∈ R (even with the same constantCT ):

(5.13) ‖ϕ∆x‖− 1
2 ,r

≤ CT · ‖g‖ 1
2 ,r+2 .

The error is bounded by

(5.14) ‖ϕ∆x − ϕ‖− 1
2 ,r

≤ C ·∆xm+ 1
2 · ‖ϕ‖m,r+3 .
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Proof. We denote byP∆x : L2(Γ ) → X∆x and Π∆x : H−1/2(Γ ) → X∆x the
orthogonal projections ontoX∆x.

(a) With

(5.15) V∆x(s) = P∆xV (s)P ∗∆x : X∆x → X∆x

the scheme (5.12) is written equivalently as

(5.16) V∆x(∂t)ϕ∆x = P∆xg .

Since by definition,

〈sV∆x(s)ψ∆x, ψ∆x〉 = 〈sV (s)ψ∆x, ψ∆x〉 for all ψ∆x ∈ X∆x ,

the coercivity estimate of Proposition 2.3 implies the invertibility ofV∆x(s) for Re s >
0 and the same bound as in (2.20):

(5.17) ‖V −1
∆x (s)P∆x‖ ≤ c−1 · |s|2 (Re s > σ0 > 0)

for theH1/2(Γ ) → H−1/2(Γ ) operator norm. The composition rule (2.3) now shows
that

ϕ∆x = V −1
∆x (∂t)P∆xg

is the unique temporally smooth solution of (5.16), and (5.17) together with Lemma
2.1 shows that this is bounded by (5.13).

(b) To prove the error bound, we form the difference of (5.16) and equation (5.1)
premultiplied byP∆x to get

V∆x(∂t) (ϕ∆x −Π∆xϕ) = P∆xV (∂t) (I −Π∆x)ϕ .

The stability estimate (5.13) thus gives us

‖ϕ∆x −Π∆xϕ‖− 1
2 ,r

≤ CT · ‖V (∂t)(I −Π∆x)ϕ‖− 1
2 ,r+2 .

The bound ofV (s) in Proposition 2.3 together with Lemma 2.1 then shows that the
right-hand side is bounded by a constant multiple of‖(I − Π∆x)ϕ‖− 1

2 ,r+3, which

in turn is bounded by the right-hand side of (5.14) because of the approximation
property (5.11).

5.3. Full discretization

We now combine the Galerkin boundary element method in space with operational
quadrature in time and show unconditional convergence of the resulting fully discrete
scheme. For clarity, we denote in this subsection the time step size by∆t (instead of
h). Superscripts refer to time, subscripts to space.

We get a fully discrete scheme by formally replacing∂t by ∂∆tt in (5.12): Find
ϕ∆t∆x = (ϕn)n≥0 in X∆x such that for 0≤ t = n∆t ≤ T

(5.18) 〈(V (∂∆tt )ϕ∆t∆x
)
(·, t), ψ∆x〉 = 〈g(·, t), ψ∆x〉 for all ψ∆x ∈ X∆x .

With all the preparations done, convergence follows without more ado.
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Theorem 5.4. Let the time discretization method be A-stable and of orderp and satisfy
(3.11), and let the space discretization be of orderm as specified by (5.11). For smooth
compatible datag, the fully discrete method (5.18) (Galerkin in space, operational
quadrature in time) is unconditionally convergent of optimal order:

‖ϕn − ϕ(·, n∆t)‖H−1/2(Γ ) = O(∆tp) +O(∆xm+ 1
2 ) ,

uniformly over bounded time intervals.

Proof. We split
ϕ∆t∆x − ϕ =

(
ϕ∆t∆x − ϕ∆x

)
+
(
ϕ∆x − ϕ

)
.

The first term equals

ϕ∆t∆x − ϕ∆x = V −1
∆x (∂∆tt )P∆x g − V −1

∆x (∂t)P∆x g

with V∆x(s) of (5.15). Using the bound (5.17) in Theorem 3.1 or 3.2, this is seen to
be O(∆tp) as required. The second term is the spatial discretization error, and the
result follows from Lemma 5.3.

It remains to discuss the actual implementation of (5.18). Letχi (i = 1, . . . , I) be
the basis functions chosen for the boundary element spaceX∆x. For Res > 0, we
denote the Galerkin matrix by

(5.19) A(s) =
(
aij(s)

) ∈ CI×I , aij(s) = 〈V (s)χj , χi〉 , i, j = 1, . . . , I .

Data vectors are written forn = 0, 1, . . . , N as

gn =
(
gni
) ∈ RI , gni = 〈g(·, n∆t), χi〉 , i = 1, . . . , I .

The unknown coefficients of the approximate solution

ϕn =
I∑
i=1

φni χi

are collected in a vectorφn ∈ RI . Finally, letAn = ωn(∆t,A) ∈ RI×I be defined
by (3.2) withA(s) in the role ofK(s). Then, the method (5.18) is equivalent to the
recursion

(5.20)
n∑
j=0

An−j φj = gn , n = 0, 1, . . . , N .

In every time step we thus have to solve a linear system with the same symmetric
positive definite matrixA0 = A(δ(0)/∆t). Moreover, the exponential decay of the
fundamental solution for reals > 0 implies that the entries ofA0 behave likea0

ij =

O(e−dij ·δ(0)/∆t) wheredij denotes the distance of the supports of the basis functions
χi andχj . The other recursion matricesAn (n = 1, . . . , N ) are computed to arbitrary
precision by (3.10). WithL = 2N in (3.10), this requires the computation of Galerkin
matricesA(s) for N + 1 different complex values ofs (a pleasure on massively
parallel computers!), andO(N · logN ) arithmetical operations for the computation of
the entriesanij (n = 1, . . . , N ) using FFT. The recursion (5.20) itself can be solved
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usingO(N · (logN )2) matrix-vector multiplications by the technique of [HaLS]. The
computational complexity is thus almost linear in the number of time steps.

In practice, the Galerkin matricesA(s) have to be approximated by perturbed
matricesÃ(s). These variational crimes should be committed systematically, such that
Ã(s) still depends analytically ons (except for very small perturbations). The recursion
matrix Ãn computed by (3.10) is then an accurate approximation ofωn(∆t, Ã). The
analysis of the effect of perturbations such as the approximation of the boundary can
be largely extended from elliptic boundary integral equations to the present parameter-
dependent case, see Sect. 6 of [BaH1] for a result of that type. Typically, the following
situation arises: There is a small parameterε characterizing the perturbation such that
the perturbed matrixAε(s) has an inverse bounded byC · |s|2 (as in (2.20) and (5.17))
only for |εs| ≤ 1. Here the following conditional stability lemma is useful, applied
with Kε(s) = A−1

ε (s)−A−1(s) = −A−1
ε (s) · (Aε(s)−A(s)) ·A−1(s). We remark that

this lemma allows us to derive more favorable error bounds than those of [BaH1,
Theorem 8], as there is no loss of powers of∆t.

Lemma 5.5. Let Kε(s), ε > 0, be a family of functions analytic on the half-disks
{Re s > σ0} ∩ {|εs| ≤ 1}, and there bounded by

|Kε(s)| ≤Mε · |s|µ .
Let the time discretization method satisfy the conditions of Theorem 3.1, and assume
B := sup|ζ|<1 |δ(ζ)| <∞. Under the restriction

h ≥ B · ε
we have for datag ∈ Hr

0 (0, T ) with r ≥ µ andr > 1
2 the stability bound

(
h

N∑
n=0

|Kε(∂
h
t ) g(nh)|2

)1/2
≤ C ·Mε · ‖g‖Hr ,

uniformly for boundedT = Nh and h ≤ h0. The constantC is independent ofε,
h, andg.

We omit the proof which is based on the Poisson summation formula and Parseval’s
formula similarly to Theorem 3.3.
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