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This work is dedicated to the memory of Heinz Rutishauser

Summary. We have discovered a new implementation of the qd algorithm that has a
far wider domain of stability than Rutishauser’s version. Our algorithm was developed
from an examination of the Cholesky LR transformation and can be adapted to parallel
computation in stark contrast to traditional qd. Our algorithm also yields useful a
posteriori upper and lower bounds on the smallest singular value of a bidiagonal
matrix.

The zero-shift bidiagonal QR of Demmel and Kahan computes the smallest singu-
lar values to maximal relative accuracy and the others to maximal absolute accuracy
with little or no degradation in efficiency when compared with the LINPACK code.
Our algorithm obtains maximal relative accuracy for all the singular values and runs
at least four times faster than the LINPACK code.

Mathematics Subject Classification (1991):65F15

1. Introduction

In September 1991 J. W. Demmel and W. M. Kahan were awarded the second SIAM
prize in numerical linear algebra for their paper ‘Accurate Singular Values of Bidiag-
onal Matrices’ [11], referred to as DK hereafter. Among several valuable results was
the observation that the standard bidiagonal QR algorithm used in LINPACK [12],
and in many other SVD programs, can be simplified when the shift is zero and, of
greater importance, no subtractions occur. The last feature permits very small singular
values to be found with (almost) all the accuracy permitted by the data and at no extra
cost.

In this paper we show that the DK zero shift algorithm can be further simplified and
this simplicity has several benefits. One is that a new algorithm can be implemented
in either parallel or pipelined format and each iteration nominally takesO(log2n)
operations. Another benefit is that some or all singular vectors may be calculated
accurately in a second phase after the singular values are known. See Sect. 13.
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Our investigations began with the modest goal of showing that it was preferable
to replace the DK zero-shift QR transform by two steps of zero-shift LR implemented
in a qd (quotient-difference) format. Root-free algorithms run considerably faster than
standard ones. The surprise here is that to keep the high relative accuracy property it
is necessary to use a little known variant of qd (the differential form of the progressive
qd algorithm or dqd [35], [34]). The standard qd will not suffice as we show in Sect. 4.
There are no subtractions in dqd. We suspect that Rutishauser discovered dqd in 1968,
just two years before his death, and we say more about its history in Sects. 4 and 11.

What we want to stress here is that, for reasons we may never know, Rutishauser
did not consider the shifted version of dqd. Instead he reserved dqd for rectifying
unsatisfactory behaviour of his qd in certain circumstances, see Sect. A4.2 of [35],
[34]. Incidentally this differential qd is not to be confused with the continuous ana-
logue of qd (see [31]) and more recent work on QR flows. The trouble with the
shifted version of the ordinary qd algorithm is that it cannot recover from a shift that
is too large. Consequently qd algorithms have been shackled with very conservative
shift strategies, such as Newton’s method, and earned the reputation of being slow
compared to the QR algorithm. Had Rutishauser considered shifts with differential qd
(dqds hereafter) he would have realized, as we soon did, that the transformation may
be split into two parts. The parts depend on whether the machine is of sequential or
parallel type but, in each case, a shift that is too big reveals itself before the old matrix
is overwritten and so need not be invoked. An unused shift is not wasted because it
gives an improved upper bound on the smallest singular value and the inertia count
at a cost less than one qd transformation as well as contributing to an improved shift.

Our approach frees the algorithm to exploit powerful shift strategies while pre-
serving high relative accuracy all the time. In contrast the QR algorithm delivers
high relative accuracy only with a zero shift.

Even though our algorithms must find the singular values in order we can use
shift strategies that are at least quadratically convergent. This is better than fourth
order convergence for QR. When only the smallest few singular values are needed
this ordering constraint is a great advantage. Another rather subtle feature is that it
is not necessary to make an extraO(n) check for splitting of the matrix into a direct
sum. The necessary information is provided by the auxiliary quantities.

In June 1992 we discovered that our dqds algorithm enjoys mixed high relative
stability for all shifts provided that they avoid underflow, overflow or divide by zero.
Consequently it can be used in a variety of applications (eigenvalues of symmetric or
unsymmetric tridiagonals, zeros of polynomials, poles and zeros of transfer functions
and many applications involving continued fractions) where Rutishauser’s qd has been
abandoned because of its instability in the general case.

Our error bounds for singular values are significantly smaller than those in DK
and our approach is quite transparent. It was this analysis, in Sect. 7, that showed us
the possibility of violating positivity while still maintaining maximal relative accuracy
for all singular values, not just the small ones.

It gradually dawned on us as we developed the algorithm that we were breaking
away from theorthogonal paradigmthat has dominated the field of matrix com-
putations (often called numerical linear algebra by highbrows) since the 1960’s. It
seems to be sacrilegious to be achieving greater accuracy and on average, a four fold
speed-up1 by simply abandoning QR for something equivalent to LR. See Sect. 9.3

1 All our computations are performed on a DECstation 5000/120 using double precision arithmetic
(53-bit mantissa)
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for details. High accuracy comes from the fact that dqds spends most of its time
transforming lower triangular 2×2s into upper triangular 2×2s by premultiplication.

Rutishauser gave no direct explanation for the way shifts are introduced into qd.
We have supplied one in terms of matrix factorizations in Sect. 5.1 and we go on to
list the possible choices for a shift in Sects. 6 and 9. We do not offer a preferred shift
strategy here because that aspect of the code is still evolving.

Section 3 presents the unifying general result which shows that it is possible to
implement the Cholesky LR algorithm of Rutishauser [32], [36] using orthogonal
transformations only. Since the term Cholesky LR over describes the algorithm we
simply refer to it as the Cholesky Algorithm. Our orthogonal Cholesky algorithm is
applicable to dense matrices; this more general case is studied elsewhere [17].

We want to point out the unusual historical lineage of this algorithm. The qd al-
gorithm begat the LR algorithm which then gave rise to the QR algorithm of Francis.
This in turn led to the Golub-Kahan and Golub-Reinsch algorithms for singular val-
ues of bidiagonal matrices which lead to the DK zero-shift variant. This inspired our
orthogonal algorithm of which differential qd is the root-free version. We are back to
qd again but with a new implementation.

As a service to busy readers we have included a brief account of the origins of
qd and a summary of the DK paper. When reading [35] we regretted that the link
between continued fractions and our matrices was not made explicit. We provide the
connection in the final section.

2. Notation and normalization

This paper does not involve vectors very much and so we do not follow Householder
conventions. However capital roman letters denote matrices while lower case Roman
and Greek letters denote scalars. On the rare occasions when a vector is needed it is
denoted by a lower case roman letter in boldface.

As usual the singular values of ann × n matrix C are arranged in monotone
decreasing order and denoted byσ1, σ2, . . . , σn, their union isσ[C].

– We make reference to the QR factorization of a matrix. This is the matrix form of
the Gram-Schmidt orthonormalizing process applied to the columns of the matrix
in natural order. By convention the diagonal entries of the upper triangular factor
R are taken nonnegative. See Golub and Van Loan [19] for details.

– We make reference to the Cholesky factorization of a positive definite matrix into
the product of a lower triangular matrix and its conjugate transpose. The factors
are unique.

– We make references to the LR and QR algorithms. These are defined in the
appropriate places.

We shall be concerned mainly with bidiagonal matrices which we callB and take
them to beupperbidiagonal. To save space we write the bidiagonal matrix

B =


a1 b1

a2 b2
. .

. .
an−1 bn−1

an


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as

B = bidiag

{
b1 b2 . bn−2 bn−1

a1 a2 . . an−1 an

}
.

2.1. Normalization

Consider now the effect of a zero value among the parameters of an× n bidiagonal
B.

2.1.1 Superdiagonal.Suppose thatbk = 0, k < n. ThenB may be written as a direct
(or diagonal) sum of two bidiagonalsB1 andB2. Moreover

σ[B] = σ[B1] ∪ σ[B2].

This case makes the calculation of singular values easier. Even more important is the
fact that our algorithms do not suffer from the failure to detect such a split when it
occurs. However, the transition from a linearly convergent shift to a quadratic shift
will not occur if the split lies undetected for too long.

2.1.2 Diagonal.Let ak = 0, k < n. Since| detB| =
∏n

i=1 | ai |=
∏n

i=1σi it follows
thatσn = 0. However some work is needed in order todeflatethis value, i.e. to find a
new B of ordern−1 yielding the remaining singular values of B. In exact arithmetic
one iteration of any of the unshifted algorithms given later is guaranteed to produce
the desiredB and so this case does not need special treatment. The zero diagonal
entry may be driven to the closest end of the matrix.

If ak = 0, k < n, at one step of our algorithm and ifan = 0 at the next step then
bk−1 will also vanish and so produce a split into two bidiagonals.

2.1.3 Signs.If the matrix is real, then using pre and post multiplication by matrices
of the form diag{±1} any sign pattern may be imposed on the entries ofB without
changing the singular values. If the matrix is complex, then it could be transformed
to a real matrix by pre and post multiplication by matrices of the form diag{exp(iω)}
where i2 = −1 andω is real.

There is little loss of generality in assuming, when necessary, thatB is of real
positive type; all its parameters exceed 0. However in Sect. 5.3 we address the practical
question of when to relax the requirement of positivity.

3. Orthogonal form of the Cholesky LR algorithm

For the next few paragraphs we consider full complex matrices. Recall that the
Cholesky factorization of a positive definite Hermitian matrixA(= A∗) may be written
asA = LL∗ whereL is lower triangular.

Definition. The Cholesky LRtransformof a symmetric positive definite matrixA =
LL∗ is

Â := L∗L

The Cholesky LRalgorithm, consisting of successive applications of the Cholesky
transformation, is a special case of Rutishauser’s LR algorithm.

The following lemma is elementary and has been known for a long time. It has
become the cornerstone of square root filtering in control and signal processing (see
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for example [24], [6], [16]), a trend which was pioneered by Potter (see Battin [3]).
In Sect. 4 we show that for the bidiagonal matrix case, the “square root” approach
can be bypassed with a huge gain in accuracy and efficiency.

Lemma 1. If any two invertible matricesM1 andM2 satisfyM∗
1M1 = M∗

2M2 then
M2 = QM1 for some orthogonal matrixQ.

The result given in the theorem below is implicit in proofs that one step of the QR
algorithm is equal to two steps of the Cholesky algorithm. It was explicitly proved
by Faddeev, Kublanovskaya and Faddeeva [15] and we thank Ilse Ipsen for bringing
this relatively unknown work to our attention.

Theorem 1. Let Â = L̂L̂∗ be the Cholesky factorization of the Cholesky transform of
positive definiteA = LL∗. Then

L = QL̂∗

is the QR factorization ofL.

Proof. Of course, this theorem is a direct corollary of Lemma 1 but we include a
proof because it is both constructive and instructive.

SinceA is positive definite all factors mentioned below are unique. By definition
of L̂

L∗L = L̂L̂∗.

We seek invertibleF such that
L = FL̂∗,(1)

L∗ = L̂F−1.(2)

Transpose and conjugate (1) and use invertibility ofL̂ in (2) to find

F ∗ = L̂−1L∗ = F−1.

So F is unitary and sincêL∗ is upper triangular with positive diagonal Eq. (1) above
gives the QR factorization ofL, as claimed.ut
The theorem shows that̂L may be obtained fromL by orthogonal transformations
without formingÂ. Moreover just as QR may be performed with column pivoting so
can we obtain the Cholesky factor of a permutation ofÂ.

In the general dense case people have used the method of transforming triangular
matrices from upper to lower form and back again using appropriate orthogonal trans-
formations without realizing that this is equivalent to the Cholesky algorithm. See [41]
and [7]. Conversely, if authors of [42] had appreciated Theorem 1 they could have
used, with advantage, more preconditioning LR steps before invoking the one-sided
Jacobi algorithm. We plan to pursue this general dense case in another paper [17].

The basic equation̂LL̂T = LTL guarantees that the Cholesky algorithm preserves
bandwidth. In particular, bidiagonalB gives rise to tridiagonalA = BTB and a
bidiagonalB̂. In order to study howB̂ is derived fromB, let

B = bidiag

{
b1 b2 . bn−2 bn−1

a1 a2 . . an−1 an

}
.
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B̂ = bidiag

{
b̂1 b̂2 . b̂n−2 b̂n−1

â1 â2 . . ân−1 ân

}
.

whereB̂TB̂ = BBT. By Theorem 1

BT = QB̂.

The matrixQ may be written as a product of (n−1) plane rotation matrices [19],

Q = G1G2 . . . Gn−1.

Before the annihilation of the subdiagonal elementbk, the active part of the matrix is
of the form,

0 âk−1 b̂k−1
0 ãk 0

bk ak+1 0
bk+1 ak+2

(3)

and after the plane rotationGT
k, the matrix becomes

0 âk−1 b̂k−1

0 âk b̂k
0 ãk+1 0

bk+1 ak+2

(4)

Formally we may setB(0) = BT and, fork = 1, . . . , n− 1

B(k) = GT
kB

(k−1).(5)

Finally B̂ = B(n−1) and, from (3) and (4), with ˜a1 = a1 andc2
k + s2

k = 1,

âk =
√
ã2
k + b2

k = ãk/ck(6)

sk = bk/âk

ck = ãk/âk(7)

b̂k = skak+1 = bkak+1/âk(8)

ãk+1 = ckak+1 = ãkak+1/âk.

There is some redundancy in the equations given above but their most important
property is the absence of subtractions. This ensures high relative accuracy in the
new entries ˆai and b̂i. Observe that neithersk nor ck is needed explicitly to compute
the new entries. To the best of our knowledge the algorithm given below is new. For
reasons that appear in the next section we call it theOrthogonal qd-Algorithm or
oqd. It is convenient to use

cabs(x, y) =
√
x2 + y2(9)

whose name stands for thecomplexabsolute value ofx+ iy. In numerical computing
(e.g. Eispack), an alternative name forcabs is pythag.



Accurate singular values 197

Algorithm 1 (oqd)

ã := a1

for k = 1, n− 1

âk := cabs(˜a, bk)

b̂k := bk ∗ (ak+1/âk)

ã := ã ∗ (ak+1/âk)

end for

ân := ã

This algorithm will undergo several transformations in the following pages before
we are ready to implement it. Nevertheless, even at this stage, two applications of it
are slightly better (fewer multiplications) than the DK Zero Shift QR algorithm [11]
described briefly in our Sect. 10. This result was the initial impetus for our study of
qd.

The inner loop comparisons given in Table 1 are based on one QR step which
is equal to two LR steps. We have taken into account the common sub-expression
ak+1/âk in the estimation of the complexity of oqd (Algorithm 1).

Table 1. Complexity of Demmel-Kahan and oqd

DK oqd
Cabs 2 1*2

Divisions 2 1*2
Multiplications 6 2*2

Conditionals 1 0
Assignments 7 3*2

Auxiliary variables 6 1

DK uses six auxiliary variables while oqd needs only one. The memory traffic is
essentially determined by the number of variables, arithmetic operations and assign-
ment statements. In most advanced architectures, memory access is more expensive
than floating-point operations and in such machines the oqd will be very advantageous
because of fewer read and write operations.

4. The quotient difference algorithm

It is easy to avoid taking the square roots that appear in oqd (Algorithm 1) . Define
bn := 0 andqk = a2

k , ek = b2
k , k = 1, 2, . . . , n . By simply squaring each assignment

in oqd (Algorithm 1) one obtains an algorithm that turns out to be a little known
variant of the quotient difference algorithm. Rutishauser developed his qd algorithm
in several papers from 1953 or 1954 (e.g. [30]) until his early death in 1970 but this
variant appeared in English only in 1990 in [35] which is the translation of the German
original [34] published in 1976. The full list of the papers on qd by Rutishauser can
be found in the above mentioned books which were published posthumously.

In the notes at the end of [30] and at the end of volume 2 of [34] this variant is
called thedifferential form of the progressive qd algorithm or dqd. These notes were
based on unfinished manuscripts of Rutishauser.
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Algorithm 2 (dqd)

d := q1

for k := 1, n− 1

q̂k := d + ek

êk := ek ∗ (qk+1/q̂k)

d := d ∗ (qk+1/q̂k)

end for

q̂n := d

The implementation of dqd (Algorithm 2) requires only 1 division, 2 multiplies,
and 1 addition in the inner loop. No subtractions occur.

The intermediate variabled may be removed. At stepk, d = dk and the trick is
to write it as a difference.

dk+1 = c2
kqk+1 = qk+1− s2

kqk+1 = qk+1− êk.

The resulting algorithm is Rutishauser’s qd algorithm.

Algorithm 3 (qd)

ê0 = 0

for k := 1, n− 1

q̂k := (qk − êk−1) + ek

êk := ek ∗ qk+1/q̂k

end for

q̂n := qn − ên−1

Table 2 compares the complexity of orthogonal, differential and standard qd al-
gorithms.

Table 2. Complexity of oqd, dqd and qd

oqd dqd qd
Cabs 1 0 0

Civisions 2 1 1
Multiplications 4 2 1

Additions 1 1 1
Subtractions 0 0 1

Assignments 3 3 2

Auxiliary variables 1 1 0

We hasten to add that Rutishauser did not derive the qd algorithm from our
Theorem 1 but from ideas described in Sect. 11.

For positiveB, dqd and qd are stable in the sense that all intermediate quantities
are bounded by‖B‖2. Singular value errors provoked by finite precision arithmetic
will be tiny compared toσ2

1. This is satisfactory for many purposes and it was not
generally appreciated until the DK paper appeared that bidiagonal matrices do deter-
mine all their singular values, however small, to the same relative precision enjoyed
by the matrix entries. Since such accuracy can be achieved for little extra cost it seems
only right to do so. These considerations lead us to abandon qd and concentrate on
dqd and oqd.
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Example 1.Here is a bidiagonal Toeplitz matrix withai = 1, bi = 256 (qi = 1,
ei = 65536) for alli. The results of our dqd algorithm are given in Table 3. Note
that
√
q64 = 1.9093060930437717×10−152≈ 2−504 givesσ64 correct to full machine

precision.
The results for qd were identical to dqd except that the crucial elementq64 became

zero in both steps. Hence qd is not suitable for computation of small singular values
with high relative accuracy.

Table 3. Numerical results for Example 1

After the first pass After the second pass
q1 6.5537000000000000D+04 6.5537999984741444D+04
q2 6.5536000015258556D+04 6.5536000061032595D+04
q3 6.5536000000000233D+04 6.5536000000001397D+04

q4 to q63 6.5536000000000000D+04 6.5536000000000000D+04
q64 3.6455053829317361D-304 3.6454497569340717D-304

e1 9.9998474144376459D-01 9.9995422572819948D-01
e2 9.9999999976717291D-01 9.9999999883589297D-01
e3 9.9999999999999645D-01 9.9999999999997513D-01

e4 to e62 1.0000000000000000D+00 1.0000000000000000D+00
e63 1.0000000000000000D+00 5.5625997664363648D-309

Example 2.We have rerun Example 1 but with a smaller value ofn(= 5) and the
results are given in Table 4. For this example,σ5 =

√
q5 = 2.3282709094019085×

10−10 which is correct to full machine precision. For comparison, the answer given by
the LINPACK SVD routine dsvdc (which is based on the Golub-Reinsch algorithm)
is 2.3282704794711363× 10−10 which gets 7 of the 15 digits correct.

Using qd we got almost identical results except thatq5 is zero in both sweeps.
Thus,σ5 is zero according to the qd algorithm. Thus, qd does not deliver as much
accuracy as Golub-Reinsch; in fact it can be shown that qd sometimes delivers zero
for singular values as large as

√
macheps ∗ ‖B‖. ut

Table 4. Numerical results for Example 2

After the first pass After the second pass
q1 6.5537000000000000D+04 6.5537999984741449D+04
q2 6.5536000015258551D+04 6.5536000061032593D+04
q3 6.5536000000000238D+04 6.5536000000001395D+04
q4 6.5536000000000000D+04 6.5536000000000000D+04
q5 5.4209281443662679D-20 5.4208454275671899D-20

e1 9.9998474144376457D-01 9.9995422572819948D-01
e2 9.9999999976717293D-01 9.9999999883589292D-01
e3 9.9999999999999642D-01 9.9999999999997509D-01
e4 1.0000000000000000D+00 8.2716799077854419D-25

Some people do not like root free algorithms (e.g. dqd) because they limit the
domain of the matrices to which they can be applied. In IEEE conforming computers
the exponent range is approximately 2−1022 to 21023 in double precision arithmetic.
On such machines dqd can diagonalize bidiagonals with condition numbers up to
21022 whereas oqd can deal with condition numbers up to 22045. For most applications
21022≈ 10308 is more than adequate.
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On machines such as DEC Vax in D-floating mode the effective limit on the
condition number is approximately 2127≈ 1038 and if this is restrictive then it is only
necessary to use oqd to find the smallest singular values and then switch to dqd when
the effective condition number (easily approximated) is within range.

We conclude this section by pointing out that qd (Algorithm 3), the standard qd
algorithm, consists of the so-calledrhombus rules arranged in computational form
and these rules are a direct consequence of the defining equation

BBT = B̂TB̂.

Equate the (k, k) entry on each side to obtain

a2
k + b2

k = b̂2
k−1 + â2

k , qk + ek = êk−1 + q̂k.(10)

and equate the (k, k + 1) entry on each side to obtain

bkak+1 = âk b̂k , ekqk+1 = q̂kêk.(11)

The rhombus rules can be also derived fromBT = QB̂ by noting that orthogonal
transformationQ changes neither the norms nor the inner products of the columns.
The reason for the name rhombus rule is indicated in Fig. 4 of Sect. 11.

5. Incorporation of shifts

Rutishauser introduced shifts into the qd almost from the beginning and we could
simply quote him. Unfortunately he does not give any explanation of how he derived
the appropriate modification of qd as given in Sect. 4. So we provide one at the end
of Sect. 5.1. In fact the use of shifts in root finding algorithms can be traced back to
Schr̈oder’s classic work [37], [38] which was published in 1870.

5.1. Shifted qd algorithms

In eigenvalue calculations, shifts are natural and can be easily incorporated since

λ(A− τ2I) = λ(A)− τ2

whereτ2 is the shift andλ(A) indicates an eigenvalue ofA. Thus, by subtractingτ2

from the diagonals of the matrix, we can introduce origin shifts into the Cholesky
algorithm.

A shift τ can be introduced into oqd (Algorithm 1, Sect. 3) by modifying state-
ments involving ˆa and ã.

Algorithm 4 (oqds)

ã := a1

for k = 1, n− 1

âk :=
√
ã2 + b2

k − τ2

b̂k := bk ∗ (ak+1/âk)

ã :=
√
ã2− τ2 ∗ (ak+1/âk)

end for

ân :=
√
ã2− τ2
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It may be verified thatB̂TB̂ = BBT − τ2I. To keepB̂ real the shift must satisfy

τ ≤ σn[B](12)

but this constraint is not formally necessary for dqd (Algorithm 2) which uses

q̂k := dk + ek − τ2.

By definingd = dk as ã2
k − τ2 an addition can be saved.

Algorithm 5 (dqds)

d := q1− τ2

for k := 1, n− 1

q̂k := d + ek

êk := ek ∗ (qk+1/q̂k)

d := d ∗ (qk+1/q̂k)− τ2

end for

q̂n := d

The constraint (12) is also unnecessary for qd.

Algorithm 6 (qds)

ê0 = 0

for k := 1, n− 1

q̂k := (qk − êk−1) + ek − τ2

êk := ek ∗ qk+1/q̂k

end for

q̂n := qn − ên−1− τ2

All that is lacking is an analogue of the orthogonal connection (Theorem 1)

BT = QB̂.

For that it is necessary to abandon square matrices and there are two ways of doing
it. In some signal processing circles one would write

H

[
BT

τI

]
=

[
B̂
0

]
with HTH = diag[I,−I] and such anH can be built up from both plane rotations
and plane hyperbolic rotations. We prefer to write[

BT

O

]
= Q

[
B̂
τI

]
whereQ is 2n × 2n and orthogonal but not unique. However its firstn rows are
uniquely determined byB and τ for τ ≤ σn[B]. Moreover Q may be built up by
well chosen plane rotations. Both approaches yield oqds; they provide alternative
interpretations.
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It is at this point that the superiority of the qd formulation becomes clear. DK
showed that the standard Golub-Reinsch bidiagonal QR algorithm may be simplified
when the shift is zero; see Sect. 10 for the details. Our algorithms (1,2, or 3) are
already simpler than the DK zero shift QR and they also permit use of a non-zero
shift with no impediment to pipelined or parallel implementation or high relative
accuracy. These natural improvements are strong evidence that our formulation is the
natural one.

5.2. The two phase implementation

At first sight the auxiliary quantitiesdi, i = 1, . . . , n that occur in dqd are seen as
the price to be paid for securing high relative accuracy. On further consideration they
may be seen as an attractive feature that permits an aggressive shift strategy that also
preserves high relative accuracy in the computed singular values. Moreover, as an
extra bonus, we find that the vectord = (d1, . . . , dn) may be computed inO(log2n)
steps in a parallel computer using the technique called parallel prefix operation in
computer science writings, see [9]. The numerical stability of parallel prefix is not
yet well understood, but see Mathias [26].

Consider next the implementation of dqds. The auxiliary quantitiesdi may be
computed prior to any modification ofq ande since

dk+1 = dkqk+1/q̂k − τ2

= dkqk+1/(dk + ek)− τ2.(13)

An alternative formulation is

dk+1 =
qk+1

1 + ek/dk
− τ2(14)

but a division costs more than a multiplication.
It is at this point that one sees the advantage of arithmetic units that conform to

the IEEE floating point standard 754: there is no need to test at each instance of (13)
or (14) to prevent division by zero. The occurrence of ak with dk =∞ does no harm
since it implies that ˆqk−1 = âk−1 = 0. This signals that

σ2
n[B] < τ2

and the transformation ofB to B̂ (Phase 2) should not be completed. The effort in
running (13) is not wasted because it yields a new upper bound onσ2

n[B]. Further-
more, the number of negative ˆqi gives the number of singular values less than the
shift τ . It can be shown that the ˆqi are the pivots obtained in performing Gaussian
elimination without pivoting on the symmetric tridiagonal matrix (BBT − τ2I). We
have also used this inertia property to create a spectrum slicing (bisection) algorithm
for use on a distributed memory parallel computer system.

Using (13), dk = ∞ yields dk+1 = ∞/∞ = NaN (not a number) and then
q̂i = NaN for i > k+ 1. Using (14),dk =∞ yieldsdk+1 = qk+1− τ2 which is a better
answer.
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5.3. Almost positive bidiagonals

Following Rutishauser we observe that there are some conditions in which a shiftτ
exceedingσn is permissible. We go further in showing that under certain conditions
the high relative stability property is also preserved.

The standard qd algorithm is well defined for most shifts but it may not be stable
in an absolute sense; i.e. the new array{q̂, ê} may be far greater than old one{q, e}.
Rutishauser proved stability under the assumption of positivity and took great care in
his implementation to preserve this property.

Our dqds algorithm has the advantage of maintaining relative stability in the
positive case and, fortunately, even beyond. For example the requirement

τ2 <
1
2
σ2
n−1[Bn−1] + en−1

is sufficient whereBn−1 is the leading principal submatrix ofBn because our con-
dition ensures that the only entries in{q̂, ê} that could go negative are ˆen−1 and ˆqn.
Our goal is to chooseτ (actuallyτ2 ) to make ˆqn as small as possible and hence

τ2 ≈ dn = qn(1− en−1/q̂n−1).

Notice how stronglydn depends on sign(en−1) and sign(qn) since ˆqn−1, though un-
known, remains positive. We need to know what happens to the signs of ˆen−1 and ˆqn
once we abandon positivity. It turns out that it takes at least two sweeps to return to
the positive case. There are four possible sign configurations in the asymptotic regime
(τ2 < 1

2dn−1 + en−1) and we designate them by sign pairs: (sign(en−1), sign(qn)).
A careful study of the last three assignments in dqds shows the following possible

paths the sign pairs could follow. These are also shown in Fig. 1.

If τ < σn

(+,+) −→ (+,+)

(+,−) −→ (−,+)

(−,+) −→ (−,−)

(−,−) −→ (+,+)

If τ > σn

(+,+) −→ (+,−)

(+,−) −→ (−,−)

(−,+) −→ (−,+)

(−,−) −→ (+,−)
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Fig. 1. Sign patterns of [en−1, qn]

6. Bounds forσmin

6.1. A posteriori bounds for the smallest singular value

Our oqd (Algorithm 1 in Sect. 3) transformsB to B̂ by making use ofn auxiliary
quantities ˜ak, k = 1, n. It is possible to give a nice interpretation of the ˜ak that leads to
useful bounds onσmin. This result was also obtained by Rutishauser but his treatment
was not based on orthogonal rotations although he knew the matrix interpretation of
qd.

If we think of the matrixBT being transformed intôB one column at a time in
(n − 1) little steps then at the end of Step (k − 1) row k is a singleton. That is the
key technical observation. To describe the situation we refer back to Sect. 3 and let
Qk = (G1G2 . . . Gk−1)T be the product of the first (k− 1) plane rotations used in the
reduction process. Thus

B(k) = QkB
T =



â1 b̂1

0 â2 b̂2
0 . .

0 âk−1 b̂k−1
0 ãk 0

bk ak+1 0
bk+1 ak+2

. . 0
bn−2 an−1 0

bn−1 an


(15)

Note thatQkB
T coincides withB̂ in rows 1, 2, . . . , k − 1 and withBT in rows

k + 1, . . . , n while orthogonalQk coincides withIn in rows k + 1, . . . , n.
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Theorem 2 (Bounds forσmin without shifts). Apply the dqd transformation to a pos-
itive bidiagonalB (see Algorithm 1) to producêB and ã1, ã2, . . . , ãn. Then

1. σn ≤ mink{ãk}
2. [(BBT)−1]k,k = ã−2

k

3. (
∑n

k=1 ã
−1
k )−1 ≤ (

∑n
k=1 ã

−2
k )−1/2 ≤ σn.

Proof. Since singular values are invariant under orthogonal transformations and trans-
position

σn[B] = σn[QkB
T] ≤ ‖uT

kQkB
T‖ = ãk

whereuk is thekth column of the identity matrix. Thekth row ofQkB
T is a singleton;

uT
kQkB

T = ãku
T
k .

Transposing and rearranging gives

ã−1
k Qkuk = B−1uk

ã−2
k = (B−TB−1)k,k

as claimed. Note that

σ−2
n ≤

n∑
i=1

σ−2
i = ‖B−1‖2

F = trace [(BBT)−1] =
n∑
i=1

ã−2
i .

Finally we get the required result by considering the one and two norms of the vector
(ã−1

1 , ã−1
2 , . . . ã−1

n ). ut
We can compute bounds onσmin[B] even when the algorithm is used with shifts

τ provided thatτ ≤ σmin[B]. Formally the reduction(
BT

0

)
→
(

B̂
τI

)
requires 2(n− 1) plane rotations (not justn− 1) because the rotationGi in (i, i + 1)

must be preceded by a rotation
−→
G i in plane (i, n + i) in order to introduceτ into

position (n + i, i). Conceptually asBT is transformed intoB̂, at each step one row is
in transition and all rows above it belong tôB and all rows below it belong toBT.
However the active row, rowk, is still a singleton in fact

uT
kQk

(
BT

0

)
= ãku

T
k.(16)

Theorem 3 (Bounds forσmin with shifts). If the dqds algorithm with shiftτ trans-
forms positive bidiagonalB into positiveB̂ with auxiliary quantitiesã1, . . . , ãn then

1. σn[B̂] ≤ mink{ãk}
2. [(BBT)−1]k,k = ã−2

k ‖xk‖2 < ã−2
k .

where, in (16),uT
kQk := (xT

k, y
T
k), andx andy each haven entries.
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Proof. Since singular values are invariant under orthogonal transformation and trans-
position, and are not increased by the transformationa← √a2− τ2 we have

σn[B̂] = σn
[
Q̄kB

T
] ≤ ‖uT

kQ̄kB
T‖ = ‖xT

kB
T‖ ≤ ãk

whereQ̄k denotes the leadingn×n submatrix ofQk. The last equality uses (16). To
establish the second result transpose (16) to obtain[

B 0
]
Qt
kuk = Bxk = ukãk.

SinceB is invertible,

ã−1
k xk = B−1uk,

ã−2
k ‖xk‖2 = uT

kB
−tB−1uk = [(BBT)−1]k,k ut

Remark.Since the ˜ak are monotone decreasing inτ a successful dqds transformation
produces a better upper bound and a worse lower bound than does dqd (see Theorem
2). Fortunately it is the upper bound that plays an active role in our implementation.

6.2. The Newton shift

The shift strategy used by Bauer to accelerate the rational QR algorithm RATQR is
also closely related to part 3 of the above Theorem 2. See [4], [29].

We recall that the Newton shift from 0 for the characteristic polynomial of any
matrix A is related to the trace of the inverse. Let

χA(t) = det[tI −A] =
n∏
i=1

(t− λi).

Then, by logarithmic differentiation

χ′A(t)
χA(t)

=
n∑
i=1

1
t− λi

.

In particular

−χ
′
A(0)

χA(0)
=

n∑
i=1

λ−1
i = traceA−1

because the spectrum ofA−1 is {λ−1
i }n1 .

In our case by Theorem 2(2),
∑

ă−2
k =

∑
d−1
k = trace A−1 is the Newton

correction from 0 towardsσ2
n.
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6.3. The(1,∞) bound

The DK paper also provides lower bounds onσn. Two recurrences (see Sect. 10 for
details) produce

min
j
λj = ‖B−1‖−1

∞

and
min
j
µj = ‖B−1‖−1

1 .

Then
σ−1
n = ‖B−1‖ ≤ min{‖B−1‖∞, ‖B−1‖1}.

Since‖C‖ ≤√‖C‖1‖C‖∞ for any square matrixC, we can improve the DK bound
to give,

σ−1
n = ‖B−1‖ ≤

√
‖B−1‖1‖B−1‖∞ ≤ min{‖B−1‖∞, ‖B−1‖1}.

6.4. The Johnson bound

For a general complex matrixC, a Gersgorin-type bound forσmin is given by Johnson
(see [23]),

σmin ≥ max{0, θ}
where

θ = min
i

|ci,i| − 1
2

∑
k 6=i
|ck,i| + |ci,k|

 .

For a positive bidiagonalB, this simplifies to

θ = min
i

{
ai − 1

2
(bi + bi−1)

}
and near convergencean → 0 , bn−1→ 0 so that

θ = an − 1
2
bn−1.

7. Effects of finite precision

7.1. Error analysis – overview

One of the benefits of the simplicity of our algorithms oqd and dqd is that their
analysis is relatively easy. The DK zero shift QR transformation, though simpler
than the Golub/Reinsch transformation, is complicated enough to defy anything but a
forward error analysis. After heroic struggles with innumerable details DK establish
the error bound quoted in Sect. 10.4.

When discussing this result and our own analyses it is convenient to use the
acronymulp which stands forunits in the last place held. It is the natural way to
refer torelative differences between numbers. When a result is correctly rounded the
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error is not more than half anulp. In this section we usually omit the ubiquitous
phrase ‘at most’ qualifying errors and modifications.

Our algorithms still do not admit a pure backward error analysis, the computed
outputB̂ is not the exact output from a matrix very close toB. Nevertheless we can
use a hybrid interpretation involving both backward and forward interpretation.

Whereas DK’s zero shift guarantees that each computed singular value is in error
by no more than 69n2 ulps our dqds algorithm causes no more than 4n ulps change
using any properly chosen shift. However the main point is that our analysis is easy
to grasp.

The next subsection establishes this strong property of dqds. A similar result holds
for oqds but the square roots and squaring provoke a slightly larger bound.

The trick of the proof is to define
−→
B (see Fig. 2) so that the computed auxiliary

quantities{di} are exact outputs of dqds. The difference betweenB̆ and B̂ is the
forward error.

At the beginning of the paper we made much of the fact that algorithms oqd and
dqd required no subtractions. Yet, in the interest of efficiency, we have introduced
shifts and quietly brought back subtraction. The miracle is that the subtraction is in the
d’s and does not impair the high relative accuracy property. However Rutishauser’s
qd does not guarantee high relative accuracy so long asq’s are dominated by neigh-
bouringe’s.

Since no intermediate quantities exceedσ1, it is assumed that the initial data are
scaled so thatσ1 (or σ2

1 for dqds) is close to the overflow threshold. Underflow,
though possible, is then a rare event.

Finally we remind the reader that the symbol = carries its normal mathematical
meaning.

7.2. High relative (mixed) stability in the presence of shifts

We refer the reader to Sect. 5.3 where almost positive bidiagonals are introduced.
Rutishauser merges theq’s ande’s into a single arrayZ;

Z := {q1, e1, q2, e2, . . . , en−1, qn}
and this is a convenient notation for the analysis which follows.

Before stating our claim we need more notation because the difficulty in the anal-
ysis is one of interpretation. GivenZ the dqds algorithm in finite precision arithmetic

produces representable outputẐ. We introduce two ideal arrays
−→
Z and Z̆ such that

Z̆ is the output of dqds with shiftτ acting on
−→
Z in exact arithmetic. Moreover

−→
Z

is a small relative perturbation ofZ and Ẑ is a small relative perturbation of̆Z. See
Fig. 2. This property is called mixed stability in [10] but note that the perturbations
are relative ones.

Our model of arithmetic is that the floating point result of a basic arithmetic
operation◦ satisfies

fl(x ◦ y) = (x ◦ y)(1 +η) = (x ◦ y)/(1 + δ)(17)

whereη andδ depend onx, y, and◦, and the arithmetic unit but satisfy

|η| < ε , |δ| < ε
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Fig. 2. Effects of roundoff.Z ≡ B

for a given ε that depends only on the arithmetic unit. We shall choose freely the
form (η or δ) that suits the analysis.

A fairly simple result is possible because the only truly sequential part of dqds is
the sequence{di}n1 . Note that, in exact arithmetic

dk+1 =
dkqk+1

dk + ek
− τ2

The trick is to write down the relations governing the computed quantities and then
to discernamong them an exact dqds transform whose input is close toZ and whose
output is close toẐ.

Theorem 4. In the absence of underflow or overflow, theZ diagram given above
commutes and−→q k (−→e k) differs fromqk (ek) by 3 (1)ulps, q̂k (êk) differs from q̆k
(ĕk) by 2 (2)ulps.

Proof. We write down the exact relations satisfied by the computed quantitiesẐ.

q̂k = (dk + ek)/(1 + ε+)(18)

tk = qk+1(1 + ε/)/q̂k =
qk+1(1 + ε/)(1 + ε+)

dk + ek
(19)

êk = ektk(1 + ε∗) =
ekqk+1(1 + ε/)(1 + ε+)(1 + ε∗)

dk + ek
(20)

dk+1 =
{dktk(1 + ε?)− τ2}

1 + εk+1

Note the difference between∗ and?. Of course all theε’s obey (17) and depend on
k but we have chosen to single out the one that accounts for the subtraction because
it is the only one where thek dependence must be made explicit. In more detail the
last relation is

(1 + εk+1)dk+1 =
dkqk+1

dk + ek
(1 + ε/)(1 + ε+)(1 + ε?)− τ2

=
(1 + εk)dkqk+1(1 + ε/)(1 + ε+)(1 + ε?)

(1 + εk)dk + (1 + εk)ek
− τ2(21)

This tells us how to define
−→
Z . Note thatεk arose in the previous step. Moreover
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(1 + ε1)d1 = q1− τ2(22)

Our choice of
−→
Z , in general, is not a machine representable array.

For k ≥ 1,

−→
d k := (1 + εk)dk
−→e k := (1 + εk)ek(23)
−→q k+1 := qk+1(1 + ε/)(1 + ε+)(1 + ε?) , (−→q 1 = q1)(24)

and by (21),

−→
d k+1 =

−→
d k
−→q k+1

−→
d k +−→e k

− τ2(25)

Then, for exact dqds, we must define

q̆k :=
−→
d k +−→e k = (1 + εk)(dk + ek)

ĕk :=
−→e k
−→q k+1

−→
d k +−→e k

.

Finally q̂k and êk must be recast in terms of̆Z;

q̂k = q̆k/(1 + εk)(1 + ε+) , from (18)(26)

êk =
ekqk+1

dk + ek
(1 + ε/)(1 + ε+)(1 + ε∗) , from (20)

=
−→e k
−→q k+1

(
−→
d k +−→e k)

(1 + ε∗)
(1 + ε?)

.(27)

It is (23) that yields−→e k/(
−→
d k +−→e k) = ek/(dk + ek). Equations (23) and (24) give

the change fromZ̆ to Ẑ, and equation (25) fixes the exact dqds transform.ut
Recall that, in exact arithmetic, algorithm dqds diminishes all eigenvalues (of LR)

by the shift. For finite precision execution we have the following.

Corollary 1. Algorithm dqds preserves high relative stability. WhenZ and (ai =
√
qi,

bi =
√
ei, etc.), together with the associated ideal bidiagonals

−→
B and B̆, satisfy

σi[
−→
B ] = σi[B] exp{2(n− 1)ε(i)

1 },

σ2
i [B̆] = σ2

i [
−→
B ] − τ2,

σi[B̂] = σi[B̆] exp{(2n− 1)ε(i)
2 },

for i = 1, 2, . . . , n, andε(i)
1 ≤ ε, ε(i)

2 ≤ ε.
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Proof. For i = 1, . . . , n− 1

−→a i+1 =
√
−→q i+1 = ai+1

√
(1 + ε/)(1 + ε+)(1 + ε?)

−→
b i =

√
−→e i = bi

√
(1 + εi).

By Theorem 2 in DK, the relative change in any singular value in going fromB to
−→
B is the product of all the relative changes, namely

n−1∏
i=1

[(1 + ε/)(1 + ε+)(1 + ε?)(1 + εi)]
1
2 ≤ exp 2(n− 1)ε.

Similarly
âi =

√
q̂i = ăi/

√
(1 + εi)(1 + ε+) , i < n

b̂i =
√
êi = b̆i

√
(1 + ε∗)(1 + ε?) , i < n

ân =
√
dn = ăn/

√
(1 + εn).

The relative change in any singular value in the transformation fromB̆ to B̂ is
bounded by

√
1 + εn

n−1∏
i=1

[(1 + ε∗)/(1 + ε?)(1 + εi)(1 + ε+)]
1
2 ≤ exp (4n− 3)ε/2.

Since the passage from
−→
B to B̆ is exact the singular values diminish byτ2. ut

Remark. It can be shown by similar means that one dqd transformation cannot alter
any singular value by more than 3(n− 1) ulps.

Theorem 4 is much stronger than the familiar error analysis based on norms becau
se:

1. The perturbed matrices considered here inherit the bidiagonal structure
2. The bounds are very much smaller than those from DK (see Sect. 10) or the

Golub-Reinsch algorithm (see Chapter 8 of [19]).

For multiple sweeps of dqds, our results can be stated more simply in terms of
the positive sequence{Z̆l} wherel denotes the sweep with̆Z1 = Z1 = Z. See Fig. 3
for the corresponding commutative diagram. Then by combiningZ̆l+1 → Zl+1 →−→
Z l+1 → Z̆l+2 one obtains that̆Zl+2 is the exact dqds transformation of a perturbed
(in relative sense)̆Zl+1. Thus backward stability is present for{Z̆l+2}.

Similarly it can be shown that the sequence{−→Z l} is forward stable (in relative

sense) with
−→
Z f = Zf whereZf is the final computed result. On exact application of

dqds on
−→
Z l we getZ̆l+1 instead of

−→
Z l+1 (see Fig. 3) and the error between

−→
Z l+1 and

Z̆l+1 is small.

Example 3.The following experiment shows vividly the difference between an al-
gorithm that obtains high relative accuracy (dqds) and one that does not (LINPACK
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Fig. 3. Effects of roundoff for multiple sweeps

dsvdc based on the Golub-Reinsch algorithm) but which delivers excellent absolute
accuracy. We took the graded matrixB+,

ai−1 = βai , bi = ai

with an = 1, n = 8 andβ = 60. We applied both algorithms toB+ and its reversal
B−,

ai → an+1−i , bi → bn−i.

We did not allow any flipping of the matrix within the dqds algorithm although such
flipping improves convergence. See next section.

In Tables 5 and 6, the third column shows,

absi := (σi[B−] − σi[B+])/σ1[B+]

the differences between outputs scaled by the 2-norm of the nicer matrix. Recall that
macheps ≈ 2−53 ≈ 1.1× 10−16. For dsvdc (see Table 5), it can be seen that the
absolute error is even smaller than absolute stability guarantees.

In Tables 5 and 6, the fourth column shows,reli,

reli := (σi[B−] − σi[B+])/σi[B+]

the relative differences in the outputs. For dqds the largest magnitude is less than
two macheps (see Table 5) while for dsvdc (see Table 6), it is very much larger and
shows that dsvdc does not give relative accuracy.

8. Convergence

8.1. Linear convergence

Convergence of the Cholesky algorithm and of the standard qd algorithm for tridiag-
onal matrices (in the positive case) have been given by Rutishauser and others (see
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Table 5. Numerical results using dqds for Example 3

i σi[B+] σi[B−] absi reli
1 3.9590303657774160D+12 3.9590303657774155D+12 -1.2D-16 -1.2D- 16
2 5.7143240472800255D+10 5.7143240472800247D+10 -1.9D-18 -1.3D-1 6
3 8.9790986853271568D+08 8.9790986853271568D+08 0.0D+00 0.0D+0 0
4 1.4489876544914651D+07 1.4489876544914651D+07 0.0D+00 0.0D+0 0
5 2.3661793507020348D+05 2.3661793507020348D+05 0.0D+00 0.0D+0 0
6 3.8884661685208386D+03 3.8884661685208386D+03 -1.1D-25 -1.2D-1 6
7 6.4142972113704085D+01 6.4142972113704109D+01 3.6D-27 2.2D-1 6
8 3.5351579203702068D-01 3.5351579203702068D-01 0.0D+00 0.0D+0 0

Table 6. Numerical results using dsvdc for Example 3

i σi[B+] σi[B−] absi reli
1 3.9590303657774146D+12 3.9590303657774160D+12 3.7D-16 3.7D-1 6
2 5.7143240472800224D+10 5.7143240472800278D+10 1.3D-17 9.3D-1 6
3 8.9790986853271544D+08 8.9790986853271413D+08 -3.3D-19 -1.5D-1 5
4 1.4489876544914653D+07 1.4489876544914989D+07 8.5D-20 2.3D-1 4
5 2.3661793507020345D+05 2.3661793507022545D+05 5.6D-21 9.3D-1 4
6 3.8884661685208386D+03 3.8884661685173243D+03 -8.9D-22 -9.0D-1 3
7 6.4142972113704073D+01 6.4142972113772929D+01 1.7D-23 1.1D-1 2
8 3.5351579203702068D-01 3.5351579205582154D-01 4.7D-24 5.3D-1 1

[32], [39]). Nevertheless we present here a direct convergence proof for oqd because
it is a new algorithm and the proof is both short and illuminating. We give a brief
discussion of the effects of finite precision on the results of the theorem at the end of
the section.

In finite precision a computed cosineck may equal unity even though the corre-
sponding sinesk may merely be small.

Our proof makes use of the fact that a symmetric tridiagonal matrix with nonzero
superdiagonal entries (e.g.BTB) cannot have multiple eigenvalues [28], [39]. In other
words, the singular values of a positive bidiagonalB are distinct

σ1 > σ2 > . . . > σn.(28)

One must bear in mind that distinctσi may be equal to working precision.

Theorem 5 (Convergence of oqd).From a positive bidiagonalB1 the unshifted oqd
algorithm in exact arithmetic produces a sequences{Bl}∞1 of orthogonally equivalent
bidiagonals. Asl→∞,

Bl → Σ = diag(σ1, . . . , σn) .

Furthermore, ifan ≤ a1, then the sequence{∏n−1
i=1 b(l)

i } is monotone decreasing in
l from the beginning. Each{b(l)

i }∞l=1 converges linearly to0 with convergence factor
σi+1/σi.

Proof. Consider a typical step of oqd (Algorithm 1). Since there are no subtractions
eachBl is positive sinceB1 is positive.

Equation (7) can be written in the form,

âk = ck−1ak/ck for k = 1, . . . , n(29)

provided that we setc0 = cn = 1 . Take the product of the firstk instances of (29) to
find



214 K.V. Fernando and B.N. Parlett

k∏
i=1

âi = (
k∏
i=1

ai)/ck ≥
k∏
i=1

ai.(30)

The sequence{∏k
i=1 a

(l)
i } is bounded above, by‖B‖k, and is monotone increasing by

(30) and thus convergent. The limit may be written
∏k

i=1µi to reveal that, asl→∞,

a(l)
i → µi(31)

c(l)
i → 1(32)

s(l)
i → 0.(33)

By (8) and (33), asl→∞,

b(l+1)
i = s(l)

i a
(l)
i+1→ 0 , i = 1, . . . , n− 1(34)

ThusBl converges to diagonal form and eachµi is a singular value. To identifyµi
use the product rhombus rule to find

b(l)
k /b

(l−1)
k = a(l−1)

k+1 /a(l)
k → µk+1/µk.(35)

Since{b(l)
k } is bounded (by‖B1‖) the limit in (35) cannot exceed 1. By (28) the limit

is not 1 and thusµk+1 < µk, k = 1, . . . , n− 1, and we may identifyµk asσk. Thus,
(35) proves thatb(l)

k → 0 linearly with convergence factorσk+1/σk, as claimed, and
Bl → Σ.

Finally consider
∏n−1

i=1 b(l)
i . Apply (8) and (6) in turn to find

b̂1 . . . b̂n−1 = b1 . . . bn−1
a2 . . . an
â1 . . . ân−1

= b1 . . . bn−1
c1

a1

c2

c1

c3

c2
. . .

cn−1

cn−2
an

= b1 . . . bn−1

(
an
a1

)
cn−1

< b1 . . . bn−1,

if an ≤ a1. SinceB may be flipped about its antidiagonal without altering the singular
values there is no loss of generality in assuming thatan ≤ a1. In this case

∏n−1
i=1 b(l)

i
is monotone decreasing withl from the start. ut

It is worth mentioning that Rutishauser’s proof of convergence for qd (Algo-
rithm 3), is based on the observation that‖B̂k‖F > ‖Bk‖F and‖B−k‖F < ‖B−k‖F,
k = 1, 2, . . . , n. Here M{±k} is the submatrix ofM containing the first (last)k
columns.

By taking the product of the finaln−k instances of (29) one finds that{∏n
i=k a

(l)
i }

is monotone decreasing inl for k = n− 1, n− 2, . . . , 2, 1. In particulara(l)
1 increases

anda(l)
n decreases so that a flipping ofB is needed at most once.

The assertions of Theorem 5 bear up quite well in finite precision arithmetic. The
computed sequence{∏k

i=1 a
(l)
i } is monotone nondecreasing and soc(l)

i → 1 asl→∞.
Thus in considering a sequence of computed trigonometric values we do not wish to
infer s(l)

k → 0 from c(l)
k → 1. So the first casualty is the conclusion thats(l)

i → 0.
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Instead we find thatb(l)
i becomes negligible relative toa(l)

i+1 anda(l)
i . Even so, in the

absence of underflow, the diagonal entries eventually rearrange themselves in (almost)
monotone nonincreasing order. Though distinct, by (28), some singular values may
be equal to working accuracy and diagonal monotonicity may actually fail by one or
two ulps (units in the last place held) because the ratio, though exceeding 1 might
be too small to cause the neighbouringb-value to grow at all. All in all the practical
oqd performs as closely to exact oqd as it is reasonable to expect.

8.2. Quadratic convergence

Consider the last few steps in dqds with shiftτ :

q̂n−1 = dn−1 + en−1

ên−1 = en−1qn/q̂n−1

dn = dn−1qn/q̂n−1− τ2

q̂n = dn.

Hence

ên−1q̂n =
en−1qn
q̂n−1

[
qn(1− en−1

q̂n−1
)− τ2

]
,

=
en−1qn
q̂n−1

[
qn − τ2− qnen−1

q̂n−1

]
(36)

In exact arithmetic, asτ → σn[B] we haveqn → 0, en−1 → 0, qn−1 → σ2
n−1[B] −

σ2
n[B] := gap > 0 because the singular values are distinct if the initialB is of positive

type. Thus convergence will be quadratic with respect to thisgap.
Expression (36) shows that if

0≤ qn − τ2 ≤ 2
qnen−1

q̂n−1
(37)

then
|qn − τ2− qnen−1

q̂n−1
| ≤ qnen−1

q̂n−1

and so, by (36),
|ên−1q̂n|

(en−1qn)2
≤ 1

q̂2
n−1

→ 1
gap2

> 0,

as τ → σn[B]. Thus (37) shows a (theoretical) interval for thoseτ that deliver
quadratic convergence. Next we seek a computable expression that will ultimately lie
in that interval.

The perfect shift is

τ2 = qn(1− en−1

q̂n−1
)

so that the natural strategy is to estimate ˆqn−1 by assuming that ˆqn−k = qn−k for
some modest value ofk, like 6, and then evaluate the approximated’s from n− k to
n.
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q̂n−1 = (1− en−2

q̂n−2
)qn−1− τ2− en−1

≈ (1− en−2

qn−2
)qn−1,

whenen−2 anden−1 are small enough.

8.3. Cubic convergence

The assertion in (37) of Sect. 8.2 that the shiftτ2 = qn yields quadratic convergence
for qds and dqds appears to contradict the result of Rutishauser [33] that this choice
yields cubic convergence. See also Rutishauser and Schwarz [36] and Chapter 8 of
Wilkinson [43]. Actually, there is no anomaly because the shift strategies are not quite
the same. In our terminology what Rutishauser suggests is that the qd transform with
τ2 = qn should not be formed explicitly. The only item wanted from it is ˆqn and it
is assumed to be the only negativeqi. Then it is shown thatqn + q̂n is a fourth order
approximation toσ2

n from below. A qd transform of{q, e} with shift τ2 = qn + q̂n
will yield cubic convergence.

The point that is stressed by neither Rutishauser nor Wilkinson is that the com-
putation of ˆqn = dn costsO(n) operations, very close to 1 step of qds. From another
perspective Rutishauser’s analysis is a disguised derivation of the cubic convergence
of the tridiagonal QR algorithm with the Rayleigh quotient shift.

For our algorithm dqds Rutishauser’s (late failure) shift strategy described above
is more appealing. Only the first phase of our algorithm is needed to computedn and
the cost is about23 of a dqds step. Moreover the positive form is preserved a little
longer.

For the sake of completeness we indicate whyqn + dn is a fourth order lower
bound when ˆqn is second order inqnen−1. The relevant tridiagonal matrix isBBT

and its leading principal (n − 1)× (n − 1) submatrix is called V. Recall thatuj is
columnj of I.

Fact 1: Provided (V − σ2
nI) is invertible the singularity ofBBT − σ2

nI yields

qn − σ2
n = (qnen−1)uT

n−1(V − σ2
nI)−1un−1

Fact 2: With shiftτ2 = qn,

dn = q̂n = −(qnen−1)uT
n−1(V − qnI)−1un−1

Conclusion,

qn + q̂n = σ2
n + (qnen−1)uT

n−1

[
(V − σ2

nI)−1− (V − qnI)−1
]
un−1.

By Hilbert’s first resolvent identity (see p. 90 of [8]),

qn + q̂n = σ2
n + (qnen−1)(σ2

n − qn)uT
n−1(V − qnI)−1(V − σ2

nI)−1un−1.

Using Fact 1 again,qn + q̂n =

σ2
n−(qnen−1)2

{
uT
n−1(V − σ2

nI)−1un−1u
T
n−1(V − qnI)−1(V − σ2

n)−1un−1
}
.(38)

The gap conditions ensure that{ . } → O(1/gap3) asqn → 0, en−1→ 0.
In contrast to Rutishauser and Wilkinson, our expression (38) is exact provided

that the inverse matrices exist. However it is only for small enoughen−1 andqn that
the quantity in{ } can be bounded away from∞.
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9. A preliminary implementation

9.1. Choice of shifts

The standard singular value codes in LINPACK and LAPACK need about 2 QR steps
per singular value, in most cases, and that provides a hard target to beat. Moreover
each of our qd transformations needs onlyO(n) flops and no square roots so we are
reluctant to spendO(n) flops on shift selection.

A strategy used to generate the numerical results in this paper may not be the best
but it is based on the following somewhat surprising observation. The upper bound

sup = dk = min
i
di

is an increasingly good estimate forσ2
min[B̂]. Our code maintains bounds onσmin[B]

at all times. Following Rutishauser, we call themsup and inf . Moreover, at each
step, we will know the indexk from the previous step. This index points to the largest
diagonal entry of (BTB)−1 and helps tell us whetherσ2

min has yet migrated to the
bottom ofBTB. If k ≥ n − 1 we expect the trailing 2× 2 principal submatrix of
BBT to give a good approximation toσ2

min. Whenk < n − 1 the matrix is not yet
in asymptotic form and the situation is more difficult. However we do know that√
qk + ek is the smallest (leftmost) center of all the Johnson discs for the matrix of

equation (15). If this disc were separated from the rest of the discs then it would
certainly containσmin. Even if it is not isolated this disc may still containσmin so we
use it.

9.2. Splitting and deflation

In Sect. 2 it was noted that ifei = 0 (i.e.bi = 0), for i < n, then the bidiagonalB splits
into two complementary submatrices. Consider now the case whenei (or bi) is small
enough to permit such a splitting without making a relative change in any singular
value exceeding a given toleranceη. Our situation is a little more complicated than
the one studied in DK because of the non-restoring shift. Letσ2 denote the cumulative
sum of all shifts used on the given matrix in the dqds algorithm (which computes the
squared singular values).

Our criterion (39) is based on Weyl’s monotonicity theorem for eigenvalues of
symmetric matrices. Consider the zero diagonal representation ofB,

T = tridiag

 a1 b1 a2 . an
0 0 0 0 0 0

a1 b1 a2 . an

 .

The spectral norm of a matrix of the form(
0 bi
bi 0

)
is bi and it is submatrices of this form that we may remove. Weyl’s theorem states
that this removal changes no eigenvalues ofT by more thanbi. The output of the
algorithm is numbers of the form

√
σ2 + λ2

i [T ] and hence for a relative toleranceη
we must require
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bi <
√
σ2 + λ2

i [T ]

and this is guaranteed when
bi < η

√
σ2 + inf(39)

where inf is our current lower bound onσ2
min[B].

The suppression ofbk leaves two tridiagonals which correspond to bidiagonal
matrices which may be processed separately. There are less stringent checks than
(39) for splitting but they require more computational effort.

9.3. Performance of a prototype implementation

We have developed and implemented dqds in FORTRAN 77 to study and exploit the
theory we have developed in this paper. This prototype program is built in modular
fashion.

We have run our code on a broad test bed of bidiagonals. Here we report on
comparisons on three interesting classes using our dqds and LINPACK’s dsvdc (with
reduction to bidiagonals removed). There is little difference in timing between the
Demmel-Kahan code and dsvdc since DK reverts to QR after tiny singular values are
found.

Examples 1,2 and 3 were given in earlier sections.

Example 4 (nice matrices).We considered the graded matrixB+ defined earlier in
Example 3 with the parameterβ = 2 andn = 30. Table 7 gives the performance on
this example and other examples in this section. The speedup is the ratio of dsvdc
time to dqds time.

We have also tested this problem withn = 40 and in that case the LINPACK
dsvdc returned with an error flag as it could not computeσ40 within 30 iterations.
We were prevented from comparing with larger values ofn because dsvdc reported
errors.

Example 5 (perversely graded).To make conditions artificially difficult for dqds, we
also ran the programs with the reversely graded matrixB− as the input withn = 30
andβ = 2. See Table 7 for details.

Usually, our dqds will flipB− to obtainB+. If the user does not flipB−before
calling dsvdc then the time ratio goes up to 18.9.

dsvdc also failed to converge for many combinations ofβ andn.

Example 6.Let Bw be the Wilkinson-type bidiagonal matrix where

ai = |i− n

2
+ 1| , i = 1, . . . , n

bi = 1 , i = 1, . . . , n− 1

This matrix has close singular values (twins) and our current coding does not fully
exploit this structure. Hence the low performance compared with the previous results.

Example 7.Doubled Wilkinson-type matrices,B2w,

ai = |i− n

4
+ 1| , i = 1, . . . ,

n

2
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Table 7. Performance comparison

Example Matrix n dqd sweeps dsvdc sweeps speedup
4 B+ 30 52 60 10.2
5 B− 30 79 101 12.3
6 Bw 21 78 62 4.8
7 B2w 41 230 120 4.8
8 Bt 100 374 308 11.0

ai+n2 = ai , i =
n

2
+ 1, . . . , n

bi = 1 , i = 1, . . . , n− 1

with n = 41. This matrix has close singular values (quads) and some of them are
exactly equal. Table 7 gives the details.

Example 8.Toeplitz matrixBt,

ai = 1 , bi = 2.

For n = 100, the matrix has a tiny singular value; others are between 1 and 3.

10. The Demmel/Kahan paper

We summarize the highlights of [11].

10.1. High relative accuracy

Corollary 2 of Theorem 2 of [11]. Suppose that (B+δB)i,i = α2i−1ai, (B+δB)i,i+1 =
α2ibi, αi 6= 0. Define

ᾱ :=
2n−1∏
i=1

max{|αi|, |α−1
i |}.

Let σ
′
1 ≥ σ

′
2 ≥ . . . ≥ σ

′
n be the singular values ofB + δB. Then

σi/ᾱ ≤ σ
′
i ≤ σiᾱ , i = 1, 2, . . . , n.

This shows that bidiagonal matrices determine their singular values to high relative
accuracy.

10.2. Bounds forσn

It is possible to compute‖B−1‖∞ and‖B−1‖1 using 2(n − 1) divisions and multi-
plications. The algorithm is

λj := aj(λj+1/(λj+1 + bj)) , j = n− 1, n− 2, . . . , 1 with λn := an

µj+1 := aj+1(µj/(µj + bj)) , j = 1, 2, ..., n− 1 with µ1 := a1

‖B−1‖∞ = 1/min
j
λj
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‖B−1‖1 = 1/min
j
µj .

Finally,

n−1/2 max{‖B−1‖−1
∞ , ‖B−1‖−1

1 } ≤ σn ≤ n1/2 min{‖B−1‖−1
∞ , ‖B−1‖−1

1 }
and

min{‖B−1‖−1
∞ , ‖B−1‖−1

1 } ≤ σn

10.3. A stopping criterion

Let η << 1 be the desired relative accuracy of the computed singular values. Then
if either

bj/λj+1 ≤ η or bj/µj ≤ η

set bj to zero and the two pieces into whichB splits may be processed separately.
The criteria used in LINPACK [12] can sometimes deliver a zero singular value when
it should not and can sometimes fail to suppress a negligible off diagonal entrybj .

10.4. Bidiagonal QR with zero shift

The standard Golub/Reinsch algorithm [19], [18] used in LINPACK may be simplified
when no shifts are used. Of more importance is the fact that in this case all round
off errors arise multiplicatively. Moreover for the calculation of tiny singular values
zero is a good shift and it pays to compute them first rather then letting the standard
shift strategy dictate the order in which the singular values are found. The arithmetic
effort in the innermost loop is

Golub/Reinsch: 2 calls to ROT + 12 multiplications + 4 additions
Demmel/Kahan: 2 calls to ROT + 4 multiplications.
The procedure ROT computes the sine and cosine needed for a plane rotation

using 2 divisions, 3 multiplications, and 1 square root. Here is the algorithm.

oldcs := cs := 1

for i := 1, n− 1

call ROT (ai ∗ cs, bi, cs, sn, r)

if ( i 6= 1) bi−1 := oldsn ∗ r
call ROT (oldcs ∗ r, ai+1 ∗ sn, oldcs, oldsn, ai)

end for(40)

h := an ∗ cs; bn−1 := h ∗ oldsn; an := h ∗ oldcs
In the absence of underflow the error bound on singular values after one zero shift

bidiagonal QR transform is

|σi − σ
′ | ≤ w

1− w
σi i = 1, . . . , n

where
w := 69n2ε < 1.

See Theorem 6, p. 906, of [11].
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10.5. The overall algorithm

if (roundoff in σ1 exceedstol ∗ bound on σn) then

use zero-shift QR or QL

else

use shifted QR or QL

end if.

10.6. Other improvements

The new code uses either QL or QR as appropriate according to the wayB is graded.
An efficient accurate subroutine is provided to return the singular values and

vectors of 2× 2 bidiagonal matrices.
Deflation when a diagonal entryai vanishes is automatic and occurs either at the

bottom or top ofB.

11. Evolution of qd

Some of the available presentations of the qd-algorithm, see [32], [39], [21] show
its close connection with factorization of tridiagonal matrices but some do not [22],
[40]. Nevertheless its discovery had nothing to do with matrix decompositions and a
knowledge of the origins helps us to understand the somewhat neglected status of the
algorithm. In the next few paragraphs we sketch an earlier paper [27] which described
the gradual evolution of the qd-algorithm.

The story begins with Daniel Bernoulli in 1728 when he showed that the largest
and the smallest roots of annth order polynomial can be obtained by iterating annth
order difference equation. See [5]. The work of Bernoulli was extended by Euler in
1748. See Chapter 17 of [14] (English translation [13]).

We are given a rational function of a complex variablez,

f (z) =
∞∑
k=0

hkz
k ,

assumed to be regular (analytic) at bothz = 0 andz =∞. The Taylor series converges
to f (z) only within a circle (inC ) centered atz = 0 and extending up to the nearest
pole p1. However, by analytic continuation, the Taylor coefficients{hk} actually
define a unique rational functionf on all of C except the polesp1, p2, p3, . . .. The
problem is to determine the poles directly from the{hk} without having recourse to
analytic continuation.

In 1884 König [25] showed that ifp1 is a simple pole and smaller than all the
others then

lim
k→∞

(hk/hk+1) = p1.

Exactly one hundred years ago (i.e. in 1892), in his dissertation, Hadamard [20]
showed that
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lim
k→∞

(
Hk+1

m

Hk
m

)
=

m∏
i=1

pi

where

Hk
m = det

 hk hk+1 . . . hk+m−1
hk+1 hk+2 . . . hk+m

. . .
hk+m−1 hk+m . . . hk+2m−2


TheHk

m are now called Hankel determinants but Hadamard did not give them a
name. It follows that

pm = lim
k→∞

(
Hk+1

m /Hk+1
m−1

Hk
m/H

k
m−1

)
.

The solution is brilliant but does not give us a practical algorithm.
During the 1920s, in Scotland, A. C. Aitken rediscovered for himself a remarkable

connection among Hankel determinants that was known to Hadamard but which was
not fully exploited by him;(

Hk
m

)2
+Hk−1

m+1H
k+1
m−1 = Hk

mH
k+1
m−1.(41)

See [1], [2].
The relation (41) permits the computation of all theHk

m without being drowned
in determinantal evaluations.

The blemish in (41) is that theHk
m are not of direct interest. We want to compute

q(k)
m :=

Hk+1
m /Hk

m

Hk+1
m−1/H

k
m−1

.

Rutishauser’s clever observation was that if one introduces an auxiliary quantity

e(k)
m :=

Hk+1
m−1H

k
m+1

Hk
mH

k+1
m

then (41) can be interpreted as

q(k)
m + e(k)

m = q(k+1)
m + e(k+1)

m−1,

the additive rhombus rule, while the definitions ofq ande give the product rhombus
rule

q(k+1)
m e(k+1)

m = q(k)
m+1e

(k)
m .

The rhombus rules were introduced at the end of Sect. 4. Theqs andes are best
laid out in a tableau that is like a difference table. See Fig. 4. Rutishauser called the
e’s modifieddifferences and so chose the lettere rather thand.

This qd table may be built up via the rhombus rules either from column 1 or from
the top diagonal. The first column,{q(k)

1 } is at hand, since

q(k−1)
1 = Hk

1 /H
k−1
1 = hk/hk−1 , k ≥ 1

and
e(k)

1 = q(k+1)
1 − q(k)

1 ,
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Fig. 4. qd in a (modified) difference table

a true difference.
This is far simpler than Hadamard’s solution but, in finite precision arithmetic, it

is hopelessly unstable because the latere’s are (modified) differences of converging
values.

Fortunately computation along descending diagonals is stable but here the diffi-
culty is the calculation of the top diagonal. This is not as daunting as it appears at
first. If the functionf (ζ) has onlyn poles then allq (ande) columns beyond thenth
vanish. Then it suffices to build then × n Hankel matrixH̃0

n (recall thatH0
n is a

number) and compute its triangular factorization

H̃0
n = LnDnL

T
n

whereDn = diag(d1, . . . , dn) holds the successive pivots. It turns out that

q(0)
k = H0

k/H
0
k−1 = dk , k = 1, . . . , n

The e(0)
k are found from the pivots of̃H1

n. This is the practical way to compute the
poles from the Taylor coefficients. In fact a careful form of row interchanges (not
partial pivoting) may be used to improve the accuracy of the factorization.

Next we relate the qd tableau to the computation of eigenvalues. Given a square
matrix C the appropriate rational functionf comes from the resolvent,

f (z) = xT(I − zC)−1y ,

wherex and y are arbitrary column vectors. A technical assumption is needed to
guarantee that the qd tableau is well defined. In the language of control theory, see
[24], the linear dynamical systemS (C, y, xT) must be minimal. If it is not minimal,
then we might not be able to find all the poles of the system.

For this functionf ,
hk = xTCky/xTCk−1y

and so the{hk} could be computed by the power method. However, it would be
preferable to compute{q(0)

1 , e(0)
1 , q(0)

2 , e(0)
2 , . . .} directly fromC and we now know that

this can be done by invoking the Lanczos algorithm onC and using the resulting
tridiagonal matrixJ . It turns out that the pivots that occur in computing the triangular
factorization ofJ are the{q(0)

k } and their reciprocals are the{e(0)
k }. The details are

given in [27]. In other words,
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J =


1
e(0)

1 1
e(0)

2 1
e(0)

3 1
. .

. .




q(0)

1 1
q(0)

2 1
q(0)

3 1
q(0)

4
. .

.

 .

We see here how the LR algorithm on tridiagonals was hidden in the qd table.

12. The continued fraction connection

There is an intimate connection between our bidiagonal matrixB, the tridiagonal ma-
trix T = BTB, and a continued fraction associated with them. Properties of continued
fractions influenced the qd algorithm initially and only later did the LR transformation
emerge and nearly displace the continued fraction. We can not find any discussion by
Rutishauser of the connection between the continued fraction andBTB so we supply
it here.

Recall the notation from Sects. 2, 3, and 4.

B = bidiag

{
b1 b2 . bn−2 bn−1

a1 a2 . . an−1 an

}
.

qi = a2
i

e2
i = b2

i , e0 = en = 0

T = tridiag

{ √
q1e1

√
q2e2

√
q3e3

√
qn−1en−1

q1 q2 + e1 q3 + e2 . . . qn + en−1√
q1e1

√
q2e2

√
q3e3

√
qn−1en−1

}
.

Rutishauser associates withT the continued fraction

F (ζ) =
1

ζ − q1−
e1q1

ζ − q2− e1−
e2q2

ζ − q3− e2− . . .(42)

It is not obvious howF (ζ) relates toT . The answer is

F (ζ) = [(ζI − T )−1]1,1

or more generally,
F (ζ) = xT(ζI − T )−1y

with x and y as defined near the end of Sect. 11. The inverse is well defined for all
ζ with |ζ| exceeding the spectral radius ofT . The particular form of the continued
fraction arises from the triangular factorization ofζI − T from the bottom up:

ζI − T = L̃TD̃L̃

whereL̃ is unit lower triangular and

D̃ = diag(d̃1, d̃2, . . . , d̃n)

d̃i = d̃i(ζ).
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Then
(ζI − T )−1 = L̃−1D̃−1L̃−T

and
F (ζ) = d̃−1

1

The recurrence for thẽdj is

d̃n := ζ − qn − en−1

d̃j := ζ − qj − ej−1− qjej/d̃j+1 for j = n− 1, . . . , 2, 1.(43)

This establishes (42).
There is a simpler continued fraction expansion forF (ζ). It corresponds to a

recurrence ford̃j + ej−1. From (43)

d̃j + ej−1 = ζ − qj(1 +
ej

d̃j+1
)

= ζ − qj/

(
d̃j+1 + ej − ej

d̃j+1 + ej

)
= ζ − qj/

(
1− ej/(d̃j+1 + ej)

)
(44)

Sincee0 = 0, (44) gives

F (ζ) = 1/d̃1 =
1
ζ−

q1

1−
e1

ζ−
q2

1−
e2

ζ− . . .

This form is remarkable for the direct connection ofqi and ei to the (1, 1) entry of
(ζI − T )−1.

13. Singular vectors

We sketch three methods for this task. Some parts of these methods are independent
of the bidiagonal form. We plan a separate communication discussing in detail the
computation of singular vectors and eigenvectors.

13.1. Method 1

LetB = UΣV T. Sometimes only a few columns ofV are wanted, those corresponding
to selected singular values. Sometimes all ofV is wanted and, on other occasions,
both U and V are required. Consequently there will not be just one procedure for
computing singular vectors.

Consider first the oqd algorithm with which we began our development of dqds.
Let {Bj} be a sequence of upper bidiagonals generated fromB1(= B) by oqd. By
Theorem 1,

B2 = QT
1B

T
1 = QT

1V ΣU
T

and
B3 = QT

2B
T
2 = QT

2UΣV
TQ1.

Continuing this process one finds that
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B2k+1 = QT
2k · · ·QT

2UΣV
TQ1Q3 · · ·Q2k−1.

As k →∞, B2k+1→ Σ and so

U = lim
k→∞

Q2Q4 · · ·Q2k,

V = lim
k→∞

Q1Q3 · · ·Q2k−1.

This suggests one method for producingU , V , or both.

Method 1 (To find U and V ). Apply oqd toB and accumulate the plane rotations
from the odd and even passes to build upV andU .

13.2. Method 2

Since oqd converges slowly Method 1 is not a serious contender for the preferred
algorithm but see Method 3 where it plays a role.

Shifts are used to accelerate convergence and because they are non-restoring, no
n-orthogonal transformations are used and one set of singular vectors is lost and the
other set is preserved if alternative shifts are zero. The motivation for Method 2, given
next, is simple. For a bidiagonalB with last entryan = 0 the oqd transformation gives
bidiagonalB̂ where

BT = QB̂

and both ˆan = 0 andb̂n−1 = 0. So the last column ofQ is a right singular vector for
0(= σn[B]). It is only necessary to form the product of the plane rotations that build
up Q and the last column is the desired vector.

When the singular values are known we can use their differences, in turn, as shifts
in oqds to obtain suitable singular matrices.

Before describing Method 2 in more detail we emphasize a subtle benefit that
follows from finding the singular vectors in the order given byσn, σn−1, · · ·, σ1:
the sines and cosines of the plane rotations used in our oqd and oqds algorithms can
be recovered from their squares because they are all positive. Consequently we can
work with the root free versions dqd and dqds although we still refer below to the
underlying matricesBj rather than their squared components given by qd arraysZj

which we actually use.

Method 2 (to find U , not V )

1. Initialize: Bn = B ; U = I , j = n , σ2
n+1 = 0.

2. Apply dqds toBj (usingei = b2
i , qi = a2

i ) with shi ftσ2
j − σ2

j+1 obtainingB̂j .

3. Apply dqd toB̂j obtainingBj−1 and save{c2
i , ; s2

i , i = 1, j − 1} where

c2
i =

di
di + ei

, s2
i =

ei
di + ei

4. Take positive square roots to obtain{ci , si , i = 1, j − 1}
5. Accumulate the corresponding plane rotationsG1, · · · , Gn−1 of oqd intoU ac-

cording toU ← UGi , i = 1, j − 1
6. j ← j − 1, if j = 1 stop else go to 2.
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Since the last row and column ofBj−1 are zero we deflate them and considerBi as
an i× i matrix, i = n, n− 1, · · · , 2, 1.

The same algorithm may be used to computeV , notU , if one dqd transformation
is applied toB initially to give B̂. Then initialize byBn = B̂, V = Q, j = n.

Here is the justification for each of the steps in Method 2.

1. Initialization
2. The output of dqds satisfies

B̂T
j B̂j = BjB

T
j − (σ2

j − σ2
j+1)I , Bj is j × j.

Consequently, in exact arithmetic,σj [B̂j ] = 0 and the right singular vectors of
B̂j are the left singular vectors ofBj .

3.

Bj−1 = QT
j B̂

T
j , QT

j = GT
j−1 · · ·GT

1 .

So the last column ofQj is a right singular vector of̂Bj and hence a left singular
vector ofBj−1. At this pointBj−1 is a j × j matrix but its zero last column will
be discarded at the next iteration.

4. There is an advantage to taking the square roots all together in a pipelined or
vector machine. In a sequential computer Step 4 could be merged with Step 3.

5.

U ← UGi , i = 1, · · · , j . Gi =

(
ci −si
si ci

)
.

13.3. Method 3

This approach can be used on a distributed memory parallel computer. It employs
plane rotations exclusively.

Consider the permuted form of

[
0 B
BT 0

]
,

T = tridiag

 a1 b1 a2 . an
0 0 0 0 0 0

a1 b1 a2 . an

 .

The eigenvalues ofT are±σi, i = 1, 2, · · · , n and the right and the left singular
vectors ofB may be recovered from the eigenvectors ofT .

Since the eigenvalues ofT are known one may obtain the eigenvectors forσj
by one QR factorization ofT − σjI and accumulating the effect of each each plane
rotation on a single vector. In more detail, the plane rotations build up an upper
Hessenberg orthogonal matrix and one updates the last active column in this matrix
at each minor step. Ifs = sinθj andc = cosθj at a stepj then, forj < n,

v(i) = v(i) ∗ (−s) , i = 1, . . . , j , v(j + 1) = c

Initially, v = e1.
If this vectorv is not adequate then we solve
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RT(Rw) = v

for w and finally normalizew. Thus the triple diagonal matrixR must be saved.
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