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This work is dedicated to the memory of Heinz Rutishauser

Summary. We have discovered a new implementation of the gd algorithm that has a
far wider domain of stability than Rutishauser’s version. Our algorithm was developed
from an examination of the Cholesky LR transformation and can be adapted to parallel
computation in stark contrast to traditional qd. Our algorithm also yields useful a
posteriori upper and lower bounds on the smallest singular value of a bidiagonal
matrix.

The zero-shift bidiagonal QR of Demmel and Kahan computes the smallest singu-
lar values to maximal relative accuracy and the others to maximal absolute accuracy
with little or no degradation in efficiency when compared with the LINPACK code.
Our algorithm obtains maximal relative accuracy for all the singular values and runs
at least four times faster than the LINPACK code.

Mathematics Subject Classification (1996B8F15

1. Introduction

In September 1991 J. W. Demmel and W. M. Kahan were awarded the second SIAM
prize in numerical linear algebra for their paper ‘Accurate Singular Values of Bidiag-
onal Matrices’ [11], referred to as DK hereafter. Among several valuable results was
the observation that the standard bidiagonal QR algorithm used in LINPACK [12],
and in many other SVD programs, can be simplified when the shift is zero and, of
greater importance, no subtractions occur. The last feature permits very small singular
values to be found with (almost) all the accuracy permitted by the data and at no extra
cost.

In this paper we show that the DK zero shift algorithm can be further simplified and
this simplicity has several benefits. One is that a new algorithm can be implemented
in either parallel or pipelined format and each iteration nominally takéeg, n)
operations. Another benefit is that some or all singular vectors may be calculated
accurately in a second phase after the singular values are known. See Sect. 13.
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Our investigations began with the modest goal of showing that it was preferable
to replace the DK zero-shift QR transform by two steps of zero-shift LR implemented
in a qd (quotient-difference) format. Root-free algorithms run considerably faster than
standard ones. The surprise here is that to keep the high relative accuracy property it
is necessary to use a little known variant of qd (the differential form of the progressive
gd algorithm or dqd [35], [34]). The standard qd will not suffice as we show in Sect. 4.
There are no subtractions in dgd. We suspect that Rutishauser discovered dqd in 1968,
just two years before his death, and we say more about its history in Sects. 4 and 11.

What we want to stress here is that, for reasons we may never know, Rutishauser
did not consider the shifted version of dgd. Instead he reserved dqd for rectifying
unsatisfactory behaviour of his qd in certain circumstances, see Sect. A4.2 of [35],
[34]. Incidentally this differential gd is not to be confused with the continuous ana-
logue of qd (see [31]) and more recent work on QR flows. The trouble with the
shifted version of the ordinary qd algorithm is that it cannot recover from a shift that
is too large. Consequently gd algorithms have been shackled with very conservative
shift strategies, such as Newton’s method, and earned the reputation of being slow
compared to the QR algorithm. Had Rutishauser considered shifts with differential qd
(dgds hereafter) he would have realized, as we soon did, that the transformation may
be split into two parts. The parts depend on whether the machine is of sequential or
parallel type but, in each case, a shift that is too big reveals itself before the old matrix
is overwritten and so need not be invoked. An unused shift is not wasted because it
gives an improved upper bound on the smallest singular value and the inertia count
at a cost less than one qd transformation as well as contributing to an improved shift.

Our approach frees the algorithm to exploit powerful shift strategies while pre-
serving high relative accuracy all the time. In contrast the QR algorithm delivers
high relative accuracy only with a zero shift.

Even though our algorithms must find the singular values in order we can use
shift strategies that are at least quadratically convergent. This is better than fourth
order convergence for QR. When only the smallest few singular values are needed
this ordering constraint is a great advantage. Another rather subtle feature is that it
is not necessary to make an ex®én) check for splitting of the matrix into a direct
sum. The necessary information is provided by the auxiliary quantities.

In June 1992 we discovered that our dqds algorithm enjoys mixed high relative
stability for all shifts provided that they avoid underflow, overflow or divide by zero.
Consequently it can be used in a variety of applications (eigenvalues of symmetric or
unsymmetric tridiagonals, zeros of polynomials, poles and zeros of transfer functions
and many applications involving continued fractions) where Rutishauser’s gd has been
abandoned because of its instability in the general case.

Our error bounds for singular values are significantly smaller than those in DK
and our approach is quite transparent. It was this analysis, in Sect. 7, that showed us
the possibility of violating positivity while still maintaining maximal relative accuracy
for all singular values, not just the small ones.

It gradually dawned on us as we developed the algorithm that we were breaking
away from theorthogonal paradigmthat has dominated the field of matrix com-
putations (often called numerical linear algebra by highbrows) since the 1960’s. It
seems to be sacrilegious to be achieving greater accuracy and on average, a four fold
speed-up by simply abandoning QR for something equivalent to LR. See Sect.9.3

1 All our computations are performed on a DECstation 5000/120 using double precision arithmetic
(53-bit mantissa)
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for details. High accuracy comes from the fact that dqds spends most of its time
transforming lower triangular 2 2s into upper triangular 2 2s by premultiplication.

Rutishauser gave no direct explanation for the way shifts are introduced into qd.
We have supplied one in terms of matrix factorizations in Sect.5.1 and we go on to
list the possible choices for a shift in Sects. 6 and 9. We do not offer a preferred shift
strategy here because that aspect of the code is still evolving.

Section 3 presents the unifying general result which shows that it is possible to
implement the Cholesky LR algorithm of Rutishauser [32], [36] using orthogonal
transformations only. Since the term Cholesky LR over describes the algorithm we
simply refer to it as the Cholesky Algorithm. Our orthogonal Cholesky algorithm is
applicable to dense matrices; this more general case is studied elsewhere [17].

We want to point out the unusual historical lineage of this algorithm. The qd al-
gorithm begat the LR algorithm which then gave rise to the QR algorithm of Francis.
This in turn led to the Golub-Kahan and Golub-Reinsch algorithms for singular val-
ues of bidiagonal matrices which lead to the DK zero-shift variant. This inspired our
orthogonal algorithm of which differential qd is the root-free version. We are back to
gd again but with a new implementation.

As a service to busy readers we have included a brief account of the origins of
gd and a summary of the DK paper. When reading [35] we regretted that the link
between continued fractions and our matrices was not made explicit. We provide the
connection in the final section.

2. Notation and normalization

This paper does not involve vectors very much and so we do not follow Householder
conventions. However capital roman letters denote matrices while lower case Roman
and Greek letters denote scalars. On the rare occasions when a vector is needed it is
denoted by a lower case roman letter in boldface.

As usual the singular values of anx n matrix C' are arranged in monotone
decreasing order and denoted &y o, . . ., 0, their union isc[C].

— We make reference to the QR factorization of a matrix. This is the matrix form of
the Gram-Schmidt orthonormalizing process applied to the columns of the matrix
in natural order. By convention the diagonal entries of the upper triangular factor
R are taken nonnegative. See Golub and Van Loan [19] for details.

— We make reference to the Cholesky factorization of a positive definite matrix into
the product of a lower triangular matrix and its conjugate transpose. The factors
are unique.

— We make references to the LR and QR algorithms. These are defined in the
appropriate places.

We shall be concerned mainly with bidiagonal matrices which weRahd take
them to beupperbidiagonal. To save space we write the bidiagonal matrix

ap by
az b

Un—1 bn—l
427
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as
B = b|d|ag{ bl bZ . bn—z " . bn_l . } .

ai az

2.1. Normalization

Consider now the effect of a zero value among the parameters.of a bidiagonal
B.

2.1.1 SuperdiagonaSuppose that; = 0, £ < n. Then B may be written as a direct
(or diagonal) sum of two bidiagonal8; and B,. Moreover

o[B] = o[B1] U o[ B3].

This case makes the calculation of singular values easier. Even more important is the
fact that our algorithms do not suffer from the failure to detect such a split when it
occurs. However, the transition from a linearly convergent shift to a quadratic shift
will not occur if the split lies undetected for too long.

2.1.2 Diagonal.Let a;, = 0, k < n. Since|detB| = [[i-; | a; |= [}, o; it follows
thato,, = 0. However some work is needed in ordedeflatethis value, i.e. to find a
new B of ordem — 1 yielding the remaining singular values of B. In exact arithmetic
one iteration of any of the unshifted algorithms given later is guaranteed to produce
the desiredB and so this case does not need special treatment. The zero diagonal
entry may be driven to the closest end of the matrix.

If a =0, k < n, at one step of our algorithm anddf, = 0 at the next step then
br—1 will also vanish and so produce a split into two bidiagonals.

2.1.3 Signslf the matrix is real, then using pre and post multiplication by matrices
of the form diag+1} any sign pattern may be imposed on the entrieg3afithout
changing the singular values. If the matrix is complex, then it could be transformed
to a real matrix by pre and post multiplication by matrices of the form {#ag(iw)}
where ? = —1 andw is real.

There is little loss of generality in assuming, when necessary, Bhat of real
positive type; all its parameters exceed 0. However in Sect. 5.3 we address the practical
guestion of when to relax the requirement of positivity.

3. Orthogonal form of the Cholesky LR algorithm

For the next few paragraphs we consider full complex matrices. Recall that the
Cholesky factorization of a positive definite Hermitian matdigc A*) may be written
as A = LL* whereL is lower triangular.

Definition. The Cholesky LRransformof a symmetric positive definite matrid =
LL* is A
A=L"L
The Cholesky LRalgorithm, consisting of successive applications of the Cholesky
transformation, is a special case of Rutishauser’s LR algorithm.
The following lemma is elementary and has been known for a long time. It has
become the cornerstone of square root filtering in control and signal processing (see
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for example [24], [6], [16]), a trend which was pioneered by Potter (see Battin [3]).
In Sect.4 we show that for the bidiagonal matrix case, the “square root” approach
can be bypassed with a huge gain in accuracy and efficiency.

Lemma 1. If any two invertible matrices\/; and M- satisfy M; My = M5 M- then
M, = QM for some orthogonal matrig).

The result given in the theorem below is implicit in proofs that one step of the QR
algorithm is equal to two steps of the Cholesky algorithm. It was explicitly proved
by Faddeev, Kublanovskaya and Faddeeva [15] and we thank llse Ipsen for bringing
this relatively unknown work to our attention.

Theorem 1. Let A = LL* be the Cholesky factorization of the Cholesky transform of
positive definited = LL*. Then )
L=Qi

is the QR factorization of..

Proof. Of course, this theorem is a direct corollary of Lemma 1 but we include a
proof because it is both constructive and instructive.

Since A is positive definite all factors mentioned below are unique. By definition
of L

L*L=LL".
We seek invertibleF” such that R
(1) L=FL",
2) L*=LF '

Transpose and conjugate (1) and use invertibilit)idh (2) to find
F*=L"t*=fF1

So F is unitary and sincé* is upper triangular with positive diagonal Eqg. (1) above
gives the QR factorization of, as claimedO

The theorem shows thdt may be obtained froni. by orthogonal transformations
without forming A. Moreover just as QR may be performed with column pivoting so
can we obtain the Cholesky factor of a permutatiordof

In the general dense case people have used the method of transforming triangular
matrices from upper to lower form and back again using appropriate orthogonal trans-
formations without realizing that this is equivalent to the Cholesky algorithm. See [41]
and [7]. Conversely, if authors of [42] had appreciated Theorem 1 they could have
used, with advantage, more preconditioning LR steps before invoking the one-sided
Jacobi algorithm. We plan to pursue this general dense case in another paper [17].

The basic equatioiiﬁT = LT L guarantees that the Cholesky algorithm preserves
bandwidth. In particular, bidiagonaB gives rise to tridiagonald = BB and a
bidiagonalB. In order to study howB is derived fromB, let

B:bidiag{ o b1 o b2 ' bn—2 . bn—1 . }
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B= bidiag{ i b1 N b | . | b2 .~ b1 . } .
where BTB = BBT. By Theorem 1
BT =QB.
The matrix@ may be written as a product ofi - 1) plane rotation matrices [19],
Q=G1G2...Gp_1.

Before the annihilation of the subdiagonal elemigntthe active part of the matrix is
of the form,

0 dp1 b

0 ak 0
@) by ags1 O
bre1  Qp+2

and after the plane rotatio¥}, the matrix becomes

0 Gr1 bra

0 a by
4 k k
(4) 0 A+l 0
brr1  Qp+2

Formally we may seB©® = BT and, fork=1,...,n—1
(5) B® = gT B=1),

Finally B = B~ and, from (3) and (4), wittu;'= a; andc? + 2 = 1,

©6) i = (a2 =ae
sk = bi/ay
(7 ck = d/ak
(8) be = Skaper = bpagsr/an
g+l =  CrOpe1 = Apag+1/ay.

There is some redundancy in the equations given above but their most important
property is the absence of subtractions. This ensures high relative accuracy in the
new entriesy; andb;. Observe that neithet; nor ¢, is needed explicitly to compute
the new entries. To the best of our knowledge the algorithm given below is new. For
reasons that appear in the next section we call it@nghogonal gd-Algorithm or
oqd. It is convenient to use

(9) cabs(z,y) = /22 + 32

whose name stands for tlkemplexabolute value ofz +iy. In numerical computing
(e.g. Eispack), an alternative name faibs is pythag.
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Algorithm 1 (oqd)
a:= al
fork=1n-1
ay, = cabs(; by)
by 1= by * (age1/an)
a'=ax* (ak+1/&k)
end for

a

an .

This algorithm will undergo several transformations in the following pages before
we are ready to implement it. Nevertheless, even at this stage, two applications of it
are slightly better (fewer multiplications) than the DK Zero Shift QR algorithm [11]
described briefly in our Sect. 10. This result was the initial impetus for our study of
qd.

The inner loop comparisons given in Table 1 are based on one QR step which
is equal to two LR steps. We have taken into account the common sub-expression
ax+1/a in the estimation of the complexity of oqd (Algorithm 1).

Table 1. Complexity of Demmel-Kahan and oqd

DK  oqd

Cabs 2 1*2

Divisions 2 1*2

Multiplications 6 2*2
Conditionals 1 0

Assignments 7 3*2
Auxiliary variables 6 1

DK uses six auxiliary variables while ogd needs only one. The memory traffic is
essentially determined by the number of variables, arithmetic operations and assign-
ment statements. In most advanced architectures, memory access is more expensive
than floating-point operations and in such machines the oqd will be very advantageous
because of fewer read and write operations.

4. The quotient difference algorithm

It is easy to avoid taking the square roots that appear in oqd (Algorithm 1) . Define
b, :=0andg, = a2, e, =b2 , k=1,2,...,n . By simply squaring each assignment
in ogd (Algorithm 1) one obtains an algorithm that turns out to be a little known
variant of the quotient difference algorithm. Rutishauser developed his qd algorithm
in several papers from 1953 or 1954 (e.g. [30]) until his early death in 1970 but this
variant appeared in English only in 1990 in [35] which is the translation of the German
original [34] published in 1976. The full list of the papers on qd by Rutishauser can
be found in the above mentioned books which were published posthumously.

In the notes at the end of [30] and at the end of volume 2 of [34] this variant is
called thedifferential form of the progressive qd algorithm or dqd. These notes were
based on unfinished manuscripts of Rutishauser.
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Algorithm 2 (dqd)
d=q
fork:=1n-1
QG =d+eg
€x = ek * (qr+1/ k)
d = d* (qr+1/qr)
end for
gn =d
The implementation of dqd (Algorithm 2) requires only 1 division, 2 multiplies,
and 1 addition in the inner loop. No subtractions occur.
The intermediate variablé may be removed. At step, d = d; and the trick is
to write it as a difference.
dis1 = CoQis1 = et — SaQket = Qre1 — Ek
The resulting algorithm is Rutishauser’s qd algorithm.
Algorithm 3 (qd)
éo =0
fork:=1n-1
G = (qr — €x—1) +ex
€k = ek * qr+1/ Gk
end for
"]\n =gn — €n—1
Table 2 compares the complexity of orthogonal, differential and standard qd al-
gorithms.

Table 2. Complexity of oqd, dqd and qd

ogd dqd qd

Cabs 1 0 0
Civisions 2 1 1
Multiplications 4 2 1
Additions 1 1 1
Subtractions 0 0 1
Assignments 3 3 2
Auxiliary variables 1 1 0

We hasten to add that Rutishauser did not derive the gd algorithm from our
Theorem 1 but from ideas described in Sect. 11.

For positiveB, dqd and qd are stable in the sense that all intermediate quantities
are bounded by|B||2. Singular value errors provoked by finite precision arithmetic
will be tiny compared tar?. This is satisfactory for many purposes and it was not
generally appreciated until the DK paper appeared that bidiagonal matrices do deter-
mine all their singular values, however small, to the same relative precision enjoyed
by the matrix entries. Since such accuracy can be achieved for little extra cost it seems
only right to do so. These considerations lead us to abandon qd and concentrate on
dqgd and oqd.
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Example 1.Here is a bidiagonal Toeplitz matrix with; = 1, b; = 256 (g; = 1,
e; = 65536) for alli. The results of our dqd algorithm are given in Table 3. Note
that ,/ges = 1.909306093043771% 1012 ~ 27°9 givesog, correct to full machine
precision.

The results for qd were identical to dgd except that the crucial elegggbecame
zero in both steps. Hence qd is not suitable for computation of small singular values
with high relative accuracy.

Table 3. Numerical results for Example 1

After the first pass After the second pass
a 6.5537000000000000D+04 6.5537999984741444D+04
a2 6.5536000015258556D+04 6.5536000061032595D+04
a3 6.5536000000000233D+04 6.5536000000001397D+04

qs 10 gs3  6.5536000000000000D+04 6.5536000000000000D+04
g64 3.6455053829317361D-304 3.6454497569340717D-304

e1 9.9998474144376459D-01 9.9995422572819948D-01
e 9.9999999976717291D-01 9.9999999883589297D-01
e3 9.9999999999999645D-01 9.9999999999997513D-01
eq t0 egz  1.0000000000000000D+00 1.0000000000000000D+00
€63 1.0000000000000000D+00 5.5625997664363648D-309

Example 2.We have rerun Example 1 but with a smaller valueng¢t 5) and the
results are given in Table 4. For this exampte,= /g5 = 2.3282709094019085
10-1%which is correct to full machine precision. For comparison, the answer given by
the LINPACK SVD routine dsvdc (which is based on the Golub-Reinsch algorithm)
is 2.3282704794711363 10~1° which gets 7 of the 15 digits correct.

Using gd we got almost identical results except tais zero in both sweeps.
Thus, o5 is zero according to the qd algorithm. Thus, qd does not deliver as much
accuracy as Golub-Reinsch; in fact it can be shown that qd sometimes delivers zero
for singular values as large §émacheps  ||B||. O

Table 4. Numerical results for Example 2

After the first pass After the second pass
q1  6.5537000000000000D+04 6.5537999984741449D+04
g2 6.5536000015258551D+04 6.5536000061032593D+04
g3 6.5536000000000238D+04 6.5536000000001395D+04
qa  6.5536000000000000D+04 6.5536000000000000D+04
gs  5.4209281443662679D-20 5.4208454275671899D-20
er  9.9998474144376457D-01 9.9995422572819948D-01
ez 9.9999999976717293D-01 9.9999999883589292D-01
ez 9.9999999999999642D-01 9.9999999999997509D-01
es 1.0000000000000000D+00 8.2716799077854419D-25

Some people do not like root free algorithms (e.g. dgd) because they limit the
domain of the matrices to which they can be applied. In IEEE conforming computers
the exponent range is approximately'9?? to 2192 in double precision arithmetic.

On such machines dqd can diagonalize bidiagonals with condition numbers up to
21022 whereas oqd can deal with condition numbers up?3%2For most applications
21022 ~ 10°%8 is more than adequate.
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On machines such as DEC Vax in D-floating mode the effective limit on the
condition number is approximately? ~ 10% and if this is restrictive then it is only
necessary to use oqd to find the smallest singular values and then switch to dgd when
the effective condition number (easily approximated) is within range.

We conclude this section by pointing out that gd (Algorithm 3), the standard qd
algorithm, consists of the so-calleHombus rules arranged in computational form
and these rules are a direct consequence of the defining equation

BB" = B'B.

Equate the X, k) entry on each side to obtain
(10) GGV =B 1 +E, e ter =81t e
and equate thek(k + 1) entry on each side to obtain

(11) brar+1 = arbr , exqr+1 = qrék.

The rhombus rules can be also derived fréh = QB’ by noting that orthogonal
transformation changes neither the norms nor the inner products of the columns.
The reason for the name rhombus rule is indicated in Fig. 4 of Sect. 11.

5. Incorporation of shifts

Rutishauser introduced shifts into the qd almost from the beginning and we could
simply quote him. Unfortunately he does not give any explanation of how he derived
the appropriate modification of qd as given in Sect. 4. So we provide one at the end
of Sect.5.1. In fact the use of shifts in root finding algorithms can be traced back to
Schibder’s classic work [37], [38] which was published in 1870.

5.1. Shifted gd algorithms

In eigenvalue calculations, shifts are natural and can be easily incorporated since
MA = 7201) = \(A) — 72

where7? is the shift and\(A) indicates an eigenvalue of. Thus, by subtracting?
from the diagonals of the matrix, we can introduce origin shifts into the Cholesky
algorithm.

A shift 7 can be introduced into oqd (Algorithm 1, Sect. 3) by modifying state-
ments involvinga”and d.

Algorithm 4 (oqds)
a:= aq
fork=1n-1
ay = \/&2"'[)% — 72
by = by, * (age1/an)
&= a2 — 72 % (aje1/an)
end for

i, = V@2 — 72
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It may be verified that3™ B = BBT — 721. To keepB real the shift must satisfy
(12) 7 < 0,[B]
but this constraint is not formally necessary for dqd (Algorithm 2) which uses
Ge = di, +ep, — T2
By definingd = d;, asd? — 72 an addition can be saved.

Algorithm 5 (dqds)

2

d=q—T1
fork:=1,n—-1
Qi = d+ey

ex = ek * (qr+1/ k)
d = dx (qre/q) — 7°
end for
Gn =d
The constraint (12) is also unnecessary for qd.
Algorithm 6 (qds)

éo =0

fork:=1n-1
Gk = (g — ép—1) +ex — 7
€k = ep * Qre1/Qr

end for

A~ A 2
dn -—Qqn — €n—1—T

2

All that is lacking is an analogue of the orthogonal connection (Theorem 1)
BT = QB.

For that it is necessary to abandon square matrices and there are two ways of doing
it. In some signal processing circles one would write

n % ]=1%]

with H"H = diag[l, —I] and such anf can be built up from both plane rotations
and plane hyperbolic rotations. We prefer to write

BT ] _ B
[0 ]=e[ ]
where @ is 2n x 2n and orthogonal but not unique. However its firstrows are
uniquely determined byB and r for = < ¢,[B]. Moreover Q may be built up by

well chosen plane rotations. Both approaches yield oqds; they provide alternative
interpretations.
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It is at this point that the superiority of the gd formulation becomes clear. DK
showed that the standard Golub-Reinsch bidiagonal QR algorithm may be simplified
when the shift is zero; see Sect. 10 for the details. Our algorithms (1,2, or 3) are
already simpler than the DK zero shift QR and they also permit use of a non-zero
shift with no impediment to pipelined or parallel implementation or high relative
accuracy. These natural improvements are strong evidence that our formulation is the
natural one.

5.2. The two phase implementation

At first sight the auxiliary quantitied;, « = 1,...,n that occur in dqd are seen as
the price to be paid for securing high relative accuracy. On further consideration they
may be seen as an attractive feature that permits an aggressive shift strategy that also
preserves high relative accuracy in the computed singular values. Moreover, as an
extra bonus, we find that the vectér= (ds, ..., d,) may be computed i®(log, n)
steps in a parallel computer using the technique called parallel prefix operation in
computer science writings, see [9]. The numerical stability of parallel prefix is not
yet well understood, but see Mathias [26].

Consider next the implementation of dgds. The auxiliary quantifiemay be
computed prior to any modification gfande since

devt = diqrer/Ge — 7

(13) drqr+/(dy, + ex) — 72

An alternative formulation is

_ qrk+1 2
14 dpy = _
( ) kol 1 +ek/dk T

but a division costs more than a multiplication.

It is at this point that one sees the advantage of arithmetic units that conform to
the IEEE floating point standard 754: there is no need to test at each instance of (13)
or (14) to prevent division by zero. The occurrence éfwaith d; = co does no harm
since it implies thatj;_; = ax_1 = 0. This signals that

ofl[B] < 7?

and the transformation aB to B (Phase 2) should not be completed. The effort in
running (13) is not wasted because it yields a new upper bountf pR]. Further-
more, the number of negatiug gives the number of singular values less than the
shift 7. It can be shown that the; are the pivots obtained in performing Gaussian
elimination without pivoting on the symmetric tridiagonal matri® 8" — 721). We
have also used this inertia property to create a spectrum slicing (bisection) algorithm
for use on a distributed memory parallel computer system.

Using (13),d; = oo yields dig+1 = oo/oo = NaN (not a number) and then
4; = NaN for i > k+1. Using (14)d;, = oo yieldsdi+1 = gr+1 — 72 Which is a better
answer.
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5.3. Almost positive bidiagonals

Following Rutishauser we observe that there are some conditions in which a shift
exceedings,, is permissible. We go further in showing that under certain conditions
the high relative stability property is also preserved.

The standard qd algorithm is well defined for most shifts but it may not be stable
in an absolute sense; i.e. the new arfgyé} may be far greater than old ode, e}.
Rutishauser proved stability under the assumption of positivity and took great care in
his implementation to preserve this property.

Our dqds algorithm has the advantage of maintaining relative stability in the
positive case and, fortunately, even beyond. For example the requirement

7—2 < 20721—1[37171] tep—1

is sufficient whereB,,_; is the leading principal submatrix dB,, because our con-
dition ensures that the only entries {4, é} that could go negative arg,”; andg,.
Our goal is to choose (actually 2 ) to makeq, as small as possible and hence

7-2 ~ dn = qn(l - en—l/dn—l)-

Notice how stronglyd,, depends on sign(,_1) and sign§,,) sincegq;, 1, though un-
known, remains positive. We need to know what happens to the sighs efahdq,,
once we abandon positivity. It turns out that it takes at least two sweeps to return to
the positive case. There are four possible sign configurations in the asymptotic regime
(T2 < %dn_l +e,_1) and we designate them by sign pairs: (sign(), sign(,))-

A careful study of the last three assignments in dqds shows the following possible
paths the sign pairs could follow. These are also shown in Fig. 1.

If r<o,
(+,+) — (+4)
(+7 _) B (_a +)

(_> +) I (_7 _)
(_7 _) I (+7 +)
If 7>o0,
(+7 +) I (+? _)
(+7 _) I (_a _)

(_7+) B (_a+)

(_7 _) — (+> _)
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e T <,

. ifr>oa,

Fig. 1. Sign patterns ofd,, 1, gn]

6. Bounds for omin
6.1. A posteriori bounds for the smallest singular value

Our oqd (Algorithm 1 in Sect. 3) transform8 to B by making use ofr auxiliary
quantitiesay, k = 1, n. It is possible to give a nice interpretation of hgthat leads to
useful bounds olrmi. This result was also obtained by Rutishauser but his treatment
was not based on orthogonal rotations although he knew the matrix interpretation of
qd.

If we think of the matrix BT being transformed intd3 one column at a time in
(n — 1) little steps then at the end of Step{ 1) row £ is a singleton. That is the
key technical observation. To describe the situation we refer back to Sect. 3 and let
Qr = (G1G2...Gj_1)" be the product of the first(— 1) plane rotations used in the
reduction process. Thus

a1 b ~
0 ax b
0

0 Gr1 bpa

B(k) — QkBT - 0 &:k 0
b a1 O

br+1  ap+2
0
bn—Z Gn—1 0
bp—1 an |

(15)

Note thatQ, BT coincides with3 in rows 12, ...,k — 1 and with BT in rows
k+1 ... n while orthogonalQ; coincides withl,, in rowsk+1 ... n.
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Theorem 2 (Bounds foromin Without shifts). Apply the dgd transformation to a pos-
itive bidiagonal B (see Algorithm 1) to produc® andas, ay, . .., a,. Then

1.0, < mlnk{&k}
2. [(BBT) Yy =32
3. (Cid )t < (Ui @) 7Y2 < o,

Proof. Since singular values are invariant under orthogonal transformations and trans-
position
oulB] = 0nlQB"] < [ufQuB| =

whereuy, is thekth column of the identity matrix. Thith row of @, BT is a singleton;
up QB = Gpuy, .

Transposing and rearranging gives
ay ' Qrur = By,

i, 2= (BB Y
as claimed. Note that
n n
0,2<Y 0,2=|BYE=trace [BB") 1= a,”
=1 =1
Finally we get the required result by considering the one and two norms of the vector
(artaxt,...axh. o

We can compute bounds om,,[B] even when the algorithm is used with shifts
7 provided thatr < onin[B]. Formally the reduction

(5)-()

requires 2¢ — 1) plane rotations (not just — 1) because the rotatio@; in (i, + 1)

must be preceded by a rotaticﬁ)i in plane ¢,n +14) in order to introducer into
position ¢ +1,i). Conceptually a3 is transformed intd3, at each step one row is
in transition and all rows above it belong @ and all rows below it belong td3T.
However the active row, rowk, is still a singleton in fact

T BT\ _. 1
(16) uLQk 0 = Qg
Theorem 3 (Bounds foromin With shifts). If the dgds algorithm with shift trans-

forms positive bidiagonaB into positive B with auxiliary quantitiesiy, . . ., a,, then

1. 0,[B] < min.{ag}
2. [(BBT) j = @, 2|l )|? < @2 .

where, in (16)u}Qy. := (z},y}), andz andy each have: entries.
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Proof. Since singular values are invariant under orthogonal transformation and trans-
position, and are not increased by the transformatien v/a2 — 72 we have

oulB1= 00 [QiBT] < lupQuBT| = 2L BT|| < @y

where@k denotes the leading x n submatrix ofQy. The last equality uses (16). To
establish the second result transpose (16) to obtain

[ B 0 ] Q};uk = Bxy = uk&k.

SinceB is invertible,

EL;lIk = Biluk,
a 2en)? = up B ' B tu, = [(BBT) Ypx O

Remark.Since theaj, are monotone decreasingina successful dqds transformation
produces a better upper bound and a worse lower bound than does dqd (see Theorem
2). Fortunately it is the upper bound that plays an active role in our implementation.

6.2. The Newton shift

The shift strategy used by Bauer to accelerate the rational QR algorithm RATQR is
also closely related to part 3 of the above Theorem 2. See [4], [29].

We recall that the Newton shift from 0 for the characteristic polynomial of any
matrix A is related to the trace of the inverse. Let

xa(t) =detftl — A] = ﬁ(t =)

=1

Then, by logarithmic differentiation

Xal) -~ 1
xa(t) ; t—Ni
In particular

X4(0) _ zn: -1_ -1
- =>» A " =traced
x4(0) i1

because the spectrum df* is {\;}7.
In our case by Theorem 2(2) a2 = Y d; ! = trace A~ is the Newton
correction from 0 towards?.
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6.3. The(1, o) bound

The DK paper also provides lower bounds @fn Two recurrences (see Sect. 10 for
details) produce
min); = | B~
J

and .
min; = || B

Then ) ) ) )

o, =BT < min{[| B |oo, [[B™7 |2}
Since||C|| < 1/||C|1]|C| for any square matrix’, we can improve the DK bound
to give,

ot =BT < \/HB*IMIIB*IHOO < min{||B™ oo, [ B7H1}-

6.4. The Johnson bound

For a general complex matriX, a Gersgorin-type bound faty» is given by Johnson
(see [23]),
omin > max{0, 6}

where
0=ming leiil — 5 3 lenal +less]
- i ) 2 ‘ Ck,i Ci.k
ki
For a positive bidiagonaB, this simplifies to

. 1
6 = min {ai - Z(bi + bil)}
and near convergeneg, — 0 , b,_1 — 0 so that

1
0=ap— bn_1.
a 2 1

7. Effects of finite precision
7.1. Error analysis — overview

One of the benefits of the simplicity of our algorithms oqd and dqd is that their
analysis is relatively easy. The DK zero shift QR transformation, though simpler
than the Golub/Reinsch transformation, is complicated enough to defy anything but a
forward error analysis. After heroic struggles with innumerable details DK establish
the error bound quoted in Sect. 10.4.

When discussing this result and our own analyses it is convenient to use the
acronymulp which stands fownits in thelast place held. It is the natural way to
refer torelative differences between numbers. When a result is correctly rounded the
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error is not more than half anlp. In this section we usually omit the ubiquitous
phrase ‘at most’ qualifying errors and modifications.

Our algorithms still do not admit a pure backward error analysis, the computed
output B is not the exact output from a matrix very closeRo Nevertheless we can
use a hybrid interpretation involving both backward and forward interpretation.

Whereas DK'’s zero shift guarantees that each computed singular value is in error
by no more than 69 ulps our dqds algorithm causes no more tham#ps change
using any properly chosen shift. However the main point is that our analysis is easy
to grasp.

The next subsection establishes this strong property of dgds. A similar result holds
for ogds but the square roots and squaring provoke a slightly larger bound.

The trick of the proof is to defind3 (see Fig. 2) so that the computed auxiliary
quantities{d;} are exact outputs of dqds. The difference betwé&eand B is the
forward error.

At the beginning of the paper we made much of the fact that algorithms ogd and
dqgd required no subtractions. Yet, in the interest of efficiency, we have introduced
shifts and quietly brought back subtraction. The miracle is that the subtraction is in the
d's and does not impair the high relative accuracy property. However Rutishauser’s
gd does not guarantee high relative accuracy so longsaare dominated by neigh-
bouringe’s.

Since no intermediate quantities excerd it is assumed that the initial data are
scaled so that; (or o2 for dgds) is close to the overflow threshold. Underflow,
though possible, is then a rare event.

Finally we remind the reader that the symbol = carries its normal mathematical
meaning.

7.2. High relative (mixed) stability in the presence of shifts

We refer the reader to Sect.5.3 where almost positive bidiagonals are introduced.
Rutishauser merges thés ande’s into a single array?;

Z = {q:l-v €1,42,€2,...,€En—1, Qn}

and this is a convenient notation for the analysis which follows.
Before stating our claim we need more notation because the difficulty in the anal-
ysis is one of interpretation. Gives the dgds algorithm in finite precision arithmetic

produces representable OUt[:ﬁlI We introduce two ideal array? and Z such that

Z is the output of dqds with shift acting onZ in exact arithmetic Moreoyer7
is a small relative perturbation & andZ is a small relative perturbation &f. See
Fig. 2. This property is called mixed stability in [10] but note that the perturbations
are relative ones.

Our model of arithmetic is that the floating point result of a basic arithmetic
operationo satisfies

7 fllzoy)=(xoy)(L+n)=(zoy)/(1+)
wheren and$ depend one, y, ando, and the arithmetic unit but satisfy

Inl <€, [6] <e
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dqds

z z
computed
change each change each
g by 3 ulps Gk, €x by 2 ulps
er by 1 ulp
7 dqds Vi

exact

Fig. 2. Effects of roundoff.Z = B

for a givene that depends only on the arithmetic unit. We shall choose freely the
form (n or $) that suits the analysis.

A fairly simple result is possible because the only truly sequential part of dqds is
the sequencéd;}}. Note that, in exact arithmetic

The trick is to write down the relations governing the computed quantities and then
to discernamong them an exact dqds transform whose input is clogedod whose
output is close taZ.

Theorem 4. In the absence of underflow or overflow, thediagram given above

commutes andg’,, (€'y) differs fromgy (ex) by 3 (1) ulps, G, (éx) differs fromgy
(ex) by 2 (2)ulps.

Proof. We write down the exact relations satisfied by the computed quanﬁties

(18) e = (dpter)/(L+es)
~ _ Gl +e))(1+es)

1 = i 1+ =

(19) 123 qer1(L +€/)/ dy + e
. _epqrr(l €))L +e) (1 +e)
(20) er = ertr(l+e)= dy + e
d {ditr(1 +e.) — 72}
e+l 146,

Note the difference betweenandx. Of course all the's obey (17) and depend on

k but we have chosen to single out the one that accounts for the subtraction because
it is the only one where thé dependence must be made explicit. In more detail the
last relation is

d
d:i’“;; (L+e)(L+e)d+e,)—72

(A +er)drgena(l+e)(1+e)(1l+e)
(L +ep)dr + (L +ep)er T

(1 + €xr1)dpaa

(21)

This tells us how to defineZ . Note thate;, arose in the previous step. Moreover
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(22) (L+e)di =g — 72

Our choice of?, in general, is not a machine representable array.
Fork > 1,

R
dp = (L+e)ds

(23) Cr = (Ltee
(24) T = anl+e)d+e)d+e) , (T1=q)
and by (21),

7 —

_

(25) d g1 = _)k Tt _ 72

dr+ e

Then, for exact dqds, we must define

o —_
Q= dip+ e, =L +e)(dr +ex)

Finally ¢, and¢;, must be recast in terms df;

(26) Gk = qr/(L +ex)(1 +es) , from (18)
& = (L4 )(1+e)(l+e) , from (20)
di teg

€k (L+e)

27 = .
0 (E)k +7€%) (1+e)

It is (23) that yievlds?ik/(j,c +7¢'k) = e /(di + ex). Equations (23) and (24) give
the change fron¥ to Z, and equation (25) fixes the exact dgds transfornm

Recall that, in exact arithmetic, algorithm dgds diminishes all eigenvalues (of LR)
by the shift. For finite precision execution we have the following.

Corollary 1. Algorithm dqds preserves high relative stability. Wheand @; = /q;,
b; = \/e;, etc.), together with the associated ideal bidiagonﬁ&and B, satisfy

o[ B] = oi[Blexp{2(n — 1)},

o?[B] = 0¥ B] - 72,
0:[B] = oi[ Blexp{(2n — 1)},

fori=1,2,...,n, ande(f) <€ e(zi) <e.
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Proof. Fori=1,...,n—1
Tion = Tir = amy [+ )L +e)(L+e.)

71‘: ?l:bl\/(1+61)
By Theorem 2 in DK, the relative change in any singular value in going fi®ro
B is the product of all the relative changes, namely

n—1

[TIA+e)@ +e)@ +e)(d +6)]2 < exp2@ — 1)e.
=1
Similarly
i =G =4/VA+e)1+e) | i<n

b =\/& =biv/A+e)1+e,) , i<n
n = Vdy =/ /(A +en).

The relative change in any singular value in the transformation fiorto B is
bounded by

n—1

Vite, [[lA+e)/A+e)A+e)d+e)]? < exp (4 — 3)e/2.

=1
Since the passage fro to B is exact the singular values diminish by. 0O

Remark It can be shown by similar means that one dqd transformation cannot alter
any singular value by more than3¢ 1) ulps.

Theorem 4 is much stronger than the familiar error analysis based on norms becau
se:

1. The perturbed matrices considered here inherit the bidiagonal structure
2. The bounds are very much smaller than those from DK (see Sect.10) or the
Golub-Reinsch algorithm (see Chapter 8 of [19]).

For multiple sweeps of dqds, our results can be stated more simply in terms of
the positive sequencgZ; } wherel denotes the sweep with, = Z; = Z. See Fig. 3
for the corresponding commutative diagram. Then by combirfipg — Z+1 —

7l+1 — Z14p ONE obtains thaf,., is the exact dgds transformation of a perturbed
(in relative sense¥;.;. Thus backward stability is present f0Z;.,}.

Similarly it can be shown that the sequen@:ﬁl} is forward stable (in relative
sense) With7f = Z; whereZy is the final computed result. On exact application of

dgds on?l we getém instead of?lﬂ (see Fig. 3) and the error betweé_ﬁm and
Zy+1 is small.

Example 3.The following experiment shows vividly the difference between an al-
gorithm that obtains high relative accuracy (dgds) and one that does not (LINPACK
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A Zig2
change each
qx by 3 ulps
e, by 1 ulp
dqd
Z acs Ziyt AT Zisa
computed
change each
gx, €x by 2 ulps
= dqd 5 - .
Z L 4 Y

exact

Fig. 3. Effects of roundoff for multiple sweeps

dsvdc based on the Golub-Reinsch algorithm) but which delivers excellent absolute
accuracy. We took the graded matiik.,

a;—1=Ba; , b;=a;

with a,, = 1, n = 8 and = 60. We applied both algorithms tB, and its reversal
B*!
a; = aps1—i 5 b — by
We did not allow any flipping of the matrix within the dgds algorithm although such
flipping improves convergence. See next section.
In Tables 5 and 6, the third column shows,

abs; = (0:[B_] — 03[ Bs]) /o1[ Bs]

the differences between outputs scaled by the 2-norm of the nicer matrix. Recall that
macheps ~ 2753 ~ 1.1 x 10716, For dsvdc (see Table 5), it can be seen that the
absolute error is even smaller than absolute stability guarantees.

In Tables 5 and 6, the fourth column shows/;,

rel; 1= (o;[B-] — 0:[B+]) /oi[ B+]
the relative differences in the outputs. For dqds the largest magnitude is less than
two macheps (see Table 5) while for dsvdc (see Table 6), it is very much larger and
shows that dsvdc does not give relative accuracy.
8. Convergence

8.1. Linear convergence

Convergence of the Cholesky algorithm and of the standard qd algorithm for tridiag-
onal matrices (in the positive case) have been given by Rutishauser and others (see
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Table 5. Numerical results using dqds for Example 3

i oi[B+] oi[B-] abs; rel;

1 3.9590303657774160D+12 3.9590303657774155D+12 -1.2D-16 -1.2D- 16
2  5.7143240472800255D+10 5.7143240472800247D+10 -1.9D-18 -1.3D-16
3 8.9790986853271568D+08 8.9790986853271568D+08 0.0D+00 0.0D+0 0
4  1.4489876544914651D+07 1.4489876544914651D+07 0.0D+00 0.0D+0 0
5 2.3661793507020348D+05 2.3661793507020348D+05 0.0D+00 0.0D+0 0
6 3.8884661685208386D+03 3.8884661685208386D+03 -1.1D-25 -1.2D-16
7 6.4142972113704085D+01 6.4142972113704109D+01 3.6D-27 2.2D-1 6
8 3.5351579203702068D-01 3.5351579203702068D-01 0.0D+00 0.0D+0 0

Table 6. Numerical results using dsvdc for Example 3

i 0'7;[B+] O’i[Bf] abs; rel;

1 3.9590303657774146D+12 3.9590303657774160D+12 3.7D-16 3.7D-16
2 5.7143240472800224D+10 5.7143240472800278D+10 1.3D-17 9.3D-1 6
3  8.9790986853271544D+08 8.9790986853271413D+08 -3.3D-19 -1.5D-15
4  1.4489876544914653D+07 1.4489876544914989D+07 8.5D-20 2.3D-14
5 2.3661793507020345D+05 2.3661793507022545D+05 5.6D-21  9.3D-1 4
6 3.8884661685208386D+03 3.8884661685173243D+03 -8.9D-22 -9.0D-1 3
7 6.4142972113704073D+01 6.4142972113772929D+01 1.7D-23 1.1D-12
8  3.5351579203702068D-01 3.5351579205582154D-01 4.7D-24 5.3D-11

[32], [39]). Nevertheless we present here a direct convergence proof for oqd because
it is a new algorithm and the proof is both short and illuminating. We give a brief
discussion of the effects of finite precision on the results of the theorem at the end of
the section.

In finite precision a computed cosirg may equal unity even though the corre-
sponding sines;, may merely be small.

Our proof makes use of the fact that a symmetric tridiagonal matrix with nonzero
superdiagonal entries (e.§. B) cannot have multiple eigenvalues [28], [39]. In other
words, the singular values of a positive bidiagofabre distinct

(28) 01> 09> ...> 0p.
One must bear in mind that distinet may be equal to working precision.

Theorem 5 (Convergence of oqd)From a positive bidiagonaB; the unshifted oqd
algorithm in exact arithmetic produces a sequengBs}{° of orthogonally equivalent
bidiagonals. A9 — oo,

B, — Y =diagy,...,04) .

Furthermore, ifa,, < a1, then the sequencg[]";* b} is monotone decreasing in
[ from the beginning. Eacl@bgl)}ffl converges linearly t® with convergence factor
Ui+l/0i-
Proof. Consider a typical step of oqd (Algorithm 1). Since there are no subtractions
eachB; is positive sinceB; is positive.

Equation (7) can be written in the form,

(29) ak =ck,1ak/ck for k= 1,...,n

provided that we seaty = ¢, = 1 . Take the product of the firét instances of (29) to
find
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k

k k
(30) Hai = (H a;)/ck = Hai-
i=1 i=1

=1
The sequencc@]‘[Z 1 S”} is bounded above, byB||*, and is monotone increasing by
(30) and thus convergent. The limit may be wrl'ﬂHr‘j“:l 1; to reveal that, a$ — oo,

(31) ) =
(32) S |
(33) s~ o

By (8) and (33), ag — oo,
(34) B =50 —0,i=1... ,n-1

Thus B; converges to diagonal form and eaghis a singular value. To identify;
use the product rhombus rule to find

(35) B0/ = a0 = i

Since{b{"} is bounded (by|B1||) the limit in (35) cannot exceed 1. By (28) the limit
is not 1 and thu$ug+1 < px, £ =1,...,n— 1, and we may identify., asoy. Thus,
(35) proves thabg) — 0 linearly with convergence facter+1/0%, as claimed, and
B, — 2.

Finally consider ]/, b%. Apply (8) and (6) in turn to find

a ~ _ az...ay
bi...bp1 = by...bp1.° .
aj...anp—-1
_ C1C2C3 Cn—1
- bl~-~bnfl Qn

ai €1 €2 Cn—2

= bl...bn,]_ (an> Cn—1
ax

< by...bp_1,

if a,, < a;. SinceB may be flipped about its antidiagonal without altering the singular

values there is no loss of generality in assuming thaK a;. In this case[[;-; (l)
is monotone decreasing withfrom the start. O

It is worth mentioning that Rutishauser’s proof of convergence for qd (Algo-
rithm 3), is based on the observation thdk, |r > ||Bx|lr and | B_x||r < | B_k|le,
k =1,2,...,n Here M, is the submatrix of} containing the first (last)
columns.

By taking the product of the final — k instances of (29) one finds thgf] -, S“}
is monotone decreasing infor k =n—1,n —2,...,2,1. In particulara{’ increases
anda!)) decreases so that a flipping Bfis needed at most once.

The assertions of Theorem 5 bear up quite well in finite precision arithmetic. The
computed sequendg ", o’} is monotone nondecreasing andb— 1 asl — co.
Thus in considering a sequence of computed trigonometric values we do not wish to
infer s/ — 0 from { — 1. So the first casualty is the conclusion théit — 0.
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Instead we find that"’ becomes negligible relative @, anda{". Even so, in the
absence of underflow, the diagonal entries eventually rearrange themselves in (almost)
monotone nonincreasing order. Though distinct, by (28), some singular values may
be equal to working accuracy and diagonal monotonicity may actually fail by one or
two ulps (units in the last place held) because the ratio, though exceeding 1 might
be too small to cause the neighbouriirgalue to grow at all. All in all the practical

oqd performs as closely to exact oqd as it is reasonable to expect.

8.2. Quadratic convergence
Consider the last few steps in dqds with shift
(’]\nfl = dnfl +te, 1

En—1= en—lQn/Qn—l

dn = dnflqn/(’]\nfl - 7—2

Gn = dy.
Hence
~ ~ €n—1Gn €n—1
€n—1qn = T,L\ " |:q”(1 - An ) - 7'2:| s
qn—1 n—1
(36) — 67}\—1Qn |:qn _ 7_2 _ Q7’z\€n—1:|
qn—1 dn—1

In exact arithmetic, as — o,[B] we haveg, — 0, ¢,,_1 — 0, ¢,,—1 — 02 _4[B] —
02[B] := gap > 0 because the singular values are distinct if the infla of positive
type. Thus convergence will be quadratic with respect to ghjs

Expression (36) shows that if

(37) 0< gy — 72 < 2™t
qn—1
then o o
‘Qn _ 7_2 _ Q7i n—1 S QT’L\ n—1
dn—1 qn—1
and so, by (36),
|€n71Qn| 1 N 1 > O,

(en—1an)* ~ G5,  gap?
ast — o,[B]. Thus (37) shows a (theoretical) interval for thosethat deliver
guadratic convergence. Next we seek a computable expression that will ultimately lie
in that interval.
The perfect shift is
€n—1
2= an(1— )

qn—1
so that the natural strategy is to estimate ;" by assuming that;,,” , = ¢,_, for
some modest value d@f, like 6, and then evaluate the approximdte from n — & to
n.



216 K.V. Fernando and B.N. Parlett

~ €n—2
Qn-1 = (1 - A"L )q”—l - 7—2 —€p—1
qn—2
€n—2
~ (1 - )qn—la
qn—2

whene,,_» ande,_; are small enough.

8.3. Cubic convergence

The assertion in (37) of Sect. 8.2 that the sh#t= ¢,, yields quadratic convergence

for qds and dqgds appears to contradict the result of Rutishauser [33] that this choice
yields cubic convergence. See also Rutishauser and Schwarz [36] and Chapter 8 of
Wilkinson [43]. Actually, there is no anomaly because the shift strategies are not quite
the same. In our terminology what Rutishauser suggests is that the qd transform with
72 = ¢, should not be formed explicitly. The only item wanted from itgjs and it

is assumed to be the only negatiye Then it is shown thag,, + g, is a fourth order
approximation tos2 from below A qd transform of{q, e} with shift 72 = q,, + G,

will yield cubic convergence.

The point that is stressed by neither Rutishauser nor Wilkinson is that the com-
putation ofq;, = d,, costsO(n) operations, very close to 1 step of gds. From another
perspective Rutishauser’s analysis is a disguised derivation of the cubic convergence
of the tridiagonal QR algorithm with the Rayleigh quotient shift.

For our algorithm dqgds Rutishauser’s (late failure) shift strategy described above
is more appealing. Only the first phase of our algorithm is needed to coniputed
the cost is abouﬁ of a dgds step. Moreover the positive form is preserved a little
longer.

For the sake of completeness we indicate why+ d,, is a fourth order lower
bound whery,, is second order im,e,_1. The relevant tridiagonal matrix i8BT
and its leading principal{ — 1) x (n — 1) submatrix is called V. Recall that; is
columnj of I.

Fact 1: Provided( — 021) is invertible the singularity o3BT — 021 yields
tn =05 = (@nen-1)us,_1(V = 05 1) " upa
Fact 2: With shiftr? = g,,,
d = Gn = ~(@nen—1un_1(V = gul) " up1
Conclusion,
Gn+Gn =00+ (Gnen—)ug_y [(V =02 1) ™t = (V = gu D) up-a.
By Hilbert's first resolvent identity (see p. 90 of [8]),
G+ G = 00+ (@nen—1)(05 = @n)ug_1(V = gu 1) NV = 05 1) Fupa.
Using Fact 1 agairy, + g, =
(38) 05 —(gnen—1)* {u),1(V = 05 1) un—au), o(V — g D)7V — 02) Fup 1}

The gap conditions ensure that } — O(1/gap®) asq, — 0, e,,_1 — O.

In contrast to Rutishauser and Wilkinson, our expression (38) is exact provided
that the inverse matrices exist. However it is only for small enaygh andg,, that
the quantity in{ } can be bounded away from.
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9. A preliminary implementation
9.1. Choice of shifts

The standard singular value codes in LINPACK and LAPACK need about 2 QR steps
per singular value, in most cases, and that provides a hard target to beat. Moreover
each of our qd transformations needs 06lfn) flops and no square roots so we are
reluctant to spend(n) flops on shift selection.

A strategy used to generate the numerical results in this paper may not be the best
but it is based on the following somewhat surprising observation. The upper bound

sup = di = mind;
3

is an increasingly good estimate f@}mn[B]. Our code maintains bounds om,n[ B]

at all times. Following Rutishauser, we call thesmp andinf. Moreover, at each
step, we will know the indeX from the previous step. This index points to the largest
diagonal entry of BTB)~! and helps tell us whether?,, has yet migrated to the
bottom of BTB. If k > n — 1 we expect the trailing % 2 principal submatrix of
BBT to give a good approximation teZ;,. Whenk < n — 1 the matrix is not yet

in asymptotic form and the situation is more difficult. However we do know that
V/qx * ex is the smallest (leftmost) center of all the Johnson discs for the matrix of
equation (15). If this disc were separated from the rest of the discs then it would
certainly contairnrmin. Even if it is not isolated this disc may still contad,i, SO we

use it.

9.2. Splitting and deflation

In Sect. 2 it was noted thatéf;, = O (i.e.b; = 0), fori < n, then the bidiagonaB splits
into two complementary submatrices. Consider now the case wh@n b;) is small
enough to permit such a splitting without making a relative change in any singular
value exceeding a given tolerangeOur situation is a little more complicated than
the one studied in DK because of the non-restoring shiftoPetenote the cumulative
sum of all shifts used on the given matrix in the dgds algorithm (which computes the
squared singular values).

Our criterion (39) is based on Weyl's monotonicity theorem for eigenvalues of
symmetric matrices. Consider the zero diagonal representatiéh of

ay b1 ar . A,
T =tridiags O 0 0 0 0 0

ay by az . an,

The spectral norm of a matrix of the form

0 b
b; O

is b; and it is submatrices of this form that we may remove. Weyl's theorem states
that this removal changes no eigenvaluesioby more thanb;. The output of the
algorithm is numbers of the form/a2 + \2[T] and hence for a relative tolerange

we must require
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b < \/o2 + A T]

and this is guaranteed when
(39) b < /o +inf

where inf is our current lower bound aff, [ B].

The suppression of; leaves two tridiagonals which correspond to bidiagonal
matrices which may be processed separately. There are less stringent checks than
(39) for splitting but they require more computational effort.

9.3. Performance of a prototype implementation

We have developed and implemented dgds in FORTRAN 77 to study and exploit the
theory we have developed in this paper. This prototype program is built in modular
fashion.

We have run our code on a broad test bed of bidiagonals. Here we report on
comparisons on three interesting classes using our dqds and LINPACK'’s dsvdc (with
reduction to bidiagonals removed). There is little difference in timing between the
Demmel-Kahan code and dsvdc since DK reverts to QR after tiny singular values are
found.

Examples 1,2 and 3 were given in earlier sections.

Example 4 (nice matrices)e considered the graded matrix. defined earlier in
Example 3 with the parametgt = 2 andn = 30. Table 7 gives the performance on
this example and other examples in this section. The speedup is the ratio of dsvdc
time to dgds time.

We have also tested this problem with= 40 and in that case the LINPACK
dsvdc returned with an error flag as it could not compugtg within 30 iterations.
We were prevented from comparing with larger values:diecause dsvdc reported
errors.

Example 5 (perversely graded)o make conditions artificially difficult for dqds, we
also ran the programs with the reversely graded mdgrixas the input withn = 30
and = 2. See Table 7 for details.

Usually, our dgds will flipB_ to obtain B.. If the user does not flilB_before
calling dsvdc then the time ratio goes up to 18.9.

dsvdc also failed to converge for many combinationgafndn.

Example 6Let B, be the Wilkinson-type bidiagonal matrix where

n
+1
2 ‘

b;=1 , +=1,....n—-1

This matrix has close singular values (twins) and our current coding does not fully
exploit this structure. Hence the low performance compared with the previous results.

(Li:‘i— , 1=1....n

Example 7 Doubled Wilkinson-type matriced3ay,

Z+ﬂ L i=1

ai:\i—

gy
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Table 7. Performance comparison

Example Matrix n dgd sweeps dsvdc sweeps speedup

4 B+ 30 52 60 10.2
5 B_ 30 79 101 12.3
6 Bw 21 78 62 4.8
7 By 41 230 120 4.8
8 B 100 374 308 11.0
.n
aien = Qi z=2+l,...,n

bi=1, i=1,...,n—1

with n = 41. This matrix has close singular values (quads) and some of them are
exactly equal. Table 7 gives the details.

Example 8.Toeplitz matrix B,
a; = 1 s bl =2

Forn =100, the matrix has a tiny singular value; others are between 1 and 3.

10. The Demmel/Kahan paper

We summarize the highlights of [11].

10.1. High relative accuracy

Corollary 2 of Theorem 2 of [11]. Suppose th&{0B);; = ap;i_1a;, (B+0B); i+1 =
Olzz‘bi, o 70 Define

2n—1
a= [ max|al, [a; ]}
=1

Leto, > 0, > ... > 0, be the singular values d8 + §B. Then
ai/&ga; <oga, i=12...,n.

This shows that bidiagonal matrices determine their singular values to high relative
accuracy.

10.2. Bounds for,,

It is possible to computé B~ . and|/ B2, using 2¢ — 1) divisions and multi-
plications. The algorithm is

)‘j = aj()‘j+l/(Aj+l + bj)) y j =n— 1, n— 2, ceey 1 with )\n =apy
pien = ajeapi /(e +05)) , 7=12,..,n—1 with p:=ap
B0 = 1/ min ),

J
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1B~ = 1/ min;.
Finally,

n”Y2max| B BT < o < nt2min{| BT IIBTHITY

and
min{|| B~ BTt < o

10.3. A stopping criterion

Let n << 1 be the desired relative accuracy of the computed singular values. Then
if either

bj/Ajsa <mOr bj/p; <1
setb; to zero and the two pieces into whidh splits may be processed separately.
The criteria used in LINPACK [12] can sometimes deliver a zero singular value when
it should not and can sometimes fail to suppress a negligible off diagonal igntry

10.4. Bidiagonal QR with zero shift

The standard Golub/Reinsch algorithm [19], [18] used in LINPACK may be simplified
when no shifts are used. Of more importance is the fact that in this case all round
off errors arise multiplicatively. Moreover for the calculation of tiny singular values
zero is a good shift and it pays to compute them first rather then letting the standard
shift strategy dictate the order in which the singular values are found. The arithmetic
effort in the innermost loop is

Golub/Reinsch: 2 calls to ROT + 12 multiplicat®r 4 additions

Demmel/Kahan: 2 calls to RD+ 4 multiplications.

The procedure ROT computes the sine and cosine needed for a plane rotation
using 2 divisions, 3 multiplications, and 1 square root. Here is the algorithm.

oldes :=cs =1
for i:=1n-1
call ROT(a; * cs,b;, cs, sn,r)
if (i#1) b;j_1:=oldsnxr
call ROT (oldcs * r, a;+1 * sn, oldes, oldsn, a;)
(40) end for
h:=a, *cs;, b,_1:=hx*oldsn, a, :=h*oldcs

In the absence of underflow the error bound on singular values after one zero shift
bidiagonal QR transform is

’ w 3
lo;—o | < 1_ 07 i=1...,n

where
w = 69n%e < 1.

See Theorem 6, p. 906, of [11].
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10.5. The overall algorithm

if (roundoff in o1 exceedstol x bound on ¢,) then
use zero-shift QR or QL

else
use shifted QR or QL

end if

10.6. Other improvements

The new code uses either QL or QR as appropriate according to thévisgraded.

An efficient accurate subroutine is provided to return the singular values and
vectors of 2x 2 bidiagonal matrices.

Deflation when a diagonal entry; vanishes is automatic and occurs either at the
bottom or top ofB.

11. Evolution of qd

Some of the available presentations of the gd-algorithm, see [32], [39], [21] show
its close connection with factorization of tridiagonal matrices but some do not [22],
[40]. Nevertheless its discovery had nothing to do with matrix decompositions and a
knowledge of the origins helps us to understand the somewhat neglected status of the
algorithm. In the next few paragraphs we sketch an earlier paper [27] which described
the gradual evolution of the gd-algorithm.

The story begins with Daniel Bernoulli in 1728 when he showed that the largest
and the smallest roots of arth order polynomial can be obtained by iteratingreh
order difference equation. See [5]. The work of Bernoulli was extended by Euler in
1748. See Chapter 17 of [14] (English translation [13]).

We are given a rational function of a complex variable

f(Z) = Z hkzk )
k=0

assumed to be regular (analytic) at beth 0 andz = co. The Taylor series converges
to f(z) only within a circle (in%") centered at = 0 and extending up to the nearest
pole p;. However, by analytic continuation, the Taylor coefficiedfs,} actually
define a unique rational functiofi on all of " except the poleg, p2, ps,.... The
problem is to determine the poles directly from tfie, } without having recourse to
analytic continuation.

In 1884 Konig [25] showed that ifp; is a simple pole and smaller than all the
others then

kILmoo(hk/ hg+1) = p1.

Exactly one hundred years ago (i.e. in 1892), in his dissertation, Hadamard [20]
showed that
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. HEDN 5
k:leoo < HE ) - Hpi

=1

where
e hier oo Bpem—a
HrlfL = det hk:+1 hk+2 N hk+m
Pitm—1 Prkam oo RAreom—2

The H* are now called Hankel determinants but Hadamard did not give them a

name. It follows that
) Hk+l/Hk+j'l
pm:kllm <an o )
o m/Hmfl
The solution is brilliant but does not give us a practical algorithm.
During the 1920s, in Scotland, A. C. Aitken rediscovered for himself a remarkable

connection among Hankel determinants that was known to Hadamard but which was
not fully exploited by him;

(41) (HS)" + B HED, = b HE
See [1], [2].

The relation (41) permits the computation of all th& without being drowned
in determinantal evaluations.

The blemish in (41) is that th&* are not of direct interest. We want to compute
0 HEH
" Hk+11/Hvlfnfl

m—

Rutishauser’s clever observation was that if one introduces an auxiliary quantity

k+1 k
e(k) — Hm—le,+l
m k k+1

HmHm

then (41) can be interpreted as

(k+1) 4 (kD)

k k) —
Q1(n) + 6,(m) =4 m—1

the additive rhombus rule, while the definitionsg&nde give the product rhombus

rule .
) = 8 et

The rhombus rules were introduced at the end of Sect. 4.qShendes are best
laid out in a tableau that is like a difference table. See Fig. 4. Rutishauser called the
e’'s modifieddifferences and so chose the letterather thand.

This qd table may be built up via the rhombus rules either from column 1 or from

the top diagonal. The first columiig{®)} is at hand, since
¢ Y= HYJHET = by, k> 1

and

k k k
eg):qg+1)_Q§_)7
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(0
9 )

(0)
(1) (0)

q, 92

U
q” g5

6(12) 6(21)
¢ o?

e ()

(3
9> )

Fig. 4. qd in a (modified) difference table

a true difference.

This is far simpler than Hadamard’s solution but, in finite precision arithmetic, it
is hopelessly unstable because the laterare (modified) differences of converging
values.

Fortunately computation along descending diagonals is stable but here the diffi-
culty is the calculation of the top diagonal. This is not as daunting as it appears at
first. If the function f(¢) has onlyn poles then aly (ande) columns beyond theth
vanish. Then it suffices to build the x n Hankel matrix 2 (recall thatH? is a
number) and compute its triangular factorization

A°=L,D,LT
whereD,, = diag(ds, . . ., d,) holds the successive pivots. It turns out that
@@ =HYH? (=dy , k=1,...,n

The egf) are found from the pivots oI:I}L. This is the practical way to compute the
poles from the Taylor coefficients. In fact a careful form of row interchanges (not
partial pivoting) may be used to improve the accuracy of the factorization.

Next we relate the qd tableau to the computation of eigenvalues. Given a square
matrix C the appropriate rational functiof comes from the resolvent,

f) =20 -0y,

where z and y are arbitrary column vectors. A technical assumption is needed to
guarantee that the qd tableau is well defined. In the language of control theory, see
[24], the linear dynamical syster’(C,y, ") must be minimal. If it is not minimal,
then we might not be able to find all the poles of the system.

For this functionf,

hk = xTcky/xTck—ly

and so the{h;} could be computed by the power method. However, it would be
preferable to comput@qgo), 6(10), qgo), 6(20), ...} directly from C' and we now know that
this can be done by invoking the Lanczos algorithm @rand using the resulting
tridiagonal matrixJ. It turns out that the pivots that occur in computing the triangular
factorization of.J are the{¢\"’} and their reciprocals are the'”}. The details are
given in [27]. In other words,
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10 3
| qéo) 1
0 0
J = 6(2 ) g(')) ql(’, ) il('))
€3 1 qda

We see here how the LR algorithm on tridiagonals was hidden in the qd table.

12. The continued fraction connection

There is an intimate connection between our bidiagonal matrithe tridiagonal ma-
trix 7= BT B, and a continued fraction associated with them. Properties of continued
fractions influenced the gd algorithm initially and only later did the LR transformation
emerge and nearly displace the continued fraction. We can not find any discussion by
Rutishauser of the connection between the continued fractiorBaiiso we supply
it here.

Recall the notation from Sects. 2, 3, and 4.

. b b . by — by —
B = bidiag . 2 n=2 n-1 .
a az . . anp—1 Ay
— 2
q; = a;
2 _ 2 . —
e;=b; , ep=e, =0
Vaier Va2€2 Vq3e3 Van—1€n—1
T = tl'ldlag q1 g2 tey gz teo e qn tep—1 .
Vaier Va2€2 Vq3€e3 Van—1€n—1

Rutishauser associates withthe continued fraction

1 e1q1 €2q2
G1i— (—@—e1— (—qz—ex—
It is not obvious howF'({) relates toI'. The answer is

FQ =1 =T) s

(42) FQO=,

or more generally,
F(Q=2T¢I -1y
with x andy as defined near the end of Sect. 11. The inverse is well defined for all

¢ with |¢| exceeding the spectral radius 6f The particular form of the continued
fraction arises from the triangular factorization @f — 7" from the bottom up:

(I-T=L"DL
where L is unit lower triangular and
D = diag(y, da, - . . , d,,)
d; = d;(¢).
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Then L
CI-1)t=LD T
and ~
F(¢)=dy*
The recurrence for thé; is
JTL = C —dn —€n-1

(43) d;

This establishes (42).
There is a_simpler continued fraction expansion fofC). It corresponds to a
recurrence fodl; + e;_1. From (43)

¢—qj —ej_l—qjej/ciﬁl for j=n—-1,...,2, 1L

dj tej1

.
C—qi1+ 7))
j do

g (7=

dj+l tej

¢—qi/ (1—ej/(djss +e;))

(44)

Sinceeg = 0, (44) gives

1 ¢ a1 @ e

(= 1= ¢ 1- ¢

This form is remarkable for the direct connectiongfande; to the (1 1) entry of
(cIr-n-.

F(¢)=1/dy =

13. Singular vectors

We sketch three methods for this task. Some parts of these methods are independent
of the bidiagonal form. We plan a separate communication discussing in detail the
computation of singular vectors and eigenvectors.

13.1. Method 1

Let B=UXVT. Sometimes only a few columns bfare wanted, those corresponding
to selected singular values. Sometimes allVbis wanted and, on other occasions,
both U and V' are required. Consequently there will not be just one procedure for
computing singular vectors.

Consider first the ogd algorithm with which we began our development of dqgds.
Let {B;} be a sequence of upper bidiagonals generated fBax B) by oqd. By
Theorem 1,

B,=QIB] =QlvxUT

and
B3=QB; =Q;UXV Qs

Continuing this process one finds that
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Bops1= Q- QUEVTQ1Q3 - Qop—1.

As k — oo, Bop+1 — X and so
U= lim QQ4---Qax,
k—oo

V= k:leoo Q1Q3 - Q2x—1.
This suggests one method for producitig V', or both.

Method 1 (To find U and V). Apply oqd toB and accumulate the plane rotations
from the odd and even passes to buildW@and U.

13.2. Method 2

Since oqd converges slowly Method 1 is not a serious contender for the preferred
algorithm but see Method 3 where it plays a role.

Shifts are used to accelerate convergence and because they are non-restoring, no
n-orthogonal transformations are used and one set of singular vectors is lost and the
other set is preserved if alternative shifts are zero. The motivation for Method 2, given
next, is simple. For a bidiagonal with last entrya,, = 0 the oqd transformation gives
bidiagonal B where

B"=QB

and botha;, =0 and?)n,l = 0. So the last column af is a right singular vector for
0(=0o,[B]). Itis only necessary to form the product of the plane rotations that build
up @ and the last column is the desired vector.

When the singular values are known we can use their differences, in turn, as shifts
in ogds to obtain suitable singular matrices.

Before describing Method 2 in more detail we emphasize a subtle benefit that
follows from finding the singular vectors in the order given &y, o,—1, - -, 01!
the sines and cosines of the plane rotations used in our oqd and oqgds algorithms can
be recovered from their squares because they are all positive. Consequently we can
work with the root free versions dqd and dqds although we still refer below to the
underlying matrices3; rather than their squared components given by qd arkgys
which we actually use.

Method 2 (to find U, not V)

1. Initialize: B, =B ; U=1 , j=n , 02,=0.

2. Apply dqds taB; (usinge; = b , ¢; = aZ) with shi fto? — 0%, obtaining B;.
3. Apply dqd toB; obtaining B, _; and save{c? , ;s?, i = 1,j — 1} where

7

d; +e;

= , S

2 dl 2 €;

1 di +e; 4

4. Take positive square roots to obtdin; , s; , i =1,j — 1}

5. Accumulate the corresponding plane rotatigfs, - - -, G,,—1 of oqd intoU ac-
cordingtoU — UG; , i=1j—-1

6. j— j—1,if j = 1stop else go to 2.
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Since the last row and column @f;_1 are zero we deflate them and considgras
ani x ¢ matrix,: =n,n — ,2, 1.

The same algorithm may be used to compldtenot U, if one dgd transformation
is applied toB initially to give B. Then initialize byB,, = B, V = Q, j =

Here is the justification for each of the steps in Method 2.

1. Initialization
2. The output of dqds satisfies

BIB;=B;B] — (62— 02,)] , Bjisjxj.
Consequently, in exact arithmeticj[Bj] = 0 and the right singular vectors of
B; are the left singular vectors a8;.
B;1=Q[B] , Q=G]_ ;-G
So the last column of); is a right singular vector oéj and hence a left singular
vector of B;_;. At this point B;_1 is aj x j matrix but its zero last column will
be discarded at the next iteration.

4. There is an advantage to taking the square roots all together in a pipelined or
vector machine. In a sequential computer Step 4 could be merged with Step 3.

U—UG; , i=1---,5. GZ.:(Ci —?i).

13.3. Method 3

This approach can be used on a distributed memory parallel computer. It employs
plane rotations exclusively.

Consider the permuted form r{f 0 B ]

BT 0
ai b1 az . an
T =tridiags O 0 0 0 0 0
ai b1 a . anp

The eigenvalues of" are +0;, i = 1,2,---,n and the right and the left singular
vectors of B may be recovered from the eigenvectors7of

Since the eigenvalues @f are known one may obtain the eigenvectors dor
by one QR factorization of’ — ;1 and accumulating the effect of each each plane
rotation on a single vector. In more detail, the plane rotations build up an upper
Hessenberg orthogonal matrix and one updates the last active column in this matrix
at each minor step. I§ = sinf; andc = cosf; at a stepj then, forj < n,

v@@)=v@)x(=s) , i=1...,5, v(j+1)=c

Initially, v = e;.
If this vectorv is not adequate then we solve
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RT(Rw) =v
for w and finally normalizew. Thus the triple diagonal matriR must be saved.
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