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Summary. We present numerical schemes for fourth order degenerate
parabolic equations that arise e.g. in lubrication theory for time evolution
of thin films of viscous fluids. We prove convergence and nonnegativity
results in arbitrary space dimensions. A proper choice of the discrete mo-
bility enables us to establish discrete counterparts of the essential integral
estimates known from the continuous setting. Hence, the numerical cost in
each time step reduces to the solution of a linear system involving a sparse
matrix. Furthermore, by introducing a time step control that makes use of
an explicit formula for the normal velocity of the free boundary we keep the
numerical cost for tracing the free boundary low.
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0. Introduction

In this paper we will present new numerical schemes for fourth order de-
generate parabolic equations of the form:

ug + div(M(u)VAu) =0 in 2 x(0,7),
(1) Lu= L2 Au =0 onan x (0,7),
U(O, ) :’U,O() in £2.

We assume that the nonnegative mobilty € C(R) vanishes at zero
and that it has at most polynomial growth. By := sup{s € RT :

M) oo}, we denote its growth exponent near zero.
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Equation (1) models the height of thin films of viscous fluids that — driven
by surface tension — spread on plain, solid surfaces. Usually, it is derived
by lubrication approximation from the Navier-Stokes equations for incom-
pressible fluids(cf. [3]).

Assuming ano-slip boundary conditioat the bottom of the thin film, the
mobility becomesM (u) := |u|3, whereas the assumption of varicslip
boundary conditionkads to mobilities of the form\ 1 (u) = ¢1|ul3+co|u|?
with positive numbers;, co ands € (0, 3).

Apart from the application in fluid dynamics, degenerate parabolic fourth
order equations with a highest order term similar to that in (1) arise in other
fields of material sciences. We mention here the Cahn-Hilliard model of
phase separation for binary mixtures, whengays the role of the concen-
tration of one component (cf. [15]), and a plasticity model (cf. [16] and the
references therein) whetestands for the density of dislocations.

Crucial for all these applications is the fact, that it is possible to con-
struct solutions of (1) which preserve nonnegativity as has been proved for
space dimensiod = 1 by Bernis and Friedman [8] and for higher space
dimensions in the papers by @r[16] and by Elliott, Garcke [15]. This be-
haviour is in strong contrast to that of classical solutions to linear parabolic
equations of fourth order which in general become negative even in the
case of strictly positive initial values. Moreover, the publications of Beretta,
Bertsch, Dal Passo [2] and of Bertozzi, Pugh [10] who study this equation
in space dimensiod = 1 reveal a rich structure of qualitative behaviour of
solutions depending on the mobility growth exponento put it concisely,
the largem is, the stronger is the tendency of solutions to stay positive and
the weaker is the regularity at the boundary of the set whevanishes.

In space dimensiod = 1 for instance, solutions to strictly positive initial
data remain strictly positive it > Z. On the contrary, if: < 1 theoretical
results by [2] show that film rupture may occur.

This already indicates that for solutions to (1) maximum or comparison
principles cannot be valid. Indeed, all the results about existence and qual-
itative behaviour mentioned above are the consequence of two basic types
of integral estimates, namely the so called energy estimate

2 2 unl. 2
/Q|Vu<T,.>| +2/QTM<u>|VAu| —/Qw o)l

and the entropy or pressure estimate which reads in its simplest form as

//U(T,I) /S 1 d d d / |A ‘2
rasdr + U
0Ja a4 M(r) r
[ e
e Tasaxr.
0Ja A M(r)
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It is worth mentioning that the number= 3 plays an important role in the
theory of equation (1) — both from the mathematical and the physical point
of view.

Physically, the assumption of a no-slip condition at the bottom of the thin
film which is expressed in the equationby(u) := |u|?, leads for spreading
droplets to infinite energy dissipation at the triple line solid-gas-liquid (cf.
[20] and [14]).

Mathematically, self-similar source type solutions with zero contact an-
gle at the free boundary only exist(f < n < 3 and moreover, all the
estimates for proving existence of solutions with zero contact angle break
down if n > 3. (cf. [2], [10] in space dimension 1, [13], and [11] in higher
space dimensions).

Anotherimportant feature in the qualitative behaviour of solutions to this
equation —in particular with regard to applications in wetting and dewetting
problems — is the property of having finite speed of propagation. More
precisely, this means that the interface separating the regions where
positive and where: is equal to zero moves with finite velocity as time
progresses. For a proof in space dimensioa 1, we refer to the work of
F. Bernis ([4], [5]), in higher dimensions to [11].

Those aforementioned issues — nonnegativity of solutions, but lack of
comparison principles, propagation of the free boundary — also mean a great
challenge in finding efficient numerical schemes.

Just recently, a first successful attempt in constructing a finite element
scheme guaranteeing nonnegativity of solutions has been done by Barrett,
Blowey and Garcke [1]. By solving in each time-step an elliptic variational
inequality of second order, they enforce solutions to stay nonnegative. Un-
fortunately, it is not clear whether their algorithm guarantees — indepen-
dently of the grid size — strictly positive discrete solutions in the case that
the continuous solution to be approached is strictly positive.

With this paper, we pursue a different approach by proposing an algo-
rithm discrete in time and space that enables to prove discrete analoga of
exactly those integral estimates which are used in the continuous setting for
the results about existence and qualitative behaviour. Later on, the discrete
analogon of the entropy estimate will be the key to obtain nonnegativity
results of discrete solutions for arbitraty> 0 as well as positivity results
if n > 2 and initial data are strictly positive. As a byproduct, the numerical
cost in each time step reduces to the solution of a linear system involving a
sparse band matrix.

The second important issue in numerically simulating wetting phenom-
ena is an efficient tracing of the solution’s free boundary.

We will present a new formula — and in fact prove it for self-similar
source type solutions — that explicitly expresses the normal velocity of the



116 G. Giin, M. Rumpf

free boundary in a poing(¢) in terms ofu(t,£(t)) and of certain spatial
derivatives ofu in (¢,£(t)).

The discrete counterpart of this formula can easily be implemented to
estimate the speed of propagation of the numerical free boundary in each
time-step. We use this for an efficient time-step control, defining the time
increment at time by 7. := Sp#d(t) whereh is the grid parameter.

As a consequence, our algorithm reduces the computation time for sim-
ulating e.g. the spreading of self-similar source-type solutions by a factor
smaller thar0.005.

Let us mention that L. Zhornitskaya and A. Bertozzi(cf. [22]) paral-
lely in time developed a method for proving entropy estimates for numeri-
cal schemes that has something in common with our ansatz. They confine
themselves to the cage> 2 and suggest a time-continuous, space-discrete
finite difference scheme for approximating strictly positive solutions. For
this scheme, they present a proof for strong convergence of positive discrete
solutions and show equivalence to a finite element approach on uniform,
rectangular grids.

Let us describe the outline of this paper.

In Sect. 1 we will present the finite element scheme to be studied without
specifying already at that point the numerical mobilities which we are going
to use. Nevertheless, by comparing this finite element method with a finite
volume algorithm — both algorithms coincide for certain regular meshes
— we will illustrate the main idea how to construct numerical mobilities
(or numerical fluxes, respectively) which allow for nonnegative solutions.
Section 2 contains a proof of global-in-time existence of discrete solutions by
means of a fixed-point argument (Brouwer). In Sect. 3 we prove the discrete
analogon to the energy estimate as well as a result about compactness in
time. The latter, we will use later on for proving convergence of discrete
solutions in higher space dimensions. Section 4 is devoted to a result about
uniform discrete llder continuity of discrete solutions (using a discrete
analogon of0''/2:1/8 (7)) if the dimension isl = 1.

In Sects. 5, 6, the key results of this paper can be found. In Sect. 5,
we introduce a general concept of admissible entropy-mobility pairs which
allow for discrete analoga of the entropy estimate on arbitrary, unstructured
grids. Sect. 6 is devoted to the proof of nonnegativity results (or positivity
results, ifn > 2) for discrete solutions which are valid for arbitrary grid
size.

Sections 7,8 contain the convergence results: in space dimehsion
we get uniform convergence dy to a solutionu € C/21/8(07) satis-
fying the continuous entropy estimates; in higher space dimensions, strong
convergence in thé2-topology to a function, € L>°((0,7); H?(£2)) N
L?((0,T); H?(£2)) is proved.
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In Sect. 9, we suggest an explicit formula for the normal velocity of the
free boundary in terms of spatial derivativesucdnd prove this formula for
self-similar source-type solutions in arbitrary space dimensions. Moreover,
we present our concept of time-step control.

Finally, Sect. 10 is about numerical experiments in one and two space
dimensions. We will discuss phenomena like film rupture, instantaneous
development of the zero contact angle in the case of initial data having
non-zero contact angle and convergence to solutions of Poisson’s problem
with constant right-hand side i > 3. In particular, we will illustrate
the efficiency of the time-step control by comparing explicitly known self-
similar source-type solutions with the calculated discrete solutions.

Throughout the whole paper, we use the standard notation for Sobolev
spaces, denoting the norm Gf*?(2) (k € N, ¢ € [1,c]) by NIk p
and abbreviatingV*?(£2) and||-||, , by H*(£2) and||-|,, respectively.
Lr((0,T); Wh4(£2)) stands for the space pf-integrable, measurable func-
tions from the interval0, T') to W*4(£2). By (.,.), we denote the scalar
product inL?(2), and(@)s is an abbreviation for the mean valuewbver
S.

Finally, C*#((0,T) x £2) stands for the subset of those elements of
C((0,T) x £2) which are Hlder continuous to the exponefianda with
respect to the first and second argument, respectively.

1. Two different numerical approaches

There are two major classes of discretizations for evolution problems, these
are finite volume respectively finite element schemes. Here, we consider
both types. For simplicity we assundgto be polygonally bounded. First

we derive a finite volume formulation, which is well suited to motivate the
central aim of this paper, how to fix a numerical flux, respectively a nu-
merical mobility, with properties such as mass conservation and guaranteed
nonnegativity. Next we compare this approach with a finite element scheme,
which will turn out to be preferable concerning the numerical analysis. For
such a comparison a duality of the meshes is required. If the finite element
mesh consists of open, polygonally bounded subvolufhealled elements,

then a dual mesh is built of open, again polygonally bounded dualBglls
corresponding to the verticesof the primal mesh (cf. Fig. 1). I. e., we
define a single dual cell by

Dy = {y € 2 :dist(y, x) < dist(y, Z), % is vertex of the mesh.

For a certain class of meshes, both schemes coincide.
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Fig. 1. A two dimensional finite element triangulation whose edges are outlined in black
and the corresponding dual finite volume mesh indicated by dashed lines

To start with the discussion of finite volume schemes, let us suppose
2 = UjeJ D; with open, polygonally bounded cell3; where J is any
index set of finite cardinality anf); N D; = () for i # j.

On each subvolume we can rewrite equation (1) in conservation form

8t/ udr = — M(u)Vp - vdH!
D, aD;
wherep = Au andv is the outer normal o@D;. The right hand side
describes the inflow at the boundary, and(«)Vp is the corresponding
flux.

Let us now discretize in space. Thatis, we lookdt, -), P(t, -) piece-
wise constant on the cell3; for everyt > 0, such thad; ij U dzx equals
the boundary integral of a numerical flux. Therefore supp@se A,U,
where 4;, is an appropriate discretization of the Laplace operator. On a
regular cell subdivision, we take the standard finite difference discretization
with a five point stencil; on an unstructured set of cells, the finite element
discrete Laplacian on the corresponding dual mesh is the right choice (see
below).

We assum@/ P to be defined uniquely on the whole Gf especially on
cell faces. On interior faceB of 9D;, in general no unique extension Gf
exists.

To pay account to the fact that the vald&$ = lim._,o U(z & ev) may
be different due to the discontinuity 6f across cell boundaries, we replace
M(-) by someM : R? — R; (UT,U~) — M(U*,U~) and formulate
the semi-discrete scheme

1
U = ——— MU, U )Vp-vdHL,
\Dj| Jap,

For nonempty?’ = D, D; the inflow onF corresponding t®; should co-
incide with the outflow with respect tb;. Therefore we look for numerical
mobilities M (-, -) with the natural property

MU, U™)=MU,U").
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This immediately implies the conservation of mgsg/ dz . Major investi-
gations in the following sections will aim at the right choice of the numerical
mobility. For the trivial choiceM (U+,U~) := M (Y"£U~) nonnegativity

of the numerical solution can no longer be guaranteed. In Sect. 6 we will
be lead to some type of harmonic integral mean as the appropriate choice.
Finally the semidiscrete scheme can be discretized in time implicitly or
explicitly.

Now we turn to a second type of discretizations, the finite element
schemes. We denote Gy a regular and admissible triangulation of the do-
main{? (cf. Ciarlet's monograph [12]). We here restrict ourselves to the case
of simplicial grid. Thereby, the triangulation consists of simplicial elements
E, i. e. intervals in 1D respectively triangles in 2D, W@Een E=9.

Here the index: indicates the maximal diameter of an elemé&hi 7.
Corresponding t@;, we consider the conforming, linear finite element space
Vh ¢ HY2(02). Inthe following, such discrete functions will be denoted by
uppercase letters, in contrast to lowercase letters for arbitrary functions in
the nondiscrete function spaces. A functiére V" is uniquely defined by

its values on the set of nod&§, = {a:j}jeJ of the triangulatiorV;,, whereJ
denotes a corresponding index set. To each ngderresponds the standard
“hat’-type basis functionp; € V" with ¢;(z;) = §;; . Let us furthermore
introduce the well-known lumped masses scalar product corresponding to
the integration formula

@)= | Tuow)

whereZ;, : C°(2) — V" is the nodal projection operator with,u :=

2jes w(@i)p; - _ _
We recall the following well known estimates:

2)
(U, V) — (U, V), | <CRT U, IV, forallU,V eV, 1=0,1

In the same spirit, there exist positive constants such that we have for

Lh o= /(o )
3) i < () <CL

A semidiscrete finite element formulation of equation (1) then takes the
following form. We look for(U, P) € C*([0,T], V" x V*) such that

/ (0,U.0), — (MU)VP,VO) =0 foral ©c V"
2
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whereM (U) is a numerical mobility and® = A,U. HereA, : VI — V!
denotes the discrete Laplacian with respect to the lumped masses scalar
product, whose application to a functidhe V" is defined by

(4) (ALUW), = — (VU, V&) Y& eV,

The corresponding matrix representation in the nodal basisM@;th,
wherelM}, is the diagonal lumped mass matrix with compongnts, );; =
(i, 5), andLy, the standard sparse stiffness matrix with entfies);; =
(Vyi, V;) . Due to the absence of Dirichlet boundary conditiang, is
not injective, i. e. ked\;, = {z — C|C € R}. This corresponds to the
observation thafn ARU = 0, which we immediately see choosidg= 1

in (4).

In the above finite element method the replacement of the exact mobility
M(-) bysomel (U) can be interpreted as the choice of a specific quadrature
to integrate the elliptic term numerically. In our case we suppose that the
discrete mobilityM (U) for U € V" is a symmetric matrix ilR?* which is
positive semidefinite and piecewise constantba 7. If U|g is constant,
thenM (U)| g should coincide with\M(U)1d up to a small perturbation, en
detail M (U)|r = m(U)ld wherem(u) is an appropriate approximation
to M(u) (cf. Sect. 6)). Otherwis@/ (U)|r has to be defined appropriately
such that again nonnegativity is preservedfofcf. especially Sect. 5, 6).

Let us underline the close relation between the choickl¢t/ *, U )
in the finite volume context andi/ (U) | in case of a finite element scheme
remarking that both schemes coincide for a certain type of triangul@jon
and corresponding dual cell subdivisi@@j}jg. Therefore we consider
2 = [0,1)% and aregular grid of POINtSyi; to<; j< v Whereg;; := (%, %).

Then for every index paiti,j), 0 < i,j < N — 1, we define triangu-

lar elementsE, respectivelyE’ by the set of vertice$q;;, ¢i+1,5, ¢ij+1},
respectivelyf{¢i+1., gi+1,j+1, ¢i,j+1 }- Now we consider as finite element tri-
angulation7;, the set of all these elements, and as the finite volume mesh the
set of corresponding dual cells. Finally we defiiéU*, U~ ) andM (U)| g
according to the definition in Sect. 6. Then a tedious but straightforward
computation which we skip here proves the equivalence of the different
approaches.

In what follows, we will focus on the finite element discretization. Let
us discretize now the above semidiscrete scheme in time. Therefore suppose
[0, T] to be subdivided in intervals, = [tg, tx+1) With tx11 = tx + 7% for
time increments;, > 0 andk = 0,--- , N — 1. We will use forward and
backward difference quotients with respect to time which we shall hence-
forward denote by} or 9, respectively. Now we can formulate an fully
implicit, backward Euler discretization scheme for equation (1):
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For givenU° € V" find a sequencé€U*, P*) fork = 0,--- ,N — 1
with U*, P¥ € V" such that

(5) (8;U’““, e)h - (M(Uk“)VP’““, ve) —0
(6) (pkﬂ, w)h - (VU’““, W)

forall©,w € V",
ChoosingZ = 1 in (4), we immediately observe that

/Pk+1:0.
(9}

The discrete initial value&’® are assumed to be an approximation of the
continuous initial valuesi, . Supposeuy € C°, then we can prescribe
UO = Ih’LLO .

Furthermore, we introduc€®~!(V") as the space of functiorig :
[0,T] — V" which are piecewise constant in time on the intenfaland
with V' (t) € V" for all t € [0, T]. For the discrete solutionig”, P* cor-
responding to the sequence of timest@nﬂ»,ﬁ:h_ Ny We then straightfor-

ward define a piecewise constant extendigp € S%~1(V") in time by
U,n(t) := Uk for t € I,. Furthermore

Opn(t) i= B Lk L e
Tk Tk

represents a linear and continuous interpolation in time in the corresponding
function space which we denote By (V") . A pressure?,;, € S%~1(V?)
and a continuous pressufé;, € SlO(Vh) can be defined by analogy.
In partlcular Py, = AU, respectivelyP,, = ARU.;, . We will call
a pair (U,p, Prp,), that solves the equations (5), (6) with initial condition
U° = Thuo, a discrete solution. To simplify the writing we will skip the
indices whenever a misunderstanding is ruled out by the context.

2. Existence of discrete solutions
In this section, we will prove the existence of discrete solutions globally

in time by use of a fixed-point argument. Fof* = U* — o with o :=
1 Jo U we obtain the weak equations

(7) (6; WhH, @)h — (M(Wk+1 + o)V PEFL, ve)) =0
(Pk+17 W)h _ (VW’“H, VW)
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and the initial conditiod?® = U° — « . At first let us define the weighted
stiffness matrixL;, (W) for W € V" by

(W) ges = [ MOV 40051 Ve

Then a solution of (5) is obtained solving the following nonlinear system
of ¢ = dim V" equations for each time step. If we denote the nodal value
vector for a function/ € V" by V, and with a slight misuse of notation
rewrite L, (W) for L;, (W), then for giveriV* € R? we searchV*+1 ¢ R¢
such thatF”(W*+1) = 0 for

FW) = (Id + 7 M, 'Ly (W)M, ' L,)) W — W*
Let us now introduce a new bilinear form &9 by
<W,V>=L,W-V

where- indicates the Euclidian scalar product®h. By definition this form
is symmetric and therefore a scalar productoh := {W | MW - (1,-- -,
1) = 0}. We easily verify thai?’® ¢ K+ and by induction thaf" : K+ —
K. Furthermore considering especially the assumptions/¢f) we es-
timate

<FW),W >=<W WKW > 41, Ly(W)A,W - AW
>S<W-WFEW>>0

for < W, W >3> Rwith R :=< W* W* >3 . Therefore we can apply
Brouwer’s fixed-point theorem and prove existence of a Wbt for the
mappingF (-) . Finally we define by/**+! := (W**! + ) a solution of the
original problem.

Let us remark that the restriction dni reflects the mass conservation
property [, U*! = [, U", which we immediately obtain choosigy= 1
in (5). Itis conserved by typical iterative solvers, such as Newton’s method
or nonlinear Gauss—Seidel iterations.

3. Basic a priori estimates

Main topic of this section is the derivation of a priori estimates necessary
for compactness results of a sequence of discrete solutions. It turns out that
these are the discrete counterparts of analoguous estimates in the continuous
theory. In what follows we assume fixed timesteps= 7 = % for N ¢ N

to simplify the presentation. Let us start with an energy type estimate.
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Lemma 3.1. (Energy estimate)
Let (U, Pry) € SO~ H(VP) x S%~1(V") be a discrete solution.
Then the following a priori estimate holds:

N-1
;/QWUN(.%)\zd:r—i—;;/Q\V(Ui“(x)—Ui(x))}de

T
+/ /M(U) ]VP]Qda:dtzl/ VU ()| da.
0o Jo 2Ja

In particular, if U2, is uniformly bounded id ! (£2), thenU,;, and M (U)
|V P|? are uniformly bounded ik > ((0,T); H'(£2)) or L'((0,T) x £2)),
respectively, by a constant that is independent af, h.

Proof. We choose® = P**! in equation (5), and summing ovér we
obtain for the parabolic part with the help of equation (6)

=z

0 <Uk+1 — Uk, Pk+1)h _ 71_]:2::_01 (VUk—H — VU, VUk—i-l)

1N71 k 2 k k2 k2
:%Z/‘VU“‘ +‘VU+1—VU‘ —)VU ‘ da
k=0 79

RN
a
|

and for the elliptic term

N-1 T

3 (M(Uk“)vp’f“,wa’f“) _1 / (M(U)VP,VP)
T Jo

k=0

Hence, multiplying by, the stated estimate is established. If we furthermore
consider the mass conservatifinU* = [, U°, we obtain as a straightfor-
ward consequence uniform bounds for the inspected norms.

In space dimensiod = 1, Sobolev’s imbedding result immediately gives
the following corollary which will be the starting point for the proof of
uniform discrete Wlder-continuity of numerical solutions,;, in Sect. 4
and later on of their uniform convergence.

Corollary 3.2. Let (U, Pry) € SO 1 (V1) x $%=1(V") be a discrete
solution and suppose thdt’?, ||, is uniformly bounded irr, h. ThenU;,

is uniformly bounded if.>((0, T'); C'/2(£2)) for 7, h tending to0.

Let us consider now a result on compactness in time valid in any space
dimension. Combined with the energy estimate, it will be sufficient to prove
the existence of convergent subsequences.
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Lemma 3.3. (Compactness in time) Lét,, P,;,) be a discrete solution
and lets < T be a positive number. Further, assume the existence of a
constant)/; such that

(8) max sup M;i(Urp)(t,x) < Mj.
1<6,5<d (¢ 2)e[0,T]x 2 3(Ur)(t: )

Then, there exists a constafit> 0 such that

T—s
9) / <U(t +s,2) = U(t,x),U(t+ s,z) — U(t,:z:)) dt < CM;s
0 h

Proof. Let us first prove the result for values= I, [ < N a positive
integer. For a fixed numbersatisfyingd < j < N — [ we choose

0 :=Uit -y
in equation (5), multiply by- and sumovek = j—1,--- ,j+1—1.This
implies:
jH-1 1 &
_ Z <U v ,Uj”—Uj)
k=j—1 T h
jH-1
(10) =7 > / MUYy Py (Uit — )
k=j—17%

As the term on the left-hand side is equal i ! — U7, U7+ — U7),,, it
follows:

l 1
. o . . 2
(UHZ — Uiyttt — Uj)h < M17'§ ' (/ MUtk ‘VPH"“’ >2
k=0 /9

(11) x (/Q ’V(Uj” - Uﬂ')f)é

Now, we sum up frony = 1 to N — [ and apply the energy estimate (cf.
equation (8)). Thus, we obtain

N-—I
T Z (Uj—i-l _ Uj7 Uit Uj) <
h
j=1

! Nl ) ooz s N ) 2\ 3
MiTy <TZ/ M(UTH) [P > (TZ/ vt - u) )
k=0 N j=17% j=171

<C-Ml- -7,
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which is inequality (9) fors = I7. For arbitraryd0 < s < T, s = r7 with
0 < r < N, we argue as follows: Writing = | + 6 with € (0,1) andi a
nonnegative integer, we get:

(12)

Ut+rr,z) = {U(t +ir,7) if t € (jr,j7+ (1 —0)7]

Ut+{+1D)71) ifte(r+(1-0)r,(j+1)7]
With the notation

- (U((j iy ) = Un, ) UGG + D) — UG, .>)
j=0,...N—1,

h
we obtain using/ € S%~1(V},):

/0 o (U(t brra) — Ut 2), Ut + 17, 2) — U(t,m)) dt

h
N—-I-1 N—-I-1
=Y a-0wm+ Y Wy,
=0 =0

<CM((1=6)l+60(l+1))7T=CMyrr =CM;s

This proves the lemma.

4. Uniform H 6lder continuity

The result on uniform discretedttler continuity of discrete solutions basi-
cally relies on two facts, first the uniford> ((0, T'); C''/2(£2))-regularity
established in corollary 3.2, and secondly the following lemma abolate
continuity in time of the spatial mean.

Lemma 4.1. Suppose = 1 and(U., Pr;,) is adiscrete solution. Further-
more assume that/(-) is bounded by a constai/;. Then, for integers
j>0,1>0withj+1 < N, the following estimate is valid independently
of h:

(13) ;(Uj“—Uj,Uj*l—Uj) < My [[U°] Vir
h

Remark.In Sect. 6, it will be verified that the boundedness condition on
M () is always satisfied iff = 1.
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Proof. We choose = U*+! — U7 in equation (5), multiply by- and sum
overk = j,---,j+1— 1. Then we obtain for the parabolic term in analogy
to the proof of lemma 3.1

j+i—1

Ukt _ gk gkt _ g
o \
jHi—1 . . .
_ kz; ((WF1 =09y — (UF = vF), U+ - Uﬂ)h
% (Um Uiyt - Uj)h
]+l 1

k+1 Uk Uk:-i—l Uk:
A5 |

and taking into account the energy estimate, the elliptic part can be estimated
as follows:

h

-1
D (M(Uk“)VP"’“, V(UkH - Uj)>
k=

= /jT(Hl)T/QM(U)VPV(U—Uj)

< \/E/jij+l)7</QM(U)VPde>é(/QV(U 2)
<M pnax ‘UkH1 </jij+m/g M(U)WP!dedt) </jij+l)71 dt)

< /O |0°], Vir

Hence, the assertion follows.

Now, we are in the position to prove the main result of this section —
adapting an idea of F. Otto [17] to the discrete setting:

Lemma 4.2. Assumeal = 1 and that for integerl, k& > O with] + k <
N the relationkr > h* holds. Then for a discrete solutioit/,, Pyr,)
with || M (U)o, < M, independently of, i, there exists a constaudt
depending only off U°||, such that

(14) U () — Ul(z)| < C (kr)3

forz € 02.
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Remark.In Sect. 9 we will prove thatnax, ;Ho(hél) — 0 for the time
incrementr, given by the time-step control prowded > 1. Hence, for
sufficiently smooth mobilities the compatibility condition farh expressed
in the lemma, does no longer mean any restriction.

Proof. For givenr € (2 and a small positive numbérlet us assume without
loss of generality thdte, z + §) C (2. Then we calculate

k(o o] — ik _rl+k
U (2) U<x>|—}][ Utk () — UMR(y) dy

z+6 z+6
+ ][ U (y) — UM(y) dy + ]l Ully) — U'(x) dy|
= [T+ II+III]

Corollary (3.2) and Cauchy Schwarz's inequality imply
1y <at (o] + o)
< 2% |U°]], .
For the second term, we apply lemma 4.1 and achieve

|II| < 5*% </ (Ul+k‘ o Ul)2>%
n
1
<ooi(n(J o)+ (- o)

<ot (2007, + (k) 07, )

Here, we have applied inequality (2) to estimate the difference between the
L?-norm and the norm corresponding to the lumped masses scalar product.

Finally, we choosé = (k:T)%, take into account < (kr)i and end up
with
[+ II+III|<C (5% + 5—%(k7)i) < C(kr)s .

5. Pressure-entropy a priori estimates

Now we will present an abstract frame which enables us to prove a discrete
counterpart of the continuous integral estimate

//U(T,I) /S 1 d d d / |A ‘2
rasdr + U
0Ja a4 M(r) r
[ e
e Tasaxr.
0Ja A M(r)
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This estimate is sometimes called entropy estimate and serves for the proof
of nonnegativity results in the continuous setting.

Let us start with some notation. By : R — R, we denote an approx-
imation of the continuous mobility1 that will be specified later on (cf. the
following section).A is an arbitrary, but fixed positive number.

We call a pair of functiong? : R — R}, M : VI — ®m|RdXd an
admissible entropy-mobility pair with respect to the trlangulal’lﬁlrlf the
following axioms are satisfied:

() M:Vh— @M rRixdis continuous,
(i) M(U)|g =m(U)Idif U|g is constant on the elemeht € 7p,

(iii) MT( )VIhG’(U) VU, whereG(s) := [ g(r)dr with g(s) =
Jam(r)~tdr,

(iv) on each element’, the matrix M (U)|g is symmetric and positive
semidefinite.

For further reference, let us remark th@tis nonnegative and convex by
construction.

At first, we consider elements whose faces form right angles at one
vertex. Let us assume that = E,, ... ,,) is a reference simplex iR
with cornerszy = 0, z; = aye; fori = 1,--- ,d anda; € R, wheree;
denotes théth unit vector. Applying the notatiofl; = U(x;) andg = G’,
we now look for a matrix\/ on E with MYV ;Z,,g(U) = V;U , whereV;
is the gradient ot . Due to

o(U) — g(Up) = /

Uo m(s)

U; 1

ds

we straightforward verify that

U; 1 -1
M= (M) with M;; = ds) 6
K Zﬂzlvvd Y (\%(;O m(s) 8) N
satisfies our axioms above. Hgf, = Uy the definition simplifies tV gy =
Now we generalize this method to arbitrary elemefitgvhich have a
vertexz with the property that any two edges intersecting each othey in

form aright angle. We can findvy, - - - , a4) and an orthogonal matriA in
such a way that the affine linear mappihg-> x = o + Az is a bijection
between the reference eleméﬁg y andE. We proceed with the pull

back onE, ... o, and obtalnATngp( ) = V;o(&). This implies
MV Thg(U) =V:U =
MTAYY , T;,9(U) = ATV, U =
(A—TMTAT) VoTng(U) = V,U .
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Therefore defining/ := AM A~!, the conditions (i), (iii) are fulfilled on
E. SinceA is orthogonal M is symmetric and positive semidefinite; hence
condition (iv) is satisfied, too.

In the general case we cannot argue vertex oriented. Nevertheless, we
can define

0, U

For an efficient implementation, this definition is less constructive than the
first one which we therefore find preferable. Finally using this method on
everyE € Ty, the required property (i) holds and we obtain an admissible
entropy—mobility pai(G, M) .

Let us emphasize that the choi€e= Z;, G’ (U) implies for the elliptic
term from (5) the identity

- / M(U)YVPVO = — / MUYV PV, (U)
0 [0
(16) = / VPVU = (P, P), .
¢
After these preliminaries, we can prove the key lemma for the subsequent

results on regularity and nonnegativity of solutions. It reads as follows:

Lemma 5.1. (Pressure-Entropy estimate)
Let (U, P) be a solution to the system of equations (5)-(6) and assume
that (M, G) is an admissible entropy-mobility pair as described above.
Then, for arbitraryl’ = K7, K € N, the following estimate holds:

(17) /QZhG(U(T,x))dx_F/TT(P(t,_)7p(t7 ')>hdt
§/QIhG(U°(:c))dx

Proof. We take the functio;, G'(U**1) as test function in the weak for-
mulation (5) and obtain:
(18)
(aTUk+1,IhG’(Uk+1)> — / MU HYVPMIYT, G (U Yde =0
h 9

Using property (iv) of admissible entropy-mobility paiis, M) as well as
identity (16), we get:

(19) <6T_U’“+1,IhG’(U’“+1)> +<pk+1, pk+1> —0
h h
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The convexity ofG implies:

@0 LG @) - GUHE) < o U @) 0 @)

Hence, we can estimate:

(21) (Ih(G(Uk+1(m)) B G(Uk(a:))), 1>h + <Pk+17pk+1>h <0

Summing up fronk = 0to K — 1, multiplying by~ and using the fact that
(Znn, 1) = [, Znn(x)dx, we obtain the result.

6. Nonnegativity results for discrete solutions

In this section, we will be concerned with the explicit construction of dis-
crete mobilitiesM that allow for nonnegative discrete solutiobis By a
slight misuse of semantics, the adjectnannegativemeans in this context
that it is possible to find mobilitied/, depending on a positive control
parameter such that for giverz > 0 the corresponding discrete solution
U¢, satisfied/?, > —e on (2. If the growth coefficient. is greater, even
strict positivity results can be proved for discrete solutions provided initial
data are strictly positive. These results are exactly the discrete counterpart
of the nonnegativity results which follow in the continuous setting from the
basic entropy estimates(cf. [8] and [16]).

Precisely, the following theorem holds:

Theorem 6.1. (Existence of nonnegative discrete solutioifs)

Let 7, be an admissible triangulation ¢? and letn > 0 be the growth
coefficient ofM in zero. Assume that the mobilityt is monotoneously
increasing and vanishes dR_ U {0}. For arbitrary ¢ > 0, there exists
a positive control parameter, which only depends ot, n, €, h and the
initial datumwg > 0 such that:

For every0 < o < o discrete entropy-mobility paire&,,, M, ) can be
constructed having the property that the corresponding discrete solutions
Uz, of equation (5) satisfy:

e U% > —cifu’>0and0 <n < 2.
° fh>—€ifu0200 andn = 2.
e U% >0/2ifu’ > opandn > 2.

Proof. Forthe ease of presentation, we willassume at the beginning that
1. Later on, the modifications to be applied in the higher spatial dimensional
case will be straightforward.
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We will construct entropy-mobility pair&~,, M, ) in two different ways
depending on whether the mobility growth coefficiens smaller thar or
not.

If n > 1, we start with the following shifted mobilities:, (u) :
M (max(c,u)), calculate the entropg,, as the second primitive of._ !
and eventually define the corresponding discrete mohilit(U )|z on an
elementFE of the triangulatiori/;, by the formula:

mU(Ul) if U1 = U2

22 M) = =
5 ( l[]]f m:(s)ds> if Uy #£ Us

Here,U;, U denote the values @f on the boundary of.

In the casé) < n < 1, we obtain the discrete entrogy, by anC'!-
extension of an appropriate continuous entrépto the negative numbers
and successively define,, | by the formula

(23)
(U1 = Ua)(Go(Uh) = Go(Up)) ™t if Uy # Uy
M, (U)| = { M) if U, = Uy > 0
E O’M(—Ul) ifU; =Us<0

Let us study now the case> 1 en detalil:

Due to the singular behaviour of the continuous entrGdgr n > 2 we
have to distinguish three subcases.

Let us assume first that< n < 2 andG(ug) is bounded. The latter as-
sumption is satisfied for arbitrary nonnegativec H'2(£2). In particular,
this also applies t6/ (U,?), i.e. there is a positive constafit,,., such that:

/ ThG(UD) < Centrop independently ofy — 0
0

Denoting byRM thei- th primitive of M~!, we may write the discrete

entropyGo, (u) := [ [} m;'(s)dsdr as:
RzM(u) MA) -~ RM(A)(u—4) fu>o
Q) 21(0) — Ry (A) — R{M(A) (0 — A)
24 Golw)= %( 0)?M(o) "1+
+(u — )(R{M(U) Ry (A)) if u<o

It is worthwhile to have a closer look on the formula @y (u) for u < o.
By convexity, R} (o) — R (A) — R{M(A)(o — A) > 0, and the same
property obviously holds for the second term. The monotonicityz¢f
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implies that the third term is nonnegative, provided< A. The pressure-
entropy estimate (18) implies the following estimate:

(25)
dim Vj,

> iUz (tai) -~ o) (BM(o) — RM(A) < [ TGOD)
=1 (9}

<c /Q Go(U°())
S Centrop

Here,w; := fQ vi(z)dx, 1 = 1,...,dim V}, denotes the mass of a basis
functionp; € V. The regularlty of the triangulation implies the existence
of positive constants;, C'; such that:

(26) Clh <w; < Clh 1= 1, ...,dim Vh

SinceM(u) ~ u™ in a neighbourhood of zero and> 1, we infer for the
growth of R{*(o) nears = 0:

log o ifn=1
27 RM(o) ~
@7 () {—01_” if n > 1

Using inequalities (25),(26), the following estimate can be established for a
negative minimum ot/ (¢, .):

Centrop > Clh(min( -lrjh<ta .’E2)> - U)(R{Vl (J) - R-{\A(A»

(28) > clhmmU 7t i) (R (0) — R(A))

which implies:

min(U%,) > ‘1 lce”tmp
™= MRM(0) — RM(A))

Lettingo tend to zero, we infer from estimate (27) that the right-hand side in
the inequality above tends to zero. Hence for each(pair) andl < n < 2
the asserted numbeg(n, h, e, up) exists.

The subcase. = 2 can be handled similarily, provided we guarantee
that

lim sup / G,(U%) <
(o,7,h)—(0,0,0)

This can be achieved for instanceuff is strictly positive.
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Let us study now the subcase> 2 under a strict positivity assumption
onuyg. In particular, we have as before:

/ ThG(UP) < Centrop independently ofy — 0
17

Defining for 5 € R the seti3(t) := {x; nodal point.U?, (¢, z;) < B}, we
can consequently estimate the cardinality of thef§gt(¢) for0 < a < 1
as follows:

Cflcentrop
(1 = a)ho(R{(A) — R (o))

By estimate (27), the term on the right-hand side tends to ze®,as0.
As a consequence, forsufficiently smallU?, > ao.

Let us explain now our concept for the cdse n < 1 en detail.

In the sequelR)! denotes the particular second primitive/ef ! char-
acterized by the property:

Ry'(0) = (Ry")'(0) =0

We define the discrete entropy

| RM(w) if u>0
29) Golu) := {UlRé\/l(—u) if u<O

| Koo (t)] <

and the corresponding discrete mobility, (U)| g as indicated above(see
equation (23)). Before proving the nonnegativity result announced in the
theorem, let us give — for the reader’s convenience — the explicit formula
for M,(U)|g if M(u) = u™. For the boundary points;, z, of E, we
abbreviatd/., (t, x;),i = 1,2 by Uy, U, as before.

% if min(Uy,Us) >0

bom)(W-vy)
U_1|U1|1_"+U217n if Ui <0< U;

(30)  M,(U) e a% if max(Us, Uy) < 0
M(Uy) if U =Uz>0
O’M(—Ul) if U1 =Uy <0

Coming back to the nonnegativity result, we estimate the cardinality of
Kpg(t) for 8 < 0 in the following way:

-1
1 Centropa

‘Kﬂ(t” < hR’é\/l(ﬂ)

Arguing as before, the nonnegativity result follows, and doe= 1 the
theorem is proven.
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Eventually, we will consider the case of higher spatial dimensions. Let
us indicate the main steps in constructing an admissible entropy-mobility
pair (G, M) allowing for nonnegative solutions.

Depending on the mobility’s growth exponentwe start with the same
entropy functionG, as in the one-dimensional case and define functions
fo :RxR—=R{ by

(a=b)(Gya) =G (b))~ ifasb

(31) fo(a,b) == {G”(a) ifa="5

Let E € T, be given. Let us assume first that there are pointse
R? and (o, -+ ,aq) € R? as well as an orthogonal matrig € R4
such thatl = zg + AE(,, ... o) WhereE,, .. ,,) is the convex hull of
(0, v1€1, -+ ,ageq).

ThenforU € V},, the restriction of\/ (U) onto E is given by the formula

M(U)|g = AM(U)|;A~". Here,M (U)|; is defined as

M(U)|z = diag(f,(Uo, U1), - , f+(Uo, Ua))

with Uy := U(zo) andU; := U(xo + «;Ae;), i =1,--- ,d.

Otherwise, we takgy := G’ and defineM (U)|r according to for-
mula (15).

Applying lemma 5.1, the entropy estimate is satisfied by the discrete so-
lutions (U2, P?,) corresponding to our construction. Hence, we can repeat
the arguments for the nonnegativity results used in the one-dimensional case
—with the evident quantitative modifications due to the change in dimension.

7. Convergence in 1D

In this section, we shall prove the main result on convergence of discrete
solutions. Since we will make essential use of the uniform discrétdet
continuity of approximate solutions — that up to now only could be estab-
lished in space dimensioh = 1 — we have to confine ourselves at the
moment to the one dimensional case. It is worthwhile to point out that our
result has not only its meaning as convergence proof but independently as a
new proof for existence of solutions in the continuous setting, too.

We have

Theorem 7.1. (Convergence result for discrete solutions)

For d = 1, let us assume thaty € HY?(£2;R}), that the sequences
(75)jen, (hj)jen, (04)jen Of positive real numbers monotoneously con-
verge to zero and satisfy for evejyc N: 7; > h;*. In addition, we sup-
pose that the corresponding discrete solutighy, , P7,) fulfill the dis-
crete pressure-entropy estimate with uniformly bounded right-hand side,
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and thato depending ork is chosen sufficiently small. Then, a subsequence
(Ug,, P2, ) exists that converges in the following sense to a pair of functions
(u, p) which is contained ilC*/2Y/8(0p; RE) N L=((0,T); HY2(2)) N
L?((0,T); H*(12)) x L*(92r):

e U2 — w uniformly on2r and weaklyx in L>°((0,T); H2(12)).

e P9 —pe L*(02r) weakly inL?((e,T); L*(£2)) for arbitrary 0 < ¢ <
T.

e VP% — VpweaklyinL?(S) foranyS cC [u > 0]
where[u > 0] := {(t,z) € 2p : u(t,x) > 0}.

Furthermore,(u, p) satisfy the entropy estimate

(32) / G(u(T, . /p</GuQ
[w(T,.)>0] Or

and solve equation (1) in the following weak sense:

(33)

/ (u— uo)gﬁd:rdt =— M(u)VpVidzdt
o ot

[u>0]

forall ¥ € C1([0, T); HY2(£2)) satisfyingd(T) =
/ p(t, x)(x)dx = —/ Vu(t, z)Vi(x)
Q 0

for almost allt € (0,7) and every) € H2(2)

Remark. 1. Numerical experiments indicate that the scheme has fine con-
vergence properties also in the case that discrete solutions do not satisfy
the pressure-entropy estimate uniformlysin— 0, e.g. ifn > 2 and ini-
tial data have compact support. Analytically, we still can prove uniform
convergence of discrete solutions, but the limit function does not have
L?((0,T); H?(£2))-regularity.

2. In addition, it is possible to prove € H'((0,T); (H?(2))") using
the methods presented in [1].

Proof. It merely consists of four steps. After having proven the uniform
convergence of a subsequencéldf, ) by means of an Arzela-Ascoli argu-
ment, we will discuss the limit behaviour of the parabolic part of equation (5).
Secondly, we will study the limit behaviour of the discrete mobilities which
shall enable us to pass to the limit in the elliptic term. Then, we will prove
convergence in equation (6). Finally, the entropy inequality (32) will be
established.

As a preliminary observation we remark that the application of theo-
rem 6.1 impliedim, ; ;)0 min( »)e0, U7, (t, ) > 0if o in relation to
h is small enough.
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Step 1:We consider equation (5), choose different test functipn$ and
sum overk.
Thereby, we obtain

=

o
Il

{(Uk+1 _ Uk,@k—&-l)h _ T(M(Uk—&-l)vpk—i-l, v@k+1)}

B
Il
o

=

< _ (Uk _ U0 @Rt @k)h

B
Il
o

. T(M(Uk+1)VPk+1,V9k+1)> + (UN o U(]’@N)h
T—1
- /0 o ( gh o Uo’a’j_@Th)h B (M( gh)vpf}nve’rh)dt

where@,;, € S%~1(V},) with 6,,(T) = 0.

For a functiond € C'((0,7); HY2(£2)) with 9(T,.) = 0, we de-
fine O,n|, = Spd(ty,.). Here, S, stands for theH 12(£2)-projection
HY2(02) — V.

Let us discuss now the convergence behaviodrHf Using lemma 4.2
and corollary 3.2, we observe that the time—interpolatiﬁﬁ,g (for the ex-
act definition, cf. Sect. 1) are uniformly boundedd®/?1/3(£27). Hence,
Arzela-Ascoli’s theorem guarantees the existence of a subsequence which
we still denote byU%, converging uniformly inC%#(27), o < 3,8 < &
to a functionu € C¥/21/8(027). Applying lemma 4.2 again, we can esti-
mate|U?, (t,z) — UZ, (t,x)| < C7'/% and thus conclude that there exists
a subsequenc@/?, ) - n.-)—0 converging uniformly onf2r to a function
w e CY218(0p).

Let us consider now convergence in the parabolic term. We already know
that

| (U2, — U, 07 60:1), — (U, —U°,06.)]
< 01 g, - 0 105G,

Furthermorep©,,(t, .) converges in.2, uniformly in time, tod;9(t, .),
and therefore we achieve

T—1 T
/ (U7, — U°,070,), — / (1 — g, )
0 0

ast,h,o — 0.

Step 2:Let us show now that the discrete mobiliti@$?, (U) uniformly
converge to the original mobilitM (u) ast, h,o — 0. For E}, € Ty, we
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denote the space-time elemdtit x [ir, (I + 1)7) by E!,, and M (E.,)
stands for the discrete mobility dfi.,,.

We denote the values 6t’; in the end-points of’, by Uy, U and obtain
using the mean-value theorem:

py 1 .
(34) Af(E%h)'_ G%(E) \NKhé’E[Cﬁ,U}

If the mobility’s growth exponent satisfies: > 1, we can easily estimate
the difference betweeM (u(t, z) and the discrete mobility/ (E*, (¢, z))
on the space-time cell¢, z) is contained in:

(Mu(t, z)) = M(E)| + [M(E) — mo(8)]
sup M (s)[Ju(t, z) — | + M(o)

s€(—oo,maxU)

IM(u(t, z)) — M(EL,(t,2))| = IM(u(t,z)) — mq(E)]
(35) =
<

Due to the uniform discretedlder-continuity and the uniform convergence
of U, ,for (1, h,o) — Othe termsinthe lastline of (35) uniformly converge
to zero.

If 0 < n < 1, we argue as follows: For given> 0, we findé > 0 such
thatM(s) < efor|s| < 24.IntroducingSs := {(t,x) € Q27 : u(t,z) > §},
we obtain repeating the arguments above:

(Mu(t,z)) — M(EL,(t.z)| <e  onSs
for 7, h, o sufficiently small.

The nonnegativity results in the previous chapter imply that we have for
sufficiently smallr, o, h:

Us, > —4.

T

Hence:
|IM(u(t,x)) —M(Eih(t, x))| <e+ M(o) onr\ Ss.

which proves the uniform convergence of the discrete mobilities

Step 3:Let us first pass to the limit, h,c — 0 in equation (6). We de-
note byR, the projectionRy, : L2((0,T); H-?(£2)) — S%~1(V},). From
equation (6) we infer that

T T
(36) / (P2, Rt = — / / VU, VR pddl
T T (0]
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for arbitrary o € L2((0,T); H2(£2)). On account of inequality (2), the
entropy estimate (17), and estimate (3) the term on the left-hand side can be
estimated:

T T
| Prriondi~ [ [ poRipdsa
T T (0]

< Ch|PRl L2y 2 ) IRuel L2 0,1y, 512 (02))

< Ch|G(uo)llpr @) llellr2 0,1y 512(02))
By use of the following convergence properties of appropriate subsequences:
e P% — pweakly inL?((e,T); L*>(£2)) for arbitrary0 < e < T
e U% — uweakly inL?((0,T); H'?(12))
e Ryp — pstrongly inL2((0,7); HY2(£2))

we can pass to the limit in equation (36) and obtain for arbittatye < T
and arbitrary? € L2((0,7); HY2(02)):

/ET/QP(t,aZ)W(t,x)da:dt: —/C_T/Qvu(tva)vw(t,x)dxdt.

This implies:
/p(t,x)w(x)dx: —/ Vu(t, ) Vi(x)dx
9} 9]

for almost every € (0,7) and arbitrary) € H2(2).

From the pressure-entropy estimate we infer additionally that
1P\l £2((,7);2(22)) IS uniformly bounded forz: — 0. This impliesp €
L?(2r) and in particulap = Au in L?(£27). Moreover, elliptic regularity
theory shows that € L2((0,T); H%(2)).

Letus discuss now the convergence behaviour of the elliptic term in equa-
tion (5). Recalling the definition aP.;,, we observe first tha®..;, strongly
converges t@ in CY((0,T); H'2(£2)). Secondly, the energy estimate (11)
implies that)/ 2 (U9, )V P7, weakly converges to a functioh € L2(£27)
with respect to the.?(£27)-norm.

Let us identify.J with M%(U)Vp. On 21 \ S5, we may estimate for
7, h, o sufficiently small:

(37)
| mwzvesve,
07\Ss

1 - 1 o o
< 1M 2 (U)o (2r\so) 1M 2 (UZ) Y PE 200 1€l 2 0,1y001:2(2)
< Cd”/Z\|97h|’L2((0,T);H1*2(9))
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This implies that/ = 0 on[u = 0].
On the other hand, the energy estimate implies that
2
/ |V P, [2dzdt < C(Z)"
Ss 0
on S; with a constanC' independent of, i, 0. Hence, oS V P, weakly
converges t& p with respect to thé2(Ss)-norm which proves the assertion.

Step 41t remainsto prove the entropy estimate (32). The following estimates

involving the discrete entrop§, will be helpful:

) OnRy, we haveG, (u) < G(u)

i) If 1 <n < 2,the discrete entrop§, is uniformly Holder-continuous
with exponenty = 2 — n (o < 1if n = 1) on the sef0, o).

We have to prove point i) only for > 1 and on the set0, o), since in all
the other relevant cas€s, = G. Writing down the Taylor-expansion of
Ry (u)

Ry (u) = Ry (o) + (u — 0) R (0)

(1= 0)* M (0) ~ < (u— 0 (M(E) 2M(©)

and using the monotonicity oM, point i) immediately

+

NN

with £ € (u,o
follows.
To prove ii) forl < n < 2, we argue as follows:

~—

G (1) — G (uig)] = %M*l(a)(ul — us)(u + ug — 20)

+ (ur — u2) R (0) — (ur — uz) Ry(A)
(38)
< oM o) ur — uaF M ug — ug|" Tt 4
+ R{Vl(o)\ul — UM uy — ug| !

+[u1 = ug| R (A) < Cluy — up*™"
For the last estimate, we used the growtb\df ! (o) andR7"! () near zero
as well as the inclusion; € (0,0), i = 1,2. The special case = 1 can be

handled similarily.
Let us pass now to the limit in the entropy estimate

T
(39) / LG UZ(T) + [ (P P < / TG (UD())

First, we show thalim; , ;)0 [, ZnGs (U} (.)) = [, G(ug). SinceUy) =
T, u” is nonnegative (or even strictly pOSItlveﬂfZ 2) and uniformly Holder
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continuous onf?, it will be sufficient to study the convergence behaviour
of G,(Up) for (r,h,0) — (0,0,0). On the sefu® > § > 0], the H'-
convergence df/Y together with the fact that fer sufficiently smaliG,, and
G are identical, implies the convergence pointwise almost everywhere for
a subsequence 6f, (U}). Using auxiliary estimate i), Lebesgue’s theorem
of majorized convergence implies the convergencé.on 0].

We have to discuss the limit behaviour on the Bét = 0] only if
1 < n < 2because otherwise is either strictly positive o/, = G onR{.
Thus combining auxiliary result i) with the identitym, .o G, (0) = G(0),
we observe:

|Go (U7 (@) — G(O)] < CUZ, (8, 2)|* + o(1).

T

Hence, for(r,h,o) — (0,0,0) the right-hand side of equation (39) con-
verges tof,, G(u").
In the same spirit, we can prove with the help of Fatou’s lemma that:

/[u(.,T)>o] GlulT)) + /QT ¥

T
< lim inf 7,G. (U T,. po ’PU
= (T,h,g)nﬁlﬁ),gyo)/n h ( Th( )) +/r ( h Th)h

which gives the result.

8. Convergence results in higher dimensions

In the case of higher dimension, the convergence results to be presented are
much weaker than in dimensidn= 1. This is due to the fact that evenin the
continuous setting no results in higher space dimensions are known about

e local or global continuity of solutions
e strict positivity on open subsets of the space-time cylinder
e boundedness of solutions

For this reason, we have to confine ourselves to convergence results for the
triple (U2, P2, J7,) where we denote by?, the discrete flux\/ (U?),)

V P?2,. Unfortunately, the identificatiotim, j, ;o JZ, = M(u)Vp re-
mains an open problem.

Our existence result reads:
Theorem 8.1. Let us assume that

e M:R} — R{ is bounded,
o (Tk)ken, (hk)ken, (0k)ken are sequences of positive real numbers mono-
toneously converging to zero,
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U2y, P2, J7 ), are solutions to the discrete system (5), (6),

o (UZ,, P2,) satisfy the discrete pressure-entropy estimate with uniformly
bounded right-hand side,

o depending ok is chosen small enough,

2 c R%is convex and polygonally bounded.

Then, there is a subsequen@eé’, , P, Jf,h)(77h7g)_>0 that converges to a
triple (u, p, J) € L*((0,T); H*(£2)) N L>((0,T); H*(£2)) x L*(£2r) x
L?(027;R?) in the following sense:

e U2 — ustrongly inL?(2r) and weaklyx in L>°((0, T); H2(12)).

e P% —pe L*(2)weaklyinL?((e,T); L*(£2))forarbitrary 0 < ¢ < 7.

e M(UZ,)VPS — Jweakly inL?(£2p; RY).

Furthermoreu is nonnegative, and equation (1) is satisfied in the following
weak sense:

(40)

/ (u— uo)gﬁdmdt = —/ JVddxdt
27 ot [u>0]

forall ¥ € C([0,T); HY2(£2)) satisfyingd(T) = 0

[ ptappi@ds = - [ Vutt.2)vi()
0 0
for almost allt € (0, T") and every) € HY2(2)

Proof. From lemma 3.3, we infer that

T—s
(41) lim [ (UGt +s,.) — UGt ))ndt =0
s—0 0
uniformly in (7, h,0) — 0. Together with the standard estimdte.);, <
CH.H%Q(Q), we obtain:

(42) lim ||UZ, (- +5,) = UZ ()l L2 o.r-s):z2()) = 0

uniformly for (7, h, o) — 0. Combining this result with the uniform bound-
edness of|UZ, || e ((o,r);m12(02)) (cf. inequality (11)) and the following
theorem due to J. Simon

Theorem. ([18], p.84)Let X C B C Y with compact imbedding — B
andl < p < 0.

If F C LP(I; X)is bounded and| f (- +h,-) — f(-, )l r(0,r—n,y) — 0
uniformly for f € F ash — 0, thenF' is relatively compact inL?(I; B).

we observe that a subsequer(é€’,) exists having the convergence
behaviour asserted in the theorem.
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The entropy estimate implies the existence of a subsequéifi¢ that
weakly converges to a functigne L?(£27) in L?((e,T); L?(£2)) for arbi-
trary0 < e < T.Bythe energy estimate, we infer the convergence behaviour
conjectured fot/?, = M (UZ, )V P2, . Following the line of argumentation
in theorem 7.1, the weak formulation (40) can be established.

Having chosen the entropy control parameteuch thatim inf ;. j, ;)0
min(U7%,, 0) = 0, the nonnegativity of: follows. Finally,u hasL?((0, T);
H?(12))-regularity since the normal derivatives @fvanish, conservation
of mass is guaranteed apd= Au € L2?(12).

9. Timestep control

One of the most intriguing features in studying fourth order degenerate
parabolic equations — with respect to theory as well as to applications such
as wetting phenomena — is to trace the solution’s free boundary in a correct
way.

This sectionis devoted to a quasi-optimal mechanism oftime-step control
that allows in each time-step to determine the maximum time increment
T assuring that the numerical free boundary may propagate as fast as its
continuous counterpart.

Let us begin with a few remarks about how to determine the discrete
solutionU.

In each time-step, we have to solve the nonlinear system of equations

B(U*) = U* with B(U) = (Id +TkM,;1zh(U)M,;1Lh) U where
U is the vector of nodal values correspondingtoc V" and Ly,(U) :=

Ly(U — «) (cf. Sect. 2).
In fact, we first consider the corresponding semi-implicite system

(Id + TkM}:lf/h([jk)Mh_th> Ukt = gk

and apply an iteration scheme to solve the fully implicite scheme which will
be specified later on.

Now observing that in the semi-implicite scheme the numerical free
boundary cannot propagate more than a distaniteeach time step, it is
reasonable to choose the time incremesinaller than the quotier:;,{mgw
wherespeed(t) stands for the maximum normal velocity of the numerical
free boundary at timeé. As a consequence of this special choice of time
increment, only a very small number of iterations (experiments shdiy
is necessary to obtain the solution of the fully implicite scheme.

Formal considerations — performed in the continuous setting, see also
[6] for space dimensiod = 1 — indicate that the normal velocity, (£(¢))
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of the free boundary in a poig{t) can be related to spatial derivatives.of
in £(t) according to the following formula:
. M(u(t,z)) 0
43) v, = lim “— 2~ Au(t, ..
(43) Va(E(n) = lim =S Aulta) w € supplu(t, )
In this section, it will be verified for self-similar source-type solutions to the
equation

(44) hi + div(h"VAR) = 0

(45) h(t,.) — 0o ast — 0.

Those source-type solutions have been studied by Bernis-Peletier-Williams
[9] (space dimension = 1) and Bernis-Ferreira [7] (space-dimension
d>1).

But at first, let us make some more remarks related to the discrete setting.
In the framework of the algorithm studied in this paper, we formulate a
discrete counterpart of formula (43) in the following way:

In a time-step;,, we first determine on eadhi € 7;, numbers
(46)

{M“Uﬂm@?_l 0e,pl)  if Urnlz > 0@nd(Try)e > 0

(Urn)E

u(tg, F) :=
0 otherwise

and then define the time increment by the formula

_ vh
B+ maxge7, v(tg, E)’
If n > 1, the results about &lder continuity in space for discrete solu-
tions allow to give a robust, but coarse upper boundxgc7, v(t, E) <
-1 —5/2
Ol h 2%
This implies for the time increment:

(48) r>Ch'?  ifn>1

Hence, the assumptider > h* in the previous chapters does not mean a
restriction any longer.
Let us prove now the following theorem:

Theorem 9.1. (Normal velocity of the free boundary for selfsimilar source-
type solutions)

Leth : R? x (0, 00) be the solution to equations (44),(45).

Then the normal velocity of the free-boundary at a free boundary géint

is given by:

47 Tk :

with =0< <y <1,

(49) Vo(€(t)) = lim h"_lgAh(t,x) x € supp(h(t,.))
z—E(t) ov
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Proof. Adopting the notation of [7], the solutioh of equations (44),(45)
can be written as

kd 1

(50) Wt.o) =t Pf(5)  withf=——

l=|

Definingn := 5, f solves the equation

(51) (ALY = B0 ) m>0
(52) ndf(n) —0 as N — 00

3 w e dn =
(53) dAn f(n)dn =1

whereA, is the radial Laplacian and, is the area of the unit spherelRf.
In integrated form, equations (51)-(53) read as

(54) AN =6 on[f >0]

In particular,f is of classC> on[f > 0]. By direct computation, we obtain
for the normal derivative ofAh on spheres with radius = |z| around the
origin:

0 0
il — 4= B(d+3) 2
(55) 5, ANt x) =1t A
Multiplying this equation by:,”~! and using equation (54) yields:
0 0
n—1 I _ +—B(dn+3) —B\n—1/ Y
R (e, x)ayAh(t, x)=t f(lz|t™?) (aTArf) s

(56) _ 5t75(dn+4)‘x|

= Bt~z

For givenzg € R?, xq # 0, let us denote by (t) the intersection of the half-
line Ty, := {z € Rz = azy, o€ R"} with S(t), the free boundary at
timet.

By continuity, we infer:

0

67t e (AD)| =B o € s

which implies for the corresponding moving free boundary poift) :=
tPa(1):

Valalt) = 2 (w(t),viqny) = AP (D)
(58) =t z(t) = lim h"_l(t,x)gAh(t,x) x € supp(h(t,.))

x—x(t) ov
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Here, we used the abbreviatiop := ﬁ
This proves the theorem.

10. Numerical results

The finite element scheme has been implemented in a numerical algorithm
and applied to several significant model problems. In each timestep, we have
to solve the nonlinear system of equatid®@/**!) = U* with

B(U) := (ld + Tth_lﬁh(U)Mh_th> ]

where U is the vector of nodal values correspondinglfoe V" and
Ly(U) := Ly(U — «) (cf. Sect. 2). If we consider first the semi-implicit
scheme where the mobility is evaluated for fiX&d we obtain a sparse, lin-
ear, nonsymmetric system of equations. For giMénve look for solutions
U, such that

Bi(W)U = (1d + mM; Ly (W) M 'Ly ) U = T*.
Ford = 1 the matrix B;(W) is a band matrix with bandwidth . LR-
Decomposition is applied to solve this system of equations @{ip) com-
putational effort, wherg = dimV" .
The original nonlinear probler(U*+1) = 0 now can be solved either
by Newton’s method or by another appropriate fixed-point iteration. Here
we calculate foi > 0 iteratively solutions of

Bl(UfH)Ufjll — Uk

i+1
enough, we seledf**+! = UF}! and continue with the next timestep.
We observe fine convergence properties for this iteration — at most four
iterations are necessary to get below a threshold of magnitude
Let us describe the results of our numerical experiments. In space di-
mensiornd = 1, we performed four characteristic simulations, namely

where we have defined}™ = U*. If HU.’““ — Uf“” gets small

spreading of self-similar source-type solutions,

instantaneous development of zero contact angle for initial data with
non-zero contact angle and exponent 3,

convergence of solutions to a parabolic profile i 3,

dead core phenomenon (film rupture) for= 0.5 and appropriately
chosen initial data.
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A A nm

t=0.000 1 t=0.004 1 t=0.016 1 t=0.03 1

Fig. 2. Evolution of selfsimilar source-type solution for growth exponent 1

Let us begin with the detailed description of the first experiment.
Smyth and Hill [19] found the following explicit formula for self-similar
source-type solutions (cf. Fig. 2) to equations (44),(45):

1 2 7
9 7)oy | ]

Choosingw = 2, 7 = 47° and observing the symmetry around zero,
it is sufficient to solve equation (1) numerically éh= (0, 1) with initial
datum:

(60) 0o = zh(% [4— 1627]%).

We chooser = 108 and perform simulations for values ¢fcontained
in the set{0.1,0.5,1.0}, where~ is the parameter in the formula for the
time-step control (47).

We stop the algorithm at tim& = 0.03 in order to guarantee that
supgu(7,.)) is contained if0, 1].

The nodal point corresponding to the numerical free boundary is in each
time step identified by the formula

xp(ty) = - Hélfm v {z; nodal point: U (tx, z;) < 0}.

and compared with the true free-boundary paip{t;). In the following
tables, the relevant data for different valuesyofind various choices of
triangulations are written down.
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y=1 1 2 3 4
number of gridpoints 100 200 500 1000
time steps 41 86 261 851
1 Zhu(0.029, ) — UN ()| oo () /102 5.47 2.63 099 0.47
| Zhu — U|| poo (249 /1073 7.61 3.75 144 0.67
maxg—1 s |Tr(te) — 2p(ts)| /1073 6.23 341 166 1.25
CPU-timg/s 2.98 6.16 14.98 44.50
v=0.5 1 2 3 4
number of gridpoints 100 200 500 1000
time steps 85 178 661 1476
1 Zhu(0.029, ) — UN ()| oo () /102 4.69 231 088 043
| Zhu — Ul poo (24 /1072 6.43 317 122 0.59
maxg—1n |TF(te) — 2p(ty)]/1073 6.40 3.32 156 1.27
CPU-time/s 3.14 6.30 20.28 64.83
~v=0.1 1 2 3
number of gridpoints 100 200 500
time steps 539 1104 3939
1 Zru(0.029, ) — UN ()| oo (2y /102 4.17 2.05 0.80
| Zhu — U|| poo (259 /1073 5.49 2.71 1.07
maxg—1n |r(ty) — 2p(ty)]/1073 8.22 4.09 1.40
CPU-timg/s 3.54 10.57 77.34
As we do not observe smaller values férthan —7 x 1079, the dis-

cretization error obviously does not have its maximum at the free boundary,
butin the bulk region of the droplet. Furthermore, a comparison of the fourth
and fifth line indicates that the maximum error occurs for small values of
t. On the contrary, the error in the free boundary is stable over the whole
time-interval. In fact, we observe oscillations around zero of the difference
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A

t=0.000 t=0.005

A_

t=0.020 t=0.410 %0 o o1 om0z om o5 o 0i om o5

Fig. 3. Instantaneous development of zero contact angle for initial data with non-zero contact
angle, illustrated for. = 1 and hat-shaped initial datum withupp(uo) = (0.25,0.75) and
maximal heigh0.05, on the right time—increment versus time depicted in a diagram

xp(t)—zp(t) between numerical and exact free boundary as time proceeds
— a good indication for the efficiency of our time-step control.
Itisremarkable that the time-step controlfoe= 1 allows average values
of the time increment which are of magnitudé® with a € (1.45,1.57).
This is - besides the low numerical cost in each time-step - the main reason
for the extremely low CPU-times we needed for our calculations on a Silicon
Graphics Indigo 2 with processor R4000 (250MHz).
The second experiment shows the effect of the time-step control with
regard to instantaneous development of zero-contact angle. As initial datum
UY:(0,1) — R, we take the nodal projection of tihat-shaped function

0.2(x —0.25) if0.25<z<05
(61) ug := 14 0.2(0.75—z) if0.5<x<0.75
otherwise.

We choose an uniform triangulation witb0 grid points, takey = 0.1, and
need a CPU-time d3.16s for the whole sequence presented in Fig. 3.
Furthermore, the time increment is depicted depending on the time-
stepty. As the free boundary initially moves extremely fast, we have to start
with very little valuesr;, to guarantee the zero-contact angle. Afterwards, the
propagation slows down, and larger time increments are sufficient. Finally,
when the numerical solution approaches its constant limit vajueaches
its maximum, namely0Oh.
Figure 4 underlines the crucial role of the exponenin the theory
of equation (1). Starting with the same initial data as before, we obtain
for n = 4 convergence to a solution of Poisson’s equation with constant
right-hand side as expected by the theoretical results by [2]. Moreover, our
experiments show that numerical solutions converge for values »f3
andt — oo to a parabolic profile. This gives strong numerical evidence to
the conjecture that no spreading of support occurs for values>f3. In
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AAAa

{200 t=300

Fig. 4. No spreading of support, but convergence to a parabolic profile, illustratedfot
and same initial datum as in Fig. 3

UL y

t=0.0000 t=0.0005 t=0.0019 t=0.0050

Fig. 5. Dead core phenomenon, initial datum(z) = (z —0.5)* 4- 102, growth exponent
n = 0.5, using a uniform discretisation in space Wab0 gndpomts

uLAL‘u

t=0.60 t=1.70 t=5.00

Fig. 6. No dead core phenomenon, same initial datum as before, but exporeft

addition, we point out, that the algorithm finely works despite the fact that
n > 2 and initial data have compact support.

Theoretical results only assure for valuesnof % that the solution’s
support cannot shrink as time proceeds. Figure 5 gives numerical evidence
that forn = % film rupture may occur, a phenomenon that in the literature
already has been described by Bertozzi-Pugh ([10]).

Choosing the initial datum

up(z) := 1072 4 (z — 0.5)*

ando = 10~1°, we get film rupture foB00 grid points as indicated in Fig. 5
(CPU-time 25.34s). Finally, Fig. 6 has been produced using the same initial
data as before, but taking= 2 as growth exponent. Obviously, the solution
remains strictly positive.

Let us discuss now the case of higher spatial dimensions. We subdivide
2 = [0, 1]? uniformly using 2500 gridpoints, and perform two character-
istic experiments with the semi-implicite algorithm described above — the
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Fig. 7. 2D analogon to Fig. 3; please note the evolution’s regularizing effect on the numerical
free boundary which instantaneously becomes smooth

= =
= —1

t=00 =05

t=40 =200

Fig. 8. 2D analogon to Fig. 4. The support remains constant in time; its boundary is only
Lipschitz continuous

evolution of pyramideshaped initial data for mobility growth exponents

n = 1andn = 4 (cf. Figs. 7 and 8). As the sparsity & (1) remains, we
choose iterative solvers and apply the BiCG-Stab algorithm [21] to solve the
corresponding system of equations. It turns out that the number of BiCG-
Stab-iterations necessary to get below the error tolerant@ df remains

low (i.e. in averag&0 iterations for the case @600 nodal points) as long as

the time-step control suggests small time-increments. As soon as the time-
increment reaches its maximumidf, we observe in the first experiment an
augmentation up to values aroub@D, whereas in the second experiment
the number of iterations remains small. Hence, the CPU-times are rather
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different — for the first experiment, we need 325s, for the second experi-
ment, 125s are sufficient. Although the numerical cost is still moderate, for
further investigations on finer grids and an additional optimization of the
algorithm, we intend to develop a multigrid solver as well as an hierarchical
preconditioner.

Let us conclude with a remark about the qualitative results of the simu-
lation in higher space dimensions. Figure 7 indicates that the evolution has
a regularizing effect on the free boundary whenr< 3. For larger values
of n, the support does not spread as time proceeds — underlining once more
the meaning of. = 3 as threshold parameter for the qualitative behaviour
of solutions to equation (1).

AcknowledgementsG.G. would like to express his gratitude to Danielle Hilhorst for rec-
ommending to him to study finite volume schemes for degenerate parabolic equations.
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