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Summary. We present numerical schemes for fourth order degenerate
parabolic equations that arise e.g. in lubrication theory for time evolution
of thin films of viscous fluids. We prove convergence and nonnegativity
results in arbitrary space dimensions. A proper choice of the discrete mo-
bility enables us to establish discrete counterparts of the essential integral
estimates known from the continuous setting. Hence, the numerical cost in
each time step reduces to the solution of a linear system involving a sparse
matrix. Furthermore, by introducing a time step control that makes use of
an explicit formula for the normal velocity of the free boundary we keep the
numerical cost for tracing the free boundary low.
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0. Introduction

In this paper we will present new numerical schemes for fourth order de-
generate parabolic equations of the form:

ut + div
(M(u)∇∆u

)
= 0 in Ω × (0, T ),

∂
∂νu = ∂

∂ν∆u = 0 on∂Ω × (0, T ),
u(0, ·) = u0( · ) in Ω.

(1)

We assume that the nonnegative mobilityM ∈ C(R) vanishes at zero
and that it has at most polynomial growth. Byn := sup{s ∈ R

+ :
limu→0

M(u)
us < ∞}, we denote its growth exponent near zero.

Correspondence to: M. Rumpf
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Equation (1) models the height of thin films of viscous fluids that – driven
by surface tension – spread on plain, solid surfaces. Usually, it is derived
by lubrication approximation from the Navier-Stokes equations for incom-
pressible fluids(cf. [3]).

Assuming ano-slip boundary conditionat the bottomof the thin film, the
mobility becomesM(u) := |u|3, whereas the assumption of variousslip
boundary conditionsleads tomobilities of the formM(u) = c1|u|3+c2|u|β
with positive numbersc1, c2 andβ ∈ (0, 3).

Apart from theapplication in fluid dynamics, degenerate parabolic fourth
order equations with a highest order term similar to that in (1) arise in other
fields of material sciences. We mention here the Cahn-Hilliard model of
phase separation for binary mixtures, whereu plays the role of the concen-
tration of one component (cf. [15]), and a plasticity model (cf. [16] and the
references therein) whereu stands for the density of dislocations.

Crucial for all these applications is the fact, that it is possible to con-
struct solutions of (1) which preserve nonnegativity as has been proved for
space dimensiond = 1 by Bernis and Friedman [8] and for higher space
dimensions in the papers by Grün [16] and by Elliott, Garcke [15]. This be-
haviour is in strong contrast to that of classical solutions to linear parabolic
equations of fourth order which in general become negative even in the
case of strictly positive initial values. Moreover, the publications of Beretta,
Bertsch, Dal Passo [2] and of Bertozzi, Pugh [10] who study this equation
in space dimensiond = 1 reveal a rich structure of qualitative behaviour of
solutions depending on the mobility growth exponentn. To put it concisely,
the largern is, the stronger is the tendency of solutions to stay positive and
the weaker is the regularity at the boundary of the set whereu vanishes.
In space dimensiond = 1 for instance, solutions to strictly positive initial
data remain strictly positive ifn > 7

2 . On the contrary, ifn < 1
2 theoretical

results by [2] show that film rupture may occur.
This already indicates that for solutions to (1) maximum or comparison

principles cannot be valid. Indeed, all the results about existence and qual-
itative behaviour mentioned above are the consequence of two basic types
of integral estimates, namely the so called energy estimate∫

Ω
|∇u(T, .)|2 + 2

∫
ΩT

M(u)|∇∆u|2 =
∫
Ω
|∇u0(.)|2

and the entropy or pressure estimate which reads in its simplest form as∫
Ω

∫ u(T,x)

A

∫ s

A

1
M(r)

dr ds dx +
∫
ΩT

|∆u|2

=
∫
Ω

∫ u0(x)

A

∫ s

A

1
M(r)

dr ds dx.
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It is worth mentioning that the numbern = 3 plays an important role in the
theory of equation (1) – both from the mathematical and the physical point
of view.

Physically, the assumption of a no-slip condition at the bottomof the thin
filmwhich is expressed in theequationbyM(u) := |u|3, leads for spreading
droplets to infinite energy dissipation at the triple line solid-gas-liquid (cf.
[20] and [14]).

Mathematically, self-similar source type solutions with zero contact an-
gle at the free boundary only exist if0 < n < 3 and moreover, all the
estimates for proving existence of solutions with zero contact angle break
down if n ≥ 3. (cf. [2], [10] in space dimension 1, [13], and [11] in higher
space dimensions).

Another important feature in the qualitative behaviour of solutions to this
equation – in particular with regard to applications in wetting and dewetting
problems – is the property of having finite speed of propagation. More
precisely, this means that the interface separating the regions whereu is
positive and whereu is equal to zero moves with finite velocity as time
progresses. For a proof in space dimensiond = 1, we refer to the work of
F. Bernis ([4], [5]), in higher dimensions to [11].

Those aforementioned issues – nonnegativity of solutions, but lack of
comparison principles, propagation of the free boundary – alsomean a great
challenge in finding efficient numerical schemes.

Just recently, a first successful attempt in constructing a finite element
scheme guaranteeing nonnegativity of solutions has been done by Barrett,
Blowey and Garcke [1]. By solving in each time-step an elliptic variational
inequality of second order, they enforce solutions to stay nonnegative. Un-
fortunately, it is not clear whether their algorithm guarantees – indepen-
dently of the grid size – strictly positive discrete solutions in the case that
the continuous solution to be approached is strictly positive.

With this paper, we pursue a different approach by proposing an algo-
rithm discrete in time and space that enables to prove discrete analoga of
exactly those integral estimates which are used in the continuous setting for
the results about existence and qualitative behaviour. Later on, the discrete
analogon of the entropy estimate will be the key to obtain nonnegativity
results of discrete solutions for arbitraryn > 0 as well as positivity results
if n > 2 and initial data are strictly positive. As a byproduct, the numerical
cost in each time step reduces to the solution of a linear system involving a
sparse band matrix.

The second important issue in numerically simulating wetting phenom-
ena is an efficient tracing of the solution’s free boundary.

We will present a new formula – and in fact prove it for self-similar
source type solutions – that explicitly expresses the normal velocity of the
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free boundary in a pointξ(t) in terms ofu(t, ξ(t)) and of certain spatial
derivatives ofu in (t, ξ(t)).

The discrete counterpart of this formula can easily be implemented to
estimate the speed of propagation of the numerical free boundary in each
time-step. We use this for an efficient time-step control, defining the time
increment at timet by τc := h

speed(t) whereh is the grid parameter.
As a consequence, our algorithm reduces the computation time for sim-

ulating e.g. the spreading of self-similar source-type solutions by a factor
smaller than0.005.

Let us mention that L. Zhornitskaya and A. Bertozzi(cf. [22]) paral-
lely in time developed a method for proving entropy estimates for numeri-
cal schemes that has something in common with our ansatz. They confine
themselves to the casen ≥ 2 and suggest a time-continuous, space-discrete
finite difference scheme for approximating strictly positive solutions. For
this scheme, they present a proof for strong convergence of positive discrete
solutions and show equivalence to a finite element approach on uniform,
rectangular grids.

Let us describe the outline of this paper.
In Sect. 1 wewill present the finite element scheme to be studied without

specifying already at that point the numerical mobilities which we are going
to use. Nevertheless, by comparing this finite element method with a finite
volume algorithm – both algorithms coincide for certain regular meshes
– we will illustrate the main idea how to construct numerical mobilities
(or numerical fluxes, respectively) which allow for nonnegative solutions.
Section2containsaproof of global-in-timeexistenceof discrete solutionsby
means of a fixed-point argument (Brouwer). In Sect. 3 we prove the discrete
analogon to the energy estimate as well as a result about compactness in
time. The latter, we will use later on for proving convergence of discrete
solutions in higher space dimensions. Section 4 is devoted to a result about
uniform discrete Ḧolder continuity of discrete solutions (using a discrete
analogon ofC1/2,1/8(ΩT )) if the dimension isd = 1.

In Sects. 5, 6, the key results of this paper can be found. In Sect. 5,
we introduce a general concept of admissible entropy-mobility pairs which
allow for discrete analoga of the entropy estimate on arbitrary, unstructured
grids. Sect. 6 is devoted to the proof of nonnegativity results (or positivity
results, ifn > 2) for discrete solutions which are valid for arbitrary grid
size.

Sections 7,8 contain the convergence results: in space dimensiond = 1,
we get uniform convergence onΩT to a solutionu ∈ C1/2,1/8(ΩT ) satis-
fying the continuous entropy estimates; in higher space dimensions, strong
convergence in theL2-topology to a functionu ∈ L∞((0, T );H1,2(Ω)) ∩
L2((0, T );H2(Ω)) is proved.
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In Sect. 9, we suggest an explicit formula for the normal velocity of the
free boundary in terms of spatial derivatives ofu and prove this formula for
self-similar source-type solutions in arbitrary space dimensions. Moreover,
we present our concept of time-step control.

Finally, Sect. 10 is about numerical experiments in one and two space
dimensions. We will discuss phenomena like film rupture, instantaneous
development of the zero contact angle in the case of initial data having
non-zero contact angle and convergence to solutions of Poisson’s problem
with constant right-hand side ifn ≥ 3. In particular, we will illustrate
the efficiency of the time-step control by comparing explicitly known self-
similar source-type solutions with the calculated discrete solutions.

Throughout the whole paper, we use the standard notation for Sobolev
spaces, denoting the norm ofW k,p(Ω) (k ∈ N, q ∈ [1,∞]) by ‖·‖k,p
and abbreviatingW k,2(Ω) and ‖·‖k,2 by Hk(Ω) and ‖·‖k, respectively.
Lp((0, T );W k,q(Ω)) stands for the spaceofp−integrable,measurable func-
tions from the interval(0, T ) to W k,q(Ω). By (., .), we denote the scalar
product inL2(Ω), and(u)S is an abbreviation for the mean value ofu over
S.

Finally, Cα,β((0, T ) × Ω) stands for the subset of those elements of
C((0, T ) ×Ω) which are Ḧolder continuous to the exponentβ andα with
respect to the first and second argument, respectively.

1. Two different numerical approaches

There are two major classes of discretizations for evolution problems, these
are finite volume respectively finite element schemes. Here, we consider
both types. For simplicity we assumeΩ to be polygonally bounded. First
we derive a finite volume formulation, which is well suited to motivate the
central aim of this paper, how to fix a numerical flux, respectively a nu-
merical mobility, with properties such as mass conservation and guaranteed
nonnegativity. Next we compare this approachwith a finite element scheme,
which will turn out to be preferable concerning the numerical analysis. For
such a comparison a duality of the meshes is required. If the finite element
meshconsists of open, polygonally boundedsubvolumesE, calledelements,
then a dual mesh is built of open, again polygonally bounded dual cellsDx,
corresponding to the verticesx of the primal mesh (cf. Fig. 1). I. e., we
define a single dual cell by

Dx := {y ∈ Ω : dist(y, x) < dist(y, x̃), x̃ is vertex of the mesh} .

For a certain class of meshes, both schemes coincide.
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Fig. 1. A two dimensional finite element triangulation whose edges are outlined in black
and the corresponding dual finite volume mesh indicated by dashed lines

To start with the discussion of finite volume schemes, let us suppose
Ω =

⋃
j∈J D̄j with open, polygonally bounded cellsDj whereJ is any

index set of finite cardinality andDj ∩Di = ∅ for i �= j.
On each subvolume we can rewrite equation (1) in conservation form

∂t

∫
Dj

u dx = −
∫
∂Dj

M(u)∇p · ν dHd−1

wherep = ∆u and ν is the outer normal on∂Dj . The right hand side
describes the inflow at the boundary, andM(u)∇p is the corresponding
flux.

Let us now discretize in space. That is, we look forU(t, ·), P (t, ·) piece-
wise constant on the cellsDj for everyt ≥ 0, such that∂t

∫
Dj

U dx equals
the boundary integral of a numerical flux. Therefore supposeP = ∆hU ,
where∆h is an appropriate discretization of the Laplace operator. On a
regular cell subdivision, we take the standard finite difference discretization
with a five point stencil; on an unstructured set of cells, the finite element
discrete Laplacian on the corresponding dual mesh is the right choice (see
below).

We assume∇P to be defined uniquely on the whole ofΩ, especially on
cell faces. On interior facesF of ∂Dj , in general no unique extension ofU
exists.

To pay account to the fact that the valuesU± = limε→0 U(x± εν) may
be different due to the discontinuity ofU across cell boundaries, we replace
M(·) by someM : R

2 → R; (U+, U−) �→ M(U+, U−) and formulate
the semi-discrete scheme

∂tU = − 1
|Dj |

∫
∂Dj

M(U+, U−)∇p · ν dHd−1 .

For nonemptyF = D̄j∩D̄i the inflow onF corresponding toDj should co-
incide with the outflow with respect toDi. Therefore we look for numerical
mobilitiesM(·, ·) with the natural property

M(U+, U−) = M(U−, U+) .
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This immediately implies the conservation of mass
∫
Ω U dx . Major investi-

gations in the following sectionswill aim at the right choice of the numerical
mobility. For the trivial choiceM(U+, U−) := M(U

++U−
2 ) nonnegativity

of the numerical solution can no longer be guaranteed. In Sect. 6 we will
be lead to some type of harmonic integral mean as the appropriate choice.
Finally the semidiscrete scheme can be discretized in time implicitly or
explicitly.

Now we turn to a second type of discretizations, the finite element
schemes. We denote byTh a regular and admissible triangulation of the do-
mainΩ (cf. Ciarlet’smonograph [12]).We here restrict ourselves to the case
of simplicial grid. Thereby, the triangulation consists of simplicial elements
E, i. e. intervals in 1D respectively triangles in 2D, with

⋃
E∈Th

E = Ω .
Here the indexh indicates the maximal diameter of an elementE ∈ Th.
Corresponding toThweconsider the conforming, linear finite element space
V h ⊂ H1,2(Ω). In the following, such discrete functions will be denoted by
uppercase letters, in contrast to lowercase letters for arbitrary functions in
the nondiscrete function spaces. A functionV ∈ V h is uniquely defined by
its values on the set of nodesNh = {xj}j∈J of the triangulationTh, whereJ
denotes a corresponding index set. To each nodexj corresponds the standard
“hat”-type basis functionϕj ∈ V h with ϕj(xi) = δij . Let us furthermore
introduce the well–known lumped masses scalar product corresponding to
the integration formula

(Θ,Ψ)h :=
∫
Ω
Ih(ΘΨ)

whereIh : C0(Ω) → V h is the nodal projection operator withIhu :=∑
j∈J u(xj)ϕj .
We recall the following well known estimates:

|(U, V ) − (U, V )h | ≤ Ch1+l ‖U‖l ‖V ‖1 for all U, V ∈ Vh, l = 0, 1
(2)

In the same spirit, there exist positive constantsc, C such that we have for
|.|h :=

√
(., .)h:

c|.|2h ≤ (., .) ≤ C|.|2h.(3)

A semidiscrete finite element formulation of equation (1) then takes the
following form. We look for(U,P ) ∈ C1([0, T ], V h × V h) such that∫

Ω
(∂tU,Θ)h − (M(U)∇P,∇Θ) = 0 for all Θ ∈ V h
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whereM(U) is a numerical mobility andP = ∆hU . Here∆h : V h → V h

denotes the discrete Laplacian with respect to the lumped masses scalar
product, whose application to a functionU ∈ V h is defined by

(∆hU, Ψ)h = − (∇U,∇Ψ) ∀Ψ ∈ V h .(4)

The corresponding matrix representation in the nodal basis is−M−1
h Lh,

whereMh is the diagonal lumped mass matrix with components(Mh)ij =
(ϕi, ϕj)h andLh the standard sparse stiffness matrix with entries(Lh)ij =
(∇ϕi,∇ϕj) . Due to the absence of Dirichlet boundary conditions,∆h is
not injective, i. e. ker∆h = {x �→ C|C ∈ R} . This corresponds to the
observation that

∫
Ω ∆hU = 0, which we immediately see choosingΨ ≡ 1

in (4).
In the above finite element method the replacement of the exact mobility

M(·)bysomeM(U)canbe interpretedas thechoiceof aspecificquadrature
to integrate the elliptic term numerically. In our case we suppose that the
discretemobilityM(U) forU ∈ V h is a symmetric matrix inRd×d which is
positive semidefinite and piecewise constant onE ∈ Th. If U |E is constant,
thenM(U)|E should coincide withM(U)Id up to a small perturbation, en
detailM(U)|E = m(U)Id wherem(u) is an appropriate approximation
toM(u) (cf. Sect. 6)). OtherwiseM(U)|E has to be defined appropriately
such that again nonnegativity is preserved forU (cf. especially Sect. 5, 6).

Let us underline the close relation between the choice ofM(U+, U−)
in the finite volume context andM(U)|E in case of a finite element scheme
remarking that both schemes coincide for a certain type of triangulationTh
and corresponding dual cell subdivision{Dj}j∈J . Therefore we consider

Ω = [0, 1]2 and a regular grid of points{qij}0≤i,j≤N whereqij := ( i
N , j

N ).
Then for every index pair(i, j), 0 ≤ i, j ≤ N − 1, we define triangu-
lar elementsE, respectivelyE′ by the set of vertices{qij , qi+1,j , qi,j+1},
respectively{qi+1,j , qi+1,j+1, qi,j+1}. Nowweconsider as finite element tri-
angulationTh the set of all these elements, and as the finite volumemesh the
set of corresponding dual cells. Finally we defineM(U+, U−) andM(U)|E
according to the definition in Sect. 6. Then a tedious but straightforward
computation which we skip here proves the equivalence of the different
approaches.

In what follows, we will focus on the finite element discretization. Let
us discretize now the above semidiscrete scheme in time. Therefore suppose
[0, T ] to be subdivided in intervalsIk = [tk, tk+1) with tk+1 = tk + τk for
time incrementsτk > 0 andk = 0, · · · , N − 1. We will use forward and
backward difference quotients with respect to time which we shall hence-
forward denote by∂+

τ or ∂−
τ , respectively. Now we can formulate an fully

implicit, backward Euler discretization scheme for equation (1):
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For givenU0 ∈ V h find a sequence(Uk, P k) for k = 0, · · · , N − 1
with Uk, P k ∈ V h such that(

∂−
τ Uk+1, Θ

)
h
−

(
M(Uk+1)∇P k+1,∇Θ

)
= 0(5) (

P k+1, Ψ
)
h

= −
(
∇Uk+1,∇Ψ

)
(6)

for all Θ,Ψ ∈ V h.
ChoosingΨ ≡ 1 in (4), we immediately observe that∫

Ω
P k+1 = 0 .

The discrete initial valuesU0 are assumed to be an approximation of the
continuous initial valuesu0 . Supposeu0 ∈ C0, then we can prescribe
U0 := Ihu0 .

Furthermore, we introduceS0,−1(V h) as the space of functionsV :
[0, T ] → V h which are piecewise constant in time on the intervalsIk and
with V (t) ∈ V h for all t ∈ [0, T ]. For the discrete solutionsUk, P k cor-
responding to the sequence of timesteps{tk}k=1,··· ,N , we then straightfor-
ward define a piecewise constant extensionUτh ∈ S0,−1(V h) in time by
Uτh(t) := Uk for t ∈ Ik. Furthermore

Ũτh(t) :=
tk+1 − t

τk
Uk +

t− tk
τk

Uk+1

represents a linear and continuous interpolation in time in the corresponding
function spacewhichwe denote byS1,0(V h) . A pressurePτh ∈ S0,−1(V h)
and a continuous pressurẽPτh ∈ S1,0(V h) can be defined by analogy.
In particular,Pτh = ∆hUτh , respectivelyP̃τh = ∆hŨτh . We will call
a pair(Uτh, Pτh), that solves the equations (5), (6) with initial condition
U0 = Ihu0, a discrete solution. To simplify the writing we will skip the
indices whenever a misunderstanding is ruled out by the context.

2. Existence of discrete solutions

In this section, we will prove the existence of discrete solutions globally
in time by use of a fixed-point argument. ForW k = Uk − α with α :=
1

|Ω|
∫
Ω U0 we obtain the weak equations

(
∂−
τ W k+1, Θ

)
h
−

(
M(W k+1 + α)∇P k+1,∇Θ

)
= 0(7) (

P k+1, Ψ
)
h

= −
(
∇W k+1,∇Ψ

)
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and the initial conditionW 0 = U0 − α . At first let us define the weighted
stiffness matrixLh(W ) forW ∈ V h by

(Lh(W )ij)i,j∈J :=
∫
Ω
M(W + α)∇ϕi · ∇ϕj .

Then a solution of (5) is obtained solving the following nonlinear system
of q = dimV h equations for each time step. If we denote the nodal value
vector for a functionV ∈ V h by V̄ , and with a slight misuse of notation
rewriteLh(W̄ ) forLh(W ), then for givenW̄ k ∈ R

q we searchW̄ k+1 ∈ R
q

such thatF (W̄ k+1) = 0 for

F (W̄ ) =
(
Id + τkM

−1
h Lh(W̄ )M−1

h Lh

)
W̄ − W̄ k

Let us now introduce a new bilinear form onRq by

< W̄ , V̄ >:= LhW̄ · V̄

where· indicates the Euclidian scalar product onR
q . By definition this form

is symmetric and therefore a scalar product onK⊥ := {W̄ |MhW̄ ·(1, · · · ,
1) = 0}. We easily verify thatW̄ 0 ∈ K⊥ and by induction thatF : K⊥ →
K⊥. Furthermore considering especially the assumptions onM(U) we es-
timate

< F (W̄ ), W̄ > = < W̄ − W̄ k, W̄ > +τkLh(W̄ )AhW̄ ·AhW̄

≥ < W̄ − W̄ k, W̄ >≥ 0

for < W̄ , W̄ >
1
2≥ R with R :=< W̄ k, W̄ k >

1
2 . Therefore we can apply

Brouwer’s fixed-point theorem and prove existence of a rootW̄ k+1 for the
mappingF (·) . Finally we define byUk+1 := (W k+1 +α) a solution of the
original problem.

Let us remark that the restriction onK⊥ reflects the mass conservation
property

∫
Ω Uk+1 =

∫
Ω U0 , whichwe immediately obtain choosingΘ ≡ 1

in (5). It is conserved by typical iterative solvers, such as Newton’s method
or nonlinear Gauss–Seidel iterations.

3. Basic a priori estimates

Main topic of this section is the derivation of a priori estimates necessary
for compactness results of a sequence of discrete solutions. It turns out that
these are the discrete counterparts of analoguous estimates in the continuous
theory. In what follows we assume fixed timestepsτk = τ = T

N for N ∈ N

to simplify the presentation. Let us start with an energy type estimate.
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Lemma 3.1. (Energy estimate)
Let (Uτh, Pτh) ∈ S0,−1(V h) × S0,−1(V h) be a discrete solution.
Then the following a priori estimate holds:

1
2

∫
Ω

∣∣∇UN (x)
∣∣2 dx +

1
2

N−1∑
i=0

∫
Ω

∣∣∇(U i+1(x) − U i(x))
∣∣2 dx

+
∫ T

0

∫
Ω
M(U) |∇P |2 dxdt =

1
2

∫
Ω

∣∣∇U0(x)
∣∣2 dx.

In particular, if U0
τh is uniformly bounded inH1(Ω), thenUτh andM(U)

|∇P |2 are uniformly bounded inL∞((0, T );H1(Ω)) or L1((0, T ) ×Ω)),
respectively, by a constantC that is independent ofτ, h.

Proof. We chooseΘ = P k+1 in equation (5), and summing overk, we
obtain for the parabolic part with the help of equation (6)

1
τ

N−1∑
k=0

(
Uk+1 − Uk, P k+1

)
h

=
1
τ

N−1∑
k=0

(
∇Uk+1 −∇Uk,∇Uk+1

)

=
1
2τ

N−1∑
k=0

∫
Ω

∣∣∣∇Uk+1
∣∣∣2 +

∣∣∣∇Uk+1 −∇Uk
∣∣∣2 − ∣∣∣∇Uk

∣∣∣2 dx
and for the elliptic term

N−1∑
k=0

(
M(Uk+1)∇P k+1,∇P k+1

)
=

1
τ

∫ T

0
(M(U)∇P,∇P )

Hence,multiplyingbyτ , the statedestimate is established. If we furthermore
consider the mass conservation

∫
Ω Uk =

∫
Ω U0, we obtain as a straightfor-

ward consequence uniform bounds for the inspected norms.

In space dimensiond = 1, Sobolev’s imbedding result immediately gives
the following corollary which will be the starting point for the proof of
uniform discrete Ḧolder-continuity of numerical solutionsUτh in Sect. 4
and later on of their uniform convergence.

Corollary 3.2. Let (Uτh, Pτh) ∈ S0,−1(V h) × S0,−1(V h) be a discrete
solution and suppose that

∥∥U0
τh

∥∥
1 is uniformly bounded inτ, h. ThenUτh

is uniformly bounded inL∞((0, T );C1/2(Ω)) for τ, h tending to0.

Let us consider now a result on compactness in time valid in any space
dimension. Combined with the energy estimate, it will be sufficient to prove
the existence of convergent subsequences.
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Lemma 3.3. (Compactness in time) Let(Uτh, Pτh) be a discrete solution
and lets < T be a positive number. Further, assume the existence of a
constantM1 such that

max
1≤i,j≤d

sup
(t,x)∈[0,T ]×Ω

Mij(Uτh)(t, x) ≤ M1.(8)

Then, there exists a constantC > 0 such that∫ T−s

0

(
U(t + s, x) − U(t, x), U(t + s, x) − U(t, x)

)
h

dt ≤ CM1s(9)

Proof. Let us first prove the result for valuess = lτ , l ≤ N a positive
integer. For a fixed numberj satisfying0 ≤ j ≤ N − l we choose

Θ := U j+l − U j

in equation (5), multiply byτ and sum overk = j − 1, · · · , j + l− 1 . This
implies:

τ

j+l−1∑
k=j−1

(
Uk+1 − Uk

τ
, U j+l − U j

)
h

= τ

j+l−1∑
k=j−1

∫
Ω
M(Uk+1)∇P k+1∇(U j+l − U j)(10)

As the term on the left-hand side is equal to(U j+l − U j , U j+l − U j)h, it
follows:

(
U j+l − U j , U j+l − U j

)
h
≤ M1τ

l∑
k=0

(∫
Ω
M(U j+k)

∣∣∣∇P j+k
∣∣∣2)

1
2

×
(∫

Ω

∣∣∣∇(U j+l − U j)
∣∣∣2)

1
2

(11)

Now, we sum up fromj = 1 to N − l and apply the energy estimate (cf.
equation (8)). Thus, we obtain

τ

N−l∑
j=1

(
U j+l − U j , U j+l − U j

)
h
≤

M1τ

l∑
k=0

(
τ

N−l∑
j=1

∫
Ω
M(U j+k)

∣∣∣∇P j+k
∣∣∣2)

1
2
(
τ

N−l∑
j=1

∫
Ω

∣∣∣∇(U j+l − U j)
∣∣∣2)

1
2

≤ C ·M1l · τ ,
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which is inequality (9) fors = lτ . For arbitrary0 < s < T , s = rτ with
0 < r < N , we argue as follows: Writingr = l + θ with θ ∈ (0, 1) andl a
nonnegative integer, we get:

U(t + rτ, x) =

{
U(t + lτ, x) if t ∈ (jτ, jτ + (1 − θ)τ ]
U(t + (l + 1)τ) if t ∈ (jτ + (1 − θ)τ, (j + 1)τ ]

(12)

With the notation

Ψlj : =
(
U((j + l)τ, .) − U(jτ, .), U((j + l)τ, .) − U(jτ, .)

)
h

j = 0, ..., N − l,

we obtain usingU ∈ S0,−1(Vh):

∫ T−rτ

0

(
U(t + rτ, x) − U(t, x), U(t + rτ, x) − U(t, x)

)
h

dt

=
N−l−1∑
j=0

(1 − θ)Ψlj +
N−l−1∑
j=0

θΨl+1,j

≤ CM1((1 − θ)l + θ(l + 1))τ = CM1rτ = CM1s

This proves the lemma.

4. Uniform Hölder continuity

The result on uniform discrete Ḧolder continuity of discrete solutions basi-
cally relies on two facts, first the uniformL∞((0, T );C1/2(Ω))-regularity
established in corollary 3.2, and secondly the following lemmaabout Hölder
continuity in time of the spatial mean.

Lemma 4.1. Supposed = 1 and(Uτh, Pτh) is a discrete solution. Further-
more assume thatM(·) is bounded by a constantM1. Then, for integers
j ≥ 0, l > 0 with j + l ≤ N , the following estimate is valid independently
of h:

1
2

(
U j+l − U j , U j+l − U j

)
h

≤ M1
∥∥U0∥∥

1

√
lτ(13)

Remark.In Sect. 6, it will be verified that the boundedness condition on
M(·) is always satisfied ifd = 1.
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Proof. We chooseΘ = Uk+1 −U j in equation (5), multiply byτ and sum
overk = j, · · · , j + l−1. Then we obtain for the parabolic term in analogy
to the proof of lemma 3.1

j+l−1∑
k=j

(
Uk+1 − Uk, Uk+1 − U j

)
h

=
j+l−1∑
k=j

(
(Uk+1 − U j) − (Uk − U j), Uk+1 − U j

)
h

=
1
2

(
U j+l − U j , U j+l − U j

)
h

+
1
2

j+l−1∑
k=j

(
Uk+1 − Uk, Uk+1 − Uk

)
h

and taking into account the energy estimate, the elliptic part can be estimated
as follows:

j+l−1∑
k=j

τ
(
M(Uk+1)∇P k+1,∇(Uk+1 − U j)

)

=
∣∣∣∣
∫ (j+l)τ

jτ

∫
Ω
M(U)∇P∇(U − U j)

∣∣∣∣
≤

√
M1

∫ (j+l)τ

jτ

(∫
Ω
M(U)|∇P |2dx

) 1
2
(∫

Ω
∇(U − Uj)2

) 1
2

≤
√

M1 max
k=j,···j+l

∥∥∥Uk
∥∥∥

1

(∫ (j+l)τ

jτ

∫
Ω
M(U)|∇P |2dxdt

)1
2
(∫ (j+l)τ

jτ
1 dt

)1
2

≤
√

M1
∥∥U0∥∥

1

√
lτ

Hence, the assertion follows.

Now, we are in the position to prove the main result of this section –
adapting an idea of F. Otto [17] to the discrete setting:

Lemma 4.2. Assumed = 1 and that for integerl, k > 0 with l + k <
N the relationkτ ≥ h4 holds. Then for a discrete solution(Uτh, Pτh)
with ‖M(Uτh)‖∞ ≤ M1 independently ofτ, h, there exists a constantC
depending only on

∥∥U0
∥∥

1 such that

|U l+k(x) − U l(x)| ≤ C (kτ)
1
8(14)

for x ∈ Ω .
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Remark.In Sect. 9 we will prove thatmaxτc,h→0(h
4

τc
) → 0 for the time

incrementτc given by the time-step control providedn ≥ 1. Hence, for
sufficiently smoothmobilities the compatibility condition forτ, h expressed
in the lemma, does no longer mean any restriction.

Proof. For givenx ∈ Ω andasmall positive numberδ, let us assumewithout
loss of generality that[x, x + δ) ⊂ Ω. Then we calculate

|U l+k(x) − U l(x)| =
∣∣−∫ x+δ

x
U l+k(x) − U l+k(y) dy

+ −
∫ x+δ

x
U l+k(y) − U l(y) dy + −

∫ x+δ

x
U l(y) − U l(x) dy

∣∣
= | I + II + III |

Corollary (3.2) and Cauchy Schwarz’s inequality imply

| I + III | ≤ δ
1
2

(∥∥∥U l+k
∥∥∥

1
+

∥∥∥U l
∥∥∥

1

)
≤ 2δ

1
2
∥∥U0∥∥

1 .

For the second term, we apply lemma 4.1 and achieve

| II | ≤ δ− 1
2

(∫
Ω

(U l+k − U l)2
) 1

2

≤ δ− 1
2

(
h

(∥∥∥U l+k
∥∥∥

1
+

∥∥∥U l
∥∥∥

1

)
+

(
U l+k − U l, U l+k − U l

) 1
2

h

)

≤ δ− 1
2

(
2h

∥∥U0∥∥
1 + M1(kτ)

1
4
∥∥U0∥∥

1

)
.

Here, we have applied inequality (2) to estimate the difference between the
L2-norm and the norm corresponding to the lumped masses scalar product.
Finally, we chooseδ = (kτ)

1
4 , take into accounth < (kτ)

1
4 and end up

with

| I + II + III | ≤ C
(
δ

1
2 + δ− 1

2 (kτ)
1
4

)
≤ C(kτ)

1
8 .

5. Pressure-entropy a priori estimates

Now we will present an abstract frame which enables us to prove a discrete
counterpart of the continuous integral estimate∫

Ω

∫ u(T,x)

A

∫ s

A

1
M(r)

dr ds dx +
∫
ΩT

|∆u|2

=
∫
Ω

∫ u0(x)

A

∫ s

A

1
M(r)

dr ds dx.
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This estimate is sometimes called entropy estimate and serves for the proof
of nonnegativity results in the continuous setting.

Let us start with some notation. Bym : R → R
+
0 , we denote an approx-

imation of the continuous mobilityM that will be specified later on (cf. the
following section).A is an arbitrary, but fixed positive number.

We call a pair of functionsG : R → R
+
0 , M : V h → ⊗|Th|

k=1R
d×d an

admissible entropy-mobility pair with respect to the triangulationTh if the
following axioms are satisfied:

(i) M : V h → ⊗|Th|
k=1R

d×d is continuous,
(ii) M(U)|E = m(U)Id if U |E is constant on the elementE ∈ Th,
(iii) MT (U)∇IhG′(U) = ∇U , whereG(s) :=

∫ s
A g(r)dr with g(s) =∫ s

A m(r)−1dr,
(iv) on each elementE, the matrixM(U)|E is symmetric and positive

semidefinite.

For further reference, let us remark thatG is nonnegative and convex by
construction.

At first, we consider elements whose faces form right angles at one
vertex. Let us assume that̂E = Ê(α1,··· ,αd) is a reference simplex inRd

with cornersx0 = 0, xi = αiei for i = 1, · · · , d andαi ∈ R, whereei
denotes theith unit vector. Applying the notationUi = U(xi) andg = G′,
we now look for a matrixM̂ onÊ with M̂T∇x̂Ihg(U) = ∇x̂U , where∇x̂

is the gradient on̂E . Due to

g(Ui) − g(U0) =
∫ Ui

U0

1
m(s)

ds

we straightforward verify that

M̂ =
(
M̂ij

)
i,j=1,··· ,d

with M̂ij =
(
−
∫ Ui

U0

1
m(s)

ds

)−1

δij

satisfies our axioms above. ForUk = U0 the definition simplifies toM̂kk =
m(U0) .

Now we generalize this method to arbitrary elementsE which have a
vertexx0 with the property that any two edges intersecting each other inx0
form a right angle. We can find(α1, · · · , αd) and an orthogonal matrixA in
such a way that the affine linear mappingx̂ �→ x = x0 + Ax̂ is a bijection
between the reference elementÊ(α1,··· ,αd) andE. We proceed with the pull

back onÊ(α1,··· ,αd) and obtainA
T∇xϕ(x) = ∇x̂ϕ(x̂). This implies

M̂T∇x̂Ihg(U) = ∇x̂U ⇒
M̂TAT∇xIhg(U) = AT∇xU ⇒(

A−T M̂TAT
)
∇xIhg(U) = ∇xU .
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Therefore definingM := AM̂A−1, the conditions (ii), (iii) are fulfilled on
E. SinceA is orthogonal,M is symmetric and positive semidefinite; hence
condition (iv) is satisfied, too.

In the general case we cannot argue vertex oriented. Nevertheless, we
can define

Mij :=
∂xiU

∂xiIhg(U)
δij .(15)

For an efficient implementation, this definition is less constructive than the
first one which we therefore find preferable. Finally using this method on
everyE ∈ Th, the required property (i) holds and we obtain an admissible
entropy–mobility pair(G,M) .

Let us emphasize that the choiceΘ = IhG′(U) implies for the elliptic
term from (5) the identity

−
∫
Ω
M(U)∇P∇Θ = −

∫
Ω
M(U)∇P∇IhG′(U)

= −
∫
Ω
∇P∇U = (P, P )h .(16)

After these preliminaries, we can prove the key lemma for the subsequent
results on regularity and nonnegativity of solutions. It reads as follows:

Lemma 5.1. (Pressure-Entropy estimate)
Let (U,P ) be a solution to the system of equations (5)-(6) and assume

that (M,G) is an admissible entropy-mobility pair as described above.
Then, for arbitraryT = Kτ , K ∈ N, the following estimate holds:∫

Ω
IhG(U(T, x))dx+

∫ T

τ

(
P (t, .), P (t, .)

)
h

dt

≤
∫
Ω
IhG(U0(x))dx

(17)

Proof. We take the functionIhG′(Uk+1) as test function in the weak for-
mulation (5) and obtain:

(
∂−
τ Uk+1, IhG′(Uk+1)

)
h

−
∫
Ω
M(Uk+1)∇P k+1∇IhG′(Uk+1)dx = 0

(18)

Using property (iv) of admissible entropy-mobility pairs(G,M) as well as
identity (16), we get:(

∂−
τ Uk+1, IhG′(Uk+1)

)
h

+
(
P k+1, P k+1

)
h

= 0(19)
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The convexity ofG implies:

1
τ

(G(Uk+1(x)) −G(Uk(x))) ≤ ∂−
τ Uk+1(x)G′(Uk+1(x))(20)

Hence, we can estimate:(
Ih(G(Uk+1(x)) −G(Uk(x))), 1

)
h

+
(
P k+1, P k+1

)
h

≤ 0(21)

Summing up fromk = 0 toK − 1, multiplying byτ and using the fact that
(Ihη, 1)h =

∫
Ω Ihη(x)dx, we obtain the result.

6. Nonnegativity results for discrete solutions

In this section, we will be concerned with the explicit construction of dis-
crete mobilitiesM that allow for nonnegative discrete solutionsU . By a
slight misuse of semantics, the adjectivenonnegativemeans in this context
that it is possible to find mobilitiesMσ depending on a positive control
parameterσ such that for givenε > 0 the corresponding discrete solution
Uσ
τh satisfiesU

σ
τh ≥ −ε onΩT . If the growth coefficientn is greater2, even

strict positivity results can be proved for discrete solutions provided initial
data are strictly positive. These results are exactly the discrete counterpart
of the nonnegativity results which follow in the continuous setting from the
basic entropy estimates(cf. [8] and [16]).

Precisely, the following theorem holds:

Theorem 6.1. (Existence of nonnegative discrete solutionsUσ
τh)

LetTh be an admissible triangulation ofΩ and letn > 0 be the growth
coefficient ofM in zero. Assume that the mobilityM is monotoneously
increasing and vanishes onR− ∪ {0}. For arbitrary ε > 0, there exists
a positive control parameterσ0 which only depends ond, n, ε, h and the
initial datumu0 ≥ 0 such that:

For every0 < σ < σ0 discrete entropy-mobility pairs(Gσ,Mσ) can be
constructed having the property that the corresponding discrete solutions
Uσ
τh of equation (5) satisfy:

• Uσ
τh > −ε if u0 ≥ 0 and0 < n < 2.

• Uσ
τh > −ε if u0 ≥ σ0 andn = 2.

• Uσ
τh > σ/2 if u0 ≥ σ0 andn > 2.

Proof. For the easeof presentation,wewill assumeat the beginning thatd =
1. Later on, themodifications to be applied in the higher spatial dimensional
case will be straightforward.
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Wewill construct entropy-mobility pairs(Gσ,Mσ) in two different ways
depending on whether the mobility growth coefficientn is smaller than1 or
not.

If n ≥ 1, we start with the following shifted mobilitiesmσ(u) :=
M(max(σ, u)), calculate the entropyGσ as the second primitive ofm−1

σ

and eventually define the corresponding discrete mobilityMσ(U)|E on an
elementE of the triangulationTh by the formula:

Mσ(U)
∣∣∣∣
E

:=



mσ(U1) if U1 = U2(
−∫ U2
U1

1
mσ(s)ds

)−1

if U1 �= U2
(22)

Here,U1, U2 denote the values ofU on the boundary ofE.
In the case0 < n < 1, we obtain the discrete entropyGσ by anC1-

extension of an appropriate continuous entropyG to the negative numbers
and successively defineMσ|E by the formula

Mσ(U)
∣∣∣∣
E

:=




(U1 − U2)(G′
σ(U1) −G′

σ(U2))−1 if U1 �= U2

M(U1) if U1 = U2 ≥ 0
σM(−U1) if U1 = U2 < 0

(23)

Let us study now the casen ≥ 1 en detail:
Due to the singular behaviour of the continuous entropyG for n ≥ 2we

have to distinguish three subcases.
Let us assume first that1 ≤ n < 2 andG(u0) is bounded. The latter as-

sumption is satisfied for arbitrary nonnegativeu0 ∈ H1,2(Ω). In particular,
this also applies toG(U0

h), i.e. there is a positive constantCentrop such that:∫
Ω
IhG(U0

h) ≤ Centrop independently ofh → 0

Denoting byRM
i thei-th primitive ofM−1, we may write the discrete

entropyGσ(u) :=
∫ u
A

∫ r
A m−1

σ (s)dsdr as:

Gσ(u) :=



RM

2 (u) −RM
2 (A) −RM

1 (A)(u−A) if u ≥ σ

RM
2 (σ) −RM

2 (A) −RM
1 (A)(σ −A)

+1
2(u− σ)2M(σ)−1+

+(u− σ)(RM
1 (σ) −RM

1 (A)) if u < σ

(24)

It is worthwhile to have a closer look on the formula forGσ(u) for u < σ.
By convexity,RM

2 (σ)−RM
2 (A)−RM

1 (A)(σ−A) ≥ 0, and the same
property obviously holds for the second term. The monotonicity ofRM

1
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implies that the third term is nonnegative, providedσ < A. The pressure-
entropy estimate (18) implies the following estimate:

dim Vh∑
i=1

wi(Uσ
τh(t, xi) − σ)(RM

1 (σ) −RM
1 (A)) ≤

∫
Ω
IhG(U0

h)

≤ C

∫
Ω
Gσ(U0(xi))

≤ Centrop

(25)

Here,wi :=
∫
Ω ϕi(x)dx, i = 1, ...,dim Vh denotes the mass of a basis

functionϕi ∈ Vh. The regularity of the triangulation implies the existence
of positive constantsc1, C1 such that:

c1h ≤ wi ≤ C1h i = 1, ...,dim Vh(26)

SinceM(u) ∼ un in a neighbourhood of zero andn ≥ 1, we infer for the
growth ofRM

1 (σ) nearσ = 0:

RM
1 (σ) ∼

{
log σ if n = 1
−σ1−n if n > 1

(27)

Using inequalities (25),(26), the following estimate can be established for a
negative minimum ofUτh(t, .):

Centrop ≥ c1h(min
xi

(Uσ
τh(t, xi)) − σ)(RM

1 (σ) −RM
1 (A))

≥ c1hmin
xi

Uσ
τh(t, xi)(RM

1 (σ) −RM
1 (A))

(28)

which implies:

min(Uσ
τh) ≥ c−1

1 Centrop

h(RM
1 (σ) −RM

1 (A))

Lettingσ tend to zero, we infer from estimate (27) that the right-hand side in
the inequality above tends to zero. Hence for each pair(ε, h) and1 ≤ n < 2
the asserted numberσ0(n, h, ε, u0) exists.

The subcasen = 2 can be handled similarily, provided we guarantee
that

lim sup
(σ,τ,h)→(0,0,0)

∫
Ω
Gσ(U0) < ∞.

This can be achieved for instance ifu0 is strictly positive.
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Let us study now the subcasen > 2 under a strict positivity assumption
onu0. In particular, we have as before:∫

Ω
IhG(U0

h) ≤ Centrop independently ofh → 0

Defining forβ ∈ R the setKβ(t) := {xi nodal point:Uσ
τh(t, xi) < β}, we

can consequently estimate the cardinality of the setKασ(t) for 0 < α < 1
as follows:

|Kασ(t)| ≤ c−1
1 Centrop

(1 − α)hσ(RM
1 (A) −RM

1 (σ))

By estimate (27), the term on the right-hand side tends to zero, asσ → 0.
As a consequence, forσ sufficiently small,Uσ

τh ≥ ασ.
Let us explain now our concept for the case0 < n < 1 en detail.
In the sequel,RM

2 denotes the particular second primitive ofM−1 char-
acterized by the property:

RM
2 (0) = (RM

2 )′(0) = 0

We define the discrete entropy

Gσ(u) :=

{
RM

2 (u) if u ≥ 0
σ−1RM

2 (−u) if u < 0
(29)

and the corresponding discrete mobilityMσ(U)|E as indicated above(see
equation (23)). Before proving the nonnegativity result announced in the
theorem, let us give – for the reader’s convenience – the explicit formula
for Mσ(U)|E if M(u) = un. For the boundary pointsx1, x2 of E, we
abbreviateUτh(t, xi), i = 1, 2 byU1, U2 as before.

Mσ(U)
∣∣∣∣
E

:=




(1−n)(U2−U1)
U1−n

2 −U1−n
1

if min(U1, U2) ≥ 0
(1−n)(U2−U1)

σ−1|U1|1−n+U1−n
2

if U1 < 0 < U2

σ (n−1)(U2−U1)
|U1|1−n−|U2|1−n if max(U2, U1) ≤ 0

M(U1) if U1 = U2 ≥ 0
σM(−U1) if U1 = U2 < 0

(30)

Coming back to the nonnegativity result, we estimate the cardinality of
Kβ(t) for β < 0 in the following way:

|Kβ(t)| ≤ c−1
1 Centropσ

hRM
2 (β)

Arguing as before, the nonnegativity result follows, and ford = 1 the
theorem is proven.
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Eventually, we will consider the case of higher spatial dimensions. Let
us indicate the main steps in constructing an admissible entropy-mobility
pair (G,M) allowing for nonnegative solutions.

Depending on the mobility’s growth exponentn, we start with the same
entropy functionGσ as in the one-dimensional case and define functions
fσ : R × R → R

+
0 by

fσ(a, b) :=

{
(a− b)(G′

σ(a) −G′
σ(b))−1 if a �= b

G′′
σ(a) if a = b

(31)

Let E ∈ Th be given. Let us assume first that there are pointsx0 ∈
R

d and (α1, · · · , αd) ∈ R
d as well as an orthogonal matrixA ∈ R

d×d

such thatE = x0 + AÊ(α1,··· ,αd) whereÊ(α1,··· ,αd) is the convex hull of
(0, α1e1, · · · , αded).

Then forU ∈ Vh, the restriction ofM(U) ontoE is given by the formula
M(U)|E = AM̂(U)|ÊA−1. Here,M̂(U)|Ê is defined as

M̂(U)|Ê := diag(fσ(U0, U1), · · · , fσ(U0, Ud))

with U0 := U(x0) andUi := U(x0 + αiAei), i = 1, · · · , d.
Otherwise, we takeg := G′

σ and defineM(U)|E according to for-
mula (15).

Applying lemma 5.1, the entropy estimate is satisfied by the discrete so-
lutions(Uσ

τh, P
σ
τh) corresponding to our construction. Hence, we can repeat

the arguments for the nonnegativity results used in the one-dimensional case
–with the evident quantitativemodifications due to the change in dimension.

7. Convergence in 1D

In this section, we shall prove the main result on convergence of discrete
solutions. Since we will make essential use of the uniform discrete Hölder
continuity of approximate solutions – that up to now only could be estab-
lished in space dimensiond = 1 – we have to confine ourselves at the
moment to the one dimensional case. It is worthwhile to point out that our
result has not only its meaning as convergence proof but independently as a
new proof for existence of solutions in the continuous setting, too.

We have

Theorem 7.1. (Convergence result for discrete solutions)
For d = 1, let us assume thatu0 ∈ H1,2(Ω; R+

0 ), that the sequences
(τj)j∈N, (hj)j∈N, (σj)j∈N of positive real numbers monotoneously con-
verge to zero and satisfy for everyj ∈ N: τj ≥ h4

j . In addition, we sup-
pose that the corresponding discrete solutions(Uσ

τh, P
σ
τh) fulfill the dis-

crete pressure-entropy estimate with uniformly bounded right-hand side,



Nonnegativity preserving convergent schemes for the thin film equation 135

and thatσ depending onh is chosen sufficiently small. Then, a subsequence
(Uσ

τh, P
σ
τh) exists that converges in the following sense to a pair of functions

(u, p) which is contained inC1/2,1/8(ΩT ; R+
0 ) ∩ L∞((0, T );H1,2(Ω)) ∩

L2((0, T );H2(Ω)) × L2(ΩT ):

• Uσ
τh → u uniformly onΩT and weakly-∗ in L∞((0, T );H1,2(Ω)).

• P σ
τh ⇀ p ∈ L2(ΩT ) weakly inL2((ε, T );L2(Ω)) for arbitrary 0 < ε <

T .
• ∇P σ

τh ⇀ ∇p weakly inL2(S) for anyS ⊂⊂ [u > 0]
where[u > 0] := {(t, x) ∈ ΩT : u(t, x) > 0}.

Furthermore,(u, p) satisfy the entropy estimate∫
[u(T,.)>0]

G(u(T, .)) +
∫
ΩT

p2 ≤
∫
Ω
G(u0)(32)

and solve equation (1) in the following weak sense:

∫
ΩT

(u− u0)
∂

∂t
ϑdxdt = −

∫
[u>0]

M(u)∇p∇ϑdxdt

for all ϑ ∈ C1([0, T ];H1,2(Ω)) satisfyingϑ(T ) = 0∫
Ω
p(t, x)ψ(x)dx = −

∫
Ω
∇u(t, x)∇ψ(x)

for almost allt ∈ (0, T ) and everyψ ∈ H1,2(Ω)

(33)

Remark.1. Numerical experiments indicate that the scheme has fine con-
vergence properties also in the case that discrete solutions do not satisfy
the pressure-entropy estimate uniformly inσ → 0, e.g. ifn ≥ 2 and ini-
tial data have compact support. Analytically, we still can prove uniform
convergence of discrete solutions, but the limit function does not have
L2((0, T );H2(Ω))-regularity.

2. In addition, it is possible to proveu ∈ H1((0, T ); (H1,2(Ω))′) using
the methods presented in [1].

Proof. It merely consists of four steps. After having proven the uniform
convergence of a subsequence of(Uσ

τh) by means of an Arzela-Ascoli argu-
ment,wewill discuss the limit behaviourof theparabolic part of equation (5).
Secondly, we will study the limit behaviour of the discrete mobilities which
shall enable us to pass to the limit in the elliptic term. Then, we will prove
convergence in equation (6). Finally, the entropy inequality (32) will be
established.

As a preliminary observation we remark that the application of theo-
rem 6.1 implieslim(τ,h,σ)→0 min(t,x)∈ΩT

Uσ
τh(t, x) ≥ 0 if σ in relation to

h is small enough.
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Step 1:We consider equation (5), choose different test functionsT ek and
sum overk.

Thereby, we obtain

0 =
N−1∑
k=0

{(
Uk+1 − Uk, Θk+1

)
h
− τ(M(Uk+1)∇P k+1,∇Θk+1)

}

=
N−1∑
k=0

(
−

(
Uk − U0, Θk+1 −Θk

)
h

− τ(M(Uk+1)∇P k+1,∇Θk+1)
)

+
(
UN − U0, ΘN

)
h

=
∫ T−τ

0
− (

Uσ
τh − U0, ∂+

τ Θτh

)
h
− (M(Uσ

τh)∇P σ
τh,∇Θτh)dt

whereΘτh ∈ S0,−1(Vh) with Θτh(T ) = 0.
For a functionϑ ∈ C1((0, T );H1,2(Ω)) with ϑ(T, .) ≡ 0, we de-

fine Θτh|Ik
= Shϑ(tk, .). Here, Sh stands for theH1,2(Ω)-projection

H1,2(Ω) → Vh.
Let us discuss now the convergence behaviour ofUσ

τh. Using lemma 4.2
and corollary 3.2, we observe that the time-interpolationsŨσ

τh (for the ex-
act definition, cf. Sect. 1) are uniformly bounded inC1/2,1/8(ΩT ). Hence,
Arzela-Ascoli’s theorem guarantees the existence of a subsequence which
we still denote byŨσ

τh converging uniformly inC
α,β(ΩT ), α < 1

2 , β < 1
8

to a functionu ∈ C1/2,1/8(ΩT ). Applying lemma 4.2 again, we can esti-
mate|Uσ

τh(t, x) − Ũσ
τh(t, x)| ≤ Cτ1/8 and thus conclude that there exists

a subsequence(Uσ
τh)(τ,h,σ)→0 converging uniformly onΩT to a function

u ∈ C1/2,1/8(ΩT ).
Let us consider now convergence in the parabolic term.We already know

that

| (Uσ
τh − U0, ∂+

τ Θτh

)
h
− (Uσ

τh − U0, ∂+
τ Θτh)|

≤ Ch2 ∥∥Uσ
τh − U0∥∥

1

∥∥∂+
τ Θτh

∥∥
1 .

Furthermore,∂+
τ Θτh(t, .) converges inL2, uniformly in time, to∂tϑ(t, .),

and therefore we achieve∫ T−τ

0

(
Uσ
τh − U0, ∂+

τ Θτh

)
h
→

∫ T

0
(u− u0, ∂tϑ)

asτ, h, σ → 0.

Step 2:Let us show now that the discrete mobilitiesMσ
τh(U) uniformly

converge to the original mobilityM(u) asτ, h, σ → 0. ForEh ∈ Th, we
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denote the space-time elementEh × [lτ, (l + 1)τ) by El
τh, andM(El

τh)
stands for the discrete mobility onEl

τh.
We denote the values ofUσ

τh in the end-points ofEh byU1, U2 and obtain
using the mean-value theorem:

M(El
τh) =

1
G′′

σ(ξ)
with ξ ∈ [U1, U2](34)

If the mobility’s growth exponentn satisfiesn ≥ 1, we can easily estimate
the difference betweenM(u(t, x) and the discrete mobilityM(El

τh(t, x))
on the space-time cell,(t, x) is contained in:

|M(u(t, x)) −M(El
τh(t, x))| = |M(u(t, x)) −mσ(ξ)|

≤ |M(u(t, x)) −M(ξ)| + |M(ξ) −mσ(ξ)|
≤ sup

s∈(−∞,maxU)
|M′(s)||u(t, x) − ξ| + M(σ)

(35)

Due to the uniform discrete Ḧolder-continuity and the uniform convergence
ofUσ

τh, for (τ, h, σ) → 0 the terms in the last line of (35) uniformly converge
to zero.

If 0 < n < 1, we argue as follows: For givenε > 0, we findδ > 0 such
thatM(s) < ε for |s| < 2δ. IntroducingSδ := {(t, x) ∈ ΩT : u(t, x) ≥ δ},
we obtain repeating the arguments above:

|M(u(t, x)) −M(El
τh(t, x))| ≤ ε onSδ

for τ, h, σ sufficiently small.
The nonnegativity results in the previous chapter imply that we have for

sufficiently smallτ, σ, h:

Uσ
τh ≥ −δ.

Hence:

|M(u(t, x)) −M(El
τh(t, x))| ≤ ε + M(σ) onΩT \ Sδ.

which proves the uniform convergence of the discrete mobilitiesM .

Step 3:Let us first pass to the limitτ, h, σ → 0 in equation (6). We de-
note byRh the projectionRh : L2((0, T );H1,2(Ω)) → S0,−1(Vh). From
equation (6) we infer that

∫ T

τ
(P σ

τh,Rhϕ)hdt = −
∫ T

τ

∫
Ω
∇Uσ

τh∇Rhϕdxdt(36)
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for arbitraryϕ ∈ L2((0, T );H1,2(Ω)). On account of inequality (2), the
entropy estimate (17), and estimate (3) the term on the left-hand side can be
estimated:∣∣∣∣

∫ T

τ
(P σ

τh,Rhϕ)hdt−
∫ T

τ

∫
Ω
P σ
τhRhϕdxdt

∣∣∣∣
≤ Ch||P σ

τh||L2((τ,T );L2(Ω))||Rhϕ||L2((0,T );H1,2(Ω))

≤ Ch||G(u0)||L1(Ω)||ϕ||L2((0,T );H1,2(Ω))

Byuseof the followingconvergencepropertiesof appropriate subsequences:

• P σ
τh ⇀ p weakly inL2((ε, T );L2(Ω)) for arbitrary0 < ε < T

• Uσ
τh ⇀ u weakly inL2((0, T );H1,2(Ω))

• Rhϕ → ϕ strongly inL2((0, T );H1,2(Ω))

we can pass to the limit in equation (36) and obtain for arbitrary0 < ε < T
and arbitraryΨ ∈ L2((0, T );H1,2(Ω)):∫ T

ε

∫
Ω
p(t, x)Ψ(t, x)dxdt = −

∫ T

ε

∫
Ω
∇u(t, x)∇Ψ(t, x)dxdt.

This implies: ∫
Ω
p(t, x)ψ(x)dx = −

∫
Ω
∇u(t, x)∇ψ(x)dx

for almost everyt ∈ (0, T ) and arbitraryψ ∈ H1,2(Ω).
From the pressure-entropy estimate we infer additionally that

‖p‖L2((ε,T );L2(Ω)) is uniformly bounded forε → 0. This impliesp ∈
L2(ΩT ) and in particularp = ∆u in L2(ΩT ). Moreover, elliptic regularity
theory shows thatu ∈ L2((0, T );H2(Ω)).

Let usdiscussnow theconvergencebehaviour of theelliptic term inequa-
tion (5). Recalling the definition ofΘτh, we observe first thatΘτh strongly
converges toϑ in C0((0, T );H1,2(Ω)). Secondly, the energy estimate (11)
implies thatM

1
2 (Uσ

τh)∇P σ
τh weakly converges to a functionJ ∈ L2(ΩT )

with respect to theL2(ΩT )-norm.
Let us identifyJ with M 1

2 (u)∇p. OnΩT \ Sδ, we may estimate for
τ, h, σ sufficiently small:

∣∣∣∣
∫
ΩT \Sδ

M(Uσ
τh)∇P σ

τh∇Θτh

∣∣∣∣
≤ ||M 1

2 (Uσ
τh)||L∞(ΩT \Sδ)||M

1
2 (Uσ

τh)∇P σ
τh||L2(ΩT )||Θτh||L2((0,T );H1,2(Ω))

≤ Cδn/2||Θτh||L2((0,T );H1,2(Ω))

(37)



Nonnegativity preserving convergent schemes for the thin film equation 139

This implies thatJ ≡ 0 on [u = 0].
On the other hand, the energy estimate implies that∫

Sδ

|∇P σ
τh|2dxdt ≤ C(

2
δ
)n

onSδ with a constantC independent ofτ, h, σ. Hence, onSδ ∇P σ
τh weakly

converges to∇pwith respect to theL2(Sδ)-normwhichproves theassertion.

Step 4:It remains to prove theentropyestimate (32). The followingestimates
involving the discrete entropyGσ will be helpful:

i) OnR
+
0 , we haveGσ(u) ≤ G(u)

ii) If 1 ≤ n < 2, the discrete entropyGσ is uniformly Hölder-continuous
with exponentα = 2 − n (α < 1 if n = 1) on the set(0, σ).

We have to prove point i) only forn ≥ 1 and on the set(0, σ), since in all
the other relevant casesGσ ≡ G. Writing down the Taylor-expansion of
RM

2 (u)

RM
2 (u) = RM

2 (σ) + (u− σ)RM
1 (σ)

+
1
2
(u− σ)2M−1(σ) − 1

6
(u− σ)3(M(ξ))−2M′(ξ)

with ξ ∈ (u, σ) and using the monotonicity ofM, point i) immediately
follows.

To prove ii) for1 < n < 2, we argue as follows:

|Gσ(u1) −Gσ(u2)| =
∣∣∣∣12M−1(σ)(u1 − u2)(u1 + u2 − 2σ)

+ (u1 − u2)RM
1 (σ) − (u1 − u2)RM

1 (A)
∣∣∣∣

≤ σM−1(σ)|u1 − u2|2−n|u1 − u2|n−1 +

+ RM
1 (σ)|u1 − u2|2−n|u1 − u2|n−1

+ |u1 − u2|RM
1 (A) ≤ C|u1 − u2|2−n

(38)

For the last estimate, we used the growth ofM−1(σ) andRM
1 (σ) near zero

as well as the inclusionui ∈ (0, σ), i = 1, 2. The special casen = 1 can be
handled similarily.

Let us pass now to the limit in the entropy estimate∫
Ω
IhGσ(Uσ

τh(T, .)) +
∫ T

τ
(P σ

τh, P
σ
τh)h ≤

∫
Ω
IhGσ(U0

h(.))(39)

First, we show thatlim(τ,h,σ)→0
∫
Ω IhGσ(U0

h(.)) =
∫
Ω G(u0). SinceU0

h =
Ihu0 is nonnegative (or even strictly positive ifn ≥ 2) and uniformly Ḧolder
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continuous onΩ, it will be sufficient to study the convergence behaviour
of Gσ(U0

h) for (τ, h, σ) → (0, 0, 0). On the set[u0 ≥ δ > 0], theH1-
convergence ofU0

h together with the fact that forσ sufficiently smallGσ and
G are identical, implies the convergence pointwise almost everywhere for
a subsequence ofGσ(U0

h). Using auxiliary estimate i), Lebesgue’s theorem
of majorized convergence implies the convergence on[u > 0].

We have to discuss the limit behaviour on the set[u0 = 0] only if
1 ≤ n < 2because otherwiseu0 is either strictly positive orGσ = GonR

+
0 .

Thus combining auxiliary result ii) with the identitylimσ→0 Gσ(0) = G(0),
we observe:

|Gσ(Uσ
τh(t, x)) −G(0)| ≤ C|Uσ

τh(t, x)|α + o(1).

Hence, for(τ, h, σ) → (0, 0, 0) the right-hand side of equation (39) con-
verges to

∫
Ω G(u0).

In the same spirit, we can prove with the help of Fatou’s lemma that:∫
[u(.,T )>0]

G(u(T )) +
∫
ΩT

p2

≤ lim inf
(τ,h,σ)→(0,0,0)

∫
Ω
IhGσ(Uσ

τh(T, .)) +
∫ T

τ
(P σ

τh, P
σ
τh)h

which gives the result.

8. Convergence results in higher dimensions

In the case of higher dimension, the convergence results to be presented are
muchweaker than in dimensiond = 1. This is due to the fact that even in the
continuous setting no results in higher space dimensions are known about

• local or global continuity of solutions
• strict positivity on open subsets of the space-time cylinder
• boundedness of solutions

For this reason, we have to confine ourselves to convergence results for the
triple (Uσ

τh, P
σ
τh, J

σ
τh) where we denote byJσ

τh the discrete fluxM(Uσ
τh)

∇P σ
τh. Unfortunately, the identificationlim(τ,h,σ)→0 J

σ
τh = M(u)∇p re-

mains an open problem.
Our existence result reads:

Theorem 8.1. Let us assume that

• M : R
+
0 → R

+
0 is bounded,

• (τk)k∈N, (hk)k∈N, (σk)k∈N are sequences of positive real numbers mono-
toneously converging to zero,
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• Uσ
τh, P

σ
τh, J

σ
τ,h are solutions to the discrete system (5), (6),

• (Uσ
τh, P

σ
τh) satisfy the discrete pressure-entropy estimate with uniformly

bounded right-hand side,
• σ depending onh is chosen small enough,
• Ω ⊂ R

d is convex and polygonally bounded.

Then, there is a subsequence(Uσ
τh, P

σ
τh, J

σ
τ,h)(τ,h,σ)→0 that converges to a

triple (u, p, J) ∈ L2((0, T );H2(Ω))∩L∞((0, T );H1,2(Ω))×L2(ΩT )×
L2(ΩT ; Rd) in the following sense:

• Uσ
τh → u strongly inL2(ΩT ) and weakly-∗ in L∞((0, T );H1,2(Ω)).

• P σ
τh ⇀ p ∈ L2(Ω)weakly inL2((ε, T );L2(Ω)) for arbitrary0 < ε < T .

• M(Uσ
τh)∇P σ

τh ⇀ J weakly inL2(ΩT ; Rd).

Furthermore,u is nonnegative, and equation (1) is satisfied in the following
weak sense:

∫
ΩT

(u− u0)
∂

∂t
ϑdxdt = −

∫
[u>0]

J∇ϑdxdt

for all ϑ ∈ C1([0, T ];H1,2(Ω)) satisfyingϑ(T ) = 0∫
Ω
p(t, x)ψ(x)dx = −

∫
Ω
∇u(t, x)∇ψ(x)

for almost allt ∈ (0, T ) and everyψ ∈ H1,2(Ω)

(40)

Proof. From lemma 3.3, we infer that

lim
s→0

∫ T−s

0
(Uσ

τh(t + s, .) − Uσ
τh(t, .))hdt = 0(41)

uniformly in (τ, h, σ) → 0. Together with the standard estimate(., .)h ≤
C||.||2L2(Ω), we obtain:

lim
s→0

||Uσ
τh(. + s, .) − Uσ

τh(., .)||L2((0,T−s);L2(Ω)) = 0(42)

uniformly for (τ, h, σ) → 0. Combining this result with the uniform bound-
edness of||Uσ

τh||L∞((0,T );H1,2(Ω)) (cf. inequality (11)) and the following
theorem due to J. Simon

Theorem. ([18], p.84)LetX ⊂ B ⊂ Y with compact imbeddingX ↪→ B
and1 ≤ p ≤ ∞.

If F ⊂ Lp(I;X) is bounded and‖f(·+ h, ·)− f(·, ·)‖Lp(0,T−h,Y ) → 0
uniformly forf ∈ F ash → 0, thenF is relatively compact inLp(I;B).

we observe that a subsequence(Uσ
τh) exists having the convergence

behaviour asserted in the theorem.
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The entropy estimate implies the existence of a subsequence(P σ
τh) that

weakly converges to a functionp ∈ L2(ΩT ) in L2((ε, T );L2(Ω)) for arbi-
trary0 < ε < T . By theenergyestimate,we infer theconvergencebehaviour
conjectured forJσ

τh = M(Uσ
τh)∇P σ

τh. Following the line of argumentation
in theorem 7.1, the weak formulation (40) can be established.

Having chosen theentropy control parameterσ such thatlim inf(τ,h,σ)→0
min(Uσ

τh, 0) = 0, the nonnegativity ofu follows. Finally,u hasL2((0, T );
H2(Ω))-regularity since the normal derivatives ofu vanish, conservation
of mass is guaranteed andp = ∆u ∈ L2(Ω).

9. Timestep control

One of the most intriguing features in studying fourth order degenerate
parabolic equations – with respect to theory as well as to applications such
as wetting phenomena – is to trace the solution’s free boundary in a correct
way.

This section isdevoted toaquasi-optimalmechanismof time-stepcontrol
that allows in each time-step to determine the maximum time increment
τ assuring that the numerical free boundary may propagate as fast as its
continuous counterpart.

Let us begin with a few remarks about how to determine the discrete
solutionU .

In each time-step, we have to solve the nonlinear system of equations

B(Ūk+1) = Ūk with B(Ū) :=
(
Id + τkM

−1
h L̂h(Ū)M−1

h Lh

)
Ū where

Ū is the vector of nodal values corresponding toU ∈ V h andL̂h(Ū) :=
Lh(U − α) (cf. Sect. 2).

In fact, we first consider the corresponding semi-implicite system(
Id + τkM

−1
h L̂h(Ūk)M−1

h Lh

)
Ūk+1 = Ūk

and apply an iteration scheme to solve the fully implicite schemewhich will
be specified later on.

Now observing that in the semi-implicite scheme the numerical free
boundary cannot propagate more than a distanceh in each time step, it is
reasonable to choose the time incrementτ smaller than the quotient h

speed(t)
wherespeed(t) stands for the maximum normal velocity of the numerical
free boundary at timet. As a consequence of this special choice of time
increment, only a very small number of iterations (experiments show< 5)
is necessary to obtain the solution of the fully implicite scheme.

Formal considerations – performed in the continuous setting, see also
[6] for space dimensiond = 1 – indicate that the normal velocityVn(ξ(t))
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of the free boundary in a pointξ(t) can be related to spatial derivatives ofu
in ξ(t) according to the following formula:

Vn(ξ(t)) = lim
x→ξ(t)

M(u(t, x))
u(t, x)

∂

∂ν
∆u(t, x) x ∈ supp(u(t, .))(43)

In this section, it will be verified for self-similar source-type solutions to the
equation

ht + div(hn∇∆h) = 0(44)

h(t, .) → δ0 ast → 0.(45)

Those source-type solutions have been studied by Bernis-Peletier-Williams
[9] (space dimensiond = 1) and Bernis-Ferreira [7] (space-dimension
d > 1).

But at first, let usmake somemore remarks related to the discrete setting.
In the framework of the algorithm studied in this paper, we formulate a
discrete counterpart of formula (43) in the following way:

In a time-steptk, we first determine on eachE ∈ Th numbers

v(tk, E) :=

{M((Uτh)E)
(Uτh)E

(
∑d

i=1 |∂xip|) if Uτh|E ≥ 0 and(Uτh)E > 0

0 otherwise

(46)

and then define the time increment by the formula

τk :=
γh

β + maxE∈Th
v(tk, E)

, with = 0 < β < γ < 1.(47)

If n ≥ 1, the results about Ḧolder continuity in space for discrete solu-
tions allow to give a robust, but coarse upper bound:maxE∈Th

v(t, E) ≤
C‖U‖n−1

L∞(ΩT )h
−5/2.

This implies for the time increment:

τ ≥ Ch7/2 if n ≥ 1(48)

Hence, the assumptionkτ ≥ h4 in the previous chapters does not mean a
restriction any longer.

Let us prove now the following theorem:

Theorem 9.1. (Normal velocity of the free boundary for selfsimilar source-
type solutions)
Leth : R

d × (0,∞) be the solution to equations (44),(45).
Then the normal velocity of the free-boundary at a free boundary pointξ(t)
is given by:

Vn(ξ(t)) = lim
x→ξ(t)

hn−1 ∂

∂ν
∆h(t, x) x ∈ supp(h(t, .))(49)
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Proof. Adopting the notation of [7], the solutionh of equations (44),(45)
can be written as

h(t, x) = t−dβf(
|x|
tβ

) with β =
1

4 + dn
(50)

Definingη := |x|
tβ
, f solves the equation

(ηd−1fn(∆ηf)′)′ = β(ηdf)′ η > 0(51)

ηdf(η) → 0 as η → ∞(52)

ωd

∫ ∞

0
ηd−1f(η)dη = 1(53)

where∆η is the radial Laplacian andωd is the area of the unit sphere inRd.
In integrated form, equations (51)-(53) read as

fn−1(∆ηf)′ = βη on [f > 0](54)

In particular,f is of classC∞ on [f > 0]. By direct computation, we obtain
for the normal derivative of∆h on spheres with radiusr = |x| around the
origin:

∂

∂ν
∆h(t, x) = t−β(d+3) ∂

∂r
(∆rf)

∣∣∣∣
rt−β

(55)

Multiplying this equation byhn−1 and using equation (54) yields:

hn−1(t, x)
∂

∂ν
∆h(t, x) = t−β(dn+3)f(|x|t−β)n−1(

∂

∂r
∆rf)

∣∣∣∣
|x|t−β

= βt−β(dn+4)|x|
= βt−1|x|

(56)

For givenx0 ∈ R
d,x0 �= 0, let us denote byx(t) the intersection of the half-

line Tx0 :=
{
x ∈ R

dx = αx0, α ∈ R
+
}
with S(t), the free boundary at

time t.
By continuity, we infer:

lim
x→x(1)

fn−1(|x|) ∂

∂r
(∆rf)

∣∣∣∣
|x|

= β|x(1)| x ∈ supp(f)(57)

which implies for the corresponding moving free boundary pointx(t) :=
tβx(1):

Vn(x(t)) =
∂

∂t
〈x(t), νx(1)〉 = βtβ−1|x(1)|

= βt−1|x(t)| = lim
x→x(t)

hn−1(t, x)
∂

∂ν
∆h(t, x) x ∈ supp(h(t, .))(58)
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Here, we used the abbreviationνx := x
|x| .

This proves the theorem.

10. Numerical results

The finite element scheme has been implemented in a numerical algorithm
and applied to several significantmodel problems. In each timestep, we have
to solve the nonlinear system of equationsB(Ūk+1) = Ūk with

B(Ū) :=
(
Id + τkM

−1
h L̂h(Ū)M−1

h Lh

)
Ū

where Ū is the vector of nodal values corresponding toU ∈ V h and
L̂h(Ū) := Lh(U − α) (cf. Sect. 2). If we consider first the semi-implicit
scheme where themobility is evaluated for fixedW̄ , we obtain a sparse, lin-
ear, nonsymmetric system of equations. For givenW̄ we look for solutions
Ū , such that

Bl(W̄ )Ū :=
(
Id + τkM

−1
h L̂h(W̄ )M−1

h Lh

)
Ū = Ūk .

For d = 1 the matrixBl(W̄ ) is a band matrix with bandwidth5 . LR-
Decomposition is applied to solve this system of equations withO(q) com-
putational effort, whereq = dimV h .

The original nonlinear problemB(Ūk+1) = 0 now can be solved either
by Newton’s method or by another appropriate fixed-point iteration. Here
we calculate fori ≥ 0 iteratively solutions of

Bl(Ūk+1
i )Ūk+1

i+1 = Ūk

where we have defined̄Uk+1
0 := Ūk . If

∥∥∥Ūk+1
i+1 − Ūk+1

i

∥∥∥
∞

gets small

enough, we select̄Uk+1 = Ūk+1
i+1 and continue with the next timestep.

We observe fine convergence properties for this iteration – at most four
iterations are necessary to get below a threshold of magnitude10−8.

Let us describe the results of our numerical experiments. In space di-
mensiond = 1, we performed four characteristic simulations, namely

– spreading of self-similar source-type solutions,
– instantaneous development of zero contact angle for initial data with
non-zero contact angle and exponentn < 3,

– convergence of solutions to a parabolic profile ifn ≥ 3,
– dead core phenomenon (film rupture) forn = 0.5 and appropriately
chosen initial data.
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1 1 1 1t = 0.000 t = 0.004 t = 0.016 t = 0.03

Fig. 2. Evolution of selfsimilar source-type solution for growth exponentn = 1

Let us begin with the detailed description of the first experiment.
Smyth and Hill [19] found the following explicit formula for self-similar

source-type solutions (cf. Fig. 2) to equations (44),(45):

u(t, x) =
1

120(t + τ)1/5

[
ω2 − x2

(t + τ)2/5

]2

+
(59)

Choosingω = 2, τ = 4−5 and observing the symmetry around zero,
it is sufficient to solve equation (1) numerically onΩ = (0, 1) with initial
datum:

U0 = Ih(
1
30

[
4 − 16x2]2

+).(60)

We chooseσ = 10−8 and perform simulations for values ofγ contained
in the set{0.1, 0.5, 1.0}, whereγ is the parameter in the formula for the
time-step control (47).

We stop the algorithm at timeT = 0.03 in order to guarantee that
supp(u(T, .)) is contained in[0, 1].

The nodal point corresponding to the numerical free boundary is in each
time step identified by the formula

xD(tk) := inf
i=1,...dim Vh

{xi nodal point : U(tk, xi) ≤ 0} .

and compared with the true free-boundary pointxF (tk). In the following
tables, the relevant data for different values ofγ and various choices of
triangulations are written down.
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γ = 1 1 2 3 4

number of gridpoints 100 200 500 1000

time steps 41 86 261 851

‖Ihu(0.029, ·) − UN (·)‖L∞(Ω)/10−3 5.47 2.63 0.99 0.47

‖Ihu − U‖L∞(ΩT )/10−3 7.61 3.75 1.44 0.67

maxk=1→N |xF (tk) − xD(tk)|/10−3 6.23 3.41 1.66 1.25

CPU-time/s 2.98 6.16 14.98 44.50

γ = 0.5 1 2 3 4

number of gridpoints 100 200 500 1000

time steps 85 178 661 1476

‖Ihu(0.029, ·) − UN (·)‖L∞(Ω)/10−3 4.69 2.31 0.88 0.43

‖Ihu − U‖L∞(ΩT )/10−3 6.43 3.17 1.22 0.59

maxk=1→N |xF (tk) − xD(tk)|/10−3 6.40 3.32 1.56 1.27

CPU-time/s 3.14 6.30 20.28 64.83

γ = 0.1 1 2 3

number of gridpoints 100 200 500

time steps 539 1104 3939

‖Ihu(0.029, ·) − UN (·)‖L∞(Ω)/10−3 4.17 2.05 0.80

‖Ihu − U‖L∞(ΩT )/10−3 5.49 2.71 1.07

maxk=1→N |xF (tk) − xD(tk)|/10−3 8.22 4.09 1.40

CPU-time/s 3.54 10.57 77.34

As we do not observe smaller values forU than−7 × 10−6, the dis-
cretization error obviously does not have its maximum at the free boundary,
but in the bulk region of the droplet. Furthermore, a comparison of the fourth
and fifth line indicates that the maximum error occurs for small values of
t. On the contrary, the error in the free boundary is stable over the whole
time-interval. In fact, we observe oscillations around zero of the difference
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t = 0.020 t = 0.410

t = 0.000 t = 0.005

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

"proto0.1"

Fig. 3. Instantaneousdevelopment of zero contact angle for initial datawith non-zero contact
angle, illustrated forn = 1 and hat-shaped initial datum withsupp(u0) = (0.25, 0.75) and
maximal height0.05, on the right time–increment versus time depicted in a diagram

xF (t)−xD(t) between numerical and exact free boundary as time proceeds
– a good indication for the efficiency of our time-step control.

It is remarkable that the time-step control forγ = 1allowsaveragevalues
of the time incrementτ which are of magnitudeha with a ∈ (1.45, 1.57).
This is - besides the low numerical cost in each time-step - the main reason
for the extremely lowCPU-timesweneeded for our calculations on aSilicon
Graphics Indigo 2 with processor R4000 (250MHz).

The second experiment shows the effect of the time-step control with
regard to instantaneous development of zero-contact angle. As initial datum
U0 : (0, 1) → R, we take the nodal projection of thehat-shaped function

u0 :=




0.2(x− 0.25) if 0.25 ≤ x ≤ 0.5
0.2(0.75 − x) if 0.5 < x ≤ 0.75
0 otherwise.

(61)

We choose an uniform triangulation with100 grid points, takeγ = 0.1, and
need a CPU-time of3.16s for the whole sequence presented in Fig. 3.

Furthermore, the time incrementτk is depicted depending on the time-
steptk. As the free boundary initially moves extremely fast, we have to start
with very little valuesτk to guarantee the zero-contact angle. Afterwards, the
propagation slows down, and larger time increments are sufficient. Finally,
when the numerical solution approaches its constant limit value,τk reaches
its maximum, namely10h.

Figure 4 underlines the crucial role of the exponentn in the theory
of equation (1). Starting with the same initial data as before, we obtain
for n = 4 convergence to a solution of Poisson’s equation with constant
right-hand side as expected by the theoretical results by [2]. Moreover, our
experiments show that numerical solutions converge for values ofn ≥ 3
andt → ∞ to a parabolic profile. This gives strong numerical evidence to
the conjecture that no spreading of support occurs for values ofn ≥ 3. In
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t = 0.0 t = 2.0 t = 20 t = 300

Fig. 4. No spreading of support, but convergence to a parabolic profile, illustrated forn = 4
and same initial datum as in Fig. 3

t = 0.0000 t = 0.0005 t = 0.0019 t = 0.0050

Fig. 5. Dead core phenomenon, initial datumu0(x) = (x−0.5)4 +10−3, growth exponent
n = 0.5, using a uniform discretisation in space with300 gridpoints

t = 0.60 t = 1.70 t = 5.00t = 0.0

Fig. 6. No dead core phenomenon, same initial datum as before, but exponentn = 2

addition, we point out, that the algorithm finely works despite the fact that
n ≥ 2 and initial data have compact support.

Theoretical results only assure for values ofn ≥ 3
2 that the solution’s

support cannot shrink as time proceeds. Figure 5 gives numerical evidence
that forn = 1

2 film rupture may occur, a phenomenon that in the literature
already has been described by Bertozzi-Pugh ([10]).

Choosing the initial datum

u0(x) := 10−3 + (x− 0.5)4

andσ = 10−10, we get film rupture for300 grid points as indicated in Fig. 5
(CPU-time 25.34s). Finally, Fig. 6 has been produced using the same initial
data as before, but takingn = 2 as growth exponent. Obviously, the solution
remains strictly positive.

Let us discuss now the case of higher spatial dimensions. We subdivide
Ω = [0, 1]2 uniformly using 2500 gridpoints, and perform two character-
istic experiments with the semi-implicite algorithm described above – the
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t=0.0              t = 0.004

t=0.008                     t= 0.2

Fig. 7. 2Danalogon to Fig. 3; please note the evolution’s regularizing effect on the numerical
free boundary which instantaneously becomes smooth

t = 0.0       t=0.5

t = 4.0       t=20.0

Fig. 8. 2D analogon to Fig. 4. The support remains constant in time; its boundary is only
Lipschitz continuous

evolution ofpyramide-shaped initial data for mobility growth exponents
n = 1 andn = 4 (cf. Figs. 7 and 8). As the sparsity ofBl(W̄ ) remains, we
choose iterative solvers and apply the BiCG-Stab algorithm [21] to solve the
corresponding system of equations. It turns out that the number of BiCG-
Stab-iterations necessary to get below the error tolerance of10−14 remains
low (i.e. in average70 iterations for the case of2500 nodal points) as long as
the time-step control suggests small time-increments. As soon as the time-
increment reaches itsmaximumof10h, we observe in the first experiment an
augmentation up to values around500, whereas in the second experiment
the number of iterations remains small. Hence, the CPU-times are rather
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different – for the first experiment, we need 325s, for the second experi-
ment, 125s are sufficient. Although the numerical cost is still moderate, for
further investigations on finer grids and an additional optimization of the
algorithm, we intend to develop a multigrid solver as well as an hierarchical
preconditioner.

Let us conclude with a remark about the qualitative results of the simu-
lation in higher space dimensions. Figure 7 indicates that the evolution has
a regularizing effect on the free boundary whenn < 3. For larger values
of n, the support does not spread as time proceeds – underlining once more
the meaning ofn = 3 as threshold parameter for the qualitative behaviour
of solutions to equation (1).

Acknowledgements.G.G. would like to express his gratitude to Danielle Hilhorst for rec-
ommending to him to study finite volume schemes for degenerate parabolic equations.
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