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Summary. This paper investigates the stability of Runge-Kutta methods
whenthey are applied to the complex linear scalar delay differential equation
y' (t) = ay (t) + by (¢t — 1). This kind of stability is called-—stability. We

give a characterization ef- stable Runge-Kutta methods and then we prove
that implicit Euler method is —stable.
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1 Introduction
Let us consider the Delay Differential Equation (DDE)

"(t)=ay(t) +by(t—1) t>0
@) {§<t>:@‘7é> Slzi<o

wherea,b € Candy € C (|—1,0],C). Itis well known thaty (¢) — 0, as
t — oo, for all initial functionsy iff

(2) A—a—be*=0=Re(\) <0.

Now consider a Runge-Kutta (RK) method with abscissae., c; as
applied to (1). A constant step siz¢m, m > 1 integer, is used and, at
the(n + 1) —th step & = 0, 1, 2, ...), the delayed termy (¢,, + ¢;/m — 1)

(i = 1,...,s) is approximated by the stage vaIM’é"“_m) computed in
the pastatthén + 1 — m) —th step (byp (¢, + ¢;/m — 1) if n+1 < m).
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Then, it is known that the numerical solution asymptotically converges to
zero for all initial functionp iff

(3) §—R<§l<a+g;>>:|§]<1

whereR is the stability function of the RK method (see [5] and [7]). It is
not difficult to see that (3) is equivalent to

(4) /\—a—R(;)\)m:O:'R(;)\)ml<1.

The condition
(5) Re (a) < —b|
implies (2) and leads to the definition f—stability (see [1]).

Definition 1.1 An RK method is calle®—stable if for alla,b € C and
m > 1, m integer, (5) implies (3).

In [7] itis proved that an RK method iB—stable iff it is A— stable.

More interesting is to know whether the numerical solution of (1) asymp-
totically vanishes whenever (2) holds. This is much more complicated than
analyzingP —stability. The subject was neglected for long time except for
some numerical experiments accomplished in [2] and confined to the real
coefficient case.

Recently the notion has been reconsidered in [3], [4] and [5] where the
following definition is given.

Definition 1.2 An RK method is called—stable if for alla,b € C and
m > 1, minteger, (2) implies (3).

In [3], [4] and [5] the stability is analyzed for the simpler case of real
coefficients: andb (7 (0) — stability). In [3],6—methods are considered and
the T (0) —stability is proved for allA—stabled—methods, i.e. fop > 3.

In [4], a necessary condition for the(0) —stability is given and Lobatto

[11C methods are proved to be net0) —stable. Finally, in [5] symmetric
methods (e.g. Gaussian collocation methods) and two and three stage Radau
[IA methods are proved to be(0) —stable.

The general complex case is considered in [3] where-thstability of
the implicit Euler is conjectured and the trapezoidal rule is proved to be not
T—stable. Moreover in the paper [6] all symmetric methods are proved to
be notr—stable.

In this paper we investigate the-stability of A—stable RK methods.
To this aim,we introduce the following definition.
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Definition 1.3 An A—stable (A—acceptable) functiof® is calledr; — sta-
ble if for all a, b € C, (2) implies (4) withm = 1.

Therefore am —stable RK method with stability functioR is — stable
iff the functionsR (%)\)m arer; —stable for allm > 1 integer.

The paper is organized as follows. In section two we describe, for fixed
b € C, the set ofa € C such that (2) holds. This description, in addition
to be interesting by itself, is needed in the proof of Theorem 3.2. In section
three we give a characterizationgf-stable functions. In section four we
prove that if R is 7 —stable , then? (L))" is 7 —stable for allm > 1,
m integer. Hence, an RK method is-stable iff its stability function is
71—stable. Finally, in section five we prove that the implicit Euler method
is T—stable.

2 Description of the stability set for the DDE
Letb € C and let
(6) Sy = {A—be*A\Aec, Re(/\)zo}.

It is clear that condition (2) holds iff ¢ Sj. '
If b=0,thenS, = {\ € C | Re()\) > 0}.Soleth # 0 and leth = Re®
, R = |b]. In order to describ&},, we remark that

(7) Sp = Sp + 10,

and

(8) Sk = (S + i2nk)
keZ

whereS% := {A\ — Re™* | A € C,Re (A) > 0,Im (\) € [-m, 7]}
The setS% is shown in Fig. 1 g < 1) and in Fig. 2 ® > 1). The border
curve Bp, is given by

Br:={iy— Re " |y € [-m, 7]}
9) ={z+f(R,z) |z [-R R]}
where

(10) f(R.z):= 7 — arccos (%) +VR2— 22, z€[-RR].

In Fig. 2, the curveBp, intersects the line§\ | Im (\) = £7} at points of
real abscissa; = x; (R) = Rcos 1, Wherep; = ¢; (R) is the solution
of

(11) @ = Rsinp
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Fig. 1. The setS%, (shaded) in the cask < 1

-

Fig. 2. The setS%, (shaded) in the case > 1

in (0, ).
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By (8), we obtain thab' is the set shown in Fig. 3 where the real abscissa

D = D (R) is given by

R if R<1,
1 if R>1.
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(Im

Fig. 3. The setSr (shaded)

Eventually, by (7), the sef; is obtained by shifting'r along the imagi-
nary axis. The set of complex numbersuch that the condition (2) holds is
the complementary set &, and it is the union of the half-plane described
by the condition (5) and of a sequence of 'crests’ with pefod

Since we haveéS_r = Sg + i, the graph of the functio® = D (R),

R > 0, is the border of the well-known asymptotic stability region of (1) in
the real coefficient case with< 0 (see Fig. 4).

3 A characterization of 71 — stable functions

Let R be anA—stable function and leb := {\ € C | |R (\)| < 1} be the
relevantA—stability region.
Next theorem gives a characterization of the stability.

Theorem 3.1 For everyc > 0, let us define the set
H.:={h e C|VYveC, 3z € C such that

Re(z) > —cand z + vh —ve * =0} .
The A—stable functionR is 7| —stable iff

R(})
whereD’ is the complementary set B,

A
{ c |)\6D’,Re()\):c}ch forall ¢ > 0,
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Fig. 4. Asymptotic stability region (shaded) in tije-b, a) —plane for the DDE (1) in the
real coefficient case arid< 0

Proof. Forb € C define the set

§b::{)\—Rlz>\)\/\eD’}.

The functionR is 7; —stable iffg’b C S, for all b € C or, equivalently, iff
YA €D, Vbe C, Iz € C such that
Re (x) >0and)\—i =x—be ”
- R(N\)
By introducingz := 2 — X andv := be~*, we have

b e
———=c—-be " z+v

R\ RN ve™ =0

and the theorem follows. O

Next theorem gives an explicit description of the g&tsn polar repre-
sentation.

Theorem 3.2 If ¢ > 2, then

Hc:{rei“"]Ogrgec}.
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Fig. 5. The setsH. forc=1/2,1,3/2,2

If1 <c< 2, then

ch{rei‘pmgrgecand

r>e(c—1) = |y Sarccos(l:c> —\/(;>2—(1—C)2

If 0 <c¢<1,then

Hc:{rei‘pmgrgecand

1— 2
r>e(1—c) and |90|§arccos< rc> —\/(;) —(1—¢)?

eC

The proof is very technical and therefore is left in appendix one.

Note thatH, = {1}. Moreover, by the definition, it is clear thaf., C
H,., for ¢; < c2. InFig. 5 the setdd, are shown for some values af

SinceH, = {1} we have the following negative result (see also [6]).

Theorem 3.3 Let R be the stability function of a symmetric RK method.
For all m > 1, m integer, the functiom? ()™ is notr; —stable.

Proof. Suppose thaR (1 )\)™ is r;—stable for somen. Since the set
{AeC||R(iXN)[" > 1,Re()) =0} coincides with the imaginary axis
andH, = {1}, Theorem 3.1 yields® = R (LXiy)™ for all y € R, which

is nottrue. O

By combining Theorems 3.1 and 3.2, we obtain the following theorem.
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Theorem 3.4 Let R be the stability function of aml—stable RK method.
For every0 < ¢ < 2 let us define the functions

1
R (c+1y)

, e (y) = arg (M)

with domain(D’)“ := {y > 0 | ¢ + iy € D'}. The functionR is 7, — stable
iff for all 1 < ¢ < 2 we have

re (y) :‘

re(y) >c—1 = 3k € Z such that

ly + ¢c (y) — 2mk| < arccos (i(y;) - \/Tc (y)? — (1 - c)?

and for all0 < ¢ < 1 we have

re (y) > 1 —cand 3k € Z such that

|y + @ (y) — 2mk| < arccos <:czy§) - \/Tc () — (1 - o)

Proof. First, note that fon = ¢ + iy € D', y < 0, we have\ € D’ and
A A
e e
VRS TR

(provided thatH,. is symmetric with respect to the real axis). Now foe=
c+iyeD,y>0,we have

= er, (y) W Hee))

R(A)

and the theorem follows by Theorems 3.1 and 3.2.

4 T—stability means; —stability

The fact that an RK method is—stable iff its A—stability function is
1 —stable is a consequence of the following property of the Hets

Theorem 4.1 For all ¢ > 0 andm > 1, m integer, we have

he H,= h" € H,,,.
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Proof. Letm > 2 and leth = re’? € H, (wherer > 0 andy € [, 7).
We will prove thath™ € H,,. by using the description of the sHt,,. given
by Theorem 3.2.

First, let us observe that< e impliesr™ < e™¢, and thereforé&™ <
H,,. for me > 2. Forme < 2, we haver < 1 and then, by Theorem 3.2,

r>e‘(l—c), | < arccos(l:c> - \/(;)2—(1—0)2.

eC

In particular, ifl < me < 2 andr™ > €™ (mc — 1), then Lemma 7.1
in appendix two yields

1— m 2
(12)  |myp| < arccos <rmmc> - \/( rmc> — (1 —me)?
mc 6

and them™ € H,,..
Onthe contrary, i < mc < 1,theny™ > ™ (1 —¢)™ > e™ (1 —m
¢) and Lemma 7.1 yields again (12). Thkf§ € H,,.. O

Now we can establish the equivalence betweerstability andr —
stability.

Theorem 4.2 Let R be an A—stable function. IfR is 7 —stable, then

R (EX)" is 7 —stable for allm > 1, m integer.

Proof. Letc > 0 and let\ € C suchthai? (2 \)™| > 1 andRe (\) = c.
1
Then 1) € D’ andRe (1)) = £. By Theorem 3.1 we obtaiqf("i—;) €

H . and, by Theorem 4]7?(37;) € H.. O

5 —stability for the implicit Euler method and conclusions

Now we are in position to prove the conjecture stated in [3] for the implicit
Euler method.

Theorem 5.1 The implicit Euler method is—stable.

Proof. We prove that the stability functioR (\) = (1 — X) " for implicit
Euler method igr; —stable. Foi0 < ¢ < 2 we have (see the notations in
Theorem 3.4)

re (y) = \/m ¢ey) = —arccos <1_c)

Te (y)
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fory € (D) = [O, V/1-1]1— 011 . Thereforer. (y) > |1 — ¢| and

y+pe(y) =— {arccos <;c2y(;> - \/?”c ()2 = (1 )2

and conditions for —stability in Theorem 3.4 are satisfied.O

In this paper the equivalence betweenstability andr — stability is
proved. This implies that, for a given RK method, one and only one of the
following three situations occurs:

a) The RK method is—stable, i.e. (2) implies (3), for ath > 1. Only one
method is known to belong to this class, i.e. implicit Euler method.

b) The RK method is not—stable but there exist& > 1 integer (which
depends only on the method) such that forallm multiple of m, (2)
implies (3). So far, no methods are known to belong to this class.

c) There does not exist such that (2) implies (3). Symmetric methods
belong to this class.

By looking for methods reproducing correct asymptotic behavior, one
could be satisfied with methods falling into the class b). Now the problem
is to see whether there exist methods such that the funﬂi@ﬁ&)\)m is
7, —stable for somen > 1 but not form = 1.

6 Appendix one

This appendix contains the proof of Theorem 3.2. o
We start by observing that for a fixed> 0 we haveH, = e“H . where

H.={heC|VveC c—vheS,}
andJs, is defined in (6). Our aim is to describe the sets
Hep:={heH||h=r}
forall » > 0.

As forr = 0 we have

Proposition 6.1 0 € H, iff ¢ > 1.
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Proof. We have) ¢ H. iff ¢ € S, for allv € C. Now, by the desciption of
S, given in section two, observe th@t +o0o0) C S, NR forallv € C and
[1,400) =S, NRforv=—-1. O

Suppose > 0. We have
He.,= {rew |VveC c— ve'¥ € S%v}.
Define, forR > 0,
Herr= {rew | Vv € C such that |v| = R, ¢ —ve'? € S%U} .

ForR =0we haveH,., r = {h € C | |h| = r}. ForR > 0 we have

Herr= {rew | BR +ip C —c+ S%R}

where By, is the curve defined in (9). The curvgy is shown in Figures 1
and 2. The set-c + S1 , is shown in Fig. 6 where the bordeél, restricted

to the strip{z | —= <Tm (z) < 7}, is given by

CR—{xif<iR,x+c> |z € [—c—iR,—c—i—D(iRﬂ}

with f the function defined in (10).
Remark that, sinc&r and—c + S1 ,, are symmetric with respect to the

real axis, we have, fap < 0,7¢"% € H., piff re'=¢) € H., r. Therefore,
in order to checke'¥ € H., g itis sufficient to consider the cage> 0.

Proposition 6.2 If r > 1, thenH,, = 0.

Proof. If r > 1,then—R < —c — %R for sufficiently largeR. For such an
R we have

—R+ip € (Br+ip)\ (—c—i— S;R>
forall ¢ € [0,7]. HenceH,., r = ) and thenH ., = (. O

The case < 1 needs some preliminary lemmas.
Lemma 6.1 Lete > 0 and0 < r < 1. We have
() —c+D(+R) < D(R)forall R > 0iff r >1—c.
(i) Letr > 1—c.Wehave-c+D (+R) < —Rforall R > 0iff r < c—1.

Moreover ifr > ¢ — 1, thenthe se{ R >0 | —R < —c+ D (1R)}
is an intervall := (-, ) which containg- with v = —<+. As for ¢, we

1+1
haved = +c iff ¢ = 0.
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Fig. 6. The set-c + S1 , (shaded)

(iii) Let r > 1 — candr > ¢ — 1. Define

2 =0(c,r) = {(R,x) |Rel, xe [_R’_H_D <1R>]}

r

(see Fig. 7) and

MRJ%:f(in+@>—fUm@JRJ)GQ

where the functiory is given by (10). We have

in d =d(rl—c)=n—f(r1—¢)>0.
(£%Q<R@ (ml-—c=m—f(rl-¢c=0

Proof. (i) The functionG (R) := D (R) — D (1R), R > 0, takes at? = r
the minimum valueG (r) = r — 1 (use the fact thaD is decreasing in
[1,400)). Therefore—c < G (R)forall R > 0iff —c < G (r)=r—1.

(i) The functionG (R) := —R — D (R), R > 0, is decreasing
in (0,7] and increasing inr, +oc) (use the fact thaD’ (R) < —1 for
R > 1). Therefore—¢ < G (R) forall R > 0iff —¢c < G (r) = —r — 1.
Moreover ifG (r) < —c¢, then{R > 0| G (R) < —c} is an interval(y, 9)
which containg: where~ is given by—c = —y — %7. Furthermore, since
G(R)~ (£ —1)Rforr <1andG (R) — 0forr =1, asR — +oo, we
haveé =+oo iff ¢ = 0.
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x=-c-{ 1R w=c+HD{[ 1R}

Fig. 7. The set2 = 2 (¢, r) (shaded) (Lemma 6.1)

(iii) If ¢ = 0the resultis trivial. So let > 0. The minimum ofd can be

attained only on the border. In fact, at every pdift =) € 0 the function

d is differentiable and it is not difficult to see that
od od
IR (R,xz) =0and p (R,z) =0

is impossible.
On the lower border of?, i.e. the sef{(R,x) | R€ I, = = —R}, we
have

and then the minimum af can be attained only on the upper bordethf
ie.thesef(R,z) | R€ I, x = —c+ D (:R)}. On the upper border we
have

d(R,z)=7m—f(R,x)=((R)

where

R

o= (ceen () ner

i 1
B (R) := arccos <+D(’"R)>
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The functiong is decreasing iff0, r) and increasing irfr, +o0c) (compute
the derivative of3 and use the formula
D(R) — R?
R(1-D(R))’

which can be obtained by implicit differentiation of (11)). 8dakes the
minimum value alR =r. O

D' (R) = R>1

Lemma 6.2 If —c+ D (1R) < —R,thenH.,r ={h €C||h| =r}.

Proof. For everyp € [0, 7] andx € [—R, R] we have

Re(:n:tif(x)+icp)::1:2—RZ—c+D(iR>.

ThereforeBr + i C —c+ Siforallp € [0,7]. O

By the previous lemmas we get the following description of the sets
He,.

Proposition 6.3 Letr < 1. We have
() If r<1—c,thenH., =0.
(i) Letr >1—c.ifr<c—1,thenH., = {h € C||h| =r}.

(iii) Let r > 1 —c.If r > ¢ — 1, then

_ . 1
Hepr = {Tew | || < arccos ( c> —\/r2—(1— 0)2}.
T

Proof. (i) If » < 1 — ¢, then, by Lemma 6.1 (i), we hav@ (R) < —c +
D (1R) for someR > 0. Now for everyy € [0,7] there existsz €
[—R, D (R)] such thatf (R, z) + ¢ = = and then

J:Jrif(RaSU)wLigo:erin(BR+Z'<,0)\<—0+S;R>.

ThereforeH ., r = 0 andH, = 0.

(ii) If r < c—1,then, by Lemma 6.1 (i), we havec+ D (2R) < —R
for all R > 0. Now, the assertion follows by Lemma 6.2.

(iii) Consider!, {2 andd as defined in Lemma 6.1. Define

d(R) = xe[—R,I—I::TD(%R)]d(R’ z), Rel.

and note that

T f <iR,—R+c> — d(R,—R) > d(R)
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and, by Lemma 6.1 (iii),
d(R)> min d(R,z)>0.

(R,x)ES

LetRe I.If o € [0,d(R)] , then

—f (iR,m—i—c) <S-fRz)< f(Ra)+o<f C,R,w%)

forallz € [-R,—c+ D (LR)]. ThereforeBg + ip € —c + S1p,.

If o € (d(R),7],letz € [-R,—c+ D (LR)) suchthatl (R, 7) < ¢.
If f(R,ZT)+ ¢ <m,then

(13) T+if (RT) +ip e (BR+¢¢)\(—c+S%R).

Finally, if f (R,Z)+¢ > m,there existg; € [-R, ) suchthalf (R,Z1)+
¢ = w and we have (13) witl¥ replaced byz;.

Therefore we have proved that. . r = {re’? | |¢| < d(R)} for R €
I.Since, by Lemma 6.% ., r = {h € C||h| =r}for R ¢ I, we obtain

H., = i < mind (R) = min d(R,
: {7‘6 !Is@l_ggg() (Rr}%relﬂ( w)}

where, by Lemma 6.1 (iii),

in d(R,z)=m—f(r,1—
(RI,I;I)Ielﬂ( z)=m—f(r,1-c)

1—
:arccos( C) —\/r2—(1-¢)?0
r

By the foregoing description of the sefts. we immediately obtain the
description of the setH, in Theorem 3.2.

7 Appendix two

This appendix contains the lemma used in the proof of Theorem 4.1.

Lemma 7.1 Letm > 2, m integer, and let

2
Q:Q(m)::{(kz,c)ER2|0<k§1,0§c§, 1—c<kand
m

1
c> —
m



370

e - —— - - - - - - - - — -

k=qme-1)"%

Fig. 8. The set? = 2 (m) (shaded) (Lemma 7.1)

(see Fig. 8). For everyk, ¢) € (2, we have

1—
arccos ( : C) —\/k2—(1—¢)?
1 1—-mec
- _ 2m _ _ 2
< - [arecos( s > \/k (1 —mec) ] :
Proof. First, note that

R e

wherek; is the unique solution of

K™ +1
=L
m
Moreover, observe thatin Fig. 8 we haxe:=1 — k1 = &m“

Consider the function

d(k,c) = % [arccos <1 kn:nc> _ \/ka (- mc)2:| N

_ [arccos (1;C> o Jw - (1—c)2] L (ko) e .

S. Maset
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Now, it remains to prove that

in d(k,c)=d(1,0) =0.
(k{rcl)lgg( c) (1,0)

The minimum ofd can be attained only on the borderf In fact, at a

point (k,c) € (2 the functiond is differentiable and it is not difficult to see
that
od ad
Ep (k,c) =0 and E(/ﬁ:,c) =0
is impossible.
For a fixedk € [k, 1], the function

Em+1
c—d(k,c), ce{l—k, + }

takes the minimum value at the point

e
2m (m —1)

c(k):=

We haver (k1) = c1, (1) = 0 and(k, ¢ (k)) € 2for k € (k1,1). Since
the minimum ofd can be obtained only on the border@fwe have

in d(k,¢)= min d(k,c(k
i (k,c) pmin (k,c(k))

= min{d (k1,¢1),d(1,0)} =d(1,0) = 0.0
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