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Abstract. We consider a problem that arises in the evaluation of computer graphics
illumination models. In particular, there is a need to find a finite set of wavelengths
at which the illumination model should be evaluated. The result of evaluating the
illumination model at these points is a sampled representation of the spectral power
density of light emanating from a point in the scene. These values are then used
to determine the RGB coordinates of the light by evaluating three definite integrals,
each with a common integrand (the SPD) and interval of integration but with distinct
weight functions. We develop a method for selecting the sample wavelengths in an
optimal manner.

More abstractly, we examine the problem of numerically evaluating a set ofm
definite integrals taken with respect to distinct weight functions but related by a
common integrand and interval of integration. It is shown that whenm ≥ 3 it is not
efficient to use a set ofm Gauss rules because valuable information is wasted. We
go on to extend the notions used in Gaussian quadrature to find an optimal set of
shared abcissasthat maximize precision in a well-defined sense. The classical Gauss
rules come out as the special casem = 1 and some analysis is given concerning the
existence of these rules whenm > 1. In particular, we give conditions on the weight
functions that are sufficient to guarantee that the shared abcissas are real, distinct, and
lie in the interval of integration. Finally, we examine some computational strategies
for constructing these rules.

Mathematics Subject Classification (1991):65D32, 41A55

1. Introduction

A fundamental problem in computer graphics is the determination of the color of light
emanating from a pointP on a surface toward the viewer. To accomplish this task
with a high degree of realism, researchers have developed a number of illumination
models which incorporate the basic elements of light propagation into a highly sim-
plified algebraic model (by algebraic model we mean one that requires only algebraic
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operations). A simple example of such a model is the Phong model [14] which looks
like

EP (λ) = EA(λ) + ρ(λ)
ls∑
j=1

(
nTlj

)
Ej(λ) + kS

ls∑
j=1

(
nTl∗j

)n
Ej(λ)(1)

Where:

EP (λ) is the spectral power distribution of light emanating from the pointP towards
the viewer.

EA(λ) is the spectral power distribution of ambient light.
Ej(λ) is the spectral power distribution of light emanating from thej’th light source.
ρ(λ) is the spectral reflectance of the surface.
n is the unit normal to the surface at the pointP .
lj is the unit vector direction from the pointP to thej’th light source.
kS is the specular reflection coefficient of the surface.
l∗j is the unit vector direction from the pointP to a point halfway between the

viewer and thej’th light source.
n an exponent that determines the apparent glossiness (oralbedo) of the surface.
ls is the number of light sources in the scene.

Physically, the spectral power distributions and reflectance functions are assumed
to be continuous functions over the interval of visible wavelengths (roughly 380 to
780nm). In a typical graphics algorithm this model must be evaluated one million or
more times since there are roughly this many pixels on a color monitor and we have to
determine the color of each one. Of course, it would be prohibitive to use continuous
function representations in such an application and so we must rely on some kind
of simplification. Historically, two simplification schemes have found common use.
Both of these schemes find their origin in the fact that after evaluating the model one
really needs the RGB values of the light emanating from the point, not the spectral
power distribution. These values can be obtained, using the Young-Helmholtz theory
of trichromatic vision, by evaluating the following definite integrals

R =
∫

V EP (λ)r̄ (λ)dλ

G =
∫

V EP (λ)ḡ(λ)dλ

B =
∫

V EP (λ)b̄(λ)dλ

(2)

where V is the visible interval and̄r (λ), ḡ(λ), and b̄(λ) are thecolor matching
functions, a set of empirically determined weights whose existence follows from the
linearity of color vision and the invariant color appearance of monochromatic light,
see [16].

The first, and most common, simplification scheme is to discard the spectral data
and replace it with RGB values. Since the transformation from the spectral domain to
RGB is linear this scheme gives exact answers for any linear model. However, with
the algebraic model shown above it introduces an approximation in the second term
(usually called thediffuse component). Practical experience shows that this method
works relatively well and a mathematical analysis is presented in [1, 2].

The second option is to evaluate the model at a finite set of sample points or
abcissas. The values of the spectral power density at the abcissas are then used to
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numerically evaluate the definite integrals in (2). This method is also widely used and
some analysis of the use of Gauss quadrature methods for selecting the abcissas exists
[15]. Motivated by this, we will examine the more abstract problem of numerically
evaluating a finite collection of definite integrals with the following form∫ b

a
f (x)ω1(x)dx∫ b

a
f (x)ω2(x)dx

...∫ b
a
f (x)ωm(x)dx

(3)

wheref (x) is a singlecommonintegrand, and theωi(x) are distinct weight functions.
We will assume that each weight function is bounded, continuous, and non-negative
on the interval [a, b].

As a point of departure consider the classical numerical quadrature problem; we
wish to evaluate a definite integral of the form∫ b

a

f (x)ω(x)dx.(4)

The weight function,ω(x), is fixed and subject to certain admissibility conditions,
and the integrand,f (x), may be any element of a given familyF of functions. This
is a well investigated problem and almost any text on numerical analysis contains
a wide variety of techniques for approximating the solution (see [4] for a particu-
larly enlightened explanation of many of these methods). Generally, an approximate
quadrature rule is a linear functionalQ̃ : F → < such that

Q̃f ≈
∫ b

a

f (x)ω(x)dx.

The set of definite integrals in (3) can be regarded as a collection of simple
quadrature problems like that in (4); there are many numerical methods for evaluating
(4), and we can use them piecemeal to solve the more general problem.

In particular, we can construct a set of approximate quadrature rules,Q̃k, such
that

Q̃kf ≈
∫ b

a

f (x)ωk(x)dx

for k = 1, 2, ...,m.
We shall restrict ourselves to the case where each of theQ̃k is ann-point primitive

rule, that is, the individual rules have the form:

Q̃kf =
n∑
i=1

f (xk,i)wk,i.

where thexk,i are a fixed set ofabcissasand thewk,i are fixed weights. The primitive
rules are categorized by different methods of choosing the weights and abcissas.

Note that the problem in (3) does not in any way demand uniformity in the rules. If
the problem is viewed as a collection of independent, unrelated definite integrals then
any haphazard collection of rules is a solution. However, there are obvious advantages
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to uniformity – it will reduce book-keeping, it will enhance performance, and it will
simplify error analysis.

We need only decide on the method of choosing the weights and abcissas to
complete the specification of a set of quadrature rules. It seems reasonable to derive
each of theQ̃k in the same way. We propose

Method I.Let Q̃k be then-point Gauss rule for the admissible1 weight functionωk(x).

This approach is straightforward. There are many techniques (see [4, 5, 7, 10, 13])
for finding the abcissas and weights,xk,i andwk,i. Each Gauss rule has degree of
precision 2n−1. For our particular problem, such a set of rules will be said to have an
overall degree of precision 2n− 1. Since Gauss rules give the maximum achievable
degree of precision forn-point primitive rules, it follows that no other collection
of n-point primitive rules has a higher overall degree of precision (i.e. 2n − 1 is
maximal).

Unfortunately, this method uses data poorly. In particular, whenm > 2 method
I requires thatf (x) be evaluated more often than necessary to achieve the observed
degree of precision. We illustrate this with a simple example.

Consider the casem = 3. Each rule,Q̃k, has a set ofn associated abcissas,
{xk,i}ni=1. There is no reason to suspect redundancies, so we probably need to evaluate
the integrand at 3n distinct points. Were we to use all of this data in each rule
we could easily construct three rules with an overall degree of precision 3n − 1.
Important information is being wasted; this can be seen if we introduce the notion of
a performance ratio, defined as:

R =
Overall degree of precision + 1

Number of integrand evaluations

This ratio indicates how many degrees of overall precision we get in return for each
integrand evaluation. It is easy to see that for this approachR = 2/m and hence
R < 1 for all m > 2. This indicates rather poor performance.

Another method for choosing the weights and abcissas, one that accepts a lower
degree of precision in return for a more efficient use of information, is:

Method II. Select a set ofn distinct abcissas,{x1, x2, ..., xn}, in the interval [a, b]
and let eachQ̃k be of the form

Q̃kf =
n∑
i=1

f (xi)wk,i.

Choose the weightswk,i so that they satisfy the following Vandermonde system2

V (x1, x2, ..., xn)


wk,1
wk,2

...
wk,n

 =


µ(k)

0

µ(k)
1
...

µ(k)
n−1


for k = 1, 2, ...,m. Where

1 For the Gauss rules a weight function is admissible if it is bounded, continuous, and non-negative
over the interval of integration

2 This is always possible if thexi are distinct
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µ(k)
i =

∫ b

a

xiωk(x)dx

This method binds the rules together with a single set of abcissas (we will call
theseshared-abcissa rules). The integrand must be evaluatedn times, and the overall
degree of precision isn− 1. This method uses information efficiently; each rule uses
all of the available data about the integrand.

This method has a performance ratio ofR = 1. This is better but there is still room
for improvement. Because the selection of abcissas is arbitrary, the rule may not be
the best possible. A clever method for choosing the shared abcissas could increase
the precision of this approach.

Our goal in this paper is to find an “optimal” set of shared abcissas by mimicking
the development of the Gauss rules. Recall that the derivation of a Gauss rule in-
volves simultaneously finding a set of abcissas and weights that satisfy the following
equations ∑n

i=1wi =
∫ b
a
ω(x)dx∑n

i=1xiwi =
∫ b
a
xω(x)dx∑n

i=1x
2
iwi =

∫ b
a
x2ω(x)dx

...∑n
i=1x

j
iwi =

∫ b
a
xjω(x)dx

for the largest possible value ofj.
It is well known that if the weight function satisfies the admissibility conditions

then this can always be done forj = 2n − 1 since there are a total of 2n unknowns
(n weights andn abcissas). Moreover, it is not generally possible to do it for a larger
value ofj. We propose an analogous approach. Note that for a set ofm shared abcissa
rules we have a total ofn(m + 1) unknowns (n weights for each of them weight
functions, plusn abcissas) so it seems reasonable to try and satisfy a total ofn(m+1)
equations. To simplify the derivation assume thatm is a factor ofn. In particular

n = ml

for some integerl, and consider the following method:

Method III. Let eachQ̃k be of the form

Q̃kf =
n∑
i=1

f (xi)wk,i

where the weights,wk,i, and the abcissas,{x1, x2, ..., xn}, satisfy the following equa-
tions ∑n

i=1wk,i =
∫ b
a
ωk(x)dx∑n

i=1xiwk,i =
∫ b
a
xωk(x)dx∑n

i=1x
2
iwk,i =

∫ b
a
x2ωk(x)dx

...∑n
i=1x

n+l−1
i wk,i =

∫ b
a
xn+l−1ωk(x)dx

(5)

for k = 1, 2, ...,m.
This method yields a total ofn(m + 1) equations in the unknown weights and

abcissas. These equations have been carefully divided among them weight functions
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so that, whenever the system has a solution, the set of quadrature rules will have an
overall degree of precision ofn + l − 1. Since there are onlynm + n = (n + l)m
unknowns, one can expect to satisfy no more thann + l equations for each weight
function. Hence,n + l − 1 is the maximum achievable overall degree of precision.
Note also that the performance ratio is

R =
n + l

n
=
m + 1
m

so thatR > 1 for all values ofm.

2. Finding the weights and abcissas

Solving the equations in (5) is not trivial since they are not linear in the unknowns.
We could apply Prony’s method to change them into a form which can be solved
more easily. The idea is to assume that the abcissas are known and then set up a
system of linear equations for the coefficients of ann’th degree polynomial whose
roots are those same abcissas. In the classical one-weight case the matrix of interest
is ann×n Hankel matrix constructed from the moment sequence associated with the
weight function. When applied to the problem now under consideration the structure
of the matrix is somewhat different. In particular, we get a matrix where the firstl×n
block is Hankel in the moments of the first weight function, the nextl × n block is
Hankel in the moments of the second weight function, and so on for each of them
blocks.

It is known that this approach suffers from problems of numerical stability in the
classical one-weight case; the resulting matrix equation can be very poorly conditioned
and much effort has been directed toward avoiding its use (see [5, 13]). Part of the
problem comes from the fact that moment sequences usually decrease in magnitude
rather quickly. As a result, matrices that are constructed from moments, like the
generalized Gram matrix, tend to exhibit large discrepancies in the relative sizes of
the various entries – a known cause of ill-conditioning.

Experience indicates that the multi-weight case suffers from similar conditioning
problems (although they are not as severe) and we would like to avoid this. We can
appeal to our understanding of the classical Gauss rules and alleviate this by using the
properties of orthogonal polynomials to find the abcissas. The fundamental theorem
of Gaussian quadrature, [4], states that, for an admissible weight functionω(x), the
Gauss abcissas for then-point rule and the roots of then’th orthogonal polynomial
are the same. Since there are stable methods for finding these roots, we can avoid the
ill-conditioning inherent in Prony’s method.

We can use orthogonal polynomials to solve the multi-weight problem as well,
but this will require an extended definition of the concept of orthogonality.

Definition 1. Given a set of admissible weight functionsW = {ωk(x)}mk=1 and an
interval [a, b], two functionsf (x) andg(x) are said to be orthogonal with respect to
W if

〈f (x), g(x)〉k = 0

for eachk = 1, 2, ...,m. Where

〈f (x), g(x)〉k =
∫ b

a

f (x)g(x)ωk(x)dx .
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We now give a counterpart to the fundamental theorem of Gaussian quadrature for
the multi-weight case using the more general concept of orthogonality defined above.

Theorem 1. Let n = lm and consider the quadrature rules:∫ b

a

ωk(x)f (x)dx ≈
n∑
j=1

wk,jf (xj)

wherek = 1, 2, ...,m.
These rules are each exact for all polynomials of degree≤ n + (l − 1) if and only

if:

1. They are exact for all polynomials of degree≤ n− 1.
2.
∫ b
a
ωk(x)q(x)p(x)dx = 0 for every polynomialp(x) of degree≤ l − 1 and for

k = 1, 2, ...,m. Whereq(x) =
∏n

j=1(x− xj).

Proof. (⇒) For part 1 note that if the quadrature rules are exact for all polynomials
of degree≤ n + (l − 1) then they are certainly exact for those of degree≤ n− 1.

For part 2 assume thatp(x) has degree≤ l − 1. Thenq(x)p(x) has degree≤
n + (l − 1). Since the quadrature rules are exact for all such polynomials it follows
that ∫ b

a

ωk(x)q(x)p(x)dx =
n∑
j=1

wk,jq(xj)p(xj) .

But q(xj) = 0 for j = 1, 2, ..., n. Hence the above sum is identically zero since all of
its terms are zero. Thus ∫ b

a

ωk(x)q(x)p(x)dx = 0

and 2 follows.
(⇐) Let p(x) be a polynomial of degree≤ n + (l − 1). We can certainly write
p(x) = q(x)s(x) + r(x) wheres(x) is a polynomial of degree≤ l − 1 andr(x) is of
degree≤ n− 1. Then∫ b

a

ωk(x)p(x)dx =
∫ b

a

ωk(x)[q(x)s(x) + r(x)]dx

=
∫ b

a

ωk(x)q(x)s(x)dx +
∫ b

a

ωk(x)r(x)dx .

But
∫ b
a
ωk(x)q(x)s(x)dx = 0 from (2) so that∫ b

a

ωk(x)p(x)dx =
∫ b

a

ωk(x)r(x)dx

sincer(x) is of degree≤ n− 1 it follows from 1 that∫ b

a

ωk(x)r(x)dx =
n∑
j=1

wk,jr(xj)
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hence ∫ b

a

ωk(x)p(x)dx =
n∑
j=1

wk,jr(xj)

and finally, sinceq(xj) = 0 for j = 1, 2, ..., n, it follows that∫ b

a

ωk(x)p(x)dx =
n∑
j=1

wk,j [q(xj)s(xj) + r(xj)]

=
n∑
j=1

wk,jp(xj)

and the quadrature rule is exact for all polynomials of degree≤ n + (l − 1). ut
This is important because it leads to an algorithm for finding the shared abcis-

sas without resorting to Prony’s method, thereby avoiding the associated numerical
difficulties. In particular, it is sufficient to find, through any means possible, ann’th
degree polynomialq(x) that is orthogonal toP l−1 with respect toW . The roots of
this polynomial will be the shared abcissas.

We exploit this result by examining the orthogonal polynomial systems of the
various weight functions inW . Let p∗j be the orthogonal polynomial of degreej
associated withω1(x), the first weight function (we do not lose any generality in
choosing the first weight function). Clearly then,p∗n is orthogonal toP l−1 with
respect to the weight functionw1(x). Indeed, any element of the linear manifold

M = span{p∗l , p∗l+1, ..., p
∗
n}

will be orthogonal toP l−1 with respect to the weight functionω1(x). Moreover, any
polynomial of degreen that is orthogonal toP l−1 with respect toω1(x) is necessarily
an element ofM. So it follows thatq(x) ∈ M sinceq(x) is certainly orthogonal to
P l−1 with respect toω1(x) if it is orthogonal toP l−1 with respect toW . Hence

q(x) =
n∑
i=l

γip
∗
i(6)

for some real coefficientsγi.
Of course,q(x) must also be orthogonal toP l−1 with respect to the remaining

weight functions, that is
〈q(x), p(x)〉k = 0(7)

for any p(x) ∈ P l−1 andk = 2, 3, ...,m. It will be convenient to take{p∗0, p∗1, p∗2, ...,
p∗l−1} as our basis forP l−1, so that the orthogonality conditions from equation (7)
become

〈q(x), p∗i 〉k = 0(8)

for i = 0, 1, ..., l − 1 andk = 2, 3, ...,m. Substituting forq(x) with equation (6) and
using the linearity of the inner product transforms equation (8) into

γl 〈p∗l , p∗i 〉k + γl+1 〈p∗l+1, p
∗
i 〉k + · · · + γn 〈p∗n, p∗i 〉k = 0 .(9)

Assume, without loss of generality, thatγn = 1 so that equation (9) becomes
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γl 〈p∗l , p∗i 〉k + γl+1 〈p∗l+1, p
∗
i 〉k + · · · + γn−1

〈
p∗n−1, p

∗
i

〉
k

= −〈p∗n, p∗i 〉k .

For convenience let

µ(k)
i,j =

∫ b

a

p∗i (x)p∗j (x)ωk(x)dx .

This yields the following linear system for the coefficientsγi

µ
(2)
l,0

µ
(2)
l+1,0

· · · µ
(2)
n−1,0

µ
(2)
l,1

µ
(2)
l+1,1

· · · µ
(2)
n−1,1

µ
(2)
l,2

µ
(2)
l+1,2

· · · µ
(2)
n−1,2

.

.

.

.

.

.

.

.

.

µ
(2)
l,l−1

µ
(2)
l+1,l−1

· · · µ
(2)
n−1,l−1

µ
(3)
l,0

µ
(3)
l+1,0

· · · µ
(3)
n−1,0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

µ
(m)
l,l−1

µ
(m)
l+1,l−1

· · · µ
(m)
n−1,l−1



 γl
γl+1
.
.
.
γn−1

 = −



µ
(2)
n,0

µ
(2)
n,1

µ
(2)
n,2

.

.

.

µ
(2)
n,l−1

µ
(3)
n,0

.

.

.

.

.

.

µ
(m)
n,l−1


.

We shall call the matrix that appears on the left of equation (2) themixed modified
Gram matrix. This equation can be written more compactly by introducing the matrix
M (k)

i,j,n defined to be

M (k)
i,j,n =


µ(k)
j,0 µ(k)

j+1,0 · · · µ(k)
n,0

µ(k)
j,1 µ(k)

j+1,1 · · · µ(k)
n,1

µ(k)
j,2 µ(k)

j+1,2 · · · µ(k)
n,2

...
...

...
µ(k)
j,i−1 µ(k)

j+1,i−1 · · · µ(k)
n,i−1

 .

A matrix with the form ofM (k)
i,j,n shall be known as amodified Gram block(or matrix)

because of its similarity with the matrices of modified moments used in [13, 5]. The
linear system for the coefficientsγi can be rewritten as

M (2)
l,l,n−1

M (3)
l,l,n−1

...
M (m)

l,l,n−1




γl
γl+1

...
γn−1

 = −


M (2)

l,n,n

M (3)
l,n,n
...

M (m)
l,n,n

 .(10)

3. A generalized formulation

In the original derivation we assumed that the number of abcissas,n, was a multi-
ple of the number of weight functions,m. Although this assumption simplifies the
derivation, it is not mathematically necessary; it only eases the task of allocating of
the n additional degrees of precision to the various weight functions. By assuming
that n = ml and giving l extra equations to each weight function we maximize the
overall degree of precision.

Of course, ifm is not a factor ofn then the equations can not be allocated in
such an equitable a manner. Some of the weights must have more than others, hence
some of theQ̃k will have a higher degree of precision than others.

We introduce the notion of adegree sequence.
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Definition 2. An indexed set,S = {ν1, ν2, ...νm}, containingm non-negative integers
such that:

m∑
i=1

νi = n

will be called an (m,n) degree sequence.

We can generalize these quadrature rules as follows:

Definition 3. Let W = {ωk(x)}mk=1 be a set of admissible weight functions on the
interval [a, b], and S = {ν1, ν2, ...νm} be an (m,n) degree sequence, a set of rules
Q̃k of the form:

Q̃kf =
n∑
i=1

f (xi)wk,i

will be called anoptimal set with respect toW andS if and only if the weights,
{wk,i}, and the abcissas,{xi}, satisfy the following equations:∑n

i=1wk,i =
∫ b
a
ωk(x)dx∑n

i=1xiwk,i =
∫ b
a
xωk(x)dx∑n

i=1x
2
iwk,i =

∫ b
a
x2ωk(x)dx

...∑n
i=1x

n+νk−1
i wk,i =

∫ b
a
xn+νk−1ωk(x)dx

(11)

for k = 1, 2, ...,m.

The previous derivation is now a special case wheren = ml and the degree
sequence{l, l, ..., l} is used. We shall call such a set of rulesuniform.

Once again we can avoid using Prony’s method to find the coefficients of the
polynomialq(x) by exploiting the concept of orthogonal polynomials. However, be-
fore proceeding it will be worthwhile to mention a concept introduced by M. Riesz
in his study, [11, 12], of the moment problem. In particular:

Definition 4 (Chihara). A polynomial q(x), not identically zero, is called aquasi-
orthogonal polynomial of ordern + 1 if and only if it is of degree at mostn + 1
and: ∫ b

a

q(x)xiω(x)dx = 0

for i = 0, 1, ..., n− 1.

This concept can be used to derive a trivial extension of the Gauss quadrature
rules, [3]. In particular, givenq(x), a quasi-orthogonal polynomial of ordern + 1,
there is a set of weights{wi}n+1

i=1 such that:∫ b

a

p(x)ω(x)dx =
n+1∑
i=1

wip(xi)(12)

for all polynomials of degree at most 2n. The abcissasxi are the roots ofq(x), and
can be shown to be real and distinct.
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Note that, in general, this rule is not Gaussian since the Gauss rule of this order
would have degree of precision 2n+ 1. It is, however, very close to the Gauss rule. In
effect, this extension gives up a single degree of precision in exchange for the lifting
of a single orthogonality condition onq(x).

The optimal rulespresented here are quite similar in that they also trade preci-
sion in return for relaxed orthogonality conditions. The difference is that the excess
orthogonality conditions are used to increase the precision of other rules based on the
same abcissas. Although an optimal set of rules cannot be improved upon without
degrading at least one of its members, the rule in equation (12) can be unilaterally
improved.

Once more we broaden our definition of orthogonality.

Definition 5. Let q(x) be a polynomial of degreed > n, and letW andS be as in
Definition 3. If, for k = 1, 2, ...,m , the following holds:

〈q(x), p(x)〉ωk = 0

for every polynomialp(x) of degree less thanνk. Thenq(x) will be said to bequasi-
orthogonal with respect toW andS.

This definition leads to a generalization of Theorem 1, the key theorem to devel-
oping an alternate method for finding the abcissas.

Theorem 2. Consider the quadrature rules:

Q̃kf =
n∑
j=1

wk,jf (xj)

wherek = 1, 2, ...,m. These rules form an optimal set with respect toW and S if
and only if:

1. They are exact for all polynomials of degree≤ n− 1.
2. The polynomialq(x) =

∏n
j=1(x− xj) is quasi-orthogonal with respect toW and

S.

The proof of this theorem proceeds along the same lines as that for Theorem 1
with l replaced byνk so it is omitted.

The next fact establishes the connection between,q(x), a polynomial which is
quasi-orthogonal with respect toW andS, and the orthogonal polynomial systems
associated with the various elements ofW .

Fact 3. Let q(x) be a polynomial of degreen that is quasi-orthogonal with respect
to W andS. And let p∗i (x) be thei’th element of the orthogonal polynomial sys-
tem associated with the weight functionω1(x) ∈ W . Then, there exist coefficients
γν1, γν1+1, ..., γn such that:

q(x) =
n∑

i=ν1

γip
∗
i (x)

Moreover,γn 6= 0.
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Proof.Sinceq(x) has degreen, and since the set of orthogonal polynomials{p∗i (x)}ni=0
is a basis forPn, it follows that there is a Fourier expansion ofq(x) in terms of the
p∗i (x). In particular

q(x) =
n∑
i=0

〈q, p∗i 〉
〈p∗i , p∗i 〉

p∗i (x)(13)

=
n∑

i=ν1

〈q, p∗i 〉
〈p∗i , p∗i 〉

p∗i (x)(14)

=
n∑

i=ν1

γip
∗
i (x) .(15)

(16)

Finally, note thatγn 6= 0 because if this were not trueq(x) could have degree no
greater thann− 1 which is a contradiction. ut

This, of course, gives a method for findingq(x) just as it did in the uniform case.
We get the following linear system of equations for the coefficients

M (2)
ν2,ν1,n−1

M (3)
ν3,ν1,n−1

...
M (m)

νm,ν1,n−1




γl
γl+1

...
γn−1

 = −


M (2)

ν2,n,n

M (3)
ν3,n,n
...

M (m)
νm,n,n

 .(17)

If the mixed modified Gram matrixmatrix has a non-zero determinant thenq(x) exists
and has real coefficients, however, this is not sufficient to guarantee that it has real,
or distinct roots.

4. Existence and location of the abcissas

The classical Gauss rules have the useful property that the abcissas for then’th order
rule are real, distinct, and lie in the interval [a, b] as long asω(x) ≥ 0 in the same
interval. Unfortunately this result does not extend to the abcissas of the rules we
are considering. If the only condition placed on the elements ofW is that they be
non-negative over the interval [a, b] many examples can be given where this is not
true.

It is possible, however, to give a sufficient condition on the weight functions that
guarantees real, distinct roots inside the interval of integration. Towards this end, we
introduce the notion of anintegrable Markov system(see [9]).

Definition 1. A sequence of real valued functionsmi(x), i = 1, 2, ..., n is called an
integrable Markov systemon (a, b) if:

1. mi(x) is defined at every pointx ∈ (a, b) and is integrable, for eachi = 1, 2, ..., n.
2. The linear combination

n∑
i=1

aimi(x)

does not have more thann−1 zeros in (a, b) for any non-trivial set of coefficients
a1, a2, ..., an.
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We now state a theorem of Kershaw [9], that can be used to guarantee real, distinct
roots in the interval of integration.

Theorem 4 (Kershaw). If {mi(x)}ni=1 is an integrable Markov system on(a, b) then

1. There exists a polynomialpn(x), of degreen, which is unique up to an arbitrary
non-zero scalar multiplier, such that∫ b

a

mi(x)pn(x)dx = 0, i = 1, 2, ..., n.(18)

2. The zeros ofpn(x) are real, distinct, and lie in(a, b).
3. If pn+1(x) is a polynomial of degreen + 1 that satisfies∫ b

a

mi(x)pn+1(x)dx = 0, i = 1, 2, ..., n.

and has real, distinct zeros then between any pair of adjacent zeros ofpn+1(x) lies
a zero ofpn(x), all lying in (a, b).

We refer the reader to [9] for the proof of this elegant theorem. With this in hand,
we can prove the following theorem.

Theorem 5. LetW = {ωk(x)}mk=1 be a set of weight functions defined and integrable
on the interval[a, b], and S = {ν1, ν2, ...νm} be an (m,n) degree sequence. If the
induced sequence of functions

W × S = {ω1(x), xω1(x), ...xν1−1ω1(x), ω2(x), ..., xνm−1ωm(x)}
is an integrable Markov system on(a, b), then there is a polynomialq(x) of degreen,
that is unique up to an arbitrary non-zero scalar multiplier, that is quasi-orthogonal
with respect toW andS. Moreover, the polynomialq(x) hasn real, distinct roots in
the interval(a, b).

Proof. Existence of the polynomialq(x) with real distinct roots follows directly from
theorem 4. To see thatq(x) is quasi-orthogonal with respect toW and S consider
any polynomialp(x) of degree less thanνk. Obviously we can write

p(x) =
νk−1∑
i=0

γix
i .

Now consider ∫ b

a

p(x)q(x)ωk(x)dx =
νk−1∑
i=0

γi

∫ b

a

q(x)xiωk(x)dx .

Clearly all of the terms on the right vanish as a result of (18) from Theorem 4. And
it follows that q(x) is quasi-orthogonal with respect toW andS. ut

This is a strong result but it requires that the weight functions satisfy a rather
stringent condition. One immediate advantage is that we have dismissed the restriction
that the weight functions must be non-negative over the interval of integration. Clearly,
non-negativity is not implicit in Theorem 5. However, if we do enforce the non-
negativity condition then we can account for some of the zeros without resorting to
the conditions of Theorem 5.
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Theorem 6. LetW andS be as before and assume that the mixed Gram determinant
with respect toW andS is non-zero. If there exists aωk(x) ∈ W such thatωk(x) ≥ 0
on [a, b], then then’th degree polynomialq(x) that is quasi-orthogonal with respect
to W andS has at leastνk distinct, real roots in the interval[a, b]. Moreover, ifνk
andn differ in parity thenq(x) has at leastνk + 1 distinct, real roots, although one of
them may lie outside the interval[a, b].

Proof. Proceed by contradiction. Lety1, y2, ..., yj be the real zeros ofq(x) that lie in
[a, b] and have odd multiplicity. Assume thatj < νk and letr(x) =

∏j
i=1(x − yi).

Then, since the productq(x)r(x) does not change sign in the interval [a, b], it must
be true that: ∫ b

a

q(x)r(x)ωk(x)dx 6= 0 .

But this is a contradiction sincer(x) ∈ Pνk−1. Hence, it follows thatj ≥ νk, and so
q(x) has at leastνk real, distinct zeros in the interval [a, b].

It is seen thatq(x) has at leastνk real, distinct roots of odd multiplicity in the
interval [a, b]. This means that the number of roots that have been accounted for,
including multiplicities, has the same parity asνk. If νk andn differ in parity then,
sinceq(x) has real coefficients and complex roots can only occur with even multi-
plicity, it follows that q(x) has at least one more distinct real root of odd multiplicity,
although nothing can be said about its location.ut

Corollary 7 follows directly from the theorem:

Corollary 7. LetW andS be as before and assume that the mixed Gram determinant
with respect toW andS is non-zero. Assumeωk(x) ≥ 0 on [a, b] for eachωk(x) ∈
W . Then then’th degree polynomial,q(x), that is quasi-orthogonal with respect to
W andS has at leastt distinct, real roots in the interval[a, b], where:

t = max
1≤k≤m

νk .

Moreover, ift and n differ in parity thenq(x) has at leastt + 1 distinct, real roots,
although one of them may lie outside the interval[a, b].

Note that Theorem 6 implies that all of the roots are real, distinct, and in [a, b]
if m = 1 (this is the special case of a Gauss rule). There is one other case, closely
related to the quasi-orthogonal polynomials of Riesz, for which a stronger result may
be given.

Theorem 8. AssumeW has only two elements,S is given by{n−1, 1}, andω1(x) ≥
0 on [a, b]. If there exists a polynomial,q(x), of degreen that is quasi-orthogonal with
respect toW andS, then all of its roots are real and at leastn− 1 of them lie in the
interval [a, b].

Proof. It follows directly from Theorem 6 thatq(x) has at leastn − 1 distinct, real
zeros in [a, b] and that the remaining zero is real sincen andn− 1 obviously differ
in parity. Note that it is not possible to determine whether or not the remaining root
lies in the interval [a, b] using the conditions of the theorem.ut
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5. Computational strategies for constructing the rules

In order to implement the methods developed in the last few sections and maintain
some degree of numerical stability we need to do a bit more work. In this section we
derive an algorithm that allows these rules to be more easily constructed. In particular,
we show how the abcissas and weights can be found by looking at a related eigenvalue
problem involving a rank one change to the Jacobi matrix associated with the weight
functionω1.

The first step in finding a set of rules of the type outlined in this paper is to
construct the mixed Gram matrix. We note briefly here that this can be done using
only knowledge of the Jacobi matrices of the various weight functions. In particular,
Gautschi [5] gives a method for computing the quantitiesµ(k)

i,j given only the modified

momentsµ(k)
i , and the three-term recurrence relation3 for the weight functionωk.

Moreover, Golub and Fischer [6] give a method for generating the modified moments
from the Jacobi matrices alone. Hence, all of the data needed to solve equation (17)
can be had by manipulating the Jacobi matrices of the various weight functions.

Once we have the coefficientsγνk , γνk+1, ..., γn we can find the roots of the quasi-
orthogonal polynomial by solving an eigenvalue problem. Recall that the system of
orthonormal polynomials associated with the weight functionω1 satisfies a three-term
recurrence relation of the form

xp(x) = J (1)p(x) + β(1)
n p∗n(x)en

whereJ (1) is a symmetric tridiagonal (Jacobi) matrix with elementsα(1)
1 , α(1)

2 , ..., α(1)
n

on the diagonal, and elementsβ(1)
1 , β(1)

2 , ..., β(1)
n−1 on the subdiagonal, and wherep(x) =

[p∗0, p
∗
1, ..., p

∗
n−1]T, anden = [0, 0, ..., 0, 1]T.

Using equation (3) and the fact thatγn = 1 gives

p∗n(x) = q(x)−
n−1∑
i=ν1

γip
∗
i (x) .

If we let
γ =

[
0, ..., 0, γνk , ..., γn−1

]T
.

Then clearly
xp(x) = J (1)p(x) + β(1)

n

(
q(x)− γTp(x)

)
en .

So that the rootsxi of the quasi-orthogonal polynomial are precisely the eigenvalues
of the matrix

J (1) − β(1)
n enγT(19)

which can be easily found using the QR algorithm. Notice also that the eigenvector
associated withxi is given byvi = p(xi). We can use this fact to solve for the weights
wk,i by requiring that each rule correctly generate the firstn modified moments. This
is mathematically equivalent to solving the Vandermonde system for the weights of
an interpolatory rule but is much better numerically and is very convenient for us
since we already have the eigenvectors as a byproduct of finding the roots via the QR
algorithm. Note that this approach is equivalent to the method presented by Kautsky
and Elhay in [8]. In particular, let

3 This can, of course, be had from the Jacobi matrix
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K =
[
p(x1), p(x2), ..., p(xn)

]
.(20)

The vectorsp(xi) can be had by scaling the eigenvectors from the QR method so
that their first elements are all identical and equal to the zero moment of the weight
functionω1. Then, the interpolatory weightswk =

[
wk,1, wk,2, ..., wk,n

]T
can be found

by solving

Kwk =


µ(k)

0

µ(k)
1
...

µ(k)
n−1

 .(21)

It is quite easy to verify from here that the weights for the classical Gauss rules are
just the squared first elements of the normalized eigenvectors of the Jacobi matrix.

6. A brief numerical example

We present a brief numerical example in order to illustrate the process. We are looking
for a four point uniform rule with two weight functions defined on [−1, 1]. The weight
functions are

ω1(x) =
√

1− x2

ω2(x) = 1 +x .

The orthonormal polynomials4 associated withω1(x) are the Chebyshev polyno-
mials of the second kind. They are, in particular

U0 = 1; U1 = 2x; U2 = 4x2 − 1; U3 = 8x3 − 4x; U4 = 16x4 − 12x2 + 1 .

Following equation (10) we need to solve

M (2)
2,2,3

[
γ2
γ3

]
= −M (2)

2,4,4 .

In particular [
2
3

8
15

14
15

8
15

] [
γ2
γ3

]
= −

[
2
5
46
105

]
.

This system has a condition number of roughlyK = 12.04 which stands in strong
contrast to the condition number of roughly 116 that one gets using Prony’s method.
Solving the equation yieldsγ2 = − 1

7 and γ3 = − 4
7. The Jacobi matrix of order 4

associated withω1 is

J (1)
4 =

 0 1/2 0 0
1/2 0 1/2 0
0 1/2 0 1/2
0 0 1/2 0


the vectorγ = [0 0 − 1/7 − 4/7], andβ4 = 1/2 so that, following equation 19,
the abcissas are the eigenvalues of the matrix

4 Up to a scalar constant of
√

π/2
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 0 1/2 0 0
1/2 0 1/2 0
0 1/2 0 1/2
0 0 8/14 2/7

 .(22)

Using the QR method to solve for the eigenvalues yields the four abcissas, approxi-
mately

x1 = −0.791263; x2 = −0.237959; x3 = 0.427455; x4 = 0.887481.

Note that they are real, distinct, and lie in the interval of integration. Moreover,
note that the distribution of abcissas is somewhat skewed toward the right side of the
interval. This is intuitively pleasing as it appears to reflect the fact that the second
weight function places far more emphasis on the right half of the interval than the
left; it would seem thatω2(x) is pulling the sample points to the right in order to
extract more information from that part of the interval.

Finally, we form K by scaling the eigenvectors of the matrix in (22) so that their
first elements are all 1 and solve

Kw1 =

 π/2
0
0
0

 Kw2 =

 2
4/3
2/3
8/15


for the weights. This yields the rules

Q̃1f = π [0.079050f (x1) + 0.204235f (x2) + 0.176469f (x3) + 0.040245f (x4)]

Q̃2f = 0.082275f (x1) + 0.507998f (x2) + 0.866157f (x3) + 0.543569f (x4) .

7. Overview and conclusions

We have examined the problem of approximating the values of a set of definite
integrals with a common integrand over the same interval but taken with respect
to distinct weight functions. There are many approaches to this problem but we
restricted our efforts to finding a set of shared abcissa primitive quadrature rules. It
was shown that these rules could be constructed to have the maximum degree of
accuracy by choosing an appropriate set of shared abcissas. This is accomplished by
extending the concepts used in the derivation of the classical Gauss quadrature rules.
Two methods of solution were discussed. The first, Prony’s method, is analogous
to inverting a generalized Gram matrix. This is conceptually easy to follow but not
numerically desirable. The second uses the properties of orthogonal polynomials to
find the abcissas and is much better numerically than the first. We presented some
results about the location and existence of the abcissas, and gave a sufficient condition
on the weights that guarantee real, distinct roots in the interval of integration. Finally,
we introduced a computational strategy for constructing these rules that equates this
problem with an eigenvalue problem for a rank one variant of a symmetric tridiagonal
Jacobi matrix.

We note that the results for the particular set of weights that motivated the problem
were quite good and will appear in a future paper on numerical determination of
tristimulus coordinates.
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Litterarum as Scientiarum (Szeged) 209–225

12. Riesz, M. (1923): Sur le problème des moments. troisième note. Arkiv f̈or matematik, astronomi och
fysik

13. Sack R., Donovan, A. (1972): An algorithm for gaussian quadrature given modified moments. Nu-
merische Mathematik18, 465–478

14. Tuong Phong, B. (1975): Illumination for computer generated pictures. Comm. ACM18, 311–317
15. Wallis, R. (1975): Fast computation of tristimulus values by use of Gaussian quadrature. J. Optical

Soc. Am.65, 91–94
16. Wyszecki, G., Stiles, W. (1982): Color Science: Concepts and Methods, Quantitative Data and For-

mulae. Wiley, New York

This article was processed by the author using the LaTEX style file pljour1 from Springer-Verlag.


