Numer. Math. 89: 669-690 (2001) -
Digital Object Identifier (DOI) 10.1007/s002110000279 Iwﬂgmg;ﬁactﬁ]l?

Higher order numerical schemes
for affinely controlled nonlinear systems

L. Grine, P. E. Kloeden

Fachbereich Mathematik, Johann Wolfgang Goethe Uniér€0054 Frankfurt am Main,
Germany; e-mail{gruene, kloedef@math.uni-frankfurt.de

Received February 17, 2000 / Revised version received September 18, 2000 /
Published online April 5, 2001 &) Springer-Verlag 2001

Summary. A systematic method for the derivation of high order schemes
for affinely controlled nonlinear systems is developed. Using an adaptation
of the stochastic Taylor expansion for control systems we construct Taylor
schemes of arbitrary high order and indicate how derivative free Runge-Kutta
type schemes can be obtained. Furthermore an approximation technique for
the multiple control integrals appearing in the schemes is proposed.
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1 Introduction

Traditional numerical schemes for ordinary differential equations, such as
Runge—Kutta schemes, usually fail to attain their asserted order when ap-
plied to ordinary differential control equations due to the measurability of
the control functions. A similar situation occurs with stochastic differential
equations due to the nondifferentiability of the driving noise processes. To
construct higher order numerical schemes for stochastic differential equa-
tions, one needs to start with an appropriate stochastic Taylor expansion
to ensure consistency with the less robust stochastic calculus as well as a
higher order of convergence. This is the opposite procedure to that used
for numerical schemes for ordinary differential equations, where heuristic
arguments are typically used to derive a scheme and the Taylor expansion
is then used to establish its local discretization order.

This work was supported by the DFG Forschungschwerpunkt “Ergodentheorie, Analysis
und effiziente Simulation dynamischer Systeme”.
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In this paper we will show that an analogous approach to that in the
stochastic case enables one to derive one—step numerical schemes of an
arbitrary desired order for affinely controlled nonlinear systems. In particu-
lar, we will first formulate, and then apply to construct numerical schemes,
the general Taylor expansion of a functidiit¢, z(¢)) with respect to the
solutions of and—dimensional affinely controlled nonlinear system with
m~—dimensional control functions of the form

dz _ o0 o j
(1) =1 (t,w)+;f (t, ) w! (1),
wheret € [tg, T] andz = (2!, ..., 2™) € R?, and the control functions(t)

= (u'(t),..., u™(t)) are measurable and take values in a compact convex
subsefU,,, of R™. Our expansion is essentially the same as the Fliess ex-
pansion that is well known in control theory [10], with the main difference
lying in the compact notation that we adapt from stochastic calculus [14]
(see also [4]), which allows, in particular, a transparent representation of the
remainder term and a systematic and straightforward derivation of approx-
imations of an arbitrary desired order. Some of these schemes had already
been derived by Ferretti [6] for a restricted class of systems of the form (1),
starting from a traditional Runge—Kutta scheme and then modifying it with
the help of a Fliess expansion.

Numerical schemes for affinely controlled systems have recently re-
ceived considerable interest, since complex nonlinear control systems do
in general not allow an analytic solution and hence require numerical treat-
ment for both analysis and controller design. See for instance the monograph
[2] for a number of algorithms for this class of systems, where in each of
them the approximation of trajectories appears as a subproblem.

The organization of this paper is as follows. We start with an illustrative
example of our Taylor expansions in Sect. 2, which is followed by the in-
troduction of the necessary notation in Sect. 3 and the precise statement of
the general Taylor expansion in Sect. 4. In Sect. 5 we explain how Taylor
approximations of arbitrary desired order can be obtained from this expan-
sion, which we then use in Sect. 6 for the construction of numerical Taylor
schemes of arbitrary order. In Sect. 7 we show how derivative—free schemes
can be obtained from these Taylor schemes, thus providing a means for the
construction of the rightkind of “Runge—Kutta” schemes for the affinely con-
trolled nonlinear systems (1). Several simplifications to the Taylor schemes
based on a special additive or commutative control structure of the system
(1) are also indicated in Sect. 8. The approximation of the multiple control
integrals appearing in the schemes is then addressed in Sect. 9, in particu-
lar approximation by averaging for a single control function and then the
approximation of the set of multiple control integrals for all measurable
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control functions. Finally, we illustrate our results by a numerical example
in Sect. 10.

2 An illustrative example

We consider the solution(t) of the 1-dimensional affinely controlled au-
tonomous differential equation

dx
i o) + o) u®),

which is interpreted in the sense of Cagthlory, or its equivalent integral
eguation representation

t t
@ et =stt)+ [ )+ / FH(a(s) u(s)ds

for t € [to,T], where the coefficientg® and f! in (2) are sufficiently
smooth real-valued functions satisfying a linear growth bound and the con-
trol functionu(t) is measurable and takes values in a compact int&syal
= [umim umax]-

Then, for any continuously differentiable functidh: R — R the chain
rule for the absolutely continuous solutions of equations (1) [7] gives

Fa(t) = Flatto) + [ (065 Fa(e) ) ds

to
0

@) +/ fl(:I?(S))%F(l’(S)) u(s)ds

= F(x(tg)) + / LOF(z(s)) ds + / LYF(z(s)) u(s)ds,

to to
for ¢ € [to, T], where the operators? and L! are defined by
0 0
L() — 0 Y Ll — 1 .
f ox’ / ox
Obviously, forF(z) = x we haveL’F = f® andL' F = f*, in which case

(3) reduces to the original affinely controlled differential equation (2), that
is to

z(t) = x(to) + t fOxz(s)) ds + t FH(x(s)) u(s)ds.
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If we now apply the chain rule (3) to each of the functidns- f° andF =
f1in (2) we obtain

t S
o(t) = (t0) + | <f°(w(to)) + [ 1) ar

to

+/t: Llfo(:x(z))u(z)dz> ds + /t: <f1($(t0))
+/S Lofl(x(z))dz—k/tos Llfl(x(z))u(z)dz> u(s)ds

@  —alto)+ alt)) [ ds+ falt) [ uls)ds+ R

to to

with the remainder

R:/tt/tsLOfO( dzds—l—/t/thO w(2)dz ds
—I—/t:/t:LOfl(gg(z))u(s)dzds+/t0/to L (o)) (o) dz ds.

This is the simplest nontrivial Taylor expansion for the affinely controlled
system (2).

We can continue the procedure, for instance, by applying the chain rule
(3)to F = L' 1 in (4), in which case we get

(5)  a(t) = a(ty) + [*(a(ty)) / ds + 1 (x(to) / u(s)ds

to

+ L (z(to) / / s)dzds + R
to Jto

with remainder

L ferumee  fonanso
/to /t 0 Lof! u(s) dz ds
/to /to /to LOL 1 (a(r)) dr u(z)u(s) dzds
+/to /t /t L'L fH (2 (r)) ul(r)u(z)u(s) drdz=ds.

Later we shall formulate the Taylor expansions (there are many possi-
bilities) for a general functio” and arbitrarily high order. Nevertheless, its
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main properties are already apparent in the preceding example. In particular,
we have an expansion with the multiple control integrals

t t
/ ds, / u(s)ds, / / 2)dz u(s)ds
to to to Jto

and a remainder term involving the next multiple control integrals, but now
with nonconstant integrands. The Taylor expansions obtained in this way
thus generalize, and include as a special case, the usual Taylor formula,
i.e. take f= 1 and the otherf/ = 0. They are essentially the same as
truncated versions of the infinite Fliess expansions that are well known in
control theory [10], however, the notation adapted from stochastic Taylor
expansions [14] allows arbitrarily order expansions to be written out very
compactly and transparently, in particular yielding an explicit expression
for the remainder term and allowing straightforward derivation of arbitrary
order approximations. Moroever, they do not require any restrictions on the
form of the f° and f! coefficients such as a constgfitin [6] apart from

the necessary smoothness up to a certain axder V.

3 Multi-indices and multiple integrals

Inthe following sections we shall refer to the nonautonombukmensional
affinely controlled differential equation (1), which we rewrite in the equiv-
alent integral form

t m t
2(t) =x(to) + | fOs,x(s)ds+ D [ fI(s,2(s))u!(s)ds
to j=1 to
or even more compactly as
(6) x(to) + Z fJ (s,x(s)) ! (s) ds

where we have introduced a fictitious control functidt(t) = 1 so that
the first integral term can be included in the summation, which will be
notationally very convenient in what follows.

3.1 Multi—-indices

Letm > 0 correspond to the number of components of the control functions
under consideration. We call a row vector

(7) a = (ji,J2, - 1),
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wherej; € {0,1,...,m} fori =1, ..., [, amulti-indexof length! := I(«)
> 1 and for completeness we write for the multi—index of length zero,
that is, with/(®) = 0. We denote the set of all such multi-indices. by,
SO

Mm:{(jl,j%---,jl)isz{0,1,...,m},i€{1,...,l}
forl:1,2,3,...}u{®}.

For anya = (j1, jo,...,J1) € My, with [(a)) > 1, denote by—« and
— for the multi-index inM,,, obtained by deleting the first and the last
component, respectively, of, thus

—a= (2,0 == (1, i)

In addition, defing the congatenation of any two multi-indiees (j1, j2,
. ,jk) anda = (jl, J2y - .,jl) in M,, by

(8) a*d:(jlaj?y'"?jk‘ajlajZa"'ajl)?

that is, the multi-index formed by adjoining the two given multi—indices.
Finally, definen(«) to be the number of components of a multi—index
M, that are equal t0.

3.2 Multiple control integrals

For a multi-indexa = (j1, j2, ..., j1) € M,,, some integrable control
functionu : R — U, and an integrable functiofi: [ty, 7] — R we define
themultiple integrall,[f(-)]+,.+ recursively by

f(t) : 1=0

Neosw(s)ds = 1>1

(9) ]a[f(')]toyt = {f

We note thatl,[f(-)]+,. : [to,T] — R is continuous, hence integrable, so
the integrals are well defined. Hence, for example

Io[f (ot = f(t),  Loylf ()leos = t f(s)ds

Ty [fO)eot = f(S) ut(s)ds,

01) Ot—/ / f(s1)u 32 ) ds1dss
1(021) / / / f(s1) 82 (83)d51d52d53
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For simpler notation, we shall often abbrevidtgf (-)]:, + to I, + or justl,
when f(t) = 1 and shall explicitly writel, [ f ()¢, La,u,t OF Lo, When
we want to emphasize a specific control function

3.3 Coefficient functions

For eacho = (41, ..., j;) € M,, and functionF : [tg, T] xR¢ — R, the
coefficient functiorf, is define recursively by

F : 1=0
(10) F, = ) ,
LF , : 1>1.

where the partial differential operators are defined by

d
0 0 ; . 0
11)L° = OF = D= k=" j=1..m
This definition requires the functior’s, f°, f!, ..., f™ to be sufficiently
smooth.

For example, in the autonomous scalar dimensional caseiwithn, =
1 for the identity functionF'(¢, ) = x we have

Foy=f° Fyy=11" Foo=rr",

Fogy =1V, Fiung = 1P Fl = P17

where the dashdenotes differentiation with respect:to
When the functionF’ is not explicitly stated in the text we shall always
take it to be the identity functiof'(¢, z) = «.

3.4 Hierarchical and remainder sets

Since different integrals can be expanded in forming a Taylor expansion, the
terms with constant integrands cannot be written down completely arbitrar-
ily. Rather, the set of corresponding multi—indices must form an hierarchical
set.

A subsetd ¢ M., is called arhierarchical sefif A is nonempty, if the
multi-indices inA are uniformly bounded in length, thatdgp,,c 4 [(a) <
oo, and if

—a e A foreach ae€ A\ {6},

where® is the multi-index of length zero.
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Thus, if a multi-indexxy belongs to an hierarchical set, then so does the
multi-index—« obtained by deleting the first componentof

The remainder term of a Taylor expansion constructed with a given hi-
erarchical setd involves only those multiple control integrals with multi—
indices belonging to the correspondiegnainder se3(.A) which is defined
by

B(A) ={ae M, \A: —a € A}.

It thus consists of all of the next following multi—indices with respect to the
given hierarchical set that do not already belong to the hierarchical set and
is formed simply by adding a further component taking all possible values
at the beginning of the “maximal” multi-indices in the hierarchical set.

4 Taylor expansions for affine control systems

We now formulate the Taylor expansion for fiedimensional affinely con-
trolled system (6) using the terminology that was introduced in the preceding
section.

Theorem 1 LetF : R* xR% — R and let.A ¢ M,, be an hierarchical set
with remainder seBB(.A). Then the followindaylor expansion correspond-
ing to the hierarchical sed

(12) F (t,2(t) = Y Lo [Fa (to, a(to))]yy o+ . Lo )it
acA a€B(A)
holds, provided all of the derivatives &, f°, ', ..., f™ and all of the

multiple control integrals appearing here exist.

Proof.We give a sketch of the proof following that of the Ito-Taylor expan-
sion [14, Theorem 5.5.1].

First we apply the integrated version of the chain rule for the types of
functions under consideration [7], that is

(13)  F(tz(t) = F (to,z(to)) + Y IH[LYF (o))l
j=0

to the functionF,, for some multi—indexx € A to obtain
Ia[Fo (- 2()lto,t = LalFa (to, ©(t0)))to ¢

+1, |:Z I(J) [L(j)Fa(‘v x('))]t()f
=0

to,t

(14) = Fu (to, 2(t0)) Tator + > Iiysal Fiyea (5 2()io
=0
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We shall verify the expression in the theorem by induction dver
max{l/(«) |« € A}. Fork = 0, the hierarchical set is simpl¢ = {®}, so
the assertion follows directly from (13). Fbr> 1 consider the hierarchical
seté = {a € A\l( ) <k —1}. Then

ZI (to, z(t0))]eo,¢ + Z Mot
acl aeB(E

holds by the induction assumption and, since by the definition of aremainder
set we know thatd \ £ C B(&), we can conclude

ZI to, t() t0t+ Z to,t

acl acA\E
+ > L[FCG ()
a€B(A)\(A\E)
= ZI (to, z(t0))]eo,t + Z I,] Vit
acl aeBy

with the last equality following from (14). Finally, since the definition of
a remainder set implies th#t; = B(.A), we obtain the desired expres-
sion. U

For example, in the general case with the hierarchical and remainder sets

AZ{G}? B({Q}):{(O)77(m)}7
the Taylor expansion is

F(tz(t) = Io [Fo (t0>$(t0>)]to,t + Z 1o [Fa(':x('))]to,t
aeB({v})

= F (to,z(to)) + /t LOF (s, z(s))ds

(15) +Z/ LI F(s,2(s))u’(s)ds

As another example, in the autonomous scalar dasen = 1 with F'(t, z)
= ¢ and the hierarchical and remainder sets

A={ae M :l(a) <2}, B(A) ={a e M :l(a) =3},
the Taylor expansion reads
x(t) = x(to) + Loy + 1 Iy + o1 Loy + fOfY Ty
U Ty + fHFY ) + Rs(t o),
where the integrals are over the interj¢gl ¢], the coefficient functions here

are all evaluated dt, x(), the dasH denotes differentiation with respect
to z, andR3(t, to) is the corresponding remainder term.
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5 Taylor approximations

Taylor approximations of arbitrary higher order can be constructed by in-
cluding in an appropriate way more terms from the Taylor expansions that
are then truncated. We show here that a Taylor approximation of éfder
=1, 2, ... needs all of the multiple control integral terms from the Taylor
expansion of up to and including ordaT, i.e. with the constant coefficients
F,(to, z(t9)) and the corresponding multiple control integrals

to+A
,]1
Oc Jto,to+A — / / / w Sl
to to to

(16) ol (s 1)u]l(sl) dsy...ds;
for all multi-indicesa in the hierarchical set
(17) I'y={aeM,y: (o) <N}

Thus in the general multi-dimensional caken= 1, 2, ... the Taylor
approximationfor N =1, 2, 3, ... is defined by

(18) FN (t()? Z F t()a tO [Oz7t(),t()+A
acl'n
=F (to, x(to))
(19) + Z Fa (t07 x(tO)) Ioc,to,to-i-A
acl'N\{O}

with the coefficient functiong’, corresponding to the functiofi(¢, ) .

Note that when the functiof (¢, z) is N + 1 times continuously differ-
entiable and the drift and control coefficierf§ f1, ..., f™ of the affinely
controlled differential equation (6) aré times continuously differentiable,
then each of the integral§, +, +,+4 (Fu (-, z(-))), that is

to+A ps; 82 . . .
/ / e Fo(s1,z(s1))u/(s1) ... u' =" (sp—1)u’ (s7) dsy . .. dsy,
to to to

for a in the remainder se(Iy) is of orderAN+!, Since there are only
finitely many, specificallym+1)!, remainder integrals, the truncation error
here is

(20)  |Fn (to, x(to), A) — F (tg + A, z(tg + A))| < K ANFTL

where the constarmt’ depends onV as well as on a compact set contain-
ing the initial value(ty, x(tp)) and the solution of the affinely controlled
differential equation.
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For the function?'(¢, z) = 2%, thekth component of the vectar, andN =
1, 2 and3, respectively, the solution(to + A) of the controlled differential
eguation (6) satisfies the componentwise approximations

(1)  2F(to+A) =a"(to) + Zm: FE (o, (t0)) 1) + O(A?),

=0
2F(to + A) = 2" (to) + Y 7 (to, z(t0)) I )
=0
(22) + Y LRI LG 4 O(A7)

J1,J2=0

and

2 (tg + A) = 2F(to) + ij’k(to,fﬁ(to))f(j) + Z L 20 I
j=0 J1,J2=0

(23) + ) LML (o, 1(t0)) Iy g ge) + O(AY)

J1,J2,J3=0

fork=1,..., d, where we have writtef ;, for ;) ;, ;,+ and so on.

6 Taylor schemes

Using the Taylor approximation from the previous section we now con-
struct numerical schemes by iterating Taylor approximations, or suitable
derivative free approximations of those, over a partition of the time interval
under interest. Schemes of arbitrary higher olde£ 1, 2, ... can be con-
structed by truncating the Taylor approximation corresponding to the the
hierarchical sef ;. Here we assume that the multiple control integrals

are at our disposal; in Sect. 9 we shall describe how these integrals can be
approximated.

Let {to,t1,...,tn,...,} be a partition of the time intervat,, T'] with
stepsizesp,, = t,11 — t, and maximal step sizél := max,, 4,,. In the
general multi-dimensional casgem = 1,2, ...for N =1, 2,3, ... we
define theTaylor scheme of ordeN for the affinely controlled differential
equation (6) is given componentwise by

(24) X’rlf-‘rl = X!: + Z Folj (tn?Xn) Ia:tmtn-!—l
ael'n\{O}
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with the coefficient functiong’” corresponding td (¢, z) = z* for k = 1,
..., d and the multiple control integrals

tnt1 Sy s2 )
(25) oty tns :/ / / W (sy) - ut(s;) dsy - - - dsy.
tn tn tn

By standard arguments [13] it follows from (20) that the global discretization
error is of orderN when the drift and control coefficienf8, f!, ..., f™ of
the differential equation (6) ai®¥ times continuously differentiable.

In writing out the Taylor schemes below, we shall distinguish the purely
uncontrolled integrals, that is with multi-indicés), (0,0), (0,0,0), ...
from the others, since no special effort is required for their evaluation.

6.1 The Euler scheme

The Euler approximation is the simplest nontrivial Taylor scheme. It corre-
sponds to the hierarchical st and has the convergence or@dér= 1. Itis
given componentwise by

(26) Xﬁ—i—l = erzj + f07k(tm Xn) An + Z fch(tm Xn) I(j),tn,tn+1
j=1

fork=1,...,d, where

tn+l
An:tn+1—tn:/ ds
tn

and t
n+1 .
I(.j):tnvtn-!—l = \/t‘ uj (S) dsy ] = 1,... 7”I’n,.

6.2 The Taylor scheme of order 2

The kth component of th@aylor scheme of ordex is given by

X1]§+1 = Xrlf + fng(tnv Xn) An + Z fj’k(tm Xn) I(j),tn,tn+1
j=1

1 n o
(27) +§ L0f07k(tﬂ7 XTL) A?L + Z lef]27k<tn7 Xn) I(j1,j2),tn7tn+1

71,72=0
J1+3i2#0

fork=1,...,d.
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6.3 The Taylor scheme of order 3

The Taylor scheme of orde} is given componentwise by

m
Xﬁ+1 = Xﬁ + f07k(tm Xn) Ap + Z f%k(tm Xn) I(j),tn,tn+1
7j=1

1 TN
+§ Lofo’k(tm Xn) A?E + Z lefp’k(tm Xn) I(j1,j2)7tn7tn+1

J1,32=0

J1+i2#0
1
+2 LOLOfOk(t,, X,) A3
m . .

(28) + Z Lr fh’k“”? X"> [(jlaj27j3)7tn7tn+1

J1,32,33=0

j1+io+i3#0
fork=1,...,d.

7 Derivative—free schemes

A disadvantage of Taylor schemes is that the derivatives of various orders
of the drift and control coefficients must be first derived and then evaluated
at each step. In the past this made the implementation of such schemes a
complicated undertaking, but this is no longer such a difficulty these days
with symbolic manipulators [3]. Nevertheless it is useful to have approxi-
mations and schemes that avoid the use of derivatives of the drift and control
coefficients in much the same way that Runge—Kutta schemes do in the more
traditional setting since these often have other computational advantages.

In this section we shall illustrate how such derivative—free schemes can
be derived. These could also be called Runge—Kutta schemes, but it must be
emphasized that they are not simply heuristic adaptations of the traditional
Runge—Kutta schemes to affinely controlled differential systems, which will
usually not attain their traditionally asserted order in this context.

Since the Euler or Taylor scheme of ordecontains no derivatives of
O £, ..., f™, we consider the second order Taylor scheme (27) in the
scalar autonomous case with a single control, that is &vithvn = 1. Here
the affinely controlled differential equation is given by (2) and the Taylor
scheme by

Xn+1 = Xn + fO(Xn) An + fl (Xn) I(l),tn,tn+1
1
+§ LfO(X,) A2 + L0 f1(X,) L(0,1)tn tns1
+L'O(X,) I(1,0) tn tnss T L'fH(X5) T(1,1) s
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or, using a dashto denote differentiation with respect g by

XTL+1 = Xn +f0( )A +f ( ) 1) tn tn+1
1
by PP 224 P60 1 (X) Tt
+f1(Xn)f0/(Xn) I(1,0)tn tni1 T fl(Xn)fll(Xn) T(1,1) 0t

By the ordinary Taylor expansion we have

F@)f'(e) = % (F (o + () 4) - Fi@) +0(a),
so the(i, j) term in the above Taylor scheme reads

szj( ) (1,0)tntnt1 — = f ( )f“( ) (4,3)5tnstnt1
= (4 (G P06 A0) = F) 4 0(4)) T

“ A (f (Xn + F(Xn) An) = X)) Lig)tntnes + O(AD)

sinceO(An) I j) 4, 4n.1 = O(A%). The remainder here is of the same order
as the local discretization error, so we can replace the term on the left by
that on the right without reducing the global order of the resulting scheme.
In this way we obtain theecond order derivative—free scheme

Xny1=Xp + fO(Xn) Ay, + fl(Xn) I(l),tmtnﬂ
+% (fo (Xn + fo(Xn) An) - fO(Xn)) An

1
Fo (K P An) — FX) Tyt

i,j=0
470

1
= Xn+ ifO(Xn) Ap + fl(Xn) I(1)7tn,tn+1
1
+§fo (Xn + fO(Xn) An) AW

1
@9t D (Xt P D)~ ) Ty

i,j=0
i+570
in the scalar autonomous case with a single controldi-e.m = 1. This

was also obtained by Ferretti [6] when the control coeffici€nivas equal
to a constant.
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The vector version of the second order derivative—free scheme for an
autonomous affine control system hide component given by

1

X'll;‘i’l X?QC + §fo k A + Z f] k (.7 JIn,tnt1
1
+§f0’k (Xn + fO(Xn) An) An

30 L (X 4 fI — PR I
( ) + Z f + f ( ) ﬂ) f ( n) (4,9) ytnstn+1

=
for k = 1, ..., d. In the usual ODE case, that is wifi(z) = 0 for j =
1, ..., m, this is just the second order Runge—Kutta scheme known as the

Heun scheme.

This principle can be extended to obtain higher order derivative—free
schemes. See [14] for analogous higher order derivative—free schemes for
the stochastic case.

8 Simplifications with additive or commutative control

The Taylor schemes (24) simplify considerable when the drift and control
coefficientsf?, f1, ..., f™ of the affinely controlled differential equation

(6) satisfy special properties. For example, if the control coefficights. .,

f™ are all constants or depend justiome shall say that the control system
hasadditive controlin this case all of the spatial derivatives of these control
coefficients vanish and, hence, so do the corresponding higher order terms.
For example, the second order Taylor scheme (27) then reduces to

Xk = XE 4 O, X,) A, +Zf]ktn,X)I()tmtn+l
7=1

(31) D L O (b, Xn) 1G0) ot
j=0

fork=1,...,d.
Another major simplification occurs undeommutative controthat is
when the drift and control coefficients satisfy

(32)  Lifik(t,x) = LI f*(t,z) forall 4,5 =0,1,...,m
Then, by the generalized integration—by—parts identities

I(ivj)7t7b7tn+1 + I(j7i)7t7htn+1 - I( ) t7l7tn+1 (j)7t’ﬂ=tn+1,
(33) 1,7 =0,1,...,m,
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the sum of terms

Lif%k(tnv Xn) I(i,j),tn,tn_,_l + Ljfi7k(tn7 Xn) I(

jvi)rt”7t"+l
simplifies to
L’Lf‘%k (tn7 Xﬂ) I(i)1t"1t’ﬂ+1 I(j)vt"7t"+1 ’

which involves more easily computed multiple control integrals of lower
multiplicity. Note that this condition is similar to the one considered in [15],
where the effect of time discretization of the control function is investigated
and a second order scheme for the approximation of the reachable set is
obtained.

9 Approximation of multiple control integrals

In control theory the computation of a trajectory corresponding to a sin-

gle control function as well as the computation of the reachable set cor-
responding to the trajectories of all possible control functions are both of

considerable interest, see [2]. Both require the evaluation or approximation
multiple control integrals appearing in the numerical schemes that a have
been proposed above. Here we suggest several ways this can be done.

9.1 Averaging multiple integrals of a single control function

A multiple controlintegrall s ¢, t,,,1 = Ia,u,t, .., fOr @ameasurable control
functionw taking values iflJ,,, can often be evaluated explicitly using, for
example, a symbolic manipulator suchvaspLE. For complicated multiple
integrals, however, this might become very slow, so it could be more conve-
nient to use a numerical approximation instead. In this section we show how
this can be done by an averaging strategy, an approach adopted from [9], but
with the major difference that here we are dealing with measurable instead
of the Holder continuous functions considered in [9]. This difference will
make it necessary to assume certain knowledge about the integrals of the
control functionu over short time intervals.

The following Lemma provides the main estimate for our purpose. As
above we use the convention thé{(t) = 1.

Lemma 2 Consider a measurable control functien [0, A] — U,,, some
Pe N, =A/P >0,anddefine

. kg ,
= / u! (t)dt
(

k-1)8
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forj=0,...,mk=1,...,P. Then

ki1

(34) Tou0,4 = Z Z ST ad 4+ o(pA

fiml ko=l k=1
forall I >2andalla = (ji,..., ).

Proof. We will show by induction ovet that

PE/A] k1 kl 1

(35) I(j1,~..,]l u,0,6, — Z Z Z AJI' A]l (ﬁAl 1)

ki=1 ko=1 k=1

for an arbitrarye € (0, A], where[r] denotes the smallest integer greater or
equal tor € R. This will imply the assertion on setting= A

~Forl = 1 the assertion follows immediately from the definition of the
ty,. Now consider(jo, ji, . .., ji) with I > 2. Then

€
Lo g1 seoerit) 00 = /0 WO )Ly, jy)u0.edt

and by the induction assumption we can proceed to obtain

[Pt/A] K ki—1

:/Oeujo(t) ST S al + oA |t

Biml ko—1 k=1
[Pt/A] k1 ki_1

:/Ogujo(t) SOOS Y al el | a+ oAl

ki=1 ko=1 k=1

[Pe/A] ko k1 ki1
(X arow) (5 S i i) o
ko=1 ki=1ko=1 k=1
—o(a
[Pe/A] ko ki1

Z Z Z ~J0 A]l +O(6Al)

ko=1 ki=1 k=1

which finishes the proof. U
Assuming that the values], are known, based on this estimate one can

use the following strategy for approximating,, ; :+A: Given some step size

A > 0, ascheme of ordeV € IV and some multi—index with /(o) > 2,

fix 3 > 0 such that3 < AN+2-e) and approximate the corresponding

control integrals by (34); fot(a) = 1, knowledge ofii;, allows an exact

evaluation. Then the Lemma 2 ensures that;; » is approximated with
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an error of orderAN+! thus maintaining the local, and hence global, order
of the scheme.

Note that on any fixed time interval the number of computations involving
thed), is of the order ofl /A, and hence grows with the order of the scheme
asA — 0. On the other hand, the number of evaluations offih@vhich in
general will be the more expensive part, especially when the dimetdsibn
the state space is high) only grows likeéA, hence linearly. This difference
in the computational cost is typical for averaged schemes, see also [9].

9.2 Approximating the set of all possible multiple control integrals

In many applications one is interested in simulating the whole set of possi-
ble trajectories, for example, as in solving numerically a Hamilton—Jacobi

equation related to optimal control (e.g. [5,8]) or in the computation of a

reachable set (e.g.[2,11,12]). This requires knowledge of the set of multiple
control integrals for all possible control values in the scheme that will be

used.

ForA={a,...,a,} C M,, the explicit determination of the set
TA U, ti+A =
U{(Ial,u,t,wA, ooy 1oy uir+a) | all measurable :— U,,)} € R™

of all possible values of the multiple control integrals is rather complicated
and beyond the scope of this paper. For results in this direction we refer to [6],
where only the (easier but still quite complicated) cases (0, ...,0,1%)
anda = (4,0,...,0), ¢ = 1,..., m, which are all that is needed in the
restricted class of additively controlled systems considered there (cf. Sect. 8),
are treated. Note, however, that by (33) these results also suffice for the
computation ofZ 4 v,, +++ for second order approximations for systems
with one-dimensional control (the so called single input systems), as well as
for commutative control systems and the special case where only the control
coefficientsfy,. . ., f» commute, see again Sect. 8.

Inthe general case we propose the following simple numerical procedure
for an approximatio C Z, At t+AU,, Satisfying

inf sup |l —TI'|| < KANT!
IEL V€T p u,y bt +A

forall A € (0, 4] and somes = K(4,) > 0 independent ofA and thus
maintaining the order of the scheme.

Step 1: Choose some time steépand some desired ord&F € IN. Pick
a scheme of ordeN and the corresponding set of multi—indices
A=1T}y.
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Step 2: Consider a discrete 38, c U,,, satisfying

inf sup [} —ul < AY,
w€Up, uelU,,

P e IN with 8 := A/P < AN*! and the spacd of measurable
control functions satisfying
1 [k

= u(t)dt € U,
B Je-1)s

forall k € {1,2,..., P}, which can be identified witlJ
Step 3: Compute the approximations (34) to the multiple control integrals
forallv e U.

This way for each admissible control functiari-) we find a control
functionwv(-) € U such that

_ , kp , kg ‘

4], — 0| = / u! (t)dt —/ v (t)dt| < AN

(k—1)8 (k=1)B

implying forl > 1
P k1 ki1 P k1 ki—1 Pl
L s . " LN
DD IO ILARLED DD DD DL IR JEL el
ki=1lko=1 k=1 ki=lko=1 k=1
<CAN+I

for some constar® > 0 independent ofA andg. For A € (0, Ag] we have
AN < AT ANHL and thus using Lemma 2 it is straightforward to verify
that this set indeed has the desired approximation property.

Note that in many algorithms the numerical scheme has to be evaluated
many times at different state space pointsut sinceZ 4 u,, 1+ does
not depend on: the computation of needs to be done just once at the
beginning of the algorithm.

There might be a number of more efficient ways for the construction of
an approximating sef. In particular, in optimization problems it might be
sufficient to approximate the extremal points of the (convexj s&t,, 1+
and use some optimization strategy on this set instead of using all the points
“inside” Z. For bang—bang optimal control it suffices to constriidby
choosingU,,, as the set of extremal points of the convex Bkf. Such
strategies, however, depend strongly on the structure of the problem for
which the numerical approximation of the controlled trajectories is heeded.
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Fig. 1. Global error for Heun (black) and Euler (grey) schemes, linear and log-log

10 A numerical example

We have tested the Euler and Heun Schemes from Sects. 6 and 7 with the 2
dimensional system with a single control

) _ 100 (8)) + u(t)f (1)) = (“o(t)) ult) (_3812 (t)>

dt

with control functionu(t) = sin(100/¢) and initial valuexry = (0,0)7.

The resulting schemes have been simplified using the identity (33) such that
the only remaining control integrals wefg) o ; and /(g 1,0+, which have
been evaluated usingapPLE. Note that the exact solution for this equation

is easily verified to be

z(t) = Inoy0e — Loy Y(E) =Ly
The equation was solved on the inter{fl1] with timestepA = 1/N and

0.0008 A
0.0006 -
x1(t)

0.0004

0.0002 q

s aann AN N
0 02 04 L 08 A SAVAVAY

Fig. 2. Exact (solid), Heun (black dashed) and Euler (grey dashed) solutia¥ ter100
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0.0004
0.0003
x1(t)

0.0002

0.0001 -

0

—0.0001 4

Fig. 3. Exact (solid), Heun (black dashed) and Euler (grey dashed) solutia¥ fer400

N = 50,100,...,400. Figure 1 showstheresulting errets,,_; ||z, —
z(nA)|| for the Heun and the Euler scheme. The left figure shows the error
overN in a linear scale, the right figure shows the error a%én a log-log

scale. Note that the two small values (clearly visible in the log-log plot) are
due to cancellation of local errors and hence are better than expected. The
Figs. 2 and 3 show the; component of the exact solution, of the Heun and

of the Euler scheme faV = 100 and N = 400, respectively.
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