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Summary. The basic properties of the edge elements are proven in the
original papers by Ńed́elec [22,23]. In the two-dimensional case the edge
elements are isomorphic to the face elements (the well-known Raviart–
Thomas elements [24]), so that all known results concerning face elements
can be easily formulated for edge elements. In three-dimensional domains
this is not the case. The aim of the present paper is to show how to construct
a Fortin operator which converges uniformly to the identity in the spirit
of [5,4]. The construction is given for any order tetrahedral edge elements
in general geometries. We relate this result to the well-knowncommuting
diagramproperty and apply it to improve the error estimate for a mixed
problem which involves edge elements. Finally we show that this result
can be applied to the analysis of the approximation of the time-harmonic
Maxwell’s system.

Mathematics Subject Classification (1991):65N30, 65N25

1. Introduction

The so-called edge elements are widely used in the approximation of prob-
lems which arise from electromagnetics. They are also referred to as Whitney
or Néd́elec elements. Actually, the original idea is due to Whitney [25] in
the framework of differential forms, while Ńed́elec [22] introduced them as
a new family of finite element spaces. They are well-suited for problems in-
volving thecurl operator, as it can be seen in a general way in the framework
of differential forms [7].
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In the two-dimensional case, the edge elements are nothing else than
the classical Raviart–Thomas (face) elements [24] rotated by the angleπ/2.
So that all known results on face element can be easily extended to edge
elements by changing the role of the divergence with the curl. For an ex-
haustive description of Raviart–Thomas elements, see for instance [24,9]
and the references therein.

In the three-dimensional case, edge and face elements still have some
analogies, but are no longer isomorphic. For instance, the numbers of degrees
of freedom are different (e.g., six and four respectively for the lowest-order
elements on tetrahedra). Some properties of edge elements are contained in
the original papers by Ńed́elec [22,23]. In particular basic approximation
properties are proven, as well as an inf-sup condition (see [8]) in the case of
a convex polyhedral domain; this implies that edge elements are well-suited
for source problems associated with Maxwell’s equations. See also [16] for
a nice abstract setting concerning differential forms,div andcurl operators,
face and edge elements.

The main goal of this paper is the construction of a Fortin operator
(see [14]) for tetrahedral edge elements of any order in the case of a polyhe-
dral domain. We shall discuss later the minimal hypotheses on the domain,
which, in particular, may be non-convex. Moreover, we shall prove that the
Fortin operator converges uniformly to the identity, in a sense which will be
made precise. This fills a gap between face and edge elements in three di-
mensional domains, in particular for what the commuting diagram property
is concerned (see Sects. 2 and 3 for a parallel between the two families of
spaces).

A Fortin operator for edge elements has been already used by other au-
thors (see, for instance [12,20,21,10,17] and the references therein), how-
ever they usually need the mesh to be quasiuniform and more regularity
hypotheses in order to prove the convergence of such an operator to the
identity. In particular the estimate of Theorem 1 is new and, as we show in
the last section, it is of fundamental importance for proving the absence of
spurious solutions in the approximation of Maxwell’s eigenproblem.

Girault and Raviart in their book [15] (see (5.50) p. 273) conjectured a
similar property for the Fortin operator; our result is a partial answer to that
question in a more general setting.

In this way, we prove in particular that the edge elements fit the hy-
potheses of [5,4], showing that they are well-suited for eigenvalue problems
arising from Maxwell’s system (see [6]). Results of this nature are usually
referred to as discrete compactness properties (see [18]).

An outline of the paper is as follows. In Sect. 2 we describe face and edge
finite element spaces in 3D. We try to emphasize analogies and differences.
In Sect. 3 we introduce the differential problem we are dealing with. Once
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again we shall do a parallel between face and edge elements. In particular
we show why the construction of a Fortin operator for edge elements cannot
be obtained as one usually does for face elements and we outline some
properties related to the existence of a Fortin operator. In Sect. 4, we state and
prove our main results concerning the Fortin operator. Finally, in Sect. 5, we
apply the abstract setting to the approximation of Maxwell’s eigenproblem.

2. Face and edge elements in three dimensions

In this section we recall the definitions and the basic properties of face and
edge elements on tetrahedra. For convenience of the reader we state all
results we are using in the next sections. As basic references concerning
these results let us quote, for instance, [15,9,24,22].

Let Ω be a Lipschitz polyhedral (possibly non-convex) domain inIR3,
∂Ω its boundary andn the outward unit normal vector.

Let k ≥ 0 be a fixed integer number and given an open setK ⊂ IR3 let
us denote byPk(K) the space of polynomials of degree at mostk.

Let us introduce a tetrahedral triangulationTh of Ω which we suppose to
beregular. In particular we do not assume the mesh to be quasiuniform. With
an abuse of notation, as usual the parameterh is related to the maximum
diameter of the elements ofTh.

Let us recall the definition of the Raviart-Thomas face discretization
of H(div;Ω) which we denote bỹFh (the letter F stands for “face”). The
restriction of an element of̃Fh to a given tetrahedronK is of the form
p(x) + r(x)x with p ∈ Pk(K)3 andr ∈ Pk(K). The degrees of freedom

of p ∈ F̃h are the moments of the normal component ofp of degree at most
k on each face ofK and the moments ofp of degree at mostk − 1 (k > 0)
on the tetrahedronK.

Ẽh will denote the Ńed́elec edge discretization ofH(curl;Ω) of index
k. The restriction of an element of̃Eh to a given tetrahedronK is of the form
p(x) + r(x) with p ∈ Pk(K)3 andr ∈ Pk+1(K)3 such thatr · x ≡ 0. The

degrees of freedom ofσ ∈ Ẽh are the moments of the tangential component
of σ of degree at mostk on each edge ofK, the moments of the tangential
component ofσ of degree at mostk − 1 (k > 0) on each face ofK and the
moments ofσ of degree at mostk − 2 (k > 1) on the tetrahedronK.

Let us denote withπF
h andπE

h the interpolation operators which act to
F̃h andẼh, respectively, using the appropriate degrees of freedom.
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The following approximation properties hold true (see [1])

||p − πF
h p||0 ≤ Chs|p|s 1/2 < s ≤ k + 1

||σ − πE
h σ||0 ≤ Chs|σ|s 1/2 < s ≤ k + 1

||div p − div πF
h p||0 ≤ Cht|div p|t 0 < t ≤ k + 1

|| curlσ − curlπE
h σ||0 ≤ Cht| curlσ|t 0 < t ≤ k + 1.

(1)

The following relation between face and edge elements is of great im-
portance

curl Ẽh ⊂ F̃h.(2)

The following relation expresses the so-calledcommuting diagramprop-
erty for edge elements

curlπE
h σ = πF

h curlσ.(3)

Let us denote withP c
k+1 the space ofcontinuouspiecewise polynomials

of degree at mostk + 1 and withPk the space of arbitrary piecewise poly-
nomials of degree at mostk. The standard interpolation operator forPk will
be denoted withπP

h .
The following relation characterizes the divergences of face elements

div F̃h = Pk(4)

and the following expression gives thecommuting diagramproperty for face
elements

div πF
h p = πP

h div p.(5)

According to the boundary condition of the problem we shall deal with,
we introduce the notationEh denoting the subspace of̃Eh consisting of
vector fieldsσ such thatσ ×n = 0 on∂Ω. In a similar way,Fh will denote
the subspace of̃Fh containing vector fieldsp with p ·n = 0 on the boundary.

We shall also make use of the spaceṖ c
k+1 of continuous piecewise poly-

nomials of degree at mostk + 1 which vanish on the boundary∂Ω and of
the spaceQh defined byQh = divFh ⊂ Pk.

Another useful space isWh = curlEh ⊂ Fh.
The following inclusion is well-known

grad Ṗ c
k+1 ⊂ Eh(6)

and the following discrete Helmholtz decomposition has been used by many
authors (see [2] for a nice and simple approach)

A = {τ ∈ Eh : (τ , grad p) = 0 ∀p ∈ Ṗ c
k+1},

Eh = A ⊕ grad Ṗ c
k+1.

(7)
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3. Setting of the problem

In order to fix our notation, let us recall the definitions of the spaces we are
using.

L2(Ω) = {v : Ω → IR | ∫
Ω v2 < +∞}

L2
0(Ω) = {v ∈ L2(Ω) | ∫

Ω v = 0}
H1(Ω) = {v ∈ L2(Ω) | grad v ∈ L2(Ω)3}
H1

0 (Ω) = {v ∈ H1(Ω) | v = 0 on∂Ω}
H(curl;Ω) = {v ∈ L2(Ω)3 | curl v ∈ L2(Ω)3}
H0(curl;Ω) = {v ∈ H(curl;Ω) | v × n = 0 on∂Ω}
H(div;Ω) = {v ∈ L2(Ω)3 | div v ∈ L2(Ω)}
H0(div;Ω) = {v ∈ H(div;Ω) | v · n = 0 on∂Ω}
H(div0;Ω) = {v ∈ H(div;Ω) | div v = 0 in Ω}
H0(div0;Ω) = H0(div;Ω) ∩ H(div0;Ω)

(8)

We observe that it is standard to show, using suitable Green’s formulae, that
the traces involved in the definition ofH1

0 (Ω),H0(curl;Ω) andH0(div;Ω)
exist in the sense of [19]. Moreover, we remark that the spaces recalled in (8)
are endowed with their usual norms, which we denote, in a natural way, by
|| · ||0 (for both L2(Ω) andL2(Ω)3), || · ||1, || · ||curl and || · ||div ; we
shall denote the scalar product ofL2(Ω)n (n = 1, 3), as usual, by(·, ·). In
addition to the spaces introduced in (8), we shall make use of the fractional
Sobolev spacesHs(Ω) (s > 0), whose norm will be denoted by|| · ||s. For
a definition of those spaces, see for instance [19].

Throughout the paper we implicitly assume that acurl-free vector field
is a gradient. This is true, for instance, ifΩ is simply connected. In presence
of cavities withinΩ our analysis can be extended following the guidelines
of [1].

Let us introduce the following notation

F = H0(div;Ω), Q = L2
0(Ω),

E = H0(curl;Ω), W = H0(div0;Ω)(9)

and consider the following two problems:

givenf ∈ Q, find (p, u) ∈ F × Q such that{
(p, q) + (div q, u) = 0 ∀q ∈ F
(div p, v) = −(f, v) ∀v ∈ Q.

(10)

and
giveng ∈ W , find (σ, u) ∈ E × W such that{
(σ, τ) + (curl τ , u) = 0 ∀τ ∈ E
(curlσ, v) = −(g, v) ∀v ∈ W.

(11)
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It is not difficult to see that if the solutions of (10) and (11) are regular
enough then they satisfy the following equations in strong form with the
corresponding Neumann-type boundary conditions (where in order to obtain
the second one we used the identity−∆ · = curl curl ·− grad div · and the
fact thatdiv u = 0)

−∆u = f in Ω∫
Ω u = 0

∂u
∂n = 0 on∂Ω

p = gradu in Ω

−∆u = g in Ω
div u = 0 in Ω
u · n = 0 on∂Ω
curlu × n = 0 on∂Ω
σ = − curlu in Ω

(12)

The analogies between problems (10) and (11) are evident; the same is
true for their associated equations (12). In particular in two dimensions they
are basically the same problem; actually in two variables the curl and the
div operator are isomorphic.

The main goal of this section is to show that this is not the case whenΩ is
a three-dimensional domain; besides the analogies some major differences
arise which make the analysis of the corresponding approximating schemes
not equivalent.

In particular the face elements and their divergences are well-suited for
the approximation of problem (10) and the involved numerical analysis
consists of results which can be considered classical in this framework (see
for instance [9] for a review of them).

On the other hand the edge elements and their curls could be used for the
approximation of (11); the analysis of the corresponding numerical scheme
has not been yet completed and in some case, as we shall see, it cannot
follow the lines used for analyzing face elements.

Using the notation of the previous section, let us introduce the discrete
problems which correspond to (10) and (11), respectively.

givenf ∈ L2
0(Ω), find (p

h
, uh) ∈ Fh × Qh such that{

(p
h
, q) + (div q, uh) = 0 ∀q ∈ Fh

(div p
h
, v) = −(f, v) ∀v ∈ Qh.

(13)

and

giveng ∈ H0(div0;Ω), find (σh, uh) ∈ Eh × Wh such that{
(σh, τ) + (curl τ , uh) = 0 ∀τ ∈ Eh

(curlσh, v) = −(g, v) ∀v ∈ Wh.
(14)

Let us describe now some of the known properties concerning prob-
lems (13) and (14). For the face element we refer to [9] and to the references
therein, for the edge elements we shall give the appropriate reference for
each property.
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3.1. The ellipticity in the kernel

The ellipticity in the kernel for problems (13) and (14) are immediate to
obtain. Let us define the two kernels

K1 = {p ∈ Fh : (div p, u) = 0 ∀u ∈ Qh}
K2 = {σ ∈ Eh : (curlσ, u) = 0 ∀u ∈ Wh}.(15)

It is clear by the definitions of the discrete spaces that vectors inK1 are
divergence free while vectors inK2 have vanishing curl, so that

(p, p) = ||p||2div ∀p ∈ K1,
(σ, σ) = ||σ||2curl ∀σ ∈ K2.

(16)

3.2. The inf-sup condition

The following inf-sup condition is standard for face elements

inf
u∈Qh

sup
p∈Fh

(div p, u)
||p||div||u||0 ≥ C.(17)

The corresponding inf-sup condition for edge elements

inf
u∈Wh

sup
σ∈Eh

(curlσ, u)
||σ||curl||u||0 ≥ C(18)

has been proven by Ńed́elec [22] in the case whenΩ is convex and follows
from Proposition 4.6 of [1] in the general case (see also [2]).

3.3. The Fortin operator

Givenf ∈ L2
0(Ω) andg ∈ H0(div0;Ω) let us consider the spacesF 0 and

E0 containing allp andσ which solve problems (10) and (11), respectively.
We endowF 0 andE0 with their natural norms.

A Fortin operatorΠ1 for problem (13) has to satisfy

Π1 : F 0 → Fh

(div(p − Π1p), u) = 0 ∀u ∈ Qh, ∀p ∈ F 0

||Π1p||div ≤ C||p||F 0 ∀p ∈ F 0.

(19)

It is well-known that the interpolation operatorπF
h fulfills conditions (19),

so that can be chosen as a Fortin operator for problem (13). Moreover, ifF 0

is contained inHs(Ω)3 for s > 1/2 then we can easily obtain the estimate
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||p − Π1p||0 ≤ Cht||p||s(20)

wheret = min(s, k + 1).
Let us now consider the corresponding Fortin operatorΠ2 associated

with problem (14) which has to satisfy

Π2 : E0 → Eh

(curl(σ − Π2σ), u) = 0 ∀u ∈ Wh, ∀σ ∈ E0

||Π2σ||curl ≤ C||σ||E0 ∀σ ∈ E0.

(21)

It turns out that the interpolation operatorπE
h does not meet the conditions

described in (21), in particular one has for a generalσ ∈ E0 andu ∈ Wh

(curl(σ − πE
h σ), u) �= 0(22)

as can be verified by integration by parts. On the other hand the discrete
problem (14) can be used in order to define a Fortin operatorΠ2. Given
σ ∈ E0 let g = − curlσ anddefineΠ2σ = σh, whereσh solves (14). We
state this construction in the following

Definition 1. Givenσ ∈ E0, letΠ2σ ∈ Eh be the first componentσh of
the solution of problem (14) withg = − curlσ, that is for someuh ∈ Wh it
holds true {

(Π2σ, τ) + (curl τ , uh) = 0 ∀τ ∈ Eh

(curlΠ2σ, v) = (curlσ, v) ∀v ∈ Wh.
(23)

Let us check thatΠ2 satisfies (21). Indeed from the second equation
of (23) it follows the first property in (21). The second bound of (21) is a
consequence of the stability of (23). Moreover it can be shown thatΠ2σ is
the unique solutionσh of the following problem

find σh ∈ A such that
(curlσh, curl τ) = (curlσ, curl τ) ∀τ ∈ A.

(24)

In a similar way (making explicit the definition ofA) it can be shown
thatΠ2σ is the first componentσh of the solution of the followingstable
mixed problem

find (σh, ph) ∈ Eh × Ṗ c
k+1 such that{

(curlσh, curl τ) + (τ , grad ph) = (curlσ, curl τ) ∀τ ∈ Eh

(σh, grad q) = 0 ∀q ∈ Ṗ c
k+1.

(25)

Remark 1.The definition of the Fortin operatorΠ2 relies on the well-
posedness of problem (23). This is quite unusual; actually, it is more com-
mon to construct a Fortin operator in order to prove a mixed problem to be
well-posed. On the other hand our analysis shows the necessity for a Fortin
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operator to exist whenever a mixed problem is stable. And the existence of
a Fortin operator is needed, for instance, in order to analyze the eigenvalue
problem (51) (see the final section).

Let us now try to prove the analogous of (20) for the operatorΠ2 using the
standard error estimates for problems (14) and (25).

Let us consider problems (11) and (14) withg = − curlσ. It is then
clear thatσ solves problem (11) withu such thatcurlu = −σ. SinceΠ2σ
by definition solves problem (14) from the standard a priori error estimate
of mixed methods (see [8]) we have

||σ − Π2σ||0 ≤ ||σ − Π2σ||curl

≤ inf
τ∈Eh,v∈Wh

(||σ − τ ||curl + ||u − v||0).(26)

It turns out that the second term in the right hand side of (26) can be estimated
in an uniform way by using the regularity ofu. On the other hand in order to
deal with the first term we cannot use any extra regularity ofσ. In particular
if σ belongs toE0 then its curl by definition is inL2(Ω)3 and we cannot
use estimate (1) to obtain an uniform bound for||σ − Π2σ||curl.

Analogous troubles arise of course when we try to use the error estimate
of problem (25).

Actually, we cannot hope to do better if we consider theH(curl)–norm
of the differenceσ − Π2σ. The same problem arises when estimating the
H(div)–norm of the differencep−Π1p. However, if we confine ourselves
to theL2–norm then we would like to get an estimate of the type

||σ − Π2σ||0 ≤ C||σ − πE
h σ||0(27)

This is usually obtained by using thecommuting diagram propertythat we
are going to analyze in the next subsection.

3.4. The commuting diagram

The commuting diagram property for face elements is summarized in the
equation

div πF
h p = πP

h div p ∀p “smooth enough”(28)

From this property one can obtain the fundamental error estimate for prob-
lem (13)

||p − p
h
||0 ≤ C||p − πF

h p||0.(29)

Moreover it is clear that property (28) is strictly related to the fact that the
Fortin operatorΠ1 can be chosen to be equal to the interpolation operator
πF

h .
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Let us see what happens when edge elements are considered for the
approximation of problem (11). We would like to obtain the analogous
of (29) which reads

||σ − σh||0 ≤ C||σ − πE
h σ||0.(30)

Unfortunately (30) cannot be obtained in general as it has been pointed out
in [2]. In order to get (30) we would need the following commuting diagram
property which is false:

curlπE
h σ = πWh

h curlσ,(31)

whereπWh
h denotes the projection onto the spaceWh, that is

(πWh
h u, v) = (u, v) ∀v ∈ Wh .(32)

Actually the following commuting diagram property holds true for edge
elements

curlπE
h σ = πF

h curlσ .(33)

In [2] however it has been proven the following estimate for problem (14)
(actually, estimate (34) has been obtained in [2] under the hypothesis onΩ
to be convex, but the same proof also works in our case)

||σ − σh||0 ≤ ||σ − πE
h σ||0, wheng ∈ Wh.(34)

We shall make use of the previous estimate in the next section in order to
prove that the Fortin operatorΠ2 converges uniformly to the identity in the
L2–norm.

4. Fortin operator for edge elements

This section contains the main result of the present paper concerning the
Fortin operator.

From the previous section (see subsection 3.3) we know that there exists
an operatorΠ2 : E0 → Eh such that

(curl(σ − Π2σ), vh) = 0 ∀σ ∈ E0, ∀vh ∈ Wh,
||Π2σ||curl ≤ C||σ||E0 ∀σ ∈ E0.

(35)

We know moreover thatΠ2 can be defined fromE0 toA as the solution
σh of the following problem

givenσ ∈ E0 find σh ∈ A such that
(curlσh, curl τ) = (curlσ, curl τ) ∀τ ∈ A .

(36)
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We recall (see (26)) that we have the followingpointwiseapproximation
property:

||σ − Π2σ||curl → 0 ∀σ ∈ E0.(37)

The aim of the main theorem of this section is to prove that if we replace
theH(curl;Ω)-norm with theL2(Ω)-one then the convergence becomes
uniform.

Remark 2.As it has been pointed out in the previous section, if we know
some specific regularity onσ andcurlσ, then the following result is basi-
cally known in the case of quasiuniform meshes (see e.g. [12,20,10]) and
easy to obtain without the quasiuniformity assumption using for instance the
standard error estimate for mixed problems applied to problem (14). How-
ever our result holds true under the very weak hypothesis thatσ belongs
to Hs(Ω)3 for somes > 1/2 andcurlσ is in L2(Ω)3. As we shall see in
Sect. 5, this is a crucial point when we are interested in the approximation
of eigenvalue problems. In that case if we do not show the uniform conver-
gence ofΠ2 to the identity without any additional regularity oncurlσ then
we cannot prove the absence of spectrum pollution.

Before stating the theorem concerning the Fortin operator, we make some
remark and some hypotheses concerning the solution of problem (11) and
its approximation (14).

We recall thatE0 is the space containing all the vector fieldsσ which
solve (11) withg ∈ H0(div0;Ω), that is

E0 = {σ ∈ H0(curl;Ω) : div σ = 0}.(38)

In a similar way we denote byW 0 the space ofu solving (11) withg ∈
H0(div0;Ω), that is

W 0 = {u ∈ H0(div0;Ω) : −∆u ∈ L2(Ω)3,
curlu × n = 0 on∂Ω}.(39)

We shall make the following assumption

[REG]
E0 ⊂ Hs(Ω)3,
W 0 ⊂ Hs(Ω)3,(40)

for s > 1/2 and with continuous embeddings.

Remark 3.In [1] it has been proven that [REG] holds true ifΩ is a polyhedral
domain.

Theorem 1. LetΩ be a polyhedral domain or more generally let us assume
that [REG] is fulfilled with1/2 < s ≤ 1. Then there existsC independent
of h such that

||σ − Π2σ||0 ≤ Chs||σ||s.(41)
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Proof. SinceΠ2σ ∈ A, equation (36) implies that there existsuh ∈ Wh

such that(Π2σ, uh) solves (14) with right-hand sideg = − curlσ.
Let us consider the solution(σ̃, ũ) of (11) withg = curlΠ2σ. We have

||σ̃||s ≤ C|| curlΠ2σ||0 ≤ C|| curlσ||0(42)

and from (1), (34) and (42) it follows (since of courseΠ2σ solves (14) with
RHSg = − curlΠ2σ):

||σ̃ − Π2σ||0 ≤ C||σ̃ − πE
h σ̃||0 ≤ Chs||σ̃||s ≤ Chs|| curlσ||0.(43)

Remark 4.Actually, estimate (43) is not formally correct. Indeed, according
to [1], the interpolantπE

h σ̃ is defined ifσ̃ ∈ Hs(Ω)3, s > 1/2 andcurl σ̃ ∈
Lp(Ω)3, p > 2. In our casecurl σ̃ is a priori bounded only inL2(Ω)3.
However, taking advantage of the relationcurl σ̃ = Π2σ, it is possible to
adapt in a straightforward way the technique used in page 856 of [1] to get
the required estimate.

So we have to estimate the difference||σ − σ̃||0 in order to conclude the
proof by triangular inequality.

Let us introduce the following functions:

φ = σ − σ̃, ψ = u − ũ,(44)

where we consideredu so that(σ, u) solves (11) withg = curlσ. It follows
that:

curlψ = φ
||ψ||s ≤ C||φ||0
curlφ = curl(σ − σ̃) = curl(σ − Π2σ).

(45)

We are now in position to conclude with the final estimate

||φ||20 = (φ, curlψ) = (curlφ, ψ)
= (curl(σ − Π2σ), ψ) = (curl(σ − Π2σ), ψ − πF

h ψ)
≤ Chs|| curl(σ − Π2σ)||0||ψ||s ≤ Chs|| curlσ||0||φ||0,

(46)

where we used the properties of the Fortin operatorΠ2 together with the fact
thatdivψ = 0, so thatπF

h ψ belongs toWh due to the commuting diagram
property.

Remark 5.The result obtained in Theorem 1 is not optimal. In the case of
face elements the interpolation operator is a Fortin operator (see (19)) and
we would like to obatin also for edge element the following approximation
property:

||σ − Π2σ||0 ≤ ||σ − πE
h σ||0(47)

Our proof however relies on the solutioñσ of problem (11) withg =
curlΠ2σ. The regularity ofg is just L2(Ω)3, so that we cannot hope in
generalσ̃ to be more regular thanH1(Ω)3 even in the case of a convex
domain. This means that the constraint ons to be not bigger than1 cannot
be avoided.
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5. Application to eigenvalue problems

In this section we apply the Fortin operator analyzed in Theorem 1 to the
study of the approximation of the following eigenvalue problem which arises
from problem (11). This result fits the framework of [5] and [4] and is an
improvement of the one which has been announced in [6].

We are dealing with the following eigenvalue problem

find (λ, u) ∈ C×H0(div0;Ω),
with u �= 0, such that∃σ ∈ H0(curl;Ω):{
(σ, τ) + (curl τ , u) = 0 ∀τ ∈ H0(curl;Ω)
(curlσ, v) = −λ(u, v) ∀v ∈ H0(div0;Ω).

(48)

It is clear that the operator which mapsg to u (see (11)) is self-adjoint
and moreover, due to the compact embedding ofH0(curl;Ω)∩H(div0;Ω)
into L2(Ω)3 (see, for instance, for general compactness results [13]), it is
also compact. Hence the eigenvalues of (48) are real and can be ordered in
an increasing sequence, which tends to the infinity. We denote them byλi

(i ∈ IN), in such a way that

0 < λ1 ≤ λ2 ≤ · · · ≤ λi · · ·(49)

and all the eigenvalues have multiplicity equal to one (notice that, with our
notation, to a multiple eigenvalue correspond several distinctλi with the
same value). Moreover we denote byEi the eigenspace associated withλi.

Following [5], the following mapm : IN → IN will be useful to analyze
the eigenvalues convergence.

m(1) = dim{⊕iEi : λi = λ1},
m(N + 1) = m(N) + dim{⊕iEi : λi = λm(N)+1}.(50)

Hence,λm(1), . . . , λm(N) will be the firstN distinct eigenvalues of (48).
Given two sequences of finite dimensional subspacesΣh andWh of

H0(curl;Ω) andH0(div0;Ω), respectively, the finite element discretization
of (48) reads as follows:

find λh ∈ IR anduh ∈ Wh, with uh �= 0, such that∃σh ∈ Σh:{
(σh, τh) + (curl τh, uh) = 0 ∀τh ∈ Σh

(curlσh, vh) = −λh(uh, vh) ∀vh ∈ Wh.
(51)

We denote the eigenvalues of (51) byλh,i (i ∈ IN) so that they are ordered
in an increasing sequence

0 < λh,1 ≤ λh,2 ≤ . . . ≤ λh,i ≤ . . . ,(52)

the corresponding discrete eigenspace will be denoted byEh,i.
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Before recalling the hypotheses introduced in [4] for the convergence of
eigenvalues/eigenvectors of (51) to those of (48), let us set some notation.

We recall the definition ofE0 andW 0 as the spaces of the solutions
σ andu of problem (11), withg varying inH0(div0;Ω). If Ω is a general
(possibly non-convex) polyhedral domain then is has been proven in [1] that
E0 andW 0 are contained inHs(Ω)3. We shall denote by|| · ||E0 and|| · ||W 0

their natural norms.
The discrete kernelIK is defined by

IK = {τh ∈ Σh : (curl τh, vh) = 0 ∀vh ∈ Wh}.(53)

The following hypotheses have been introduced in [4] in an abstract
framework (see definitions 3, 4 and 5).

H1: theweakapproximabilityofW 0 is satisfied if there existsω1(h) tending
to zero ash goes to zero such that for everyu ∈ W0 and for every
τh ∈ IK

(curl τh, u) ≤ ω1(h)||τh||0||u||W 0 .(54)

H2: the strong approximabilityof W 0 is satisfied if there existsω2(h)
tending to zero ash goes to zero such that for everyu ∈ W 0 there
existsuI ∈ Wh such that

||u − uI ||div ≤ ω2(h)||u||W 0 .(55)

H3: Πh : E0 → Σh is calledFortin operator(see also the previous section)
if it satisfies:

(curl(σ − Πhσ), vh) = 0 ∀σ ∈ E0, ∀vh ∈ Wh,
||Πhσ||curl ≤ C||σ||E0 ∀σ ∈ E0.

(56)

H4: A Fortin operatorΠh converges uniformly to the identityif there exists
ω3(h) tending to zero ash goes to zero such that

||σ − Πhσ||0 ≤ ω3(h)||σ||E0 ∀σ ∈ E0.(57)

In [5,4] it has been proven that H1–H4 imply that the discrete eigenvalues
converge to the continuous ones, that is

∀ε > 0, ∀N ∈ IN ∃h0 > 0 such that∀h ≤ h0
maxi=1,...,m(N) |λi − λh,i| ≤ ε,

δ̂(⊕m(N)
i=1 Ei,⊕m(N)

i=1 Eh,i) ≤ ε,

(58)

whereδ̂(A,B), for A andB linear subspaces ofL2(Ω), denotes as usual
the gap betweenA andB.
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Using the notation of Sect. 3 let us now defineΣh = Eh. In the previous
section it has been proved the validity of H3 and H4 under weak regularity
hypotheses.

In order to apply the abstract theory of [4] it remains to check hypotheses
H1 and H2.

It is immediate to see that hypothesis H1 holds true; indeed the left-hand
side in (54) is always equal to zero. Actually, an elementτh in IK satisfies
curl τh = 0. For the proof of hypothesis H2, we use the following standard
way. Let us defineuI to be the face interpolant ofu, that usuI = πF

h u.
Then, thanks to the commuting diagram property for edge elements (3),
div uI = 0 anduI belongs toWh. Thus estimate (55) follows from the
classical approximation properties of face elements (see (1)), together with
the regularity results onu with ω2(h) = Chs.

It follows that the following convergence theorem holds true (see [3],
Thm.’s 11.1 and 11.2 and [5]).

Theorem 2. Let λi andλh,i (i ∈ IN) be the eigenvalues of (48) and (51),
respectively. Assume that the spaceE0 is contained inHs(Ω)3 for s > 1/2.
For the sake of simplicity let us suppose thatλi corresponds to a simple
eigenvalue; thismeans thatλi �= λj for i �= j. Let us denote byσi andui the
corresponding eigenfunctions (σh,i anduh,i the discrete ones), normalized
in such a way that||ui||0 = ||uh,i||0 = 1. Then (58) is fulfilled. Moreover
the following estimates hold true

|λi − λh,i| ≤ C infτ∈Eh,v∈Wh

× (||σi − τ ||20 + ||σi − τ ||curl||ui − v||0 + ||ui − v||20
)

||ui − uh,i||0 ≤ infτ∈Eh,v∈Wh
(||σ − τ ||curl + ||ui − v||0).

(59)

Remark 6.Theorem 2 deals with simple eigenvalues. This has been done in
order to make the presentation simpler, however it is not difficult to extend
the result to the general case according to [3].

Remark 7.As far as the regularity hypothesisE0 ⊂ Hs(Ω)3 is concerned,
it has been proven in [1] that it holds true if the domain is a polyhedron.
Actually it seems to be satisfied in most practical application, except when
different materials may be involved (see [11]).

We point out however that this is the minimum regularity for which the
interpolation operatorπE

h can be defined.

In [6] it has been shown that the eigensolution of problem (48) can be related
to the solution to the Maxwell’s cavity problem.

In the original Maxwell’s eigenproblem,σi is the eigenfunction com-
ponent we are interested in, so that it would be useful to estimate the error
||σi − σh,i||curl and to give a bound for|λi − λh,i| only in terms ofσi. This
is the aim of the following theorem
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Theorem 3. Under the same hypotheses and notation as in Theorem 2, let
us assume thatinfv∈Wh

||ui−v||0 is negligiblewith respect toinfτ∈Eh
||σi−

τ ||curl, that is

inf
v∈Wh

||ui − v||0 ≤ C inf
τ∈Eh

||σi − τ ||curl.(60)

Then one has

|λi − λh,i| ≤ C infτ∈Eh
||σi − τ ||2curl

||σi − σh,i||curl ≤ C infτ∈Eh
||σi − τ ||curl.

(61)

Proof. The first estimate is a consequence of (59) and (60).
Let us denote byεh the quantityinfτ∈Eh

||σi − τ ||curl. In order to bound
||σi −σh,i||curl, by triangular inequality we introduce the termΠ2σi (Π2 is
the Fortin operator analyzed in the previous section). The difference||σi −
Π2σi||curl can be estimated using the stability of the problem (23) which
definesΠ2σ. Thanks to (60) this gives

||σi − Π2σi||curl ≤ Cεh.(62)

Then we observe that

curlσi = −λiui

curlσh,i = −λh,iuh,i.
(63)

Whence we have in particular|| curlσi − curlσh,i||0 ≤ Cεh.
The remaining term is estimated using the bound of Proposition 4.6 in [1]

in the following way

||Π2σi − σh,i||curl ≤ C|| curl(Π2σi − σh,i)||0
≤ || curlΠ2σi − curlσi||0 + || curlσi − curlσh,i||0 ≤ Cεh,

(64)

where we made use of (63), (60) and of the fact thatcurlΠ2σi is a good
approximation ofcurlσi.

Remark 8.As far as hypothesis (60) is concerned, we point out that it is
usually fulfilled. Actuallyσi = curlui andui is not less regular thanσi, so
that theL2(Ω) error forui is usually not larger than theH(curl) one forσi.
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Dunod, Paris, 1968

20. C. G. Makridakis, P. Monk, Time-discrete finite element schemes for Maxwell’s equa-
tions. Math. Mod. and Numer. Anal.29 (1995), 171–197
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