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Summary. Convergence estimates in terms of the data are shown for multistep meth-
ods applied to non-homogeneous linear initial-boundary value problems. Similar error
bounds are derived for a new class of time-discrete and fully discrete approximation
schemes for boundary integral equations of such problems, e.g., for the single-layer
potential equation of the wave equation. In both cases, the results are obtained from
convergence and stability estimates for operational quadrature approximations of con-
volutions. These estimates, which are also proved here, depend on bounds of the
Laplace transform of the (distributional) convolution kernel outside the stability re-
gion scaled by the time stepsize, and on the smoothness of the data.
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1. Introduction

The present article is about time discretization methods for linear time-invariant non-
homogeneous evolution equations. These include initial-boundary value problems for
partial differential equations of hyperbolic and parabolic type, and boundary integral
equations for such problems. A common feature is that the solution operator is a
temporal convolutionk x g with the datag. Here, the (distributional) convolution
kernel k is not known explicitly, but various concepts of well-posedness can be
phrased in terms of bounds for its Laplace transfdiifs), for s varying in a half-

plane Res > o¢. EvenK (s), which is the solution operator of the Laplace transformed
problem, is usually not known, but it is modeled implicitly in the time discretization
of partial differential equations by linear multistep methods (in fact, also by Runge-
Kutta methods), and it is a composition of boundary integral operators and inverses
of such operators in the case of time-dependent boundary integral equations. We thus
would like to have stable and convergent numerical methods when all the information
available is an implicit definition of<(s), bounds of K (s) for s varying in suitable
regions of the complex plane, and the time-dependent glata
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In Sect.2 we present in more detail the analytical background of the situation
sketched above. In Sect. 2.1 we consider one-sided convolutions. We find it conve-
nient to use the operational notatidi(d;)g = k * g. This emphasizes the role of
K (s) instead ofk(t), and suggests by itself algebraic manipulations and discretiza-
tion schemes that would otherwise appear unmotivated. Section 2.2 deals with linear
initial-boundary value problems which are “strongly well-posed in the generalized
sense” according to the definition of Kreiss and Lorenz [KrL]. They fit perfectly into
the framework of Sect. 2.1. In Sect. 2.3 we discuss boundary integral equations for the
wave equation as a specific example, building upon the substantial work of Bamberger
and Ha Duong [BaH1].

In Sect. 3 we study “operational quadrature methods” which approximate the con-
volution K(0;)g by a discrete convolution, using onlif(s) and the datag(t). The
basic idea is intriguingly simple and can be traced back at least as far as Liouville’s
work on fractional derivatives: Replace the time derivatiyeby a finite difference
quotientd! and approximates (0;)g by K(0/")g (defined appropriately!). In [Lul]
the author discussed the implementation of such methods, and proved optimal-order
convergence in the (parabolic) case wh&rg) is analytic and polynomially bounded
outside a sector of the complex plane with an acute angle to the negative real axis.
Here, we consider the (hyperbolic) case where bound& @f) are available only
in a half-plane Res > o0, and obtain sharp convergence estimates in terms of the
datag for A-stable discretizationg? . If in addition K (s) is analytic and bounded
as before outside a large circle (a situation typical for stable space discretizations),
then we get conditional convergence estimates of the same type for methods which
are not necessarily A-stable, but contain in their stability region a half-disk in the left
half-plane with center at the origin.

In Sect. 4 we use the results of Sect. 3 for standard linear multistep methods applied
to linear initial-boundary value problems, or to their (stable) space discretizations in
the method of lines. Here, the numerical solution is jEED})g in the notation of
Sect. 3, withK (s) denoting the solution operator of the Laplace transformed prob-
lem. Therefore the error bounds of Sect. 3 apply, and so we obtain conditional and
unconditional convergence estimates in terms of the data, i.e., of the inhomogeneities
in the differential equation and the boundary conditions.

In Sect.5 we study full discretization of a boundary integral equation for the
Dirichlet problem of the (possibly dissipative) wave equation, as an illustration of
techniques which apply more generally. We use a Galerkin boundary element dis-
cretization in space, and operational quadrature in time. This leads to a method where
the time-dependent fundamental solution is not required at all (fortunately so, because
it is a very complicated expression for the dissipative wave equation and completely
unknown for other problems of interest to engineers). Only its Laplace transform
and the time-dependent boundary data are evaluated. The computational complexity
is nearly linear in the number of time steps. Such a method has been proposed and
analyzed in [LuS] for boundary integral equations of the heat equation (the exten-
sion to more general parabolic problems being straightforward), but the stability and
convergence properties for hyperbolic problems remained open. Here, this is studied
in detail for the wave equation. The algorithms and results extend without additional
difficulty to transient boundary integral equations of other well-posed problems, such
as those of elasticity (cf. [Be]), as soon as a-priori estimates for the solutions of the
Laplace transformed problem are available. Extensive numerical experiments with
the numerical methods discussed here are reported in [LuS] for a boundary integral
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equation of the heat equation, in [Lu2] for an integral equation for a time-dependent
Schiddinger equation, and in [EgL] for a Wiener-Hopf integral equation.

2. Analytical background
2.1. One-sided convolution

In this subsection we consider one-sided convolutiorg when only bounds for the
Laplace transformi((s) of the (distributional) convolution kernéi(t) are available,
which itself may be unknown. Instances of such situations will be discussed in the
following two subsections.

Let K(s) be an analytic function in a half-plane Re> o(, which (for large
argumentss) is bounded by

2.1) \K(s)| < M - |s|* .

If we write K(s) = s™K,,(s) with m > p + 1, then the Laplace inversion formula

1
km(@®) = .. / e K(s)ds, tcR (0> o)
21t Jorin

defines a continuous and exponentially bounded funatiQft) which by Cauchy’s
integral theorem vanishes for< 0. To emphasize the dependence Igks) rather

than the possibly distributional kernél = (d/dt)"k,,, we denote the convolution
k* g by

@2 ()0 =(3,) [ Eat-aar= [T

This defines a smooth function on the real line for smooth gatehose support is
bounded to the left, and the definition is independent of the choiee ahdo. An
important observation is that'(0;)g(t) does not depend on future valugg’) with

t’ > t. A rationale for the notation (2.2) (which essentially dates back to O. Heaviside
a century ago) comes from the fact that f6(s) = s we haved,g = ¢/, and from the
composition rule

(2.3) K2(0,)K1(0)g = (K2 - K1)(91)g

which expresses the associativity of convolution.

In the following we restrict our attention to functions which vanish on the
negative half-axiss < 0. Then alsoK(d;)g(t) = 0 for t < 0, and the Laplace
transforms are related by

(2.4) L(K(9)9)(s) = K(s)- (£ g)(s) , Res>oo,

for smooth functiongy whose derivatives do not grow stronger than exponentially
with rate oo. If =0 in (2.1), then (2.4) and Parseval’'s formula show fifebound

167" K (09l 2y < M - 1€ gl oy » @ > 00 -
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For general:, we get similar bounds in Sobolev norms: For reailve let H™(IR) =
{g: (A +w|)" .7 gw) € L3(R)} (with .7 denoting the Fourier transform @h) be
the Sobolev space of order and on finite intervals (@") we denoté

(2.5) H;(0,T) = {glo1) : g € H (R) with g =0 on (o0, 0)} .

An equivalent norm onfi; (0, 7)) is |97 g|l 120 1)- FOr integerr, the spacet;(0, 7))
consists of those functiong whoser-th distributional derivative is in.?(0,7") and
which haveg(0) =... = g ~Y(0) = 0. Parseval’s formula gives us the following.

Lemma 2.1. If K(s) is bounded by (2.1) in a half-planRe s > oo, then K(0;)
extends by density to a bounded linear operator

(2.6) K(9): Hy™(0,T) — H{(O,T)

for arbitrary real r.

In order to get pointwise estimates &f(9;)g(t), using only the bound (2.1), we can
apply the embedding/”(0,7") c C[0,T] for r > ; A simple alternative, which we

will later use to derive pointwise error bounds for the numerical methods, is to insert
(2.4) directly in the Laplace inversion formula:

1 K(s
KO0 = 5 [ et sz ds
Tl Jo+im s
to estimate
@7)  sup s Lo = swp £ < [ e iara]at
seo+h seo+h 0

and to use the fact thadt'(s)/s™ is integrable along + iR for m > p+1 by (2.1).

For simplicity, let nowm be a non-negative integer. We Iﬁfg””l(o, T) denote
the space of functiong on (Q 7") with the m-th distributional derivative in.}(0, T
and withg(0) =... = gt™=1(0) = 0, equipped with the norg™]| .1 1. We have
shown

Lemma 2.2. If K(s) is bounded by (2.1) in a half-planRe s > oo, then K(0;)
extends form > ; + 1 to a bounded linear operator

(2.8) K@) : W§H0,T) — C[0,T] .

Remark. Similarly as above, we would get a bounded extendid@;) : A5(0,7) —

C[0, T, with A*(R) = {g : (1 +|w|)* - g(w) € L}(R)} and A5(0,T) defined analo-
gously as in (2.5). By embeddings of suitable smoothness spaced{(®7) (e.g.,
Holder-type spaces using Bernstein's or Zygmund’s theorem [Ka], Theorems 1.6.3
and 4) further pointwise bounds can thus be obtained. We remark that stronger results

1 Compared to standard notation, this differs in that the subscript ionly refers to the left end-point
of the interval instead of both end-points. Moreover;-fi/2 is integer, then the above space becomes
what is usually denotedr;0,1), cf. [LiM]
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can be shown ifK(s) is analytic and bounded by (2.1) not only in a half-plane, but
in a larger sectotargs — oo)| < 7 — ¢ with ¢ < 7/2.

An obvious, but important generalization of the preceding material concerns the sit-
uation whereK (s), Re s > g, is an analytic family of linear operators between two
Hilbert spaceswhose operator norms are bounded by (2.1). As Parseval’'s formula
is not used in Lemma 2.2, this lemma remains valid even Banach spacesetting.

Such generalizations will be used freely in the sequel. The corresponding spaces will
be denoted by{{ (0, T"; X) etc. to indicate the underlying spagewhen appropriate.

2.2. Initial-boundary value problems which are strongly well-posed in the
generalized sensgf. [KrL])

On a smooth domaif? ¢ ¢ with boundaryl” we consider the linear initial-boundary
value problem foru(z,t) € R™, given by the system of differential equations

(2.92) Ou = Pz, 0)u + f(z,t) ze,t>0,
with boundary conditions

(2.9b) L(x, 0y, O)u = g(x,t) , zel ,t>0,
and the special initial condition

(2.9¢) u(z,0) =0, e,

(More general initial conditions(x, 0) = ug(z) can be reduced to this case by con-
sidering the equation foti(z, t) — ug(x).)

According to the definition in [KrL], p.227, the problem is callsttongly well-
posed in the generalized sengkefor all smooth compatible datg and g there is a
unique smooth solutiom, and for every finite time interval & ¢ < T there is a
constantCt such that

t t
/o ()% dr + /o (-, )2 dr

(2.10) goT-{ [ st [ ||g(-,r)|%d7} n0<t<T.

Here the norms aré? norms overf? or I, as indicated by the subscripts. Examples
of hyperbolic, parabolic, and mixed systems satisfying these conditions can also be
found in [KrL].

If the constant&’' are allowed to grow only exponentially wiffi, then it follows
via Parseval’s formula that strong well-posedness in the generalized sense is equivalent
— or nearly sé — to the following condition: The boundary value problem obtained
by formal Laplace transformation of (2.9),

sU = P(x,0,)U + F(x) , x €2

(2.11)
L(x, 0y, 8)U = G(x) zel
2 To infer the existence of smooth solutions from one problem (2.9) or (2.11) to the other, one needs
in addition bounds for the spatial derivatives of solutions: exponential growth at a fixed rate in
polynomial growth conditions in
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has a unique smooth solutidi(z, s) for complexs with sufficiently large real part
(Re s > 09, say) and smooth datB andG, and there is a constait such that

212) UGB+ IUCs)F < M- {|F|%+ |G} , Res>oao.

Hence, the solution operator of (2.11) extends by density to a bounded linear operator
K(s) : L2(2)" x LA™ — LA(2)" x LA(D)" : (F, G) — (U, Ur)

with operator norms bounded independentlysof

(2.13) |IK(s)| <M, Res>op.

Transforming back, it follows that the solution of (2.9) is given for smooth compatible
dataf andg as

u o\ f
(2.14) (o) =E@(7) -
in the notation of formula (2.2). Via Parseval’s formula, the bound (2.13) yields the
well-posedness estimate (2.10). We are thus back in the framework of Subsect. 2.1,
with =0 in (2.1).

2.3. Boundary integral equations for the wave equaficih [BaH1],[BaH2])

To determine the outgoing wave scattered by an acoustically soft obstacle occupying
a smooth bounded domai®, C &3, one requires the solution of the exterior Dirichlet
problem for the wave equation (hefe= 23\, I" = 02)

8,52u=Au, re,0<t<T,

(2.15)
u=g(x,t), ze€l,0<t<T,

with initial conditionsu(x,0) = d,u(x,0) = 0 forz € §2. For smooth compatible
boundary data there exists a unique smooth solutierwith u(-,t) € H(£2) for all
t, which can be represented as a single-layer wave potential

(2.16) u(x,t):/Ot/Fk‘(:c—g,t—T)go(f,T)d{dT, reN,0<t<T.

Here k(x, t) is the fundamental solution of the wave equation, which is the weighted
and shifted delta-functiork(z,t) = , 1 6(t — |z|). It has the Laplace transform

47 |x|
K(x,s) = 47r1|w|e*|93|'S which will be seen to play a more important role than
itself. Letting in (2.16)x tend to the boundary, we see that the dengityas to solve
the integral equation

t
(2.17) /0/Fk'(a:—§,t—7‘)<p(§,7‘)d£d7'=g(x,t), xel , 0<t< T,

to which we refer as thaingle-layer potential equation of the wave equatifior
smooth compatible Dirichlet data this equation has a smooth solution: Green’s
formula shows that the difference between the normal derivatives of the solutions of
the exterior and the interior Dirichlet problem of the wave equation satisfies (2.17).
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The further solution theory for equation (2.17) follows from that of the family of
equations

(2.18) /K(x—f,s)@(f)d§=G(x), rel , Res>op>0.
r
This is the single-layer potential equation of the Helmholtz equatiéh— s?U = 0,
and we abbreviate it as
(2.19) V() =G .

Mapping properties ol/(s) between suitable Sobolev spaces oyeare quoted in
the following theorem.

Proposition 2.3.[BaH1, Prop.3]For Re s = o > 0, the single-layer potential opera-
tor V(s) extends by density to an isomorphism

V(s): HY¥I') — HYXI)
which for allyy € H=Y(I") satisfies

min(L, o)
s

-2
||V(3)¢||H1/2(F) <C-|s- max(1 o~°)

Re <SV(S)11Z)7 ¢> Z ¢ ||¢||i{—l/2(r)

) H/(/)HH*l/z(F)

Here (-, -) denotes the anti-duality betweéf'/2(I") and H~/2(I"), andc and C are
positive constants which depend only Bn

In particular, it follows that the operator norm & (s) : HY3(I") — H-Y2(I') is
bounded by

(2.20) V=) < M(oo) - |5/, Res>op>0.

Since the single-layer potential equation (2.17) can be written in the notation of
formula (2.2) as

(2.21) Vine=g,

we get from the composition rule (2.3) that for temporally smooth ddtat) <
HY2(I") which vanish neat = 0, there exists a unique smooth solutipt,t) €
H~Y2(I") which is given by

(2.22) ©=V"1d)g .

Using the bound (2.20) in Lemma 2.1 (with—(s) in the role of K(s) and x = 2),
we obtain the a-priori estimate

(2.23) ||‘P||Hg(o,T;H—1/2(F)) <Cr- H9HH5+2(0,T;H1/2(F)) (reR)
and thus also pointwise bounds in<0t < T':

(2~24) ||<P('at)||H—1/2(p) <Cr- HgHHg(()’T;Hl/Z(F)) (T > g)
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The solution operatoV’ —%(9;) can clearly be extended to an operator between spaces
as indicated by the norms above. This defines generalized solutions of (2.17) for
nonsmooth datg. With the single-layer potential operatS(s) on {2 defined by

(2.25) S(s)P)(x) = /FK(CL‘ —&,8)P(€) d¢ T e

(like V (s), but for = off the boundary), the representation formula (2.16) becomes
(2.26) u=5(0) ¢ =(SV )9 ,

using (2.22) and the composition rule (2.3) in the second equality. The composed
operator 6V ~Y)(s) : G — U, which maps Dirichlet data to the solution of the
Helmholtz equationAU — s?U = 0 on £2, extends to an operator froff*/?(I") to
H'(£2) which for Res = ¢ > 09 > 0 is bounded by [BaH1, Prop.1]:

(2.27) 1Ul ey + 11U 122y < Clo0)/0 - |s[%/2 Gl gar2ry -

As before, this leads to estimates«{fr, t) of (2.26) in terms of the data(x, t).
This analysis can be considerably extended. For example, a nearly identical treat-
ment applies to the Dirichlet problem of tliissipativewave equation

QPu+adu=Au with a>0.

Here the time-dependent fundamental solutigf, t) is of a very complicated nature,

but its Laplace transform is nearly as simple as beffig{z, s) = 47}‘36‘ e~ lolVisPras =

K(z,V's?+as). With V,(s) = V(Vs2 + as), the single-layer potential equation reads
V,(0:) ¢ = g, and since agaifiV,;1(s)|| < M (0o)-|s|? for Re s > a¢ > 0, its solution

© = V.7Y9;)g is bounded as in (2.23) and (2.24) above. The two-dimensional case
can be treated in the same way.

To mention further extensions: All the boundary integral equations of classical
potential theory have analogues for the (dissipative or pure) wave equation and the
heat equation, and their solution theory follows from the analysis of the correspond-
ing integral equations for complex Helmholtz equatiorSee [BaH2] for the Neu-
mann problem of the wave equation, and [LuS] for the heat equation. Nonstationary
boundary integral equations of elasticity have been studied in [Be], again by trans-
lating properties of the Laplace transformed problems back into the time domain.
Concerning practical applications of time-dependent boundary integral equations in
engineering, we refer to [An],[Br], and the many references therein.

3 This is not to say, however, that they are all equally useful: Second-kind boundary integral equations
appear to have little to recommend for the wave equation, quite in contrast to the heat equation
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3. Convolution quadrature
3.1. Operational quadrature methodsf. [Lul])

In the situation of Sect.2.1, we approximate the convolutiofd;)g = k « g by a
discrete convolution which we denote

(3.1) (K(0Mg) () = wiglt — jh) .
j=0

Hereh > 0 is a time stepsize, and the convolution quadrature weights w;(h, K)
are defined as the coefficients of the generating power series

(3.2) iwjgj =K <5(hO) , <] small.

J=0

Here§(¢) = 5 6;¢ is the quotient of the generating polynomials of a linear mul-
tistep methoqz;?:(, OYp—j = hZfzo B; fn—; for differential equationg/ = f(y):

Ozo+Oz1C+...+akck
Bo+ 1l + ...+ BrCF
We always assume thab/5p > 0, so that (3.2) is well-defined at least for sufficiently

small h.
The notation (3.1) is used because in analogy to (2.2),

(33) 6(Q) =

(3.4) oot =y 3065 glt — ih)

>0

is a backward difference approximation@fy = ¢’, and there is again the composition
rule
(3.5) K01 K1(0]")g = (K2 - K1)(0])g

which follows from w,(h, K2K;) = Z;;Own,j(m}{z) w;(h, K1), a direct conse-
guence of the definition (3.2).

As before, we restrict our attention to functiopsvhich vanish on the negative
half-axist < 0 (and, for convenience, also for very large positive argumant®n
the gridt, =n-h (n =0,1,2,...) we then have

(3.6) yn = K@Ng (h) =) wajg(ih) |
=0

and the generating functiods(¢) = > 2, y,.¢™ andG(() = >, 2, g(nh)¢™ are related
by

(3.7) Y(Q) = K(6(C)/h) - G(Q)
in analogy to (2.4).
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Our interest is in deriving convergence estimatesf¢0;')g(t) whenK (s), Re s >
oo, IS bounded by (2.1), anglis a fairly smooth function. This will be possible under
the assumption that the multistep methodhistable i.e.,

(3.8) Reé(¢) >0 for |(|< 1.
The multistep method is adrder p if

(3.9) ié(e‘h) =1+0(h?) as h—0.

We recall that the ordep cannot exceed 2 for A-stable multistep methods [Da].
Well-known examples of second-order A-stable methods are the backward difference
formulaé(¢) = §—2C+;§2, and the trapezoidal rule which correspondé(tg = 211:<<.

If K(s) is analytic and bounded by (2.1) in a larger sedtmg(s — oo)| < ™ — ¢
with ¥ < 7, then A(a)-stability with o > o is sufficient, and stronger convergence
results than those below can be derived, see [Lul],[Eg].

Computationally, the quadrature weights are obtained by approximating the
Cauchy integral

e I CSOR
by the trapezoidal rule
(3.10) o= fK(é(@)/h) g 2mint/L n=01,...,N
L =0 , o 7 7

with ¢, = p - /L,

Let us first consider the cage < 0 in (2.1). If we assume that the values of
K in (3.10) are computed with an error boundeddyyhen the choicd, = 2N and
p™ = /e yields an error inv,, of sizeO(+/¢), see [Lul, Sect.7]. The sums in (3.10) are
computed by FFT, and thus one obtaing . ..,wx using O(N log N) arithmetical
operations.

For u > 0, it appears preferable to rewrit&(s) = K,,(s)s™ with m >
u, to compute the backward difference quotien&')(*g, and then K (dl)g =
K (01 ((0)™g), using the weights,, (h, K,,,) computed by (3.10).

3.2. Pointwise error bounds

We shall now give pointwise error bounds &f(9/")g(t), uniformly over bounded
intervals. We are mainly interested in the case whers a smooth function on
[0, T, whose extension by O to the negative half-axis need not necessarily be smooth
att = 0. We may then splig into its Taylor polynomial at 0 and the remainder whose
extension by 0 is sufficiently smooth. By linearity, we may study the error of the
parts separately.

Depending on the sign of the exponentin the bound (2.1) ofK(s), we will
make additional assumptions about the discretization method:

(3.12) 6(¢) has no poles on the unit circle.
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(3.12) 6(¢) has no zeros on the unit circle, with the exceptior{ ef 1.

We note that condition (3.11) excludes the trapezoidal rule.

Theorem 3.1. Let K(s), Re s > g, be analytic and bounded by (2.1). Let the dis-
cretization method be A-stable, (3.8), and of orge(3.9). If u > 0 (resp.u < 0) in
(2.1), then condition (3.11) (resp. (3.12)) is to be satisfied.

(i) Let m > max{p + 2 + u, p). For smooth datag on [0, 7] with ¢(0) = ... =
g™ D0)=0,we have 0 <t < T

t
(3.13) KO0 - K@a(o)] < 01+ [ 9™ dr
(i) For g(t) =t" (extended by 0 to negativgwith real r > p andr > 0, we have in
0<t<T
(3.14) |K(@01)9(t) = K@)g(®)| < C - b

with a = min((r — u)p{il, r+1 p).

These error bounds are valid f@& < h < hg, wherehg depends only omg and
the discretization metho@{¢). The constant§’ are proportional toM and depend on
u, 00, T, ho, and the method, and in (ii) additionally on

Proof. (a) In case (i), we first extengl(t) to ¢ > T as the {n — 1)-st degree Taylor
polynomial ofg at T". The error function

(3.15) en(t) = K(9)g(t) — K(@:)g(t)

has the Laplace transform

(3.16) Len(s) = {K (6(e*")/h) — K(s)} - Lg(s) .

The A-stability condition (3.8) implies that there exist > o9 andhg > 0 such that
(3.17) Reé(e*")/h > 0o for Res>o1, 0<h < hg.

Consequently,Z e, (s) exists for Res = ¢ > max(1,0). Provided that this is inte-
grable alongr + iR, the Laplace inversion formula gives

(3.18) en(t) = 271ri /ﬂﬁ e {K (6(e ") /h) — K(s)} - Lg(s)ds .

We will show in part (b) of the proof that for > max(u,0) and for fixedo >
max(1,0) we have

(3.19) /{m [{K (6(e*")/h) — K(s)} - s7" 7| - |ds| = O(h®)

with o as in the theorem. Sincg(r + 1) - s—"~1 (with Euler’s I'-function) is the
Laplace transform of", this yields statement (ii) of the theorem for> 0. The case

r = 0 > p will be studied in part (c) of the proof. The error bound in case (i) is
obtained from (3.19) withr + 1 =m, and from the estimate
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sup [s™ Zg(s)| = sup |£gt™(s)| < / &7 |gt™(0)] dt .
0

Re s=o Re s=o

By our extension ofy beyond [QT7], this is actually the integral from 0 t@, and the
result follows.

(b) We now prove (3.19). We write = o + iw, with fixed o > max(1,0). The
integral in question is bounded by

[+IT+II1= / [{K (87*")/h) = K(s)} - 5777 dw

jwh| <n

+/|th§7r ‘K (6(e_5h)/h)‘ ) Z |s + 27i - n/h\_"—l dw

n#0

+/ |K(s)-s " Y dw .
lwh| 2

By (2.1) we havelIT = O(h™*). Forr > 0 the series in/I converges, and so we
get

w/h w/h
IT<cht. / |K (8(e*")/h)| dw < Ch"™*. M - |6(e™ ") /A" dw
—x/h —n/h
Now the consistency condition (3.9) and condition (3.11) or (3.12) (depending on the
sign of ) imply

(3.20) 8" /n" < C-|s|*  for s=o+iw, |wh| <.
It follows that
O(h™%) uw< -1
II =4 O(h™tlogh) p=-1
O(h™=1) p>-1 .

We still have to bound. First we note that by Cauchy’s integral formula for the
derivative, alsoK’(s) is bounded in the same way &(s) over a half-plane:

M
(3.21) |K'(s)] < “s|*, Res=0>o00.
g — 0o

By (3.20), we therefore have for=o +iw with |wh| < =

(322) |K (8(e7*")/h) — K(s)| < C-[s|* - [s(e")/h — s| < C" - P - |s|*¥oe
using (3.9) in the last inequality. By (2.1) and (3.20) we also have

(3.23) K (867" /h) = K(s)| < C-|s]* |

which is a tighter bound fofs| > h=7/®*1), We thus get
ISC/ hp.|5|p+1+u,|5|*7‘71‘|d5|
o<|s|<h—P/(P*1)

+C- Is|# - |s| 7"t |ds| = O(RP) + OB~ P/ @)y |

|s|>h—P/(P*1)
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This yields (3.19).

(c) The caser = 0 > u requires a separate treatment. We use (3.7) @ith) =
>o01-¢" =1/(1—¢) and apply Cauchy’s integral formula to obtain feh < ¢ <
(n+ 1A

_ 1 “ne 6@\ 1
K@OM1@t) = o /Cl:pg 1K< ) )1_Cd§.

Substituting¢ = e %" with s = ¢ + iw, we thus have

1_ e-sh dw .

K@O = - /| y estK<5(e:h)) "

Subtracting K (9,)1(t) expressed by the Laplace inversion formula, we get for the

error
et s(e=*M) h 1
< I+1I1+ K — s
fen(dl < 2m ( /|wh§7r ( h ) {1_e5h ’ } s

wherel andIII are the same expressions as in part (b) of the proof. By (2.1) and
(3.20), the integrand in the last term is bounded®y|s|*, and hence the integral

is bounded likel I above, withr = 0. So we get the desired result also for the case
r=0.

Theorem 3.2. Under the conditions of Theorem 3.1, we have for @a@Hg”/Z(O, T)
(see (2.5)) withr > max(u, 0) the following error bound ir0 <t < T

(3.24) [K(91)9() — K@:)g(®)| < C - hP[logh| - [|g|l g2

with 8 = min((r — u)pﬁlm, p). If the first two terms in the definition ¢f are strictly

greater thanp, then the factot log k| can be omitted. The constafitdepends on the
same quantities as in Theorem 3.1.

Proof. The Sobolev inequality givel,(t)| < (C/e) - |len]| y1/2+ for € > 0. We use
Parseval’'s formula in (3.16) to get the bound

lenl gajzee < Co - _Sup [{K@6Ee")/h) — K(s)} - 57| - |lgll gz -
e s=o

Estimating the supremum as in part (b) of the preceding proof and settirig | log A|
yields the result.
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Remarks.(a) If og < 0 in (2.1), then a slight modification of the proof shows that the
bounds in Theorem 3.1(i) and Theorem 3.2 are valid uniformly over the whole half-
linet > 0. The same is true for Theorem 3.1(ii) withreplaced by the exponentially
decaying function” - e~

(b) If the derivative ofK (s) satisfies in Res > o3 a bound|K'(s)| < M’ - |s|H’
with p/ < u, then the error bounds hold wify (p + 1) replaced by /(p+1+u' — 1)
in the definition ofa. and 3 (and~ below.) This follows easily from the estimation of
the term! in part (b) of the proof of Theorem 3.1. Note that always 1 </ < pu.

3.3. 72 error bounds

For brevity, we denote the error at the grid points by
(3.25) en = yn — y(nh) = K(9;)g(nh) — K(9)g(nh) , n=0,1,2,...

The following ¢2 error bounds are slightly more favorable than their pointwise coun-
terparts.

Theorem 3.3. Let the assumptions of Theorem 3.1 hold.
(i) For g € H{(0,T) with r > J + max(, 0), we have with3 = min((r — 1) i, )

1/2
(3.26) (hSnolenl) " < C 17 - figllir

(ii) For g(t) = t" withr > p andr > 0, we have withy = min((r — .+ %)p{jl, r+1,p)

1/2
(3.27) (h SN |en|2> <C-n.

The bounds are valid uniformly f@r< h < hg and Nh < T'. The constant§’ depend
on the same quantities as in Theorem 3.1.

Proof. The proof uses Poisson’s summation formula, Parseval’s formula, and estimates
from the proof of Theorem 3.1.

After extendingg to g € H"(IR) with compact support it > 0, we start from
the relation (3.7). By Poisson’s summation formula, the generating function of the
grid-values ofg at ¢ = e~*" equals

o0

hz g(nh)e shm = Z Lg(s+2mi’) .

n=0 m=—oo

By (3.7) and (3.17), this gives forQ h < hg

(328) hY y.e ' =K(s(e ") /h)- > Lg(s+2riT), Res>oy.
n=0

m=—0o0

We use Poisson’s summation formula once moreyfer K(9,)g and insert (2.4) to
get
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(329) h> ynh)e ™= " K(s+2mi7)- Lg(s+2riT), Res>op.
n=0 m=—o0

The lower bounds om required in the theorem guarantee the absolute convergence
of the right-hand series in (3.28) and (3.29) and the validity of Poisson’s summation
formula. (An exception is again the case= 0 > y of (ii). Here the infinite sum in
(3.28) has to be interpreted as the Abel mean.)

Parseval’s formula now shows that fer= o +iw with fixed o > o1(> 0g) we
have

h Z e—Zonh‘yn _ y(nh)|2
n=0

_ 1/
2r |wh|<T |,

(3.30)

We extract the term forn = 0 from the sum (according t@ + b|> < 2(ja|? +|b]2))
and estimate its integral by

2
Z {K(@6(e™")/h) — K(s+2ri™)} - Lg(s+2ri™)| dw .

n=—o0

2

( sup [{K(5(e~")/h) — K(s)) - !) e g By -

Re s=o

The supremum has already been seen t@®be’) in the proof of Theorem 3.2. We
apply the Cauchy-Schwarz inequality to the remaining term in (3.30) to get it bounded

by
/|h< > H{E@(E ") /h) — K(s+2mi7)} - (s +2mi7)~ "1 du - & gl my -
w 7Tm¢o

The above integral is bounded by

[ i@y sz dos [ ()5
|wh|<m |wh|>m

m#0

By the same arguments as in the proof of Theorem 3.1, we obtain that both these
terms areO(h?”). This gives (i).
In (i), £ g(s) is a multiple ofs~"~1. Here we bound the terms far # 0 in the
same way as the above integrals, withieplaced byr + 1. The term coming from
m =0 is now

/ [{K @) /h) — K(s)} - 57 dw
|wh| <

and the inequalities (3.22) and (3.23) imply that thi£ig??).

3.4. Conditional error bounds

The following situation typically arises from stable space discretizatidtg:) =
K A(s) is parameterized by a small parameter- 0 and is analytic and bounded by
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(2.1) not only in a half-plane Re > g, but additionally outside a circle with radius
1/A and center at the origin. In this case, we can weaken the A-stability assumption
to the following condition: There exist® > 0 such that

(3.31) Reé(¢) >0 or |6(¢)| >R, forall ||<1.

Equivalently, this states that the half-digRe z < 0} N {|z| < R} is contained in

the stability region of the multistep method. Such methods are clalbedly stablein

[KrS], see also Sect.5 of [ReT]. This class of methods includes explicit and implicit
multistep methods of arbitrary order. The arguments of the foregoing proofs apply
unchanged to give us the following result.

Theorem 3.4. Let K(s) be analytic and bounded by (2.1) §Re s > oo} U {|s4| >
1}. Under the stepsize restriction
h <RA

the error bounds of Theorems 3.1-3.3 remain valid when the A-stability assumption is
replaced by condition (3.31). The constants depend on the same quantities as previ-
ously, and in particular are independent 4f.

4. Multistep time discretization of linear initial-boundary value problems

We consider again the initial-boundary value problem (2.9) which we assume through-
out to be strongly well-posed in the generalized sense. We discretize in time by a linear
multistep method, with the special starting valugs= 0 for n < 0, compatible with
(2.9¢). (More general starting values might be put into right-hand terms in equation
(4.1) below.) In the notation of (3.1), this can be equivalently written as a system of
the form (2.9) withd, formally replaced by}

ohul = P(x, 8,)u + f(x,t) , r€N,t=nh>0

(41) hy, h — _
L(z, 0y, 0 )u" = g(z,t) , zel ,t=nh>0.

By considering the generating functidi(z,¢) = Y o° u”(z,nh)¢(™ and similarly
F(x, (), G(x, () (to avoid convergence problems we may assume fhatdg vanish
for sufficiently larget), we get from (3.7) that/" has to solve the boundary-value
problem

6(;) U"=P(x,0,)U"+F inQ

(€
h

(4.2)

L(z,0,, >)U"=G onrI

which is (2.11) withs replaced by§(¢)/h. For spatially smooth datg and g, we
obtain a unique solution in terms of the solution operdtdr) of (2.11):

(o) = () (@)

Transforming back via (3.7), we thus get



Multistep time discretization of boundary value problems 381

(4.3) ( ut ):K(af)(g )

U,h|F

For nonsmooth data, this defines generalized solutions (like in the time-continuous
case). As a first consequence of (4.3) and the bound (2.13) we can state the following
stability lemma.

Lemma 4.1. Consider the semi-discretization (4.1) by an A-stable multistep method.
For spatially smooth datg and g, there exists a unique solutiart = (u,,),,>o which
is bounded by

N N N N
WY unll + 0D flunlf < C- {hz 1FCn) |5+ R g<~,nh)||%} .
n=0 n=0

n=0 n=0

This holds uniformly fo0 < Nh < T and0 < h < hg, Wwherehy depends onrg of
(2.13) and the multistep methofly(is arbitrary if oo < 0.) The constant”' can be
chosen to depend only o of (2.13), onog, T', and hg.

Proof. For ease of exposition, let us first consider the cagec 0 in (2.13). Then
Parseval’s formula implies that th operator norm ofK (07*) is bounded by

sup [|[K(6(Q)/M)Il < sup [[K(s)]| < M .
I¢l<1 Re s>0

Here we have used A-stability (3.8) in the first inequality, and (2.13) in the second
inequality. This gives the stated result with= M for o9 < 0.

For the general case we observe thatdR® > hoo for |(| < e 7", with v =
cog + O(h) and a positive constant (Actually, c = 1 if { = 1 is the only zero of
6(¢) on the unit circle, and i6(¢) has no poles on the unit circle.) Again, we get via
Parseval’'s formula

oo o0
e Jlunll * a7} < M2 Y e fCnh)|G + lgC, nh)lIF}
n=0 n=0

which yields the stated bound.

Remark. For algebraically stable Runge-Kutta methods, a corresponding stability es-
timate follows with the proof of Proposition 10 in [LuO].

In the usual way, the stability bound leadsfoconvergence estimates in terms of
the solution. On the other hand, in view of (2.14) and (4.3), the convergence results
of the foregoing section yield error bounds in terms of the data. For example, we
get from Theorem 3.1 the following pointwise estimates. Further error estimates are
given by Theorems 3.2 and 3.3.
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Corollary 4.2. For smooth datd f, g) on[0, T with f(-,0) = 0in £2 andg(-,0) = 0on
I', the error of the temporal semi-discretization (4.1) by an A-stable multistep method
of order 2 is bounded at=nh by

3
lun =l D@ + un = uC Ollr <C - R0 + 190 0)r}

m=1

t
w012 [ {160+ 1997} dr
uniformly for bounded and i < hqg.

Here, non-vanishing time derivatives pfandg at 0 should be interpreted as violations

of compatibility conditions. Arbitrary starting values can be accounted for by adding

a polynomial of degree not exceeding the order of the multistep method to both the
exact and the time-discrete solution. These can then be interpreted as solutions of an
equation of the form (2.9) (with modified and g) with arbitrary initial value and
starting values.

Stronger results are valid for parabolic problems where (2.13) (or equivalently
(2.12)) holds in a sectorarg(s — oo)| < m — 9 with 9 < 7. For p-th order strongly
A(a)-stable methods witle > ¢, the full order of convergence can be restored on
time intervals bounded away from 0 in the case of smooth data which are incompatible
att =0, cf. [LuS].

As the constants in Lemma 4.1 and Corollary 4.2 depend only on bounds for the
solution operator of (2.11), the results extend to the fully discrete situation where
the multistep method is applied to stable space discretizations of the initial-boundary
value problem. Here, Theorem 3.4 yields in addition conditional convergence for
methods which are not necessarily A-stable.

5. Time discretization of boundary integral equations

In this section we study temporal and to some extent spatial discretization of the single-
layer potential equation of the (possibly dissipative) wave equation, as an instructive
example of time-dependent boundary integral equations.

5.1. Semi-discretization in time

We recall the single-layer potential equation of the wave equation (2.17) in the notation
of (2.2):

(51) V(af) Y=g on I’ x (07 T) )

whereV (s) : H-Y3(I") — HY?(I') denotes the single-layer potential operator of the
Helmholtz equationAU — s?U = 0, see (2.18) and Prop. 2.3. Given a time stepsize
h > 0, we obtain a semi-discretization in time by setting farnh (n =0,1,2,...)

(5.2) VoM et=g onI x(0,T),
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in the notation of (3.1). Withp; = ©"(, jh), this is written more explicitly as the
temporally discrete convolution equation

(5.3) > wnj(h,V)@; =g(,nh) onI', forn=012...
3=0

Here the “quadrature weights” are linear operatog$h, V) : H=Y2(I") — HY?(I")
defined by (3.2), viz.,

(54) D onzown(h, V) (" = V((Q)/R)

with an A-stable discretization meth@d(). Provided thay(-, nh) € HY/?(I") for all
n, equation (5.3) defines recursively, € H—Y3(I'), sincewo(h, V) = V(6(0)/h) is
an isomorphism betweel —%/2(I") and H/2(I") by Proposition 2.3. The composition
rule (3.5) gives us that

(55) " =VHON)g -

Convergence of the semi-discretization (5.2) is therefore obtained by using the bound
(2.20) for V—(s) in Theorems 3.1-3.3. In particular, Theorem 3.3 gives us the fol-
lowing ¢? error bound. Here and in the sequel we denote for brevity the norm on
Hg (0, T HI(I)) by | - llg.r-

Theorem 5.1. Let the discretization method be A-stable and of order 2 (see (3.8) and
(3.9)), and satisfy (3.11). For smooth compatible datan I" x [0, T'] (thus sufficiently
many time derivatives af vanish att = 0!) the error of the semi-discretization (5.2)

is bounded by

N B 1/2 5
(5.6) (PEnollon = enm) 2 yyy) < C- 12 ligllys

uniformly for bounded” = Nh and h < ho. The constanC' is independent ok and
g.

For datag which are less smooth or less compatible than indicated by the norm on
the right-hand side of (5.6), Theorems 3.1-3.3 predict an order reduction.

Once an approximatiop” of the density has been obtained, the solution of the
wave equation can be approximated as a semi-discrete single-layer potential, cf. (2.26),

(5.7) u =S5O " on2x(0,T),

whereS(s) : H-Y2(I") — HY(£2) is defined by (2.25). This approximate solution is
now compared to direct multistep semi-discretization of the wave equation.
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Theorem 5.2. For smooth compatible Dirichlet datg the approximate solution™ =
(un)n>0 given by (5.7) and (5.2) is identical to the multistep semi-discretization of the
wave equation (2.15):

(1) 2u" = AuP in 2 x (0,T)

(5.8)
uh =g onI"x (0,7)

(with starting values.”(-,t) = 0 for ¢t < 0 andu”(-,t) € H(2) for all t.) Under the
method assumptions of Theorem 5.1, the error is bounded by

1/2

N

(5.9) (h Zn:O”un_u('vnh)”?{l(g)*—”athun_atu('?nh)H%Z(Q)) < Chz”ﬂ”%,g )
and pointwise in time by

(5.20) [[un — u(,nh)l| yaqy + 107 tn — Orul, nh)l| L2y < C - h?[loghl - lglly s

uniformly on bounded interval3 < nh < Nh =T. The constants are again indepen-
dent ofh < hg andg.

Proof. We start from the multistep semi-discretization (5.8). Since every time step
requires the solution of a Dirichlet problem for a non-homogeneous Helmholtz equa-
tion Au,, — (6(0)/h)? - u, = f, with £, a linear combination of previous solution
values, equation (5.8) has a unique, spatially smooth solutiog H(£2) (n > 0).
The generating function&"(z,¢) = > 5 u,(z) (" and G(z,¢) = > 5 g(x, nh) ("
(where again we may assume for convenience ghatnishes for large) are related
via

(6(Q)/h)?- UM = AU in 2

ut=a onl .

This Dirichlet problem for the Helmholtz equation has a unique smooth solution in
H*(£2) which can be represented as a single-layer potential (2.25):

U =S50/ h) 2",
whered” satisfies the single-layer potential equation (2.19):
V((©Q)/he" =G .

Now (3.7) shows that" of (5.8) satisfies (5.7) with (5.2). The error estimates follow
from the bound (2.27) used in Theorems 3.2 and 3.3.
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The above results extend immediately to the dissipative wave equation, cf. Sect. 2.3.
Similar results for the Neumann problem follow by combining the estimates given
in formulas (2.6) and (2.7) of [BaH2] with Theorems 3.1-3.3. For transient bound-
ary integral equations of elasticity, convergence of temporal semi-discretizations is
obtained by using the a-priori bounds of [Be] for the Laplace transformed problem
in our Theorems 3.1-3.3. Stronger results, in particular for incompatible data, are
available for boundary integral equations of parabolic problems [LuS].

5.2. Galerkin semi-discretization in space

To prepare for the fully discrete scheme, we study in this subsection space dis-
cretization by a Galerkin boundary element method. We wfitefor a small spatial
discretization parameter, and &y, c L?(I") denote a family of finite-dimensional
approximation spaces of ordet, in the sense that

. +1 m
inf  ||[Yas — w||H_1/2(F) <C-Ax™2 - ||¢llgm@y, forall e H™(I).

YAz €X Ax

(5.11)

As shown in Sect. 1.1 of [Ne], this is satisfied with= 1 orm = 2, respectively, for
approximation by piecewise constant or continuous piecewise linear functions over
non-degenerate triangulations of maximum meshwidth

A spatial semi-discretization of the single-layer potential equation (5.1) can be
done by a Galerkin method: Given smooth compatible datan I" x [0, 77, find
vAz(-,t) € Xa, depending smoothly on such thatin 6< ¢ < T

(512) <(V(at) (pA:r)('7 t)a wAw> = <g(7 t)7 ’(/}Aw> for all Q/JAJJ S XA$ 5

with the L2(I") scalar product. (One verifies that this spatial semi-discretization is
identical to that of formula (4.1) in [BaH1].) Stability and convergence are shown
next.

Lemma 5.3. For smooth compatible dataon I" x [0, T, the above time-continuous
Galerkin scheme has a unigue solutipn,., which is bounded like (2.23) for arbitrary
r € R (even with the same constaft-):

(5.13) lpacl 1, <Cr-llgls -
The error is bounded by

m 1
(5.14) lpae =l 1, < C-Ax™2 - [[@]lm,rss -
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Proof. We denote byP,, : L*(I)) — Xa, and ITa, : H Y3(I") — XA, the
orthogonal projections ont& 4.
(a) With
(5.15) Vaz(8) = PazV(s)Ph, : XAz — Xaa
the scheme (5.12) is written equivalently as

(516) VAac(at) PAx = PAIg .

Since by definition,

<5VA1(5)¢Ar7wAm> = <SV($)/¢JA$7/¢)AI> for all wAm S XAI 5

the coercivity estimate of Proposition 2.3 implies the invertibilityof, (s) for Re s >
0 and the same bound as in (2.20):

(5.17) IVAX(s)Pasl| <7t |52 (Res > o> 0)

for the HY/2(I") — H~Y%(I") operator norm. The composition rule (2.3) now shows
that

©ar = Vi) Parg
is the unique temporally smooth solution of (5.16), and (5.17) together with Lemma
2.1 shows that this is bounded by (5.13).

(b) To prove the error bound, we form the difference of (5.16) and equation (5.1)
premultiplied by P, to get

VAm(at) (@Aw - HAIQO) = PAIV(at) (I - HAx) @ -
The stability estimate (5.13) thus gives us

loas — HA:CQD”*%,T < COr - ||V — HAx)‘P”f%,Hz .

The bound ofl/(s) in Proposition 2.3 together with Lemma 2.1 then shows that the
right-hand side is bounded by a constant multiplel|6f — I7.) | _j .5 Which

in turn is bounded by the right-hand side of (5.14) because of the approximation
property (5.11).

5.3. Full discretization

We now combine the Galerkin boundary element method in space with operational
guadrature in time and show unconditional convergence of the resulting fully discrete
scheme. For clarity, we denote in this subsection the time step siz& finstead of
h). Superscripts refer to time, subscripts to space.

We get a fully discrete scheme by formally replaciigby 9/t in (5.12): Find
04t = (e™)n>0 IN XA, such that for 0Kt =nAt < T

(5.18) (VO 92%) (0 baz) = (9C, 1), Yaz)  forall Pa, € Xa,

With all the preparations done, convergence follows without more ado.
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Theorem 5.4. Let the time discretization method be A-stable and of opdserd satisfy
(3.11), and let the space discretization be of orgeas specified by (5.11). For smooth
compatible datag, the fully discrete method (5.18) (Galerkin in space, operational
guadrature in time) is unconditionally convergent of optimal order:

m 1
||<pn - @(7 nAt)HH—l/Z([v) = O(Atp) + O(ACC +2) y
uniformly over bounded time intervals.
Proof. We split
(pﬁtm —p= ((00223 - @Aaz) + (‘pr - LP) .
The first term equals
PR, — 9as = Va (07 Par g — Vas(0)Pax g

with VA, (s) of (5.15). Using the bound (5.17) in Theorem 3.1 or 3.2, this is seen to
be O(At?) as required. The second term is the spatial discretization error, and the
result follows from Lemma 5.3.

It remains to discuss the actual implementation of (5.18)."eti = 1,...,1) be
the basis functions chosen for the boundary element space For Res > 0, we
denote the Galerkin matrix by

(5.19) A(s) = (ai;(s)) e CT, aij(s) = (V(s)xj: Xi) i,j=1,...,I.
Data vectors are written for =0,1,..., N as
gn: (gzn) GRI ) gzn :<g(7nAt)7Xl> ) i:lv"'aI .

The unknown coefficients of the approximate solution

I

"= Z o5 Xi

=1

are collected in a vectap™ € R!. Finally, let A" = w, (At, A) € R™>*! be defined
by (3.2) with A(s) in the role of K(s). Then, the method (5.18) is equivalent to the
recursion

(5.20) d AIg=g",  n=01,...,N.
4=0

In every time step we thus have to solve a linear system with the same symmetric
positive definite matrixA® = A(5(0)/At). Moreover, the exponential decay of the
fundamental solution for real > 0 implies that the entries of° behave Iikea?j =

O(e 4580/ Aty whered,; denotes the distance of the supports of the basis functions
xi andy;. The other recursion matrice$® (n = 1,..., N) are computed to arbitrary
precision by (3.10). With, = 2N in (3.10), this requires the computation of Galerkin
matrices A(s) for N + 1 different complex values of (a pleasure on massively
parallel computers!), an@(V - log N) arithmetical operations for the computation of
the entriesa; (n = 1,..., N) using FFT. The recursion (5.20) itself can be solved
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using O(N - (log N)?) matrix-vector multiplications by the technique of [HaLS]. The
computational complexity is thus almost linear in the number of time steps.

In practice, the Galerkin matriced(s) have to be approximated by perturbed
matricesA(s). These variational crimes should be committed systematically, such that
A(s) still depends analytically on(except for very small perturbations). The recursion
matrix A™ computed by (3.10) is then an accurate approximatiow,dfAt, A). The
analysis of the effect of perturbations such as the approximation of the boundary can
be largely extended from elliptic boundary integral equations to the present parameter-
dependent case, see Sect. 6 of [BaH1] for a result of that type. Typically, the following
situation arises: There is a small parameteharacterizing the perturbation such that
the perturbed matrixi.(s) has an inverse bounded I6y- |s|? (as in (2.20) and (5.17))
only for |es| < 1. Here the following conditional stability lemma is useful, applied
with K (s) = A7Y(s) — A7Y(s) = —AZY(s) - (Ac(s) — A(s)) - A7Y(s). We remark that
this lemma allows us to derive more favorable error bounds than those of [BaH1,
Theorem 8], as there is no loss of powers4f.

Lemma 5.5. Let K.(s), ¢ > 0, be a family of functions analytic on the half-disks
{Re s > ap} N {|es| < 1}, and there bounded by

|Kc(s)| < M- |s|* .

Let the time discretization method satisfy the conditions of Theorem 3.1, and assume
B = sup <1 [6(Q)] < oo. Under the restriction

h>B-¢

we have for datgy € Hj(0,T") withr > pandr > ; the stability bound

N 1/2
(R 1K@ g ?) " < € M. - gl
n=0

uniformly for boundedl” = Nh and h < hg. The constant' is independent of,
h, andg.

We omit the proof which is based on the Poisson summation formula and Parseval's
formula similarly to Theorem 3.3.
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