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Summary. This paper investigates the stability of Runge-Kutta methods
when theyare applied to the complex linear scalar delay differential equation
y′ (t) = ay (t) + by (t− 1). This kind of stability is calledτ−stability. We
givea characterization ofτ− stableRunge-Kuttamethodsand thenweprove
that implicit Euler method isτ−stable.
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1 Introduction

Let us consider the Delay Differential Equation (DDE){
y′ (t) = ay (t) + by (t− 1) t ≥ 0
y (t) = ϕ (t) − 1 ≤ t ≤ 0,(1)

wherea, b ∈ C andϕ ∈ C ([−1, 0] ,C). It is well known thaty (t) → 0, as
t→ ∞, for all initial functionsϕ iff

λ− a− be−λ = 0 ⇒ Re (λ) < 0.(2)

Now consider a Runge-Kutta (RK) method with abscissaec1, ..., cs as
applied to (1). A constant step size1/m, m ≥ 1 integer, is used and, at
the(n+ 1)−th step (n = 0, 1, 2, ...), the delayed termy (tn + ci/m− 1)
(i = 1, ..., s) is approximated by the stage valueY (n+1−m)

i computed in
the past at the(n+ 1 −m)−th step (byϕ (tn + ci/m− 1) if n+ 1 ≤ m).
This work has been supported by M.U.R.S.T. and C.N.R.
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Then, it is known that the numerical solution asymptotically converges to
zero for all initial functionϕ iff

ξ = R
(

1
m

(
a+

b

ξm

))
⇒ |ξ| < 1(3)

whereR is the stability function of the RK method (see [5] and [7]). It is
not difficult to see that (3) is equivalent to

λ− a− b

R
( 1

mλ
)m = 0 ⇒

∣∣∣∣R( 1
m
λ

)m∣∣∣∣ < 1.(4)

The condition

Re (a) < − |b|(5)

implies (2) and leads to the definition ofP−stability (see [1]).
Definition 1.1 An RK method is calledP−stable if for all a, b ∈ C and
m ≥ 1,m integer, (5) implies (3).

In [7] it is proved that an RK method isP−stable iff it isA− stable.

More interesting is to knowwhether the numerical solution of (1) asymp-
totically vanishes whenever (2) holds. This is much more complicated than
analyzingP−stability. The subject was neglected for long time except for
some numerical experiments accomplished in [2] and confined to the real
coefficient case.

Recently the notion has been reconsidered in [3], [4] and [5] where the
following definition is given.

Definition 1.2 An RK method is calledτ−stable if for all a, b ∈ C and
m ≥ 1,m integer, (2) implies (3).

In [3], [4] and [5] the stability is analyzed for the simpler case of real
coefficientsa andb (τ (0)− stability). In [3],θ−methods are considered and
theτ (0)−stability is proved for allA−stableθ−methods, i.e. forθ ≥ 1

2 .
In [4], a necessary condition for theτ (0)−stability is given and Lobatto
IIIC methods are proved to be notτ (0)−stable. Finally, in [5] symmetric
methods (e.g. Gaussian collocationmethods) and two and three stageRadau
IIA methods are proved to beτ (0)−stable.

The general complex case is considered in [3] where theτ− stability of
the implicit Euler is conjectured and the trapezoidal rule is proved to be not
τ−stable. Moreover in the paper [6] all symmetric methods are proved to
be notτ−stable.

In this paper we investigate theτ−stability ofA−stable RK methods.
To this aim,we introduce the following definition.
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Definition 1.3 AnA−stable (A−acceptable) functionR is calledτ1− sta-
ble if for all a, b ∈ C, (2) implies (4) withm = 1.

Therefore anA−stableRKmethodwith stability functionR isτ− stable
iff the functionsR

( 1
mλ
)m

areτ1−stable for allm ≥ 1 integer.
The paper is organized as follows. In section two we describe, for fixed

b ∈ C, the set ofa ∈ C such that (2) holds. This description, in addition
to be interesting by itself, is needed in the proof of Theorem 3.2. In section
three we give a characterization ofτ1−stable functions. In section four we
prove that ifR is τ1−stable , thenR

( 1
mλ
)m

is τ1−stable for allm ≥ 1,
m integer. Hence, an RK method isτ−stable iff its stability function is
τ1−stable. Finally, in section five we prove that the implicit Euler method
is τ−stable.

2 Description of the stability set for the DDE

Let b ∈ C and let

Sb :=
{
λ− be−λ | λ ∈ C, Re (λ) ≥ 0

}
.(6)

It is clear that condition (2) holds iffa /∈ Sb.
If b = 0, thenSb = {λ ∈ C | Re (λ) ≥ 0}. So letb �= 0 and letb = Reiθ

,R = |b|. In order to describeSb, we remark that

Sb = SR + iθ,(7)

and

SR =
⋃
k∈Z

(
S0

R + i2πk
)

(8)

whereS0
R :=

{
λ−Re−λ | λ ∈ C,Re (λ) ≥ 0, Im (λ) ∈ [−π, π]}.

The setS0
R is shown in Fig. 1 (R ≤ 1) and in Fig. 2 (R > 1 ). The border

curveBR is given by

BR :=
{
iy −Re−iy | y ∈ [−π, π]}

= {x± f (R, x) | x ∈ [−R,R]}(9)

where

f (R, x) := π − arccos
( x
R

)
+
√
R2 − x2, x ∈ [−R,R] .(10)

In Fig. 2, the curveBR intersects the lines{λ | Im (λ) = ±π} at points of
real abscissax1 = x1 (R) = R cosϕ1, whereϕ1 = ϕ1 (R) is the solution
of

ϕ = R sinϕ(11)
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Fig. 1. The setS0
R (shaded) in the caseR ≤ 1

Fig. 2. The setS0
R (shaded) in the caseR > 1

in (0, π).
By (8), weobtain thatSR is the set shown inFig. 3where the real abscissa

D = D (R) is given by

D =
{
R if R ≤ 1,
x1 if R > 1.
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Fig. 3. The setSR (shaded)

Eventually, by (7), the setSb is obtained by shiftingSR along the imagi-
nary axis. The set of complex numbersa such that the condition (2) holds is
the complementary set ofSb and it is the union of the half-plane described
by the condition (5) and of a sequence of ’crests’ with period2π.

Since we haveS−R = SR + iπ, the graph of the functionD = D (R),
R > 0, is the border of the well-known asymptotic stability region of (1) in
the real coefficient case withb < 0 (see Fig. 4).

3 A characterization of τ1− stable functions

LetR be anA−stable function and letD := {λ ∈ C | |R (λ)| ≤ 1} be the
relevantA−stability region.

Next theorem gives a characterization of theτ1−stability.
Theorem 3.1 For everyc ≥ 0, let us define the set

Hc := {h ∈ C | ∀v ∈ C, ∃z ∈ C such that

Re (z) ≥ −c and z + vh− ve−z = 0
}
.

TheA−stable functionR is τ1−stable iff{
eλ

R (λ)
| λ ∈ D′, Re (λ) = c

}
⊆ Hc for all c ≥ 0,

whereD′ is the complementary set ofD.
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Fig. 4. Asymptotic stability region (shaded) in the(−b, a) −plane for the DDE (1) in the
real coefficient case andb < 0

Proof. For b ∈ C define the set

S̃b :=
{
λ− b

R (λ)
| λ ∈ D′

}
.

The functionR is τ1−stable iffS̃b ⊆ Sb for all b ∈ C or, equivalently, iff

∀λ ∈ D′, ∀b ∈ C, ∃x ∈ C such that

Re (x) ≥ 0 and λ− b

R (λ)
= x− be−x

By introducingz := x− λ andv := be−λ, we have

λ− b

R (λ)
= x− be−x ⇔ z + v

eλ

R (λ)
− ve−z = 0

and the theorem follows.✷

Next theorem gives an explicit description of the setsHc in polar repre-
sentation.

Theorem 3.2 If c ≥ 2, then

Hc =
{
reiϕ | 0 ≤ r ≤ ec} .
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Fig. 5. The setsHc for c = 1/2, 1, 3/2, 2

If 1 ≤ c < 2, then

Hc =
{
reiϕ | 0 ≤ r ≤ ec and

r > ec (c− 1) ⇒ |ϕ| ≤ arccos
(

1 − c
r
ec

)
−
√( r

ec

)2 − (1 − c)2
}
.

If 0 ≤ c < 1, then

Hc =
{
reiϕ | 0 ≤ r ≤ ec and

r ≥ ec (1 − c) and |ϕ| ≤ arccos
(

1 − c
r
ec

)
−
√( r

ec

)2 − (1 − c)2
}
.

The proof is very technical and therefore is left in appendix one.
Note thatH0 = {1}. Moreover, by the definition, it is clear thatHc1 ⊆

Hc2 for c1 ≤ c2. In Fig. 5 the setsHc are shown for some values ofc.
SinceH0 = {1} we have the following negative result (see also [6]).

Theorem 3.3 Let R be the stability function of a symmetric RK method.
For all m ≥ 1 ,m integer, the functionR

( 1
mλ
)m

is notτ1−stable.
Proof. Suppose thatR

( 1
mλ
)m

is τ1−stable for somem. Since the set{
λ ∈ C | ∣∣R ( 1

mλ
)∣∣m ≥ 1,Re (λ) = 0

}
coincides with the imaginary axis

andH0 = {1}, Theorem 3.1 yieldseiy = R
( 1

m iy
)m

for all y ∈ R, which
is not true. ✷

By combining Theorems 3.1 and 3.2, we obtain the following theorem.
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Theorem 3.4 LetR be the stability function of anA−stable RK method.
For every0 ≤ c < 2 let us define the functions

rc (y) =
∣∣∣∣ 1
R (c+ iy)

∣∣∣∣ , ϕc (y) = arg
(

1
R (c+ iy)

)
with domain(D′)c := {y ≥ 0 | c+ iy ∈ D′}. The functionR is τ1− stable
iff for all 1 ≤ c < 2 we have

rc (y) > c− 1 ⇒ ∃k ∈ Z such that

|y + ϕc (y) − 2πk| ≤ arccos
(

1 − c
rc (y)

)
−
√
rc (y)2 − (1 − c)2

and for all0 ≤ c < 1 we have

rc (y) ≥ 1 − c and ∃k ∈ Z such that

|y + ϕc (y) − 2πk| ≤ arccos
(

1 − c
rc (y)

)
−
√
rc (y)2 − (1 − c)2.

Proof. First, note that forλ = c+ iy ∈ D′, y ≤ 0, we haveλ ∈ D′ and

eλ

R (λ)
∈ Hc ⇔ eλ

R
(
λ
) ∈ Hc

(provided thatHc is symmetric with respect to the real axis). Now forλ =
c+ iy ∈ D′, y ≥ 0, we have

eλ

R (λ)
= ecrc (y) ei(y+ϕc(y))

and the theorem follows by Theorems 3.1 and 3.2.✷

4 τ−stability meansτ1−stability

The fact that an RK method isτ−stable iff itsA−stability function is
τ1−stable is a consequence of the following property of the setsHc.

Theorem 4.1 For all c ≥ 0 andm ≥ 1,m integer, we have

h ∈ Hc ⇒ hm ∈ Hmc.



Stability of Runge-Kutta methods for linear delay differential equations 363

Proof. Letm ≥ 2 and leth = reiϕ ∈ Hc (wherer ≥ 0 andϕ ∈ [−π, π]).
We will prove thathm ∈ Hmc by using the description of the setHmc given
by Theorem 3.2.

First, let us observe thatr ≤ ec impliesrm ≤ emc, and thereforehm ∈
Hmc formc ≥ 2. Formc < 2, we havec < 1 and then, by Theorem 3.2,

r ≥ ec (1 − c) , |ϕ| ≤ arccos
(

1 − c
r
ec

)
−
√( r

ec

)2 − (1 − c)2.

In particular, if1 ≤ mc < 2 andrm > emc (mc− 1), then Lemma 7.1
in appendix two yields

|mϕ| ≤ arccos
(

1 −mc
rm

emc

)
−
√(

rm

emc

)2

− (1 −mc)2(12)

and thenhm ∈ Hmc.
On the contrary, if0 ≤ mc < 1, thenrm ≥ emc (1 − c)m ≥ emc (1 −m

c) and Lemma 7.1 yields again (12). Thushm ∈ Hmc. ✷

Now we can establish the equivalence betweenτ−stability andτ1−
stability.

Theorem 4.2 Let R be anA−stable function. IfR is τ1−stable, then
R
( 1

mλ
)m

is τ1−stable for allm ≥ 1,m integer.

Proof. Let c ≥ 0 and letλ ∈ C such that
∣∣R ( 1

mλ
)m∣∣ ≥ 1 andRe (λ) = c.

Then 1
mλ ∈ D′ andRe

( 1
mλ
)

= c
m . By Theorem 3.1 we obtaine

1
m λ

R( 1
m

λ) ∈
H c

m
and, by Theorem 4.1, eλ

R( 1
m

λ)m ∈ Hc. ✷

5 τ−stability for the implicit Euler method and conclusions

Now we are in position to prove the conjecture stated in [3] for the implicit
Euler method.

Theorem 5.1 The implicit Euler method isτ−stable.
Proof. We prove that the stability functionR (λ) = (1 − λ)−1 for implicit
Euler method isτ1−stable. For0 ≤ c < 2 we have (see the notations in
Theorem 3.4)

rc (y) =
√

(1 − c)2 + y2, ϕc (y) = − arccos
(

1 − c
rc (y)

)
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for y ∈ (D′)c =
[
0,
√

1 − |1 − c|2
]
. Thereforerc (y) ≥ |1 − c| and

y + ϕc (y) = −
[
arccos

(
1 − c
rc (y)

)
−
√
rc (y)2 − (1 − c)2

]
and conditions forτ1−stability in Theorem 3.4 are satisfied.✷

In this paper the equivalence betweenτ−stability andτ1− stability is
proved. This implies that, for a given RK method, one and only one of the
following three situations occurs:

a) The RKmethod isτ−stable, i.e. (2) implies (3), for allm ≥ 1. Only one
method is known to belong to this class, i.e. implicit Euler method.

b) The RK method is notτ−stable but there existsm > 1 integer (which
depends only on the method) such that for allm,m multiple ofm, (2)
implies (3). So far, no methods are known to belong to this class.

c) There does not existm such that (2) implies (3). Symmetric methods
belong to this class.

By looking for methods reproducing correct asymptotic behavior, one
could be satisfied with methods falling into the class b). Now the problem
is to see whether there exist methods such that the functionR

( 1
mλ
)m

is
τ1−stable for somem > 1 but not form = 1.

6 Appendix one

This appendix contains the proof of Theorem 3.2.
We start by observing that for a fixedc ≥ 0 we haveHc = ecHc where

Hc = {h ∈ C | ∀v ∈ C c− vh ∈ Sv}

andSv is defined in (6). Our aim is to describe the sets

Hc,r :=
{
h ∈ Hc | |h| = r

}
for all r ≥ 0.

As for r = 0 we have

Proposition 6.1 0 ∈ Hc iff c ≥ 1.
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Proof. We have0 ∈ Hc iff c ∈ Sv for all v ∈ C. Now, by the desciption of
Sv given in section two, observe that[1,+∞) ⊆ Sv ∩ R for all v ∈ C and
[1,+∞) = Sv ∩ R for v = −1. ✷

Supposer > 0. We have

Hc,r =
{
reiϕ | ∀v ∈ C c− veiϕ ∈ S 1

r
v

}
.

Define, forR ≥ 0,

Hc,r,R =
{
reiϕ | ∀v ∈ C such that |v| = R, c− veiϕ ∈ S 1

r
v

}
.

ForR = 0 we haveHc,r,R = {h ∈ C | |h| = r}. ForR > 0 we have

Hc,r,R =
{
reiϕ | BR + iϕ ⊆ −c+ S 1

r
R

}
whereBR is the curve defined in (9). The curveBR is shown in Figures 1
and 2. The set−c+S 1

r
R is shown in Fig. 6 where the borderCR, restricted

to the strip{z | −π ≤ Im (z) ≤ π}, is given by

CR =
{
x± f

(
1
r
R, x+ c

)
| x ∈

[
−c− 1

r
R,−c+D

(
1
r
R

)]}
with f the function defined in (10).

Remark that, sinceBR and−c+S 1
r
R are symmetric with respect to the

real axis, we have, forϕ ≤ 0, reiϕ ∈ Hc,r,R iff rei(−ϕ) ∈ Hc,r,R. Therefore,
in order to checkreiϕ ∈ Hc,r,R it is sufficient to consider the caseϕ ≥ 0.

Proposition 6.2 If r > 1, thenHc,r = ∅.
Proof. If r > 1, then−R < −c− 1

rR for sufficiently largeR. For such an
R we have

−R+ iϕ ∈ (BR + iϕ) \
(
−c+ S 1

r
R

)
for all ϕ ∈ [0, π]. HenceHc,r,R = ∅ and thenHc,r = ∅. ✷

The caser ≤ 1 needs some preliminary lemmas.

Lemma 6.1 Let c ≥ 0 and0 < r ≤ 1. We have

(i) −c+D
(1

rR
) ≤ D (R) for all R > 0 iff r ≥ 1 − c.

(ii) Let r ≥ 1−c.We have−c+D (1
rR
) ≤ −R for allR > 0 iff r ≤ c−1.

Moreover ifr > c − 1, then the set
{
R > 0 | −R < −c+D

(1
rR
)}

is an intervalI := (γ, δ) which containsr with γ = c
1+ 1

r

. As for δ, we

haveδ = +∞ iff c = 0.
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Fig. 6. The set−c + S 1
r

R (shaded)

(iii) Let r ≥ 1 − c andr > c− 1. Define

Ω = Ω (c, r) :=
{

(R, x) | R ∈ I, x ∈
[
−R,−c+D

(
1
r
R

)]}
(see Fig. 7) and

d (R, x) := f
(

1
r
R, x+ c

)
− f (R, x) , (R, x) ∈ Ω.

where the functionf is given by (10). We have

min
(R,x)∈Ω

d (R, x) = d (r, 1 − c) = π − f (r, 1 − c) ≥ 0 .

Proof. (i) The functionG (R) := D (R)−D (1
rR
)
,R > 0, takes atR = r

the minimum valueG (r) = r − 1 (use the fact thatD is decreasing in
[1,+∞)). Therefore−c ≤ G (R) for all R > 0 iff −c ≤ G (r) = r − 1.

(ii) The functionG (R) := −R − D (1
rR
)
, R > 0 , is decreasing

in (0, r] and increasing in[r,+∞) (use the fact thatD′ (R) < −1 for
R > 1). Therefore−c ≤ G (R) for all R > 0 iff −c ≤ G (r) = −r − 1.
Moreover ifG (r) < −c, then{R > 0 | G (R) < −c} is an interval(γ, δ)
which containsr whereγ is given by−c = −γ − 1

rγ. Furthermore, since
G (R) ≈ (1

r − 1
)
R for r < 1 andG (R) → 0 for r = 1, asR→ +∞, we

haveδ =+∞ iff c = 0.
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Fig. 7. The setΩ = Ω (c, r) (shaded) (Lemma 6.1)

(iii) If c = 0 the result is trivial. So letc > 0. The minimum ofd can be

attained only on the border. In fact, at every point(R, x) ∈
◦
Ω the function

d is differentiable and it is not difficult to see that

∂d

∂R
(R, x) = 0 and

∂d

∂x
(R, x) = 0

is impossible.
On the lower border ofΩ, i.e. the set{(R, x) | R ∈ I, x = −R}, we

have

lim
x→−R

∂d

∂x
(R, x) = −∞

and then the minimum ofd can be attained only on the upper border ofΩ,
i.e. the set

{
(R, x) | R ∈ I, x = −c+D

(1
rR
)}
. On the upper border we

have

d (R, x) = π − f (R, x) = β (R)

where

β (R) := arccos

(
−c+D

(1
rR
)

R

)

−
√
R2 −

(
−c+D

(
1
r
R

))2

, R ∈ I.
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The functionβ is decreasing in(0, r) and increasing in(r,+∞) (compute
the derivative ofβ and use the formula

D′ (R) =
D (R) −R2

R (1 −D (R))
, R > 1

which can be obtained by implicit differentiation of (11)). Soβ takes the
minimum value atR = r. ✷

Lemma 6.2 If −c+D
(1

rR
) ≤ −R, thenHc,r,R = {h ∈ C | |h| = r}.

Proof. For everyϕ ∈ [0, π] andx ∈ [−R,R] we have

Re (x± if (x) + iϕ) = x ≥ −R ≥ −c+D
(

1
r
R

)
.

ThereforeBR + iϕ ⊆ −c+ S 1
r
R for all ϕ ∈ [0, π]. ✷

By the previous lemmas we get the following description of the sets
Hc,r.

Proposition 6.3 Let r ≤ 1. We have

(i) If r < 1 − c, thenHc,r = ∅.
(ii) Let r ≥ 1 − c. If r ≤ c− 1, thenHc,r = {h ∈ C | |h| = r}.
(iii) Let r ≥ 1 − c. If r > c− 1, then

Hc,r =
{
reiϕ | |ϕ| ≤ arccos

(
1 − c
r

)
−
√
r2 − (1 − c)2

}
.

Proof. (i) If r < 1 − c, then, by Lemma 6.1 (i), we haveD (R) < −c +
D
(1

rR
)
for someR > 0. Now for everyϕ ∈ [0, π] there existsx ∈

[−R,D (R)] such thatf (R, x) + ϕ = π and then

x+ if (R, x) + iϕ = x+ iπ ∈ (BR + iϕ) \
(
−c+ S 1

r
R

)
.

ThereforeHc,r,R = ∅ andHc,r = ∅.
(ii) If r ≤ c− 1, then, by Lemma 6.1 (ii), we have−c+D (1

rR
) ≤ −R

for all R > 0. Now, the assertion follows by Lemma 6.2.
(iii) ConsiderI,Ω andd as defined in Lemma 6.1. Define

d (R) := min
x∈[−R,−c+D( 1

r
R)]
d (R, x) , R ∈ I.

and note that

π ≥ f
(

1
r
R,−R+ c

)
= d (R,−R) ≥ d (R)
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and, by Lemma 6.1 (iii),

d (R) ≥ min
(R,x)∈Ω

d (R, x) ≥ 0.

LetR ∈ I. If ϕ ∈ [0, d (R)
]
, then

−f
(

1
r
R, x+ c

)
≤ −f (R, x) ≤ f (R, x) + ϕ ≤ f

(
1
r
R, x+ c

)
for all x ∈ [−R,−c+D

(1
rR
)]
. ThereforeBR + iϕ ∈ −c+ S 1

r
R.

If ϕ ∈ (d (R) , π
]
, letx ∈ [−R,−c+D

(1
rR
))
such thatd (R, x) < ϕ.

If f (R, x) + ϕ ≤ π, then

x+ if (R, x) + iϕ ∈ (BR + iϕ) \
(
−c+ S 1

r
R

)
.(13)

Finally, if f (R, x)+ϕ > π, there existsx1 ∈ [−R, x) such thatf (R, x1)+
ϕ = π and we have (13) withx replaced byx1.

Therefore we have proved thatHc,r,R =
{
reiϕ | |ϕ| ≤ d (R)

}
for R ∈

I. Since, by Lemma 6.2,Hc,r,R = {h ∈ C | |h| = r} for R /∈ I, we obtain

Hc,r =
{
reiϕ | |ϕ| ≤ min

R>0
d (R) = min

(R,x)∈Ω
d (R, x)

}
where, by Lemma 6.1 (iii),

min
(R,x)∈Ω

d (R, x) = π − f (r, 1 − c)

= arccos
(

1 − c
r

)
−
√
r2 − (1 − c)2.✷

By the foregoing description of the setsHc we immediately obtain the
description of the setsHc in Theorem 3.2.

7 Appendix two

This appendix contains the lemma used in the proof of Theorem 4.1.

Lemma 7.1 Letm ≥ 2,m integer, and let

Ω = Ω (m) :=
{

(k, c) ∈ R
2 | 0 < k ≤ 1, 0 ≤ c ≤ 2

m
, 1 − c ≤ k and

c ≥ 1
m

⇒ k ≥ (mc− 1)
1
m

}
.
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Fig. 8. The setΩ = Ω (m) (shaded) (Lemma 7.1)

(see Fig. 8). For every(k, c) ∈ Ω, we have

arccos
(

1 − c
k

)
−
√
k2 − (1 − c)2

≤ 1
m

[
arccos

(
1 −mc
km

)
−
√
k2m − (1 −mc)2

]
.

Proof. First, note that

Ω =
{

(k, c) | k ∈ [k1, 1] , c ∈
[
1 − k, k

m + 1
m

]}
wherek1 is the unique solution of

1 − k =
km + 1
m

.

Moreover, observe that in Fig. 8 we havec1 := 1 − k1 = km
1 +1
m .

Consider the function

d (k, c) :=
1
m

[
arccos

(
1 −mc
km

)
−
√
k2m − (1 −mc)2

]
+

−
[
arccos

(
1 − c
k

)
−
√
k2 − (1 − c)2

]
, (k, c) ∈ Ω.
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Now, it remains to prove that

min
(k,c)∈Ω

d (k, c) = d (1, 0) = 0.

The minimum ofd can be attained only on the border ofΩ. In fact, at a

point (k, c) ∈
◦
Ω the functiond is differentiable and it is not difficult to see

that

∂d

∂k
(k, c) = 0 and

∂d

∂c
(k, c) = 0

is impossible.
For a fixedk ∈ [k1, 1], the function

c �→ d (k, c) , c ∈
[
1 − k, k

m + 1
m

]
takes the minimum value at the point

c (k) :=
k2m −m2k2 +m2 − 1

2m (m− 1)
.

Wehavec (k1) = c1, c (1) = 0 and(k, c (k)) ∈
◦
Ω for k ∈ (k1, 1). Since

the minimum ofd can be obtained only on the border ofΩ we have

min
(r,x)∈Ω

d (k, c) = min
k∈[k1,1]

d (k, c (k))

= min {d (k1, c1) , d (1, 0)} = d (1, 0) = 0.✷
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