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Summary. Interpolation error estimates for a modifigghode serendipity

finite element are derived in both regular and degenerate cases, the latter
of which includes the case when the element is of triangular shape. For
u € W3P(K) defined over a quadrilateral, the error for the interpolant
Hyuis estimated ag: — Hculyen (k) < Ch?;ga|uyws_,p(K) (= 0,1),

wherel < p < 4o in the regular case and< p < 3 in the degenerate
case, respectively. Thus, the obtained error estimate in the degenerate case
is of the same quality as in the regular case at least forp < 3. Results

for some related elements are also given.

Mathematics Subject Classification (19965N30, 65N12

1. Introduction

The finite element method is now a standard tool for numerical analysis of
partial differential equations, and the so-called isoparametric family of finite
elements is in common use. Among such elements, the 8-node quadrilateral
element, often called 8-node serendipity, is one of the most popular ones in
2D finite element libraries [2, 3, 8].

Recently, various modifications of tl8enode serendipity element have
been proposed to overcome defects of the original serendipity. Such modified
elements are devised so that they can represent any Cartesian quadratic poly-
nomials even when the elements are of general bilinear isoparametric shape,
and have been experimentally shown to have better approximation properties
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than the original serendipity with the degree of freedom unchanged [5-7].
However, mathematical error analysis has not been performed for them yet.

Onthe other hand, mathematical error analysis of classical isoparametric
elements have been done by various investigators. Among them, Ciarlet [3]
gave interpolation error estimates of various isoparametric elements in the
regular case, i.e., when elements are not too flat and additionally, in the
case of quadrilateral elements, their shapes are not close to triangular ones.
See also related results by Brenner and Scott [2], which may be convenient
for our purposes since the so-called “chunkiness parameter” is effectively
used to evaluate various error constants. Moreover, Jamet [4emsek
and Vanmaele [10] derived estimates for the straighbde quadrilateral
element when it may degenerate to triangles or may become very flat, and
their approaches are also very useful as basis of our study.

The aim of this paper is to derive error estimates for a modifiadde
serendipity element of Kikuchi-Okabe-Fujio [6] in both regular and degen-
erate cases. This element exhibits nice numerical behaviors at least exper-
imentally, and we believe that it is worthy of such theoretical analysis. In
the regular case, the estimates can be obtained by the approaches of Ciar-
let [3] and Brenner-Scott [2]. However, analysis becomes more difficult in
degenerate and nearly degenerate cases where quadrilaterals may be almost
degenerated to triangles, and so we will follow the main idea of Jamet [4]
andZeni&ek-Vanmaele [10] to obtain the desired results. In particular, we
can show that, even in degenerate or nearly degenerate cases, the same order
of accuracy in some Sobolev (semi-)norms is achieved as that in the regular
case.

Furthermore, we can apply our approach to some related elements such
as the4-node quadrilateral element and the 9-node Lagrange one, giving
some results generalizing those of [4] and [10] for the former element.

2. Mathematical preliminaries

For a bounded domaif? in R? with Lipschitz boundary, we denote by
Wm™P((2) the Sobolev space of order, wherem > 0 is an integer angd is
any number satisfying < p < +oo (p = +oo is included here). The norm
of W™P((2) is given by

RS

W Jolwrry = [ 3 /Q D*w(@)Pde | 5 1<p< oo,

jaf<m

@ lolhnoe(o = max {essup D) } i p=+oc,
|| <m ze(?
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wherea = (a1, ag) is the multi-index whose componenis andas are
non-negative integers, and| = «; + as. Form = 0, we also use the
standard notatiorL,(£2) for W9?(2). Moreover, we will use the semi-
norm of W™P((2) defined by

%
(3) "U’Wm,,p(g) - Z / |Dav(x>‘pd$ 7 1 S p < +OO 3
2

|al=m

(4)  |vlwm.eo(n) = max {GSSSup ]Dav(x)|} ; p=+400.
loo|=m zEef?
In this paper, we will use the so-called interpolation operators. For such
operators to be definable, we need some results of the Sobolev imbedding
theorem: here we will mainly use the inclusion relations

(5) W2P(2) = C(2) (1<Vp<+o0),

(6) W3P(2) — C(2) (1<Vp<+o0),

whereC(£2) is the space of continuous functions defined avérthe clo-

sure off2) with the same norm as that bf, ({2), and— denotes the notation

of continuous imbedding. Relation (5) fpr= 1 is somewhat delicate to
hold for general domains but is valid for the present type of special domains

[1].

3. Modified 8-node serendipity element

The 8-node serendipity element was modified by MacNeal-Harder [7] and
Kikuchi [5] to overcome the defect that it cannot represent arbitrary Carte-
sian quadratic polynomials in general convex “bilinear” quadrilateral shape.
Then it was further modified by Kikuchi-Okabe-Fujio [6] so that it has bet-
ter behavior when it is degenerated to triangles. We will briefly explain the
essence of the last element in what follows, see [6] for details.

Let K be a convex open quadrilateral element with straight edges in the
usual Cartesiamy-coordinates. We employ vertices andt midpoints of
edges as nodes. We denote the vertice& &y z; = (x;,y;) (1 <i < 4),
while each midpoint node; 4 (1 < i < 4) is specified to be on the edge
z;zj With j = 1+ mod(¢, 4). Moreover, leti’ be a unitsquare < £,7 < 1
in the¢n-coordinates, whose verticésfor 1 < i < 4 are inturn(¢,n) =
(0,0), (1,0), (1,1) and(0, 1). See Fig. 1 for configurations df and K,
wherez; for 5 < ¢ < 8 are midpoint nodes ok .
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Fig. 1.  Configuration ofK and K

The bilinear isoparametric transformation betwéer (¢,7) € K and
z = (z,y) € K is given by

z=(1-80=nz1+&1 —n)z2 +E&nzz + (1 - &Nz,
4
(7) = ZLl(gvn)zl 5
=1

whereL;’s are the so-called bilinear shape functions defined by

Li(&m) =1 =81 —n), L2(&m) = &(1 —m),

Then the present transformation frdinto X is one-to-one and onto (i. e.
bijective) so long as< is a convex quadrilateral [3]. Moreover, it is also

bijective betweers’ andK (=the closures ofs and K) unlessk is degen-
erated to a triangle. With this transformation, we can identify a function
in K with that in & and vice versa. Hereafter, we will frequently use this
convention with the notations of coordinate transformations and compaosite
functions omitted. In particular, we may use bgilx, y) andf (¢, ) for the
samef.

For K and the associatell considered above, let us define some real
function spaces for a non-negative integer

Qr(é,m K)

9 = linear space spanned by {{"'n" },,,, ,,<, Over K,

P&, K)
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(20) = linear space of £n-polynomials of order < k over K |
Py(z,y; K)
(11) = linear space of zy-polynomials of order < k over K .

Under the bilinear transformation and the above-mentioned convention, it
holds for eachk that [9]

(12) Pyp(z,y; K) C Qr(&,m; K) .

The shape functions for the modifi@node serendipity element pro-
posed in [6] are given by, far < i < 4,

1 Dy, — D;
e {Le Dy

4 8(Di+ Dy)
1 D,, — D;
13 M4 := N; -4+ ——— >Ny,
(13) i +4+{2+4(Di+Dk)} K
whereNy, - - -, Ng are thed-node Lagrange shape functions and are nothing

but basis functions as (¢, n; K), D; is the Jacobiaf(z, y) /8(¢, ) ati-th

vertex (I < i < 4), and(i, j, k,m) is each of the cyclic permutations of
(1,2, 3,4). More specifically, eactV; is associated witly; for 1 < i < 8,

while Ny is associated with the ninth nodg which is the image o9 =
(1/2,1/2) € K for transformation (7). The explicit expressions)éfs are

well known and may be found e. g. in [8]. Itis also to be noted hgg are

either all positive or all negative. K is degenerated to a triangle, some of
D;’s may become zero, but never change their signs. Itis also to be noted that
expressions in (13) are valid even in such cases dince Dy # 0 unless

K is degenerated to segments. Of course, these shape functions satisfy the
interpolation property

(14) Mi(Zj) = 5z‘j (1 S i,j § 8) s

wherez;’s are nodes of{ already explained. In particular, the linear space
U spanned by the abovd, - - - , Mg are constructed so that

Py(x,y; K) + Py(§,m; K) CU C Qa(é,m; K)
(15) U := linear hull of {M;}$ ;|

where “+” denotes the summation notation for two linear spaces, and the
convention in (12) is again used. To check the above inclusion, itis sufficient
to show that all monomials i, (x, y; K) and Py (€, n; K') can be correctly
interpolated, and the following identities are useful for such purppses

i<4):
D;+ Dy = Dj+ Dy, ,2;Dy, + 21, D; = 2;Dp, + v, D
(16)  yiDk +yrDi = yiDm + ym D
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where notations are the same as were already defined. Moreover, we can
obtain the usuad-node quadratic triangular element by using the so-called
node degeneration technique to the present element.

The interpolant xu € U for u € C(K) is defined as follows by using
nodal values of; :

8
a7 Igu = Z u(zi)M; .

i=1

Sincev € U may be considered to belong4 K ), we have the following
fundamental property fofl x :

(18) Hgv=wv for velU.

4. Interpolation error analysis

This section is devoted to deriving the estimate of the formofee 0, 1
and appropriate,

(19) |u - HKU|Wa,p(K) < Ch?(ia”uh/[/&p(K); Yu € W3’p(K) y

whereh is the diameter o andC'is a positive constant independent.of
andh. To this end, we will make some preparations in the first subsection
and then derive our main results in the last two subsections.

In this paper, notation€’, C'y, C5, etc. will be used as generic positive
constants which may take different values at different places. If necessary,
we will use notations such aS(«, p, - --) to specify the dependence on
various parameters.

4.1. Geometric properties df

We will summarize some geometric properties of convex quadrilaterals ob-
tained by Jamet [4].
For a convex quadrilaterd, let us define :

hx = the diameter of K
= maximum among the largest edge length
(20) and the largest diagonal length of K |
(21) Ry = the smallest edge length of K ,
px = the supremum of the diameters
(22) of discs contained in K,

p; = the diameter of the inscribed circle
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(23) for Azizjzy (1 <1<4),
(24) (; = the interior angle for the vertex z; of K (1 <1i<4),

25) pg = :
(25) px %1%\008%7

where{i, j, k,m} is each of the cyclic permutations 6f, 2, 3,4}. Itis to
be noted here thdD;’s introduced in Sect. 3 satisfy

1
(26) 5\D1| = the area of Az;zjz,, (1 <i<4).

Then we can give the definition of a regular family of convex quadrilat-
erals. That is, a family of convex quadrilaterdls’} is said to beregular
provided that there exist positive constamtandy. such that

h/
(27) Tez0(>0), (0)px<p<l; VK,
K
and, in addition, there is a sequence{ii } such that,x — 0. As was
noted by Jamet [4], it follows from the regularity conditions that there exists
a positive constant™ such that

(28) PE > 0% (>0); VK,

wherec* can be expressed in terms @fand u. However, its converse
does not necessarily hold, that is, (27) does not follow from (28). More
specifically, the regularity conditions exclude the cases whelecomes
almost to be degenerated to a triangle since neither any edge lenfth of
can approach zero faster thahy nor any interior angle of can tend to

7. On the other hand, (28) permits such excluded cases but still excludes the
possibility thatK becomes too flat.

In what follows, we will present some results required to analyze the
above-mentioned degenerate or nearly degenerate cases, which were essen-
tially shown by Jamet [4]. For such purposes, it is sufficient to consider the
case wherg, > p4 and eitheis, or 84 is the maximum ofs;'s (1 < i < 4).

For the triangld’ := Az 2223 (Fig. 2), whose diameter of the inscribed
circle isp2(> p4), we find that

(29) p2 > pK /2.
Foro* > 0in (28), definedy by

*

(30) 0 := 2arctan UZ .
Sincec™® must be less than unity for (28) to be meaningful, we find that

1 1
(31) 0< by < 2arctan1 < 3
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Z,
Fig. 2. TriangleT = Az,z2z3 and parallelogrank ™ = z4z1252"

Let 0, (i = 1,2,3) be the interior angle of" associated with vertex;,
wheref, = (5. Then it holds that

(32) Oy < 0; < — 26 (i:1,2,3).

Furthermore, by noting that eithggs or 3, is the maximum of3;’s, we can
show that the interior angle$y andg; of K satisfy

(33) 0o < min{f31, B3} < max{f, B3} <7 — 0.
For the edge lengths @f, we have from (28) and (29) that

*h
(34) min{|z1 22/, |2123|, |z223|} > p2 > %{ > g 2K

4.2. Estimates in regular case

Under the regularity conditions for a family of convex quadrilatefdis},

we can obtain the following interpolation error estimates for the present
modified8-node serendipity by means of the standard techniques of inter-
polation error analysis [2],[3].

Theorem 1. Assume that the family of quadrilaterdl&’} satisfies the reg-
ularity conditions (27). Then the interpolaif; u defined by (17) for €
W3P(K) — C(K) (1 < p < +00) satisfies

(35) ”LL - HKU’Wa,p(K) < Ch?(_a‘u’WS,p(K) ;= O, 1, 2 y

whereC = C(a, p, o, p) is a positive constant independent/gf andw.
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Remark 1.This type of estimation is obtainable for some other type of
modified8-node elements such as those of MacNeal-Harder [7] and Kikuchi
[5] so long as the regularity conditions hold, since the proof is essentially
the same as the present one. However, itis not so for the original serendipity
element, which cannot necessarily represent arbitrary Cartesian quadratic
polynomials, and we cannot obtgim) and(b) in the proof below, unlesg’

is a parallelogram. For the original serendipity, the error estimates become
one order less than (35) with respectiig, where it is required fok to
belong toW??(K) (1 < p < +00) only.

Remark 2.We can generalize (35) as, for< p, ¢ < o0,

3—a+2-2
(36) |u — Hrulwoerx) < Chy 7 "|ulwsaiy; «=0,1,2,

where2/p for example is interpreted as 0 fpr= +oco. We will not repeat
such comments on the results to be given later, since thevcasgappears
to be essential for usual purposes.

Proof. Theoreml can be proved by using the standard methods such as
those of Ciarlet [3] and Brenner-Scott [2], and we will essentially follow
the approach of Brenner-Scott here. We will not repeat the details of such
process, but just present the sketch to make clear the difference of the proof
in the regular case from that in the degenerate or nearly degenerate cases.

1. By using the regularity of K'}, we can first show the existence of
i € Py(z,y; K) for eachu € W3P(K) such that

(a) | — oy < Crhy *lulwary; @=0,1,2,

) 52
(0) v =Ly < Crhg P |ulwse iy

whereC; = Ci(a, p, o, 1) > 0is independent ok x andu. More specifi-
cally, the dependence 6f, on two parameters and;, can be arranged to
that on a single parametet in (28), which is a function of and;, under
(27). It is to be noted here thaty /hx in (28) is twice the inverse of the
so-called “chunkiness” parameter in [2].

2. By (15) and (18), we find for the above € P,(z,y; K) C U that
x4 = 4 . Then, we have by the triangle inequality that

lu — Hulwery < [u—alwerx) + [0 — Hgu|warx)
= "LL — fltL’Woz,p(K) + ‘HK'LAL — HKU’W@,])(K)
(©) = |u — Alwerx) + [ (u— 0)|waer(x) -
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3. Letus consider the terid/x (v — @)|wa.r (- By (17), we have

8
[T (=) [wery) < D ulzs) = @(zi)] - |Milwen (i)
i=1
(d) < 8flu — all Lo (1) A [ Milwer(x) -
Thus, |1k (u — @) |we.rx) May be estimated by evaluatidy;|yy«.»(x)-

4. Inthe estimation ofM;|yy«.» ), We use the chain rule for the derivatives
of M; under the bilinear transformation (7). In this process, it is essential to
evaluate the Jacobiaf(¢,n) = d(z,y)/0(&,n) associated with the trans-
formation (7), which is expressed i by

4
i=1

=Di(1 = &)1 —n) + D2(1 —n) + D3&n + Da(1 = &)n .
Since0 < ¢, < 1in K, we havelréli1£4|Di! < [J(E )l < 1H§1?§X4]Di|.
Thus, by directly estimatin@,’s with (26), (27) and (28) used, we obtain

CQh’%( S |J(§777)| S h2 ’
whereCy = Cy(o, 1) > 0 is independent ok ;. EstimatingM; (&, n) and
the Jacobian matrix associated with (7) as in [4], we have
2_q

(6) ‘M’i|WD‘vP(K) §C3h;( (a:0a1a2; 1 §p§‘|‘00a1 SZSS) )
whereCs = Cs(a, p, o, 1) > 0 is independent of .
5. Substituting(b) and(e) into (d), we have

(f) 15 (u — @) [waw(re) < 8CLO3hIE ulwsn (i) -

It is now straightforward to obtain (35) by substitutiftg and(f) into (¢),
and the proof is complete. O

4.3. Estimates including degenerate and nearly degenerate cases

As was already noted, the regularity conditions exclude the cases Vihere

is degenerated or nearly degenerated to triangles, since in sucthgases
much smaller thah i or max;<;<4 (3; is almostr. So we will analyze such
cases in this subsection. In this respect, several researchers have derived
error estimates of thé-node quadrilateral element in such degenerate or
nearly degenerate cases [4], [10], and we will perform such analysis for
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the present modifieg-node serendipity. As was already mentioned, we can
obtain the usua-node triangular element whéx is fully degenerated to
a triangle by overlapping a pair of neighboring vertices.

We can state the main results as follows.

Theorem 2. Assume that the family of quadrilatergl&’} satisfies the con-
dition of the form (28) :

(37) Z—Kza*>0; VK |

K
wherec* is a positive constant dependent only on the family. Then the
interpolantlxu for u € W3P(K) — C(K) satisfies

(39) |u— Hxulwie(ry < Ch%{’u|W3m(K) if 1<p<3,

whereC' = C(p, c*) is a positive constant which is independentgf and
u.

Remark 3.1t appears to be difficult to obtain the above type of estimations
for other type of modified serendipity elements such as given in [5] and [7].
The difficulty essentially lies in deriving various bounds of the associated
shape functions, which are valid for the present element as will be stated in
Lemma4. O

We will essentially follow the approaches of [4] and [10] to prove Theo-
rem 2, which may be difficult to prove by means of the standard approaches
of [2] and [3]. First we will explain the outline of proof below.

As was discussed in 4.1, we can assure under (37) that there exists a
triangle which is not too flat and made of certain three vertice& pand
such atriangle may be specifiedias= Az1 2223 withoutloss of generality.
Then K itself may be degenerated 0, while such degeneration cannot
occur under the regularity conditions. FBr we can consider the usu@
node quadratic element with its three vertices and three midpoints of edges
as nodes. Let us denote the midpoint of the segmesy by z(, see Fig2.

To prove Theoren®, we use another interpolaiifu for u € C(?),
which is a Cartesian quadratic polynomial such that

(40) (Ixu)(zi) = u(z;) for 1=0,1,2,3,5,6.

Such a polynomial exists uniquely for eachand is nothing but the inter-
polant ofu for the6-node quadratic element associated Wittef. [3]. Thus
Ixu € Py(z,y; K), and we have by (15) and (18) that

(41) Hilgu=Igu for ue C(K).
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Now we find by the triangle inequalities as well as (40) and (41) that

|u — HKU‘Wa,p(K) < |u — IKU|Wa,p(K) + |HKU — IKU|Wa,p(K)
= |u = Ixulwonr(r) + k(v — Igu)lwer ()
S |U - IKU|W(x,p(K)

(42) + Z ‘(u - IKU)(zZ)’ : |Mi|Wa,p(K).
1=4,7,8

The above inequality implies that Theorem 2 may be proved if the quantities
inits right-hand side are appropriately evaluated. To this end, we will present
several lemmas below.

First, we estimate the first term — I ulyo.r () Of (42) by means of
the techniques in [2].

Lemma 1. Under assumption (37) of Theorem 2, the interpolaat. de-
fined by (40) fonn € W3P(K) — C(K) (1 < p < 00) satisfies

(43) |u - IKU|Wu,p(K) < Chi(_a|U|W3,p(K) ;o= O, ]., 2 5
3—2
(44) v — Ixullpeo () < Chye * lulwsr k)
whereC' = C(p, o*) is a positive constant independentgf andw.

Proof. The proving process is essentially the same as that of Theorem 1, and
we give only some comments below. The main difference isfthashould

be replaced witlix and the shape functions for the 6-node triangular element
should be used instead &f;'s. The new shape functions may be expressed
in terms of the so-called barycentric coordinates associatedihd then

the Jacobian of this coordinate transformation becomes a constant function,
cf. [3]. Moreover, we need to estimate the shape functions ouiSifiee.
over K \ T') as well, which process is not serious under the condition (37),
cf. Lemma 2.1 of Jamet [4]. O

To evaluate termfu — Ixu)(z;)| (i = 4,7,8), we will use not only
Lemma 1 but also some inequalities on traces along edgksas we will
see in the proof of the following lemma.

Lemma 2. Under (37), it holds for any, € W3?(K) — C(K) (1 <p <
400) that

1—1 o1
(45) max [(u — Ixu)(zi)| < Cege "hye 7 |ulwsr(r)
wheres . = min{|z1 24|, |z324]}, andC = C(p, o) is a positive constant
depending only op ando*.
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Remark 4.The arguments employed by Jamet [4] to derive his results cor-
responding to the present lemma appear to be insufficient for our purposes.
So we essentially rely on the approactZehiek-Vanmaele [10], but their
results are slightly generalized to include the cases othentkag.

Proof. Without loss of generality, we will consider the case wHerex 4| <
|z324], that is,e x = |z12z4| . For simplicity, we will prove the lemma only
for i = 4 : the other cases can be dealt with similarly.

We will consider two separate cases whege > [* := %a*hK sin g
andeg < I*, respectively, in whicldy is defined by (30).

i)exg >1* :  We have from (44) that

3_2 1_1 Q_l
[(u— Ixu)(z4)| < Chy P lulysexy = Chy Phye P lulwsr k) -

o*sin 6y

In this caseg > hi,i.e.hg < ek, and hence we have

o*sin 6y

4 =5 121 91
[(u—Igu)(z4)| < C <a*sm€0> ek "y lulwsa (i)
by noting thatl — % > 0 sincep > 1. This inequality is of the form (45) if
C'is modified appropriately.

i) exg <1* : Letus consider a parallelogram* = z4z1z52* in Fig. 2,
two edges of which are; z5 andz; z4. Then the fourth vertex* is shown
tolieinT C K solong agsk < [I*. Thatis, we have for the length of edge
z5z* that|z52*| = |z124| = ek, while the lengths of the perpendiculars
from z5 to 2123 andzgz¢ are evaluated as

min{|z;z5|sin by, |zoz1|sinb; } > % . %U*h[( sin Oy = ia*h;{ sinfp=1"
by (32) and (34). Thus the parallelogrdii is contained irf< in the present
case.

We will now derive some estimates of traces associated with the segment
z1z4, and we will denote the norm af,-space onz z4 by || - ||z, 2,
(I < p < +00). Moreover, we use the notatidit := |z125|. As (62) of
ZenBek-Vanmaele [10], we first obtain fow € WP(K) (1 < p < 400)
that

< 2 L0 ol ey + 5 ol e )
2124 — sin 3 Ly(K*) WLp(K*)

2p—1 h* —1 P h* p—1 p
i L Il a0+ 0 o }

o135

<
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wherev in the left-hand side is actually the tracevadn z, z4, which is well
defined as an element &f,(z,z4) for v € W1P(K). Thus we have

1 1
» _1 o1l
s <2 (5 ) {0 H ol + 0 Hlolwoi}

which is valid forp = +o00 as well. From (33) and (34) in 4.1, we find that

sin 81 > sin fg (> 0) ,

oc*hg . 1 hi
4 <h:§|2122‘§7<h[{.

By these estimates, the original trace estimationfariv!?(K) (1 < p <
+00) becomes

_1 1—-1
[ollperzs < Co {hK*’ Iolle, o) + P Pw\wm} ;

(@ C1 = Ci(p,0™) > 0.
Forvw € W3?(K) < C(K) (1 < p < +00), we can show that
ow 1-1 110w
b w(z4) —w(z :/ —(s)ds| <ep P ||— ,
et —wial=| [ G| <act|| 50|

wheres is the linear coordinate og, z, andd/Js is the differentiation in
the direction ofz; z,. Clearly, we have for the abovku/0s that

[31,....=l],.... |5
83 P,z124 B 8$ Dp,Zz124 8y D,z124 7
and(b) becomes, usingz) with v = ow orv = gw

' - Ox oy’

1—1 _1 1—-1
(@ uten) - w(e)] <2Cie {1 s + i lolwaoo |-

By applying(40) tou € W3»(K) (1 < p < +o00), we have an identity
(u—Igu)(zq4) = (u—Igu)(z4) — (u— Igu)(z1) .
Thus, usingc) with w = u — Ixu € W3P(K), we find that
|[(u = Txu)(24)]
1-1 -1 11
< 20151( P {th ]u — IKU|W1,p(K) + hK p\u — IKu’sz(K)} .
Substituting (43) with = 1,2 into the right-hand side of this inequality,

we obtain

1—1 o_1
[(u— Ixu)(z4)| <4C1Cep P hye P ulwsr (k)
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which is of the form (45) sinceéC, C' is dependent op ands* only. O

To estimate M; |yy«.» (k) fori = 4,7, 8, we first evaluate integrals of the
Jacobian/(¢,n) = d(z,y) /0(&,n) associated with the bilinear transfor-
mation (7). To this end, we can generalize Lenthieof Jamet [4], probably
simplifying his proof forp = 2, and obtain the following lemma.

Lemma 3. Under (37), the Jacobiasi (¢, n) = 0(x,y)/0(£, n) of the trans-
formation (7) satisfies, for < p < 3,

—p 3(-p)

(46) //K|J(€,7])|1_pd§d77§C'»S;(2 he?

wheree g = min{|z; 24/, |2324|} andC = C(p, c*) is a positive constant
independent ok andey .

Remark 5.In the degenerate cases, the above integral may be singular for
p > 1 and divergent fop > 3.

Proof. SinceK is convex,D;’s (1 < i < 4) are either all non-negative or all
non-positive as noted in Sect. 3, and hence we will only consider the former
case without loss of generality. In such a casg, n) = Z?:l D;L;(&,n)
is non-negative all ovek.

Let us divide the required integral into two parts :

@ 1= [[ 1ewirasan= [[ (temyrasan=n+n,

where
I = /0 1 < /0 1_£{J<£,n>}1‘pdn) d¢

I = /0 1 < /1 ;{J(E,n)}l_pdn) dg .

We will first estimatel;, while I can be estimated similarly.

Using the identityD; + D3 = Do+ Dyin J(&,1) = S5, DiLi(€,7),
we have
(b) J(&n) =D1(1 =& —n)+ D26+ Dyn .

Thus, for¢ andn suchthad < £ < 1,0 <n <1 — £ asis required for,
it holds that

and, by the inequality for the arithmetic and geometric means, we have for
such¢ andy that

[
=

J(&mn) > 2D1%D2%(1*5777) £2 .
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Sincep > 1, we have the estimate

[ES B 1-¢ B
I < 27D, pD?i/fBF{/ (1—£—mﬁﬂm}@,
0 0

provided that the integral in the right-hand side is convergent. This integral
is in fact convergent fot < p < 3, and is estimated as follows by the use
of the beta functiorB(-, -) :

IJ
(c) I, < 27D, D,? B (332,%2) B (1.%2) .

For estimating/,, we should use the identity fok(¢, n) :
J(&mn) =D3(§+n—1)+ Da(1 —n) + Da(1 =€),
which may be derived a®). Then we can obtain similarly t@) that
(d) L<2D, IDQB(ﬁgﬁg)Busfpy
From geometric relations (32), (33) and (34) férandT’, we have
(e) Dy > Ciexhi , D3 > Ciegchr, Dy > Cohi,
where(C andC, are positive constants depending @honly. Applying

(¢), (d) and(e) to (a), we can obtain (46), and the proof is complete

It remains to evaluate bounds of shape functidas (£, n) }1<i<s and
their derivatives.

Lemma 4. Under (37), there exists a positive constaht C'(p, c*) such
that

2
@7 |[Mjllp,x) <Chg (1<p<+00,1<5<38),

1 1 3 1

(48)  [Mjlwiog) < Cef Phig * (1<p<3,j=478),
wheree  is defined in the preceding lemma.

Proof. 1. We first prove (47). Itis clear thav,(&,n) for1 < i < 9 are
uniformly bounded fob < £, n < 1. Moreover, by geometric consideration,
we have

Dy, D;
0< ——++<1, 0 ——<1,
D; + Dy, D; + Dy,
o< _Dn D, .
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where(i, j, k, m) is each of cyclic permutation ¢f, 2, 3, 4) as before. Thus,
from their definitions (13));(&,n) (1 < j < 8) are uniformly bounded
for0 < &,7n < 1. By (26), it is also noted that

< | < K2 < <1.
|J(§a77)|—f2?é1|Dz‘_hK for 0<&n<1

Applying the above considerations to the identity

M1 0 = [ M@rady = [ [ a5 mplaenidedn.

we have (47).

2. For simplicity, we will use notations for derivatives suchis,, M ¢
etc., that is, 5 5
M; M;
= M. = J
ox ’ Ji€ 85
Asin1.,, itis easy to show that/; . and M, for 1 < j < 8 are uniformly
bounded fo0 < &, n < 1. Furthermore, we have far, = dx/0¢ etc. that

etc.

M;, =

0< ‘$7§|, ‘I,n’, |y,§|7 ‘yﬂ7| < hg for 0§§ﬂ7§ 1.

Noting the identities
1 1
Mjo = 5 (Mjeym = Minye) , Mjy =~
and the relation
Ml = [ (el + 30 dody

=[] Ml 1013, €l

we can obtain (48) by the use of Lemma 3 in essentially the same fashion
asl. O

(=Mjexy+ Mjyxe)

Proof of Theorem 20nce the above lemmas are proved, it is now straight-
forward to show (38) and (39) of Theorem 2 by means of (42).
First, we have

1 1

1—= 2+4=
(49) Hu — HKu”Lp(K) < C (h%{ +6K th p> ”U,‘WS,p(K) )

from which (38) follows sincex < hg.
Similarly, we can obtain (39) from the estimate

- +
(50) \u — HKU‘Wl,p(K) < C <h%( —l—gi{ Qth 2P> |u|W3,p(K) .o

1 3,1
2
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Remark 6.In the degenerate cases, eithgrlies on segmentzs or ¢
vanishes. The present analysis remains to be valid in the former case. In the
latter case, the results of Theoremstill hold true if I1 v is replaced with

Ixu, as may be seen to be natural from the degeneration process of [5] and

[6].

5. Results for some related elements
5.1.4-node quadrilateral element

In [4] and [10], some results corresponding to Theorem 2 were proved for
the 4-node quadrilateral element only in the casepof 2. For such an

element, the interpolation operatﬁlﬁf) . C(K) = Q1(&,m; K) is defined
by
4

(51) TPu=> " u(z)L; (ueCK)),

i=1
whereL;’s are given by (8). Here we can extend the results to the cases of
p # 2 under condition (37) by means of the techniques employed in the
proof of the Theorem 2 :

(52) |lu— TP ull, ) < Chlulwniey s (1< p < +00),

(4) )
(53) ‘u —II,; u)Wl,p(K) < Chilulw2rky; (1<p<3),
whereu € W?P(K) — C(K) (cf. (5)), andC = C(p,o*) is a positive
constant independent bf; andu. Of course, in the regular case, (53) holds
for anyp with 1 < p < +o0 as an analog of Theorem 1.

5.2.9-node quadrilateral element

Moreover, for the 9-node Lagrange element base@o(t, 7; K), we can
obtain essentially the same results as those of Theorems 1 and 2. In this

A~

case, the interpolation operatHé?) . O(K) — Qa(&,n; K) is defined by

9
(54) Tdu=3 " u(z)N; (ueC(K)),

i=1
where eachV; (1 < i < 9) is the shape function associated with nage
of the 9-node element. Since the interpolation operatgrfor the 8-node
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serendipity satisfies thdi xu € Qg(g,n;f(), it is trivial that the present
element has at least the same approximation capability as the modified 8-
node element. However, it is not necessarily easy to show the analog of

Theorem 2 for the interpolation operatHr}?) associated with the 9-node
element, although the analog of Theorem 1 can be obtained with ease. As
far as the authors are aware, analysis of the 9-node element has not been
performed in the degenerate or nearly degenerate cases.

In the proof, we additionally need slightly complicated estimations for
the “bubble function”Ng associated with the ninth nodsg :

(55) No(&,m) = 16&(1 — &E)n(L —n) .

We can easily obtain the analog(@®), where); should be replaced with
N; and anew termM(u — I'xu)(z9)| | No|war (k) @ppears in the summation.
By (44), we have

3—_2
(56) [(u — Ixu)(z9)| < Chy " lulwss(xy; C=C(p,0") >0,

while estimation of Ng|y«.»(x) must be made carefully far = 1 since

11
the above estimate does not contain a desired factor sugh aswWe will
present the essence of such process of evalugbigigy1.» k) below under
the same conditions foK and 7" as those id.3 and in the case where

EK = ]z1z4|.

Estimation of | Ng|y1.» () ©  First we have, for the derivatives of,

1
N97a: = N9,£§7x + N9,r]n,z = j

1
Noy = Noe&y + Nonny = j(_meQ,ﬁ +zeNoy) ,

(yvﬁN9af - yvgNgvn) ?

where

Nog(&m) =16(1—28)(n—n*), Noy(&n) =16(¢ — &) (1 —2n),

ze=(z2—z1)(1—n)+ (x3 —z4)n,
(24 —21)(1 = &) + (23 — 22)¢,
= (2 —y) (L —n) + (y3 —ya)n,
yn (ya —y1)(1 = &) + (y3s — y2)¢ -

Thus it is sufficient to evaluate thig,-norms of the following quantities :

7,r]_

1 1
a(§,n) := m(lx,nl +1yal)[Nogl, b(&n) := m(lwgl +1y.e)[Noyl -
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To evaluaté (¢, n), notice that
el + |yel <2k, [Noyl <16¢, |J| > |Dafé > C1hi€

over K, whereC; = C1(c*) > 0 is depending o™ only. Thus we have

| el midgan
K
@) < gorClPppta(P) / /K =P dedn < Cyh3 P

whereCsy = Cy(p,0*) > 0is depending omp ando™ only.
To evaluate:(&, n), notice first that

[Zp| + lynl < 2(ex +hi€), [Noel <4,
1 1.1 1 3 1 1
7] = 2|D1 |3 Ds[ 363 (1 — € — )% = CyhZeted(1— & —n)
for 0<E<1,0<n<1-¢,
l l 1 1
|J|>2|D2| |D3| (I=m)2(E+n—1)2

> Cyhled (1 - mE(E+n— 1)}
for 0<6<1,1-6<n<1

over k', whereCs = C5(c*) > 0 is depending ow* only. Then we have
J[ tatemise midean < ¢ [[ e+ haerlaenl-ragan
<Cs [ G+ g€l racan
whereCy and(C'; are positive constants depending@sandp only. Then

we should estimate the terms in the right-hand side of the above inequality.
First, we obtain

/ / eP|J (&, ) Pdedn < CF PRI / P+ (=) ge
K K
1 4 p, o
(b) = SOl n
Secondly, as in the proof of Lemma 3, we havelfer p < 3 that

/ LI )| rdedy
K

= /01 {/015 rJ(g,mrlp} dédn
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1 1
J(E, 1p}dd
o [ e dean
3-3p 1—p 1 1-¢ 1_
clPp 2 2[ { S(l—¢t—n)2d }d
<Oz "hy® eg /o /o £2 (1-¢6—n) n ¢ d§

+ /01 {/11)5(1 ) (- 1>15pdn}df]

1—p 3=3p 1-p 3_p 5 3_
= Cg hK2 5K2 {B (Tp, Tp) B (1, Tp)
3—p 3—
(C) +B(3_p7 1)B( 2p7 2p>} .

From(b) and(c), we have, by noting thaty < hg,

@ [ tate o mldsdn < Caki? Co=Culpo) > 0.
Combining(d) with (a), we have the desired estimation foK p < 3:

23
(57) ‘NQ‘WLP(K) S Ch[P( ; C= C(p7 O'*> >0 ’

which together witt{56) is sufficient for obtaining the analog of Theorem 2.
0

6. Concluding remarks

In this paper, we have given some error estimates for the mod#reatie
serendipity finite element of Kikuchi-Okabe-Fujio [6] in both regular and
degenerate cases. In particular, even in degenerate and nearly degenerate
cases, we can show the same order of accuracy in some Sobolev (semi-)
norms as that in the regular case. Thus we have given some theoretical
background to the use of such a modified serendipity element. We have
also obtained error estimates for some related elements such4asdioe
guadrilateral an@-node Lagrange elements.

It also appears to be important to perform numerical experiments to
check the present theoretical results, which we are planning to publish in
due course. Moreover, we will try to perform error analysis of various other
finite elements in both regular and degenerate cases as well as the present
element used as a fully isoparametric one.
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