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Summary. Interpolation error estimates for a modified8-node serendipity
finite element are derived in both regular and degenerate cases, the latter
of which includes the case when the element is of triangular shape. For
u ∈ W 3,p(K) defined over a quadrilateralK, the error for the interpolant
ΠKu is estimated as|u − ΠKu|W α,p(K) ≤ Ch3−α

K |u|W 3,p(K) (α = 0, 1),
where1 ≤ p ≤ +∞ in the regular case and1 ≤ p < 3 in the degenerate
case, respectively. Thus, the obtained error estimate in the degenerate case
is of the same quality as in the regular case at least for1 ≤ p < 3. Results
for some related elements are also given.

Mathematics Subject Classification (1991):65N30, 65N12

1. Introduction

The finite element method is now a standard tool for numerical analysis of
partial differential equations, and the so-called isoparametric family of finite
elements is in common use. Among such elements, the 8-node quadrilateral
element, often called 8-node serendipity, is one of the most popular ones in
2D finite element libraries [2,3,8].

Recently, various modifications of the8-node serendipity element have
been proposed to overcome defects of the original serendipity. Such modified
elements are devised so that they can represent any Cartesian quadratic poly-
nomials even when the elements are of general bilinear isoparametric shape,
and have been experimentally shown to have better approximation properties
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than the original serendipity with the degree of freedom unchanged [5–7].
However, mathematical error analysis has not been performed for them yet.

On the other hand, mathematical error analysis of classical isoparametric
elements have been done by various investigators. Among them, Ciarlet [3]
gave interpolation error estimates of various isoparametric elements in the
regular case, i.e., when elements are not too flat and additionally, in the
case of quadrilateral elements, their shapes are not close to triangular ones.
See also related results by Brenner and Scott [2], which may be convenient
for our purposes since the so-called “chunkiness parameter” is effectively
used to evaluate various error constants. Moreover, Jamet [4] andŽenĩsek
and Vanmaele [10] derived estimates for the straight4-node quadrilateral
element when it may degenerate to triangles or may become very flat, and
their approaches are also very useful as basis of our study.

The aim of this paper is to derive error estimates for a modified8-node
serendipity element of Kikuchi-Okabe-Fujio [6] in both regular and degen-
erate cases. This element exhibits nice numerical behaviors at least exper-
imentally, and we believe that it is worthy of such theoretical analysis. In
the regular case, the estimates can be obtained by the approaches of Ciar-
let [3] and Brenner-Scott [2]. However, analysis becomes more difficult in
degenerate and nearly degenerate cases where quadrilaterals may be almost
degenerated to triangles, and so we will follow the main idea of Jamet [4]
andŽenĩsek-Vanmaele [10] to obtain the desired results. In particular, we
can show that, even in degenerate or nearly degenerate cases, the same order
of accuracy in some Sobolev (semi-)norms is achieved as that in the regular
case.

Furthermore, we can apply our approach to some related elements such
as the4-node quadrilateral element and the 9-node Lagrange one, giving
some results generalizing those of [4] and [10] for the former element.

2. Mathematical preliminaries

For a bounded domainΩ in R2 with Lipschitz boundary, we denote by
Wm,p(Ω) the Sobolev space of orderm, wherem ≥ 0 is an integer andp is
any number satisfying1 ≤ p ≤ +∞ (p = +∞ is included here). The norm
of Wm,p(Ω) is given by

‖v‖W m,p(Ω) =


 ∑

|α|≤m

∫
Ω

|Dαv(x)|pdx




1
p

; 1 ≤ p < +∞ ,(1)

‖v‖W m,∞(Ω) = max
|α|≤m

{
esssup

x∈Ω
|Dαv(x)|

}
; p = +∞ ,(2)
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whereα = (α1, α2) is the multi-index whose componentsα1 andα2 are
non-negative integers, and|α| = α1 + α2. For m = 0, we also use the
standard notationLp(Ω) for W 0,p(Ω). Moreover, we will use the semi-
norm ofWm,p(Ω) defined by

|v|W m,p(Ω) =


 ∑

|α|=m

∫
Ω

|Dαv(x)|pdx




1
p

; 1 ≤ p < +∞ ,(3)

|v|W m,∞(Ω) = max
|α|=m

{
esssup

x∈Ω
|Dαv(x)|

}
; p = +∞ .(4)

In this paper, we will use the so-called interpolation operators. For such
operators to be definable, we need some results of the Sobolev imbedding
theorem: here we will mainly use the inclusion relations

W 2,p(Ω) ↪→ C(Ω) (1 ≤ ∀p ≤ +∞) ,(5)

W 3,p(Ω) ↪→ C(Ω) (1 ≤ ∀p ≤ +∞) ,(6)

whereC(Ω) is the space of continuous functions defined overΩ(=the clo-
sure ofΩ) with the same norm as that ofL∞(Ω), and↪→ denotes the notation
of continuous imbedding. Relation (5) forp = 1 is somewhat delicate to
hold for general domains but is valid for the present type of special domains
[1].

3. Modified 8-node serendipity element

The8-node serendipity element was modified by MacNeal-Harder [7] and
Kikuchi [5] to overcome the defect that it cannot represent arbitrary Carte-
sian quadratic polynomials in general convex “bilinear” quadrilateral shape.
Then it was further modified by Kikuchi-Okabe-Fujio [6] so that it has bet-
ter behavior when it is degenerated to triangles. We will briefly explain the
essence of the last element in what follows, see [6] for details.

Let K be a convex open quadrilateral element with straight edges in the
usual Cartesianxy-coordinates. We employ4 vertices and4 midpoints of
edges as nodes. We denote the vertices ofK by zi = (xi, yi) (1 ≤ i ≤ 4),
while each midpoint nodezi+4 (1 ≤ i ≤ 4) is specified to be on the edge
zizj with j = 1+mod(i, 4). Moreover, letK̂ be a unit square0 < ξ, η < 1
in theξη-coordinates, whose verticesẑi for 1 ≤ i ≤ 4 are in turn(ξ, η) =
(0, 0), (1, 0), (1, 1) and(0, 1). See Fig. 1 for configurations ofK andK̂,
whereẑi for 5 ≤ i ≤ 8 are midpoint nodes of̂K.
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Fig. 1. Configuration ofK̂ andK

The bilinear isoparametric transformation betweenẑ = (ξ, η) ∈ K̂ and
z = (x, y) ∈ K is given by

z = (1 − ξ)(1 − η)z1 + ξ(1 − η)z2 + ξηz3 + (1 − ξ)ηz4

=
4∑

i=1

Li(ξ, η)zi ,(7)

whereLi’s are the so-called bilinear shape functions defined by

L1(ξ, η) = (1 − ξ)(1 − η), L2(ξ, η) = ξ(1 − η),
L3(ξ, η) = ξη, L4(ξ, η) = (1 − ξ)η .(8)

Then the present transformation from̂K to K is one-to-one and onto (i. e.
bijective) so long asK is a convex quadrilateral [3]. Moreover, it is also

bijective between̂K andK(=the closures of̂K andK) unlessK is degen-
erated to a triangle. With this transformation, we can identify a function
in K with that inK̂ and vice versa. Hereafter, we will frequently use this
convention with the notations of coordinate transformations and composite
functions omitted. In particular, we may use bothf(x, y) andf(ξ, η) for the
samef .

For K̂ and the associatedK considered above, let us define some real
function spaces for a non-negative integerk :

Qk(ξ, η; K̂)

= linear space spanned by {ξmηn}0≤m,n≤k over K̂ ,(9)

Pk(ξ, η; K̂)
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= linear space of ξη-polynomials of order ≤ k over K̂ ,(10)

Pk(x, y;K)
= linear space of xy-polynomials of order ≤ k over K .(11)

Under the bilinear transformation and the above-mentioned convention, it
holds for eachk that [9]

Pk(x, y;K) ⊂ Qk(ξ, η; K̂) .(12)

The shape functions for the modified8-node serendipity element pro-
posed in [6] are given by, for1 ≤ i ≤ 4 ,

Mi := Ni −
{

1
4

+
Dk − Di

8(Di + Dk)

}
N9 ,

Mi+4 := Ni+4 +
{

1
2

+
Dm − Di

4(Di + Dk)

}
N9 ,(13)

whereN1, · · · , N9 are the9-node Lagrange shape functions and are nothing
but basis functions ofQ2(ξ, η; K̂), Di is the Jacobian∂(x, y)/∂(ξ, η) ati-th
vertex (1 ≤ i ≤ 4), and(i, j, k, m) is each of the cyclic permutations of
(1, 2, 3, 4). More specifically, eachNi is associated withzi for 1 ≤ i ≤ 8,
while N9 is associated with the ninth nodez9 which is the image of̂z9 =
(1/2, 1/2) ∈ K̂ for transformation (7). The explicit expressions ofNi’s are
well known and may be found e. g. in [8]. It is also to be noted thatDi’s are
either all positive or all negative. IfK is degenerated to a triangle, some of
Di’s may become zero, but never change their signs. It is also to be noted that
expressions in (13) are valid even in such cases sinceDi + Dk 6= 0 unless
K is degenerated to segments. Of course, these shape functions satisfy the
interpolation property

Mi(zj) = δij (1 ≤ i, j ≤ 8) ,(14)

wherezj ’s are nodes ofK already explained. In particular, the linear space
U spanned by the aboveM1, · · · , M8 are constructed so that

P2(x, y;K) + P2(ξ, η; K̂) ⊂ U ⊂ Q2(ξ, η; K̂) ;
U := linear hull of {Mi}8

i=1 ,(15)

where “+” denotes the summation notation for two linear spaces, and the
convention in (12) is again used. To check the above inclusion, it is sufficient
to show that all monomials inP2(x, y;K) andP2(ξ, η; K̂) can be correctly
interpolated, and the following identities are useful for such purposes(1 ≤
i ≤ 4) :

Di + Dk = Dj + Dm , xiDk + xkDi = xjDm + xmDj ,

yiDk + ykDi = yjDm + ymDj ,(16)
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where notations are the same as were already defined. Moreover, we can
obtain the usual6-node quadratic triangular element by using the so-called
node degeneration technique to the present element.

The interpolantΠKu ∈ U for u ∈ C(K) is defined as follows by using
nodal values ofu :

ΠKu =
8∑

i=1

u(zi)Mi .(17)

Sincev ∈ U may be considered to belong toC(K), we have the following
fundamental property forΠK :

ΠKv = v for v ∈ U .(18)

4. Interpolation error analysis

This section is devoted to deriving the estimate of the form, forα = 0, 1
and appropriatep,

|u − ΠKu|W α,p(K) ≤ Ch3−α
K |u|W 3,p(K); ∀u ∈ W 3,p(K) ,(19)

wherehK is the diameter ofK andC is a positive constant independent ofu
andhK . To this end, we will make some preparations in the first subsection
and then derive our main results in the last two subsections.

In this paper, notationsC, C1, C2, etc. will be used as generic positive
constants which may take different values at different places. If necessary,
we will use notations such asC(α, p, · · ·) to specify the dependence on
various parameters.

4.1. Geometric properties ofK

We will summarize some geometric properties of convex quadrilaterals ob-
tained by Jamet [4].

For a convex quadrilateralK, let us define :

hK = the diameter of K

= maximum among the largest edge length
and the largest diagonal length of K ,(20)

h′
K = the smallest edge length of K ,(21)

ρK = the supremum of the diameters
of discs contained in K ,(22)

ρi = the diameter of the inscribed circle
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for 4zizjzm (1 ≤ i ≤ 4) ,(23)

βi = the interior angle for the vertex zi of K (1 ≤ i ≤ 4) ,(24)

µK = max
1≤i≤4

| cos βi| ,(25)

where{i, j, k, m} is each of the cyclic permutations of{1, 2, 3, 4}. It is to
be noted here thatDi’s introduced in Sect. 3 satisfy

1
2
|Di| = the area of 4zizjzm (1 ≤ i ≤ 4) .(26)

Then we can give the definition of a regular family of convex quadrilat-
erals. That is, a family of convex quadrilaterals{K} is said to beregular
provided that there exist positive constantsσ andµ such that

h′
K

hK
≥ σ (> 0) , (0 ≤) µK ≤ µ < 1 ; ∀K ,(27)

and, in addition, there is a sequence in{K} such thathK → 0. As was
noted by Jamet [4], it follows from the regularity conditions that there exists
a positive constantσ∗ such that

ρK

hK
≥ σ∗ (> 0) ; ∀K ,(28)

whereσ∗ can be expressed in terms ofσ and µ. However, its converse
does not necessarily hold, that is, (27) does not follow from (28). More
specifically, the regularity conditions exclude the cases whereK becomes
almost to be degenerated to a triangle since neither any edge length ofK
can approach zero faster thanσhK nor any interior angle ofK can tend to
π. On the other hand, (28) permits such excluded cases but still excludes the
possibility thatK becomes too flat.

In what follows, we will present some results required to analyze the
above-mentioned degenerate or nearly degenerate cases, which were essen-
tially shown by Jamet [4]. For such purposes, it is sufficient to consider the
case whereρ2 ≥ ρ4 and eitherβ2 orβ4 is the maximum ofβi’s (1 ≤ i ≤ 4) .

For the triangleT := 4z1z2z3 (Fig. 2), whose diameter of the inscribed
circle isρ2(≥ ρ4), we find that

ρ2 > ρK/2 .(29)

Forσ∗ > 0 in (28), defineθ0 by

θ0 := 2 arctan
σ∗

4
.(30)

Sinceσ∗ must be less than unity for (28) to be meaningful, we find that

0 < θ0 < 2 arctan
1
4

<
1
2

.(31)
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Fig. 2. TriangleT = 4z1z2z3 and parallelogramK∗ = z4z1z5z
∗

Let θi (i = 1, 2, 3) be the interior angle ofT associated with vertexzi,
whereθ2 = β2. Then it holds that

θ0 < θi < π − 2θ0 (i = 1, 2, 3) .(32)

Furthermore, by noting that eitherβ2 or β4 is the maximum ofβi’s, we can
show that the interior anglesβ1 andβ3 of K satisfy

θ0 < min{β1, β3} ≤ max{β1, β3} < π − θ0 .(33)

For the edge lengths ofT , we have from (28) and (29) that

min{|z1z2|, |z1z3|, |z2z3|} > ρ2 >
ρK

2
≥ σ∗hK

2
.(34)

4.2. Estimates in regular case

Under the regularity conditions for a family of convex quadrilaterals{K},
we can obtain the following interpolation error estimates for the present
modified8-node serendipity by means of the standard techniques of inter-
polation error analysis [2],[3].

Theorem 1. Assume that the family of quadrilaterals{K} satisfies the reg-
ularity conditions (27). Then the interpolantΠKu defined by (17) foru ∈
W 3,p(K) ↪→ C(K) (1 ≤ p ≤ +∞) satisfies

|u − ΠKu|W α,p(K) ≤ Ch3−α
K |u|W 3,p(K) ; α = 0, 1, 2 ,(35)

whereC = C(α, p, σ, µ) is a positive constant independent ofhK andu.
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Remark 1.This type of estimation is obtainable for some other type of
modified8-node elements such as those of MacNeal-Harder [7] and Kikuchi
[5] so long as the regularity conditions hold, since the proof is essentially
the same as the present one. However, it is not so for the original serendipity
element, which cannot necessarily represent arbitrary Cartesian quadratic
polynomials, and we cannot obtain(a) and(b) in the proof below, unlessK
is a parallelogram. For the original serendipity, the error estimates become
one order less than (35) with respect tohK , where it is required foru to
belong toW 2,p(K) (1 ≤ p ≤ +∞) only.

Remark 2.We can generalize (35) as, for1 ≤ p, q ≤ +∞,

|u − ΠKu|W α,p(K) ≤ Ch
3−α+ 2

p
− 2

q

K |u|W 3,q(K) ; α = 0, 1, 2 ,(36)

where2/p for example is interpreted as 0 forp = +∞. We will not repeat
such comments on the results to be given later, since the casep = q appears
to be essential for usual purposes.

Proof. Theorem1 can be proved by using the standard methods such as
those of Ciarlet [3] and Brenner-Scott [2], and we will essentially follow
the approach of Brenner-Scott here. We will not repeat the details of such
process, but just present the sketch to make clear the difference of the proof
in the regular case from that in the degenerate or nearly degenerate cases.

1. By using the regularity of{K}, we can first show the existence of
û ∈ P2(x, y; K) for eachu ∈ W 3,p(K) such that

(a) |u − û|W α,p(K) ≤ C1h
3−α
K |u|W 3,p(K) ; α = 0, 1, 2 ,

(b) ‖u − û‖L∞(K) ≤ C1h
3− 2

p

K |u|W 3,p(K) ,

whereC1 = C1(α, p, σ, µ) > 0 is independent ofhK andu. More specifi-
cally, the dependence ofC1 on two parametersσ andµ can be arranged to
that on a single parameterσ∗ in (28), which is a function ofσ andµ under
(27). It is to be noted here thatρK/hK in (28) is twice the inverse of the
so-called “chunkiness” parameter in [2].

2. By (15) and (18), we find for the abovêu ∈ P2(x, y;K) ⊂ U that
ΠK û = û . Then, we have by the triangle inequality that

|u − ΠKu|W α,p(K) ≤ |u − û|W α,p(K) + |û − ΠKu|W α,p(K)

= |u − û|W α,p(K) + |ΠK û − ΠKu|W α,p(K)

= |u − û|W α,p(K) + |ΠK(u − û)|W α,p(K) .(c)
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3. Let us consider the term|ΠK(u − û)|W α,p(K). By (17), we have

|ΠK(u − û)|W α,p(K) ≤
8∑

i=1

|u(zi) − û(zi)| · |Mi|W α,p(K)

≤ 8||u − û||L∞(K) max
1≤i≤8

|Mi|W α,p(K) .(d)

Thus,|ΠK(u − û)|W α,p(K) may be estimated by evaluating|Mi|W α,p(K).

4. In the estimation of|Mi|W α,p(K), we use the chain rule for the derivatives
of Mi under the bilinear transformation (7). In this process, it is essential to
evaluate the JacobianJ(ξ, η) = ∂(x, y)/∂(ξ, η) associated with the trans-
formation (7), which is expressed in̂K by

J(ξ, η) =
4∑

i=1

DiLi(ξ, η)

= D1(1 − ξ)(1 − η) + D2ξ(1 − η) + D3ξη + D4(1 − ξ)η .

Since0 ≤ ξ, η ≤ 1 in K̂, we have min
1≤i≤4

|Di| ≤ |J(ξ, η)| ≤ max
1≤i≤4

|Di|.
Thus, by directly estimatingDi’s with (26), (27) and (28) used, we obtain

C2h
2
K ≤ |J(ξ, η)| ≤ h2

K ,

whereC2 = C2(σ, µ) > 0 is independent ofhK . EstimatingMi(ξ, η) and
the Jacobian matrix associated with (7) as in [4], we have

(e) |Mi|W α,p(K) ≤ C3h
2
p
−α

K (α = 0, 1, 2; 1 ≤ p ≤ +∞; 1 ≤ i ≤ 8) ,

whereC3 = C3(α, p, σ, µ) > 0 is independent ofhK .

5. Substituting(b) and(e) into (d), we have

(f) |ΠK(u − û)|W α,p(K) ≤ 8C1C3h
3−α
K |u|W 3,p(K) .

It is now straightforward to obtain (35) by substituting(a) and(f) into (c),
and the proof is complete. ut

4.3. Estimates including degenerate and nearly degenerate cases

As was already noted, the regularity conditions exclude the cases whereK
is degenerated or nearly degenerated to triangles, since in such casesh′

K is
much smaller thanhK or max1≤i≤4 βi is almostπ. So we will analyze such
cases in this subsection. In this respect, several researchers have derived
error estimates of the4-node quadrilateral element in such degenerate or
nearly degenerate cases [4], [10], and we will perform such analysis for
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the present modified8-node serendipity. As was already mentioned, we can
obtain the usual6-node triangular element whenK is fully degenerated to
a triangle by overlapping a pair of neighboring vertices.

We can state the main results as follows.

Theorem 2. Assume that the family of quadrilaterals{K} satisfies the con-
dition of the form (28) :

ρK

hK
≥ σ∗ > 0 ; ∀K ,(37)

whereσ∗ is a positive constant dependent only on the family. Then the
interpolantΠKu for u ∈ W 3,p(K) ↪→ C(K) satisfies

‖u − ΠKu‖Lp(K) ≤ Ch3
K |u|W 3,p(K) if 1 ≤ p ≤ +∞ ,(38)

|u − ΠKu|W 1,p(K) ≤ Ch2
K |u|W 3,p(K) if 1 ≤ p < 3 ,(39)

whereC = C(p, σ∗) is a positive constant which is independent ofhK and
u.

Remark 3.It appears to be difficult to obtain the above type of estimations
for other type of modified serendipity elements such as given in [5] and [7].
The difficulty essentially lies in deriving various bounds of the associated
shape functions, which are valid for the present element as will be stated in
Lemma 4. ut

We will essentially follow the approaches of [4] and [10] to prove Theo-
rem 2, which may be difficult to prove by means of the standard approaches
of [2] and [3]. First we will explain the outline of proof below.

As was discussed in 4.1, we can assure under (37) that there exists a
triangle which is not too flat and made of certain three vertices ofK, and
such a triangle may be specified asT = 4z1z2z3 without loss of generality.
ThenK itself may be degenerated toT , while such degeneration cannot
occur under the regularity conditions. ForT , we can consider the usual6-
node quadratic element with its three vertices and three midpoints of edges
as nodes. Let us denote the midpoint of the segmentz1z3 by z0, see Fig.2.

To prove Theorem2, we use another interpolantIKu for u ∈ C(K),
which is a Cartesian quadratic polynomial such that

(IKu)(zi) = u(zi) for i = 0, 1, 2, 3, 5, 6 .(40)

Such a polynomial exists uniquely for eachu, and is nothing but the inter-
polant ofu for the6-node quadratic element associated withT , cf. [3]. Thus
IKu ∈ P2(x, y;K), and we have by (15) and (18) that

ΠKIKu = IKu for u ∈ C(K) .(41)
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Now we find by the triangle inequalities as well as (40) and (41) that

|u − ΠKu|W α,p(K) ≤ |u − IKu|W α,p(K) + |ΠKu − IKu|W α,p(K)

= |u − IKu|W α,p(K) + |ΠK(u − IKu)|W α,p(K)

≤ |u − IKu|W α,p(K)

+
∑

i=4,7,8

|(u − IKu)(zi)| · |Mi|W α,p(K).(42)

The above inequality implies that Theorem 2 may be proved if the quantities
in its right-hand side are appropriately evaluated. To this end, we will present
several lemmas below.

First, we estimate the first term|u − IKu|W α,p(K) of (42) by means of
the techniques in [2].

Lemma 1. Under assumption (37) of Theorem 2, the interpolantIKu de-
fined by (40) foru ∈ W 3,p(K) ↪→ C(K) (1 ≤ p ≤ ∞) satisfies

|u − IKu|W α,p(K) ≤ Ch3−α
K |u|W 3,p(K) ; α = 0, 1, 2 ,(43)

‖u − IKu‖L∞(K) ≤ Ch
3− 2

p

K |u|W 3,p(K) ,(44)

whereC = C(p, σ∗) is a positive constant independent ofhK andu.

Proof. The proving process is essentially the same as that of Theorem 1, and
we give only some comments below. The main difference is thatΠK should
be replaced withIK and the shape functions for the 6-node triangular element
should be used instead ofMi’s. The new shape functions may be expressed
in terms of the so-called barycentric coordinates associated withT , and then
the Jacobian of this coordinate transformation becomes a constant function,
cf. [3]. Moreover, we need to estimate the shape functions outsideT (i. e.
overK \ T ) as well, which process is not serious under the condition (37),
cf. Lemma 2.1 of Jamet [4]. ut

To evaluate terms|(u − IKu)(zi)| (i = 4, 7, 8), we will use not only
Lemma 1 but also some inequalities on traces along edges ofK as we will
see in the proof of the following lemma.

Lemma 2. Under (37), it holds for anyu ∈ W 3,p(K) ↪→ C(K) (1 ≤ p ≤
+∞) that

max
i=4,7,8

|(u − IKu)(zi)| ≤ Cε
1− 1

p

K h
2− 1

p

K |u|W 3,p(K) ,(45)

whereεK = min{|z1z4|, |z3z4|}, andC = C(p, σ∗) is a positive constant
depending only onp andσ∗.
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Remark 4.The arguments employed by Jamet [4] to derive his results cor-
responding to the present lemma appear to be insufficient for our purposes.
So we essentially rely on the approach ofŽenĩsek-Vanmaele [10], but their
results are slightly generalized to include the cases other thanp = 2.

Proof. Without loss of generality, we will consider the case where|z1z4| ≤
|z3z4|, that is,εK = |z1z4| . For simplicity, we will prove the lemma only
for i = 4 : the other cases can be dealt with similarly.

We will consider two separate cases whereεK ≥ l∗ := 1
4σ∗hK sin θ0

andεK < l∗, respectively, in whichθ0 is defined by (30).

i) εK ≥ l∗ : We have from (44) that

|(u − IKu)(z4)| ≤ Ch
3− 2

p

K |u|W 3,p(K) = Ch
1− 1

p

K h
2− 1

p

K |u|W 3,p(K) .

In this case,εK ≥ σ∗ sin θ0

4
hK , i.e.hK ≤ 4

σ∗ sin θ0
εK , and hence we have

|(u − IKu)(z4)| ≤ C

(
4

σ∗ sin θ0

)1− 1
p

ε
1− 1

p

K h
2− 1

p

K |u|W 3,p(K)

by noting that1 − 1
p ≥ 0 sincep ≥ 1. This inequality is of the form (45) if

C is modified appropriately.

ii) εK < l∗ : Let us consider a parallelogramK∗ = z4z1z5z
∗ in Fig. 2,

two edges of which arez1z5 andz1z4. Then the fourth vertexz∗ is shown
to lie in T ⊂ K so long asεK < l∗. That is, we have for the length of edge
z5z

∗ that |z5z
∗| = |z1z4| = εK , while the lengths of the perpendiculars

from z5 to z1z3 andz0z6 are evaluated as

min{|z1z5| sin θ1, |z0z1| sin θ1}>
1
2

· 1
2
σ∗hK sin θ0 =

1
4
σ∗hK sin θ0 = l∗

by (32) and (34). Thus the parallelogramK∗ is contained inK in the present
case.

We will now derive some estimates of traces associated with the segment
z1z4, and we will denote the norm ofLp-space onz1z4 by ‖ · ‖p,z1z4

(1 ≤ p ≤ +∞). Moreover, we use the notationh∗ := |z1z5|. As (62) of
Ženĩsek-Vanmaele [10], we first obtain for∀v ∈ W 1,p(K) (1 ≤ p < +∞)
that

‖v‖p
p,z1z4

≤ 2p−1

sinβ1

{
(h∗)−1‖v‖p

Lp(K∗) + (h∗)p−1|v|p
W 1,p(K∗)

}

≤ 2p−1

sinβ1

{
(h∗)−1‖v‖p

Lp(K) + (h∗)p−1|v|p
W 1,p(K)

}
,
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wherev in the left-hand side is actually the trace ofv onz1z4, which is well
defined as an element ofLp(z1z4) for v ∈ W 1,p(K). Thus we have

‖v‖p,z1z4 ≤ 2
(

1
2 sinβ1

) 1
p {

(h∗)− 1
p ‖v‖Lp(K) + (h∗)1− 1

p |v|W 1,p(K)

}
,

which is valid forp = +∞ as well. From (33) and (34) in 4.1, we find that

sinβ1 > sin θ0 (> 0) ,
σ∗hK

4
< h∗ =

1
2
|z1z2| ≤ hK

2
< hK .

By these estimates, the original trace estimation forv ∈ W 1,p(K) (1 ≤ p ≤
+∞) becomes

‖v‖p,z1z4 ≤ C1

{
h

− 1
p

K ‖v‖Lp(K) + h
1− 1

p

K |v|W 1,p(K)

}
;

C1 = C1(p, σ∗) > 0 .(a)

For∀w ∈ W 3,p(K) ↪→ C(K) (1 ≤ p ≤ +∞), we can show that

(b) |w(z4) − w(z1)| =
∣∣∣∣
∫

z1z4

∂w

∂s
(s)ds

∣∣∣∣ ≤ ε
1− 1

p

K

∣∣∣∣
∣∣∣∣∂w

∂s

∣∣∣∣
∣∣∣∣
p,z1z4

,

wheres is the linear coordinate onz1z4 and∂/∂s is the differentiation in
the direction ofz1z4. Clearly, we have for the above∂w/∂s that∣∣∣∣

∣∣∣∣∂w

∂s

∣∣∣∣
∣∣∣∣
p,z1z4

≤
∣∣∣∣
∣∣∣∣∂w

∂x

∣∣∣∣
∣∣∣∣
p,z1z4

+
∣∣∣∣
∣∣∣∣∂w

∂y

∣∣∣∣
∣∣∣∣
p,z1z4

,

and(b) becomes, using(a) with v =
∂w

∂x
or v =

∂w

∂y
,

(c) |w(z4)−w(z1)|≤2C1ε
1− 1

p

K

{
h

− 1
p

K |w|W 1,p(K) + h
1− 1

p

K |w|W 2,p(K)

}
.

By applying(40) to u ∈ W 3,p(K) (1 ≤ p ≤ +∞), we have an identity

(u − IKu)(z4) = (u − IKu)(z4) − (u − IKu)(z1) .

Thus, using(c) with w = u − IKu ∈ W 3,p(K), we find that

|(u − IKu)(z4)|
≤ 2C1ε

1− 1
p

K

{
h

− 1
p

K |u − IKu|W 1,p(K) + h
1− 1

p

K |u − IKu|W 2,p(K)

}
.

Substituting (43) withα = 1, 2 into the right-hand side of this inequality,
we obtain

|(u − IKu)(z4)| ≤ 4C1Cε
1− 1

p

K h
2− 1

p

K |u|W 3,p(K) ,
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which is of the form (45) since4C1C is dependent onp andσ∗ only. ut
To estimate|Mi|W α,p(K) for i = 4, 7, 8, we first evaluate integrals of the

JacobianJ(ξ, η) = ∂(x, y) /∂(ξ, η) associated with the bilinear transfor-
mation (7). To this end, we can generalize Lemma2.5 of Jamet [4], probably
simplifying his proof forp = 2, and obtain the following lemma.

Lemma 3. Under (37), the JacobianJ(ξ, η) =∂(x, y)/∂(ξ, η) of the trans-
formation (7) satisfies, for1 ≤ p < 3,∫∫

K̂
|J(ξ, η)|1−pdξdη ≤ Cε

1−p
2

K h
3(1−p)

2
K ,(46)

whereεK = min{|z1z4|, |z3z4|} andC = C(p, σ∗) is a positive constant
independent ofhK andεK .

Remark 5.In the degenerate cases, the above integral may be singular for
p > 1 and divergent forp ≥ 3.

Proof. SinceK is convex,Di’s (1 ≤ i ≤ 4) are either all non-negative or all
non-positive as noted in Sect. 3, and hence we will only consider the former
case without loss of generality. In such a case,J(ξ, η) =

∑4
i=1 DiLi(ξ, η)

is non-negative all over̂K.
Let us divide the required integral into two parts :

(a) I :=
∫∫

K̂
|J(ξ, η)|1−pdξdη =

∫∫
K̂

{J(ξ, η)}1−pdξdη = I1 + I2 ,

where

I1 :=
∫ 1

0

(∫ 1−ξ

0
{J(ξ, η)}1−pdη

)
dξ ,

I2 :=
∫ 1

0

(∫ 1

1−ξ
{J(ξ, η)}1−pdη

)
dξ .

We will first estimateI1, while I2 can be estimated similarly.
Using the identityD1 +D3 = D2 +D4 in J(ξ, η) =

∑4
i=1 DiLi(ξ, η),

we have

(b) J(ξ, η) = D1(1 − ξ − η) + D2ξ + D4η .

Thus, forξ andη such that0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1 − ξ as is required forI1,
it holds that

J(ξ, η) ≥ D1(1 − ξ − η) + D2ξ ≥ 0 with 1 − ξ − η ≥ 0 , ξ ≥ 0 ,

and, by the inequality for the arithmetic and geometric means, we have for
suchξ andη that

J(ξ, η) ≥ 2D
1
2
1 D

1
2
2 (1 − ξ − η)

1
2 ξ

1
2 .
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Sincep ≥ 1, we have the estimate

I1 ≤ 21−pD
1−p
2

1 D
1−p
2

2

∫ 1

0
ξ

1−p
2

{∫ 1−ξ

0
(1 − ξ − η)

1−p
2 dη

}
dξ ,

provided that the integral in the right-hand side is convergent. This integral
is in fact convergent for1 ≤ p < 3, and is estimated as follows by the use
of the beta functionB(·, ·) :

(c) I1 ≤ 21−pD
1−p
2

1 D
1−p
2

2 B
(

3−p
2 , 5−p

2

)
B

(
1, 3−p

2

)
.

For estimatingI2, we should use the identity forJ(ξ, η) :

J(ξ, η) = D3(ξ + η − 1) + D2(1 − η) + D4(1 − ξ) ,

which may be derived as(b). Then we can obtain similarly to(c) that

(d) I2 ≤ 21−pD
1−p
2

3 D
1−p
2

2 B
(

3−p
2 , 3−p

2

)
B (1, 3 − p) .

From geometric relations (32), (33) and (34) forK andT , we have

(e) D1 ≥ C1εKhK , D3 ≥ C1εKhK , D2 ≥ C2h
2
K ,

whereC1 andC2 are positive constants depending onσ∗ only. Applying
(c), (d) and(e) to (a), we can obtain (46), and the proof is complete.ut

It remains to evaluate bounds of shape functions{Mi(ξ, η)}1≤i≤8 and
their derivatives.

Lemma 4. Under (37), there exists a positive constantC= C(p, σ∗) such
that

‖Mj‖Lp(K) ≤ Ch
2
p

K (1 ≤ p ≤ +∞, 1 ≤ j ≤ 8) ,(47)

|Mj |W 1,p(K) ≤ Cε
1
2p

− 1
2

K h
3
2p

− 1
2

K (1 ≤ p < 3, j = 4, 7, 8) ,(48)

whereεK is defined in the preceding lemma.

Proof. 1. We first prove (47). It is clear thatNi(ξ, η) for 1 ≤ i ≤ 9 are
uniformly bounded for0 ≤ ξ, η ≤ 1. Moreover, by geometric consideration,
we have

0 ≤ Dk

Di + Dk
≤ 1 , 0 ≤ Di

Di + Dk
≤ 1 ,

0 ≤ Dm

Di + Dk
=

Dm

Dj + Dm
≤ 1 ,
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where(i, j, k, m) is each of cyclic permutation of(1, 2, 3, 4) as before. Thus,
from their definitions (13),Mj(ξ, η) (1 ≤ j ≤ 8) are uniformly bounded
for 0 ≤ ξ, η ≤ 1. By (26), it is also noted that

|J(ξ, η)| ≤ max
1≤i≤4

|Di| ≤ h2
K for 0 ≤ ξ, η ≤ 1 .

Applying the above considerations to the identity

‖Mj‖p
Lp(K) =

∫∫
K

|Mj(x, y)|pdxdy =
∫∫

K̂
|Mj(ξ, η)|p|J(ξ, η)|dξdη ,

we have (47).

2. For simplicity, we will use notations for derivatives such asMj,x, Mj,ξ

etc., that is,

Mj,x =
∂Mj

∂x
, Mj,ξ =

∂Mj

∂ξ
etc.

As in 1., it is easy to show thatMj,ξ andMj,η for 1 ≤ j ≤ 8 are uniformly
bounded for0 ≤ ξ, η ≤ 1. Furthermore, we have forx,ξ = ∂x/∂ξ etc. that

0 ≤ |x,ξ| , |x,η| , |y,ξ| , |y,η| ≤ hK for 0 ≤ ξ, η ≤ 1 .

Noting the identities

Mj,x =
1
J

(Mj,ξy,η − Mj,ηy,ξ) , Mj,y =
1
J

(−Mj,ξx,η + Mj,ηx,ξ)

and the relation

|Mj |pW 1,p(K) =
∫∫

K
(|Mj,x|p + |Mj,y|p) dxdy

=
∫∫

K̂
(|Mj,x|p + |Mj,y|p) |J(ξ, η)|dξdη ,

we can obtain (48) by the use of Lemma 3 in essentially the same fashion
as1. ut
Proof of Theorem 2.Once the above lemmas are proved, it is now straight-
forward to show (38) and (39) of Theorem 2 by means of (42).

First, we have

‖u − ΠKu‖Lp(K) ≤ C

(
h3

K + ε
1− 1

p

K h
2+ 1

p

K

)
|u|W 3,p(K) ,(49)

from which (38) follows sinceεK ≤ hK .
Similarly, we can obtain (39) from the estimate

|u − ΠKu|W 1,p(K) ≤ C

(
h2

K + ε
1
2− 1

2p

K h
3
2+ 1

2p

K

)
|u|W 3,p(K) . ut(50)
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Remark 6.In the degenerate cases, eitherz4 lies on segmentz1z3 or εK

vanishes. The present analysis remains to be valid in the former case. In the
latter case, the results of Theorem2 still hold true if ΠKu is replaced with
IKu, as may be seen to be natural from the degeneration process of [5] and
[6].

5. Results for some related elements

5.1.4-node quadrilateral element

In [4] and [10], some results corresponding to Theorem 2 were proved for
the 4-node quadrilateral element only in the case ofp = 2. For such an
element, the interpolation operatorΠ

(4)
K : C(K) → Q1(ξ, η; K̂) is defined

by

Π
(4)
K u =

4∑
i=1

u(zi)Li (u ∈ C(K)) ,(51)

whereLi’s are given by (8). Here we can extend the results to the cases of
p 6= 2 under condition (37) by means of the techniques employed in the
proof of the Theorem 2 :

‖u − Π
(4)
K u‖Lp(K) ≤ Ch2

K |u|W 2,p(K) ; (1 ≤ p ≤ +∞) ,(52)

∣∣∣u − Π
(4)
K u

∣∣∣
W 1,p(K)

≤ ChK |u|W 2,p(K) ; (1 ≤ p < 3) ,(53)

whereu ∈ W 2,p(K) ↪→ C(K) (cf. (5)), andC = C(p, σ∗) is a positive
constant independent ofhK andu. Of course, in the regular case, (53) holds
for anyp with 1 ≤ p ≤ +∞ as an analog of Theorem 1.

5.2.9-node quadrilateral element

Moreover, for the 9-node Lagrange element based onQ2(ξ, η; K̂), we can
obtain essentially the same results as those of Theorems 1 and 2. In this
case, the interpolation operatorΠ

(9)
K : C(K) → Q2(ξ, η; K̂) is defined by

Π
(9)
K u =

9∑
i=1

u(zi)Ni (u ∈ C(K)) ,(54)

where eachNi (1 ≤ i ≤ 9) is the shape function associated with nodezi

of the 9-node element. Since the interpolation operatorΠK for the 8-node
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serendipity satisfies thatΠKu ∈ Q2(ξ, η; K̂), it is trivial that the present
element has at least the same approximation capability as the modified 8-
node element. However, it is not necessarily easy to show the analog of
Theorem 2 for the interpolation operatorΠ

(9)
K associated with the 9-node

element, although the analog of Theorem 1 can be obtained with ease. As
far as the authors are aware, analysis of the 9-node element has not been
performed in the degenerate or nearly degenerate cases.

In the proof, we additionally need slightly complicated estimations for
the “bubble function”N9 associated with the ninth nodez9 :

N9(ξ, η) = 16ξ(1 − ξ)η(1 − η) .(55)

We can easily obtain the analog of(42), whereMi should be replaced with
Ni and a new term|(u−IKu)(z9)| · |N9|W α,p(K) appears in the summation.
By (44), we have

|(u − IKu)(z9)| ≤ Ch
3− 2

p

K |u|W 3,p(K) ; C = C(p, σ∗) > 0 ,(56)

while estimation of|N9|W α,p(K) must be made carefully forα = 1 since

the above estimate does not contain a desired factor such asε
1− 1

p

K . We will
present the essence of such process of evaluating|N9|W 1,p(K) below under
the same conditions forK and T as those in4.3 and in the case where
εK = |z1z4|.

Estimation of |N9|W 1,p(K) : First we have, for the derivatives ofN9,

N9,x = N9,ξξ,x + N9,ηη,x =
1
J

(y,ηN9,ξ − y,ξN9,η) ,

N9,y = N9,ξξ,y + N9,ηη,y =
1
J

(−x,ηN9,ξ + x,ξN9,η) ,

where

N9,ξ(ξ, η) = 16(1 − 2ξ)(η − η2) , N9,η(ξ, η) = 16(ξ − ξ2)(1 − 2η) ,

x,ξ = (x2 − x1)(1 − η) + (x3 − x4)η ,

x,η = (x4 − x1)(1 − ξ) + (x3 − x2)ξ ,

y,ξ = (y2 − y1)(1 − η) + (y3 − y4)η ,

y,η = (y4 − y1)(1 − ξ) + (y3 − y2)ξ .

Thus it is sufficient to evaluate theLp-norms of the following quantities :

a(ξ, η) :=
1

|J |(|x,η| + |y,η|)|N9,ξ| , b(ξ, η) :=
1

|J |(|x,ξ| + |y,ξ|)|N9,η| .
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To evaluateb(ξ, η), notice that

|x,ξ| + |y,ξ| ≤ 2hK , |N9,η| ≤ 16ξ , |J | ≥ |D2|ξ ≥ C1h
2
Kξ

overK̂, whereC1 = C1(σ∗) > 0 is depending onσ∗ only. Thus we have
∫

K̂
{b(ξ, η)}p|J(ξ, η)|dξdη

≤ 32pC1−p
1 h

p+2(1−p)
K

∫∫
K̂

ξp+(1−p)dξdη ≤ C2h
2−p
K ,(a)

whereC2 = C2(p, σ∗) > 0 is depending onp andσ∗ only.
To evaluatea(ξ, η), notice first that

|x,η| + |y,η| ≤ 2(εK + hKξ) , |N9,ξ| ≤ 4 ,

|J | ≥ 2|D1| 1
2 |D2| 1

2 ξ
1
2 (1 − ξ − η)

1
2 ≥ C3h

3
2
Kε

1
2
Kξ

1
2 (1 − ξ − η)

1
2

for 0 ≤ ξ ≤ 1 , 0 ≤ η ≤ 1 − ξ ,

|J | ≥ 2|D2| 1
2 |D3| 1

2 (1 − η)
1
2 (ξ + η − 1)

1
2

≥ C3h
3
2
Kε

1
2
K(1 − η)

1
2 (ξ + η − 1)

1
2

for 0 ≤ ξ ≤ 1 , 1 − ξ ≤ η ≤ 1

overK̂, whereC3 = C3(σ∗) > 0 is depending onσ∗ only. Then we have
∫∫

K̂
{a(ξ, η)}p|J(ξ, η)|dξdη ≤ C4

∫∫
K̂

(εK + hKξ)p|J(ξ, η)|1−pdξdη

≤ C5

∫∫
K̂

(εp
K + hp

Kξp)|J(ξ, η)|1−pdξdη ,

whereC4 andC5 are positive constants depending onC3 andp only. Then
we should estimate the terms in the right-hand side of the above inequality.

First, we obtain∫∫
K̂

ξp|J(ξ, η)|1−pdξdη ≤ C1−p
1 h

2(1−p)
K

∫∫
K̂

ξp+(1−p)dξdη

=
1
2
C1−p

1 h2−2p
K .(b)

Secondly, as in the proof of Lemma 3, we have for1 ≤ p < 3 that
∫∫

K̂
|J(ξ, η)|1−pdξdη

=
∫ 1

0

{∫ 1−ξ

0
|J(ξ, η)|1−p

}
dξdη
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+
∫ 1

0

{∫ 1

1−ξ
|J(ξ, η)|1−p

}
dξdη

≤ C1−p
3 h

3−3p
2

K ε
1−p
2

K

[∫ 1

0

{∫ 1−ξ

0
ξ

1−p
2 (1 − ξ − η)

1−p
2 dη

}
dξ

+
∫ 1

0

{∫ 1

1−ξ
(1 − η)

1−p
2 (ξ + η − 1)

1−p
2 dη

}
dξ

]

= C1−p
3 h

3−3p
2

K ε
1−p
2

K

{
B

(
3−p
2 , 5−p

2

)
B

(
1, 3−p

2

)

+B(3 − p, 1)B
(

3−p
2 , 3−p

2

)}
.(c)

From(b) and(c), we have, by noting thatεK ≤ hK ,

(d)
∫∫

K̂
{α(ξ, η)}p|J(ξ, η)|dξdη ≤ C8h

2−p
K ; C8 = C8(p, σ∗) > 0 .

Combining(d) with (a), we have the desired estimation for1 ≤ p < 3 :

|N9|W 1,p(K) ≤ Ch
2
p
−1

K ; C = C(p, σ∗) > 0 ,(57)

which together with(56) is sufficient for obtaining the analog of Theorem 2.
ut

6. Concluding remarks

In this paper, we have given some error estimates for the modified8-node
serendipity finite element of Kikuchi-Okabe-Fujio [6] in both regular and
degenerate cases. In particular, even in degenerate and nearly degenerate
cases, we can show the same order of accuracy in some Sobolev (semi-)
norms as that in the regular case. Thus we have given some theoretical
background to the use of such a modified serendipity element. We have
also obtained error estimates for some related elements such as the4-node
quadrilateral and9-node Lagrange elements.

It also appears to be important to perform numerical experiments to
check the present theoretical results, which we are planning to publish in
due course. Moreover, we will try to perform error analysis of various other
finite elements in both regular and degenerate cases as well as the present
element used as a fully isoparametric one.

Acknowledgements.The authors would like to express their sincere thanks to Prof. A.
Kaneko of Ochanomizu University for his valuable comments on this work.
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