
Numerische Mathematik (2024) 156:609–639
https://doi.org/10.1007/s00211-024-01398-8

Numerische
Mathematik

A structure-preserving parametric finite element method
for geometric flows with anisotropic surface energy

Weizhu Bao1 · Yifei Li1

Received: 1 November 2022 / Revised: 23 November 2023 / Accepted: 5 February 2024 /
Published online: 11 March 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
We propose and analyze a structure-preserving parametric finite element method
(SP-PFEM) for the evolution of a closed curve under different geometric flows with
arbitrary anisotropic surface energy density γ (n), where n ∈ S

1 represents the outward
unit normal vector. We begin with the anisotropic surface diffusion which possesses
two well-known geometric structures—area conservation and energy dissipation—
during the evolution of the closed curve. By introducing a novel surface energy matrix
Gk(n) depending on γ (n) and the Cahn-Hoffman ξ -vector as well as a nonnegative
stabilizing function k(n), we obtain a new conservative geometric partial differen-
tial equation and its corresponding variational formulation for the anisotropic surface
diffusion. Based on the new weak formulation, we propose a full discretization by
adopting the parametric finite element method for spatial discretization and a semi-
implicit temporal discretizationwith a proper and clever approximation for the outward
normal vector. Under a mild and natural condition on γ (n), we can prove that the pro-
posed full discretization is structure-preserving, i.e. it preserves the area conservation
and energy dissipation at the discretized level, and thus it is unconditionally energy
stable. The proposed SP-PFEM is then extended to simulate the evolution of a close
curve under other anisotropic geometric flows including anisotropic curvature flowand
area-conserved anisotropic curvature flow. Extensive numerical results are reported
to demonstrate the efficiency and unconditional energy stability as well as good mesh
quality (and thus no need to re-mesh during the evolution) of the proposed SP-PFEM
for simulating anisotropic geometric flows.
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1 Introduction

Anisotropic surface energy along surface/interface is ubiquitous in solids andmaterials
science due to the lattice orientational difference [16, 29]. It thus generates anisotropic
evolution process of interface/surface (or geometric flows with anisotropic surface
energy) in materials science [31, 41, 44], imaging science [19, 22, 37], and compu-
tational geometry [16, 20, 45]. In fact, anisotropic geometric flows have significant
and broader applications in materials science, solid-state physics and computational
geometry, such as grain boundary growth [13], foam bubble/film [40], surface phase
formation [49], epitaxial growth [27, 29], heterogeneous catalysis [39], solid-state
dewetting [5, 7, 44], and computational graphics [19, 22, 37].

Assume � be a closed curve in two dimensions (2D) associated with a given
anisotropic surface energy density γ (n), where n = (n1, n2)T ∈ S

1 represents the
outward unit normal vector, see Fig. 1. Define its corresponding free energy functional
W (�) as [4, 6, 20, 33, 42]:

W (�) :=
∫

�

γ (n)ds, (1.1)

where s denotes the arc-length parameter of �. By applying the thermodynamic varia-
tion, one can obtain the chemical potential μ := μ(s) (or weighted curvature denoted
as κγ := κγ (s)) generated from the energy functional W (�) as [33, 42]

μ = κγ := δW (�)

δ�
= lim

ε→0

W (�ε) − W (�)

ε
, (1.2)

where �ε is a small perturbation of � [33]. Different geometric flows associate with
the anisotropic surface energy density γ (n) can be easily defined by providing the nor-

Fig. 1 An illustration of a closed curve � in 2D with an anisotropic surface energy density γ (n) depending
on the outward unit normal vector n
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mal velocity Vn for the evolution of �, which is usually generated from the chemical
potential μ [15, 43]. Typical anisotropic geometric flows are widely used in different
applications including anisotropic curvature flow, area-conserved anisotropic curva-
ture flow and anisotropic surface diffusion with the corresponding normal velocity Vn
given as [1, 14, 15, 18, 43]

Vn =
⎧⎨
⎩

−μ, anisotropic curvature flow,

−μ + λ, area-conserved anisotropic curvature flow,

∂ssμ, anisotropic surface diffusion,
(1.3)

where the Lagrange multiplier λ is chosen such that the area of the region enclosed
by � is conserved, which is given as

λ =
∫
�

μ ds∫
�
1 ds

⇔
∫

�

Vn ds =
∫

�

(−μ + λ)ds = 0. (1.4)

We remark here that if γ (n) ≡ 1 for n ∈ S
1, i.e. in the case of the isotropic surface

energy density, the chemical potential μ defined in (1.2) collapses to the curvature κ

of �. Then the geometric flows defined in (1.3) collapse to curvature flow (or curve-
shortening flow), area-conserved curvature flow and surface diffusion, respectively
[14].

For the geometric flows (1.3)with the isotropic surface energy density, i.e. γ (n) ≡ 1
for n ∈ S

1, based on different parametrizations of � and different mathematical for-
mulations for the flows, many different numerical methods have been proposed in the
literature. These numerical methods include the level set method and the phase-field
method [24], the marker particle method [23, 47], the finite element method based on
graph formulation [20, 21], the discontinuous Galerkin method [48], the crystalline
method [17, 28], the evolving surface finite element method (ESFEM) [34], and the
parametric finite element method (PFEM) [9, 11, 20, 25, 26]. Among these numerical
methods, most of them need to frequently carry out remeshing during the evolution in
order to avoid the collision of mesh points, given that only the normal velocity is pro-
vided in the geometric flows (1.3). Therefore, different artificial tangential velocities
are introduced in different numerical methods. One notable exception is the energy-
stable PFEM (ES-PFEM) proposed by Barrett, Garcke, and Nürnberg (also called as
BGN scheme in the literature). It demonstrates several good properties including effi-
ciency, accuracy and unconditional energy stability aswell as the surprising asymptotic
equal-mesh distribution property for isotropic geometric flows [9, 11]. Recently, by
introducing a clever approximation of the normal vector via an average of the two nor-
mal vectors at two adjacent time steps, Bao and Zhao proposed a structure-preserving
PFEM (SP-PFEM) [2, 3, 8] for the isotropic surface diffusion. The SP-PFEM pre-
serves the two geometric structures—mass (or the area of the region enclosed by the
curve) conservation and energy (or the length of the curve) dissipation—in the fully
discretized level.

Different techniques have been presented to extend the ES-PFEM and/or SP-PFEM
from isotropic geometric flows to anisotropic geometric flows in the literature [10, 12,
32, 33, 35, 45]. When γ (n) is taken as the Riemannian-like metric anisotropic surface
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612 W. Bao, Y. Li

energy, by adapting amodified variational formulationwith a proper and clever surface
energymatrix, Barrett, Garcke andNürnberg [10] extended successfully the ES-PFEM
to anisotropic surface diffusion with this very special surface energy density. Recently,
by introducing conservative geometric partial differential equations for the anisotropic
surface diffusion with a general form of γ (n) = γ (− sin θ, cos θ) := γ̂ (θ) with θ

being the angle between n and the vertical axis (cf. Fig1), we extended the ES-PFEM
to the anisotropic surface diffusion under a very strong condition on γ̂ (θ) [35]. Very
recently, by introducing a symmetric positive definite surface matrix Zk(n) depending
on γ (n) and the Cahn-Hoffman ξ -vector as well as a stabilizing function k(n) :
S
1 → R

+ [4, 6], we successfully and systematically extended the ES-PFEM and
SP-PFEMmethods from isotropic surface diffusion to anisotropic surface diffusion in
two (d = 2) and three dimensions (d = 3) under a symmetric condition on γ (n) as:

γ (−n) = γ (n), n ∈ S
d−1, with d = 2, 3. (1.5)

To our best knowledge, it is still an open question to extend systematically either ES-
PFEM or SP-PFEM for solving the anisotropic surface diffusion with arbitrary form
of γ (n), especially when γ (n) is NOT symmetric, such as for the 3-fold anisotropic
surface energy density arising in solid-state dewetting [5, 45].

The main objective of this paper is to extend the SP-PFEM (and ES-PFEM) for
solving the anisotropic geometric flow (1.3) with the surface energy density γ (n)

satisfying a relatively mild and simple condition as

γ (−n) < 3γ (n), n ∈ S
1, γ ( p) ∈ C2(R2 \ {0}), (1.6)

where γ ( p) is a one-homogeneous extension of γ (n) from S
1 to R2 defined as [4, 6]

γ ( p) :=
{

| p| γ
(

p
| p|
)

, ∀ p = (p1, p2)T ∈ R
2∗ := R

2 \ {0},
0, p = 0,

(1.7)

where | p| =
√
p21 + p22. In fact, if γ (n) is symmetric, i.e. it satisfies (1.5), then it

satisfies (1.6) automatically since 0 < γ (−n) = γ (n) < 3γ (n) for n ∈ S
1, and thus

the SP-PFEM proposed in this paper works for both symmetric and non-symmetric
surface energy density γ (n). The main ingredients in the proposed method are based
on: (i) the introduction of a novel surface energy matrix Gk(n) depending on γ (n)

and the Cahn-Hoffman ξ -vector as well as a stabilizing function k(n) : S
1 → R

+,
which can be explicitly decoupled into a symmetric positive definite matrix and an
anti-symmetric matrix; (ii) a new conservative geometric partial differential equation
(PDE) for the anisotropic geometric flows (1.3); (iii) a new variational formulation;
and (iv) a proper approximation of the normal vector. Under the mild and simple
condition (1.6) on the anisotropic surface energy density γ (n), we can prove rigorously
that the proposed SP-PFEM is structure-preserving—area conservation and energy
dissipation—for the anisotropic surface diffusion in the discretized level. Then the
proposed SP-PFEM is extended to simulate the evolution of a closed curve under other
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anisotropic geometric flows including anisotropic curvature flow and area-conserved
anisotropic curvature flow.

The remainder of this paper is organized as follows: In Sect. 2, by introducing the
surface energymatrix Gk(n), we derive a new conservative PDE and its corresponding
variational formulation for the anisotropic surface diffusion, and propose the semi-
discretization in space and the full-discretization by SP-PFEM. In Sect. 3, we establish
the unconditional energy dissipation of the proposed SP-PFEM for the anisotropic
surface diffusion under the condition (1.6). In Sect. 4, we extend the proposed SP-
PFEM to the anisotropic curvature flow and area-conserved anisotropic curvature
flow. Extensive numerical results are reported in Sect. 5 to illustrate the efficiency and
accuracy as well as structure-preserving properties of the proposed SP-PFEM. Finally,
some concluding remarks are drawn in Sect. 6.

2 The structure-preserving PFEM for anisotropic surface diffusion

In this section, by taking the anisotropic surface diffusion in (1.3), we introduce a
surface energy matrix Gk(n), obtain a conservative geometric PDE and derive its
corresponding variational formulation. An SP-PFEM for the variational problem is
presented and its structure-preserving property is stated under the simple and mild
condition (1.6) on the anisotropic surface energy density γ (n).

2.1 The geometric PDE

Let � := �(t) be parameterized by X := X(s, t) = (x(s, t), y(s, t))T ∈ R
2 with s

denoting the time-dependent arc-length parametrization (or ‘Lagrangian coordinate’)
of � and t representing the time. Then the anisotropic surface diffusion of � can be
described by

∂tX = (∂ssμ) n, (2.1)

where n = (n1, n2)T ∈ S
1 represents the outward unit normal vector of �, and μ is

the chemical potential given in (1.2). In practice, another popular way (or ‘Eulerian
coordinate’) is to adopt ρ ∈ T = R/Z = [0, 1] being the periodic interval and then
parameterize �(t) on T by X(ρ, t), which is given as

�(t) := X(T, t) X(·, t) : T → R
2, (ρ, t) �→ (x(ρ, t), y(ρ, t))T . (2.2)

Then the arc-length parameter s is given as s(ρ, t) = ∫ ρ

0 |∂ρX(ρ, t)| dρ satisfying
∂ρs = |∂ρX|. We assume that the parametrization by ρ is regular during the evolution,
i.e., there is a constant C > 1 such that 1

C ≤ |∂ρs(ρ, t)| ≤ C . The normal velocity Vn
can be given by this parametrization as

Vn = n · ∂tX . (2.3)

Based on the one-homogeneous extension γ ( p) in (1.7), we can talk about the
regularity of γ (n) by referring to the regularity of γ ( p), i.e., γ (n) ∈ C2(S1) ⇐⇒

123



614 W. Bao, Y. Li

γ ( p) ∈ C2(R2\{0}). The Cahn-Hoffman ξ -vector is widely adopted in the literature
as [30, 46]

ξ := ξ(n) : S1 → R
2, n �→ ξ(n) = (ξ1, ξ2)

T := ∇γ ( p)| p=n = γ (n)n + (ξ · τ )τ ,

(2.4)
here τ = ∂sX = n⊥ is the unit tangential vector of �, and ⊥ denotes the clockwise
rotation by π

2 . Then an explicit formulation of the chemical potential μ in (1.2) can
be expressed in term of the ξ -vector as [33]

μ := μ(n) = −n · ∂sξ
⊥. (2.5)

Thus another equivalent geometric PDE for the anisotropic surface diffusion can be
written as

n · ∂tX = ∂ssμ, (2.6a)

μ = −n · ∂sξ
⊥, ξ(n) = ∇γ ( p)| p=n. (2.6b)

2.2 The surface energymatrix

Introduce the surface energy matrix Gk(n) as

Gk(n) := γ (n)I2−nξ T +ξnT +k(n)nnT := G(s)
k (n)+G(a)(n), ∀n ∈ S

1, (2.7)

where I2 is the 2 × 2 identity matrix, k(n) : S1 → R
+ is a nonnegative stabilizing

function to be determined later, and G(s)
k (n) and G(a)(n) are a symmetric positive

matrix and an anti-symmetric matrix, respectively, which are given as

G(s)
k (n) := γ (n)I2 + k(n)nnT , G(a)(n) := −nξ T + ξnT , ∀n ∈ S

1. (2.8)

Then we get the following relationship between the weighted curvature μ and the
newly constructed Gk(n).

Lemma 2.1 The weighted curvature μ defined in (2.5) has the following alternative
explicit expression

μn = −∂s(Gk(n)∂sX). (2.9)

Proof From[4,Lemma2.1],weknow that ξ andμgiven in (2.4) and (2.5), respectively,
satisfy

μn = −∂sξ
⊥, ξ⊥ = γ (n)τ − (ξ · τ )n. (2.10)

Thus it suffices to show Gk(n)∂sX = ξ⊥. Since ∂sX = τ , by using the definition of
Gk(n) in (2.7), we can simplify Gk(n)∂sX as

Gk(n)∂sX = γ (n)τ − (ξ · τ )n + (n · τ )ξ + k(n)(n · τ )n

= γ (n)τ − (ξ · τ )n = ξ⊥. (2.11)
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Combining this with (2.10), we get the desired equality (2.9). ��
By applying (2.9), the geometric PDE for the anisotropic surface diffusion (2.6)

can be rewritten as the following conservative form

n · ∂tX = ∂ssμ, (2.12a)

μn = −∂s(Gk(n)∂sX). (2.12b)

Here the ‘conservative form’ refers to the right-hand side of (2.12b) is in conservative
form with respect to s.

Remark 2.1 Whenγ (n) ≡ 1 for n ∈ S
1, i.e., isotropic case, it iswell known that ξ = n.

Taking k(n) ≡ 0 for n ∈ S
1 in (2.7), we get Gk(n) = I2. Then the conservative form

(2.9) (and (2.12)) collapses to the standard forms used in the literature for the isotropic
case [9]. Thus our new formulation (2.9) (and (2.12)) is a natural extension from the
isotropic case to anisotropic case.

On the other hand, when γ (n) �= 1, i.e., anisotropic case, it is well known that
0 �= ξ �= n, and then −nξT + ξnT �= −nξ T − ξnT since ξnT �= 0. Thus our new
surface energy matrix Gk(n) introduced in (2.7) is quite different with the surface
energy matrix Zk(n) introduced in [4, 6] mainly for anisotropic case with symmetric
surface energy density γ (−n) = γ (n).

Remark 2.2 As it is illustrated in Fig. 1, we have

n = (n1, n2)
T = (− sin θ, cos θ)T := n(θ),

τ = (τ1, τ2)
T = (cos θ, sin θ)T := τ (θ), θ ∈ [−π, π ],

γ (n) = γ (− sin θ, cos θ) := γ̂ (θ).

(2.13)

Plugging (1.7) into (2.4) and taking p = | p|(− sin θ, cos θ)T , we get

ξ = ξ(n) = ∇γ ( p)| p=n =
[
γ

(
p

| p|
)

∇| p| + | p|∇γ

(
p

| p|
)]∣∣∣∣

p=n

= γ (− sin θ, cos θ)n(θ) + ∇γ (− sin θ, cos θ)

= γ̂ (θ)n(θ) − γ̂ ′(θ)τ (θ) := ξ̂(θ).

(2.14)

Substituting (2.14) into (2.7), we have

Gk(n) =
(

γ̂ (θ) −γ̂ ′(θ)

γ̂ ′(θ) γ̂ (θ)

)
+ k̂(θ)

(
sin2 θ − sin θ cos θ

− sin θ cos θ cos2 θ

)
:= Ĝk(θ), (2.15)

where k̂(θ) := k(n) = k(− sin θ, cos θ) is a stabilizing function. If we take k̂(θ) ≡ 0
in (2.15), then Ĝk(θ) collapses to the surface energy matrix G(θ) proposed in [35].
Thus our formulation is also a natural extension of the method in [35] which adopts
the surface energy density in γ̂ (θ) formulation and thus cannot be extended to three
dimensions (3D). On the contrary, since we adopt the surface energy density in the
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616 W. Bao, Y. Li

γ (n) formulation, our method can be extended to 3D straightforwardly via the Cahn-
Hoffman ξ -vector.

Moreover, due to the stabilizing function k(n) = k̂(θ), the energy stable condition
(1.6) becomes

γ̂ (θ + π) < 3γ̂ (θ), ∀θ ∈ [−π, π ], γ̂ (θ) ∈ C2([−π, π ]). (2.16)

This energy stable condition significantly improve the conditions required in [35]
without using the stabilizing function, i.e., k̂(θ) ≡ 0. For example, for the m-fold
anisotropic surface energy density γ̂ (θ) = 1 + β cosmθ for m = 2, 3, 4, 6: the
energy stable condition in [35] (without using the stabilizing function k̂(θ)) requires
|β| ≤ 1

m2+1
for all m; while it only needs |β| < 1 and |β| < 1

2 for m being even and

odd, respectively. Thus by introducing the stabilizing function k(n) (or k̂(θ)), we can
improve the energy stable condition significantly.

2.3 A variational formulation and its properties

We then derive the variational formulation for the conservative form (2.12). Suppose
the usual L2 space over T is

L2(T) :=
{
u : T → R |

∫
T

|u(ρ)|2dρ < ∞
}

. (2.17)

The functional space with respect to � := �(t) can be given as

L2(�(t)) :=
{
u : T → R |

∫
T

|u(ρ)|2∂ρs(ρ, t)dρ < ∞
}

, (2.18)

with the following weighted L2-inner product (·, ·)�(t)

(
u, v

)
�(t)

:=
∫

�(t)
u(s)v(s)ds =

∫
T

u(ρ)v(ρ)∂ρs(ρ, t) dρ, ∀u, v ∈ L2(T).

(2.19)
Since we assume that the parameterization is regular; the space L2(�(t)) with respect
to �(t) is equivalent to the usual L2(T), which is independent of t . The Sobolev space
H1(T) is defined as

H1(T) :=
{
u : T → R | u ∈ L2(T), ∂su ∈ L2(T)

}
. (2.20)

Here ∂su is the weak derivative. Moreover, we can extend the above definitions to the
functions in [L2(T)]2 and [H1(T)]2.

Multiplying a test function φ ∈ H1(T) to (2.12a), integrating over �(t) and taking
integration by parts, we obtain

(
n · ∂tX, φ

)
�(t)

= −
(
∂sμ, ∂sφ

)
�(t)

. (2.21)
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Similarly, by multiplying a test function ω = (ω1, ω2)
T ∈ [H1(T)]2 to (2.12b), we

deduce that (
μn,ω

)
�(t)

=
(
Gk(n)∂sX, ∂sω

)
�(t)

. (2.22)

Based on the two Eqs. (2.21) and (2.22), the new variational formulation for the
conservative form (2.12) can be stated as follows: Suppose the initial curve �0 :=
X(·, 0) = (x(·, 0), y(·, 0))T ∈ [H1(T)]2 and the initial weighted curvatureμ(·, 0) :=
μ0(·) ∈ H1(T), then for any t > 0, find the solution (X(·, t), μ(·, t)) ∈ [H1(T)]2 ×
H1(T) satisfying

(
n · ∂tX, ϕ

)
�(t)

+
(
∂sμ, ∂sϕ

)
�(t)

= 0, ∀ϕ ∈ H1(T), (2.23a)
(
μn,ω

)
�(t)

−
(
Gk(n)∂sX, ∂sω

)
�(t)

= 0, ∀ω ∈ [H1(T)]2. (2.23b)

Denote the area of the region enclosed by �(t) as A(t) and the free interfacial
energy of �(t) as W (t), which are given by

A(t) :=
∫

�(t)
y(ρ, t)∂ρx(ρ, t)dρ, W (t) :=

∫
�(t)

γ (n) ds, t ≥ 0. (2.24)

We can show that the two geometric properties, i.e. area conservation and energy
dissipation, still hold for the weak formulation (2.23).

Proposition 2.1 (area conservation and energy dissipation) Suppose �(t) is given by
the solution (X(·, t), μ(·, t)) of the variational formulation (2.23), we have

A(t) ≡ A(0), W (t) ≤ W (t1) ≤ W (0), ∀t ≥ t1 ≥ 0. (2.25)

Proof By taking ϕ = 1 in (2.23a) and using (2.17) in [35], we know

d A(t)

dt
=
(
∂tX, n

)
�(t)

= −
(
∂sμ, ∂s1

)
�(t)

= 0.

Therefore we have A(t) ≡ A(0),∀t ≥ 0. For the energy dissipation, from the proof
of [4, Proposition 2.2], it holds

dW (t)

dt
=
(
γ (n)∂sX − (ξ · ∂sX)n, ∂s∂tX

)
�(t)

. (2.26)

By setting ϕ = μ in (2.23a) and ω = ∂tX in (2.23b), and considering (2.11) and
(2.26), we deduce that

dW (t)

dt
=
(
Gk(n)∂sX, ∂s∂tX

)
�(t)

=
(
μn, ∂tX

)
�(t)

= −τ
(
∂sμ, ∂sμ

)
�(t)

≤ 0.

Which indicates the energy dissipation W (t) ≤ W (t1) ≤ W (0), ∀t ≥ t1 ≥ 0. ��
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2.4 A semi-discretization in space

To obtain the spatial discretization, let N > 2 be an integer and define the mesh
size as h = 1

N . Consider the uniform partition of T = [0, 1] = ∪N
j=1 I j , where I j =

[ρ j−1, ρ j ] and ρ j = jh for j = 0, 1, . . . , N . Here ρN = ρ0 by periodicity. The closed
curve �(t) = X(·, t) is approximated by the closed line segments �h(t) = Xh(·, t) =
(xh(·, t), yh(·, t))T satisfying Xh(ρ j , 0) = X(ρ j , 0). And the discretization for the
test function space H1(T) is given by the following space of piecewise linear finite
element functions

K
h = K

h(T) :=
{
u ∈ C(T)| u|I j ∈ P1(I j ),∀1 ≤ j ≤ N

}
, (2.27)

where P1(I j ) is the set of polynomials defined on I j of degree ≤ 1. The mass lumped
inner product for two functions u, v ∈ K

h(T) with respect to �h(t) is defined as

(u, v)h
�h(t) := 1

2

N∑
j=1

|h j (t)|
(
(u · v)(ρ+

j−1) + (u · v)(ρ−
j )
)

. (2.28)

where h j (t) = Xh(ρ j , t) − Xh(ρ j−1, t), and u(ρ±
j ) = lim

ρ→ρ±
j

u(ρ). We note this

mass lumped inner product is also applicable for [Kh]2 and the piecewise constant
vector-valued functions with possible jump discontinuities at ρ j for 0 ≤ j ≤ N .

The discretized unit normal vector nh(t), unit tangential vector τ h(t), and the ξ -
vector ξ h(t) are such piecewise constant vectors on �h(t), which are given as

nhj := nh |I j = − h⊥
j

|h j | , τ h
j := τ h |I j = (nhj )

⊥, ξhj := ξ h |I j = ∇γ ( p)| p=nhj
.

(2.29)
Here we use nh to represent nh(t) for short. To make sure nh, τ h, ξ h are well defined,
we need the following assumption on h j (t)

min
1≤ j≤N

|h j (t)| > 0, ∀t ≥ 0. (2.30)

After giving all the continuous objects their discretized versions, we can state
the spatial semi-discretization as follows: Let �h

0 := Xh(T, 0) ∈ [Kh]2, μh(·, 0) ∈
K

h be the approximations of �0 := X0(T), μ0(·), respectively, with Xh(ρ j , 0) =
X(ρ j , 0), μh(ρ j , 0) = μ0(ρ j ) for 0 ≤ j ≤ N , find the solution (Xh(·, t), μh(·, t)) ∈
[Kh]2 × K

h , such that

(
nh · ∂tXh, ϕh

)h
�h(t)

+
(
∂sμ

h, ∂sϕ
h
)h

�h(t)
= 0, ∀ϕh ∈ K

h, (2.31a)

(
μhnh,ωh

)h
�h(t)

−
(
Gk(nh)∂sXh, ∂sω

h
)h

�h(t)
= 0, ∀ωh ∈ [Kh]2, (2.31b)
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where

Gk(nh)|I j = γ (nhj )I2 − nhj (ξ
h
j )
T + ξ hj (n

h
j )
T + k(nhj ) n

h
j (n

h
j )
T , (2.32)

and the discretized derivative ∂s for a scalar and vector valued functions f and f ,
respectively, are given as

∂s f |I j := f (ρ j ) − f (ρ j−1)

|h j | , ∂s f |I j := f (ρ j ) − f (ρ j−1)

|h j | , (2.33)

and assumption (2.30) ensures ∂s f and ∂s f are piecewise constant functions with
possible jump discontinuities at ρ j for 0 ≤ j ≤ N , thus the mass lumped inner

product terms like
(
∂sμ

h, ∂sϕ
h
)h

�h(t)
in (2.31) are well defined.

Denote the enclosed area and the total energy of the closed line segments �h(t) as
Ah(t) and Wh(t), respectively, which are given by

Ah(t) = 1

2

N∑
j=1

(xhj (t) − xhj−1(t))(y
h
j (t) + yhj−1(t)), Wh(t) =

N∑
j=1

|h j (t)|γ (nhj ),

(2.34)
where xhj (t) := xh(ρ j , t), yhj (t) := yh(ρ j , t),∀0 ≤ j ≤ N .

Given that the finite element space Kh is the subspace of H1(T), the spatial semi-
discretization (2.31) is a conformingdiscretization. Therefore, the structure-preserving
property (2.25) of the weak formulation still holds for (2.31).

Proposition 2.2 (Area conservation and energy dissipation) Suppose �h(t) is given
by the solution (Xh(·, t), μh(·, t)) of (2.31), then we have

Ah(t) ≡ Ah(0), Wh(t) ≤ Wh(t1) ≤ Wh(0), ∀t ≥ t1 ≥ 0. (2.35)

The proof is similar to [35, Proposition 3.1], and is omitted for brevity.

2.5 A structure-preserving PFEM

We then consider the full discretization. Let τ be the uniform time step, and �m =
Xm(T) ∈ [Kh]2 be the approximation of �h(tm) = Xh(T, tm),∀m ≥ 0, where
tm := mτ . Suppose hmj := Xm(ρ j )−Xm(ρ j−1), we can similarly give the definitions

for themass lumped inner product (·, ·)h�m as well as the unit normal vector nm , the unit
tangential vector τm , and the ξ -vector ξm with respect to�m . By adopting the backward
semi-implicit Euler method, the fully-implicit structure-preserving discretization of
PFEM for anisotropic surface diffusion (2.6) can then be given as:

Suppose the initial approximation �0 = X0(T) ∈ [Kh]2 is given by X0(ρ j ) =
X0(ρ j ),∀0 ≤ j ≤ N . For any m = 0, 1, 2, . . ., find the solution
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(Xm(·) = (xm(·), ym(·))T , μm(·)) ∈ [Kh]2 × K
h , such that

(
nm+ 1

2 · X
m+1 − Xm

τ
, ϕh

)h
�m

+
(
∂sμ

m+1, ∂sϕ
h
)h

�m
= 0, ∀ϕh ∈ K

h, (2.36a)
(
μm+1nm+ 1

2 ,ωh
)h

�m
−
(
Gk(nm)∂sXm+1, ∂sω

h
)h

�m
= 0, ∀ωh ∈ [Kh]2, (2.36b)

where

Gk(nm)|I j = γ (nmj )I2 − nmj (ξmj )T + ξmj (nmj )T + k(nmj ) nmj (nmj )T , (2.37)

and

nm+ 1
2 := −1

2

1

|∂ρXm | (∂ρXm + ∂ρXm+1)⊥. (2.38)

The SP-PFEM (2.36) is fully-implicit, and can be numerically solved by Newton’s
iterative method. Here we adapt the iterative solver, originally proposed for isotropic
surface diffusion in [8], to solve our SP-PFEM (2.36) of anisotropic surface diffu-
sion. The only change is we replace their identity matrix I2 with our surface energy
matrix Gk(nm).We observe thatmost variables, especially the integral domain�m , are

treated explicitly, the non-linearity arises from nm+ 1
2 . If nm+ 1

2 is replaced by nm , then
(2.36) becomes semi-implicit. However, the clever approximation nm+ 1

2 is critical in
preserving the area conservation, and the semi-implicit PFEM can only preserve the
energy dissipation property.

2.6 Main results

Denote the enclosed area and the total energy of the closed line segments �m as Am

and Wm , respectively, which are given by

Am = 1

2

N∑
j=1

(xm(ρ j ) − xm(ρ j−1)(y
m(ρ j ) + ym(ρ j−1)), (2.39a)

Wm =
N∑
j=1

|hmj |γ (nmj ). (2.39b)

Introduce two auxiliary functions Pα(n, n̂), Q(n, n̂) as

Pα(n, n̂) := 2
√

(γ (n) + α(n̂ · n⊥)2)γ (n), ∀n ∈ S
1, α ≥ 0, (2.40a)

Q(n, n̂) := γ (n̂) + γ (n)(n · n̂) − (ξ · n⊥)(n̂ · n⊥), ∀n, n̂ ∈ S
1, (2.40b)

we define the minimal stabilizing function k0(n) as (its existence will be given in the
next section)

k0(n) := inf{α ≥ 0 : Pα(n, n̂) − Q(n, n̂) ≥ 0, ∀n̂ ∈ S
1}, ∀n ∈ S

1. (2.41)
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For the SP-PFEM (2.36), we have

Theorem 2.1 (Structure-preserving) Under the simple and mild condition (1.6) on the
anisotropic surface energy γ (n) and taking the stabilizing function k(n) ≥ k0(n)

for n ∈ S
1, then the SP-PFEM (2.36) preserves the two geometric properties—mass

conservation and energy dissipation—in the discrete level, i.e.,

Am+1 ≡ A0, Wm+1 ≤ Wm ≤ . . . ≤ W 0, ∀m ≥ 0. (2.42)

The area conservation part is a direct result of [8, Theorem 2.1]. And the energy
dissipation will be proved in the next section.

Remark 2.3 The construction of the two auxiliary functions Pα(n, n̂), Q(n, n̂) are
inspired by [35]. Indeed, as elaborated in Remark 2.1, [35] is a special case α = 0 of
this paper, and its energy stability result was established by showing that Q(n, n̂) −
2γ (n) ≤ 0 = P0(n, n̂) − 2γ (n).

3 Energy dissipation of the SP-PFEM (2.36)

In this section, we first show if γ (n) satisfies (1.6), the minimal stabilizing function
k0(n) defined in (2.41) is well-defined, thus we can always choose a nonnegative
stabilizing function k(n) ≥ k0(n) for n ∈ S

1. After that, we will use k0(n) to give the
proof of the unconditional energy stability part of the main theorem 2.1.

3.1 Existence of theminimal stabilizing function k0(n) defined in (2.41)

From the definition of k0(n) in (2.41), we observe that if (n̂ ·n⊥)2 > 0, then intuitively
for sufficiently large α, we know the Pα(n, n̂) ≥ Q(n, n̂). But this approach will fail
when (n̂ · n⊥)2 = 0, and this can happen if n̂ = ±n, which suggests us to treat the
two cases n̂ · n ≥ 0 and n̂ · n ≤ 0 separately. To simplify the notations, we introduce
a compact set S1n as

S
1
n := {n̂ ∈ S

1|n · n̂ ≥ 0}, n ∈ S
1. (3.1)

Then n · n̂ ≥ 0 ⇐⇒ n̂ ∈ S
1
n, and n · n̂ ≤ 0 ⇐⇒ n̂ ∈ S

1−n.

Theorem 3.1 The k0(n) defined as (2.41) is bounded if the condition (1.6) on γ (n) is
satisfied.

Proof First we consider the case n̂ ∈ S
1
n. Since γ (n) satisfies (1.6), we know γ ( p) ∈

C2(R2\{0}). Thus there exists a constant C1 > 0, such that

∥∥Hγ ( p)
∥∥
2 ≤ C1, ∀1

2
≤ | p|2 ≤ 1, (3.2)

here Hγ is the Hessian matrix of γ ( p), and ‖·‖2 denotes the 2-norm.
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By mean value theorem, we know for all n̂ ∈ S
1
n, there exists a constant 0 < c < 1

such that

γ (n̂) = γ (n) + ξ · (n̂ − n) + 1

2
(n̂ − n)T Hγ

(
cn + (1 − c)n̂

)
(n̂ − n). (3.3)

It is easy to see that |cn + (1 − c)n̂| ≤ 1 and |cn + (1 − c)n̂|2 ≥ c2 + (1 − c)2 ≥ 1
2 .

Hence we know

γ (n̂) ≤ γ (n) + ξ · (n̂ − n) + C1

2
|n̂ − n|2. (3.4)

And notice that ξ · n = γ (n), we can then get the following estimate of Q(n, n̂):

Q(n, n̂) − 2γ (n)

≤
(

γ (n) + ξ · (n̂ − n) + C1

2
|n̂ − n|2

)
−
(
ξ · n̂ − (ξ · n)(n̂ · n)

)

+ γ (n)(n · n̂) − 2γ (n)

= 2γ (n)((n · n̂) − 1) + C1

2
|n̂ − n|2

=
(
C1

2
− γ (n)

)
|n̂ − n|2. (3.5)

Here we use the fact ξ · n̂ = (ξ ·n)(n̂ ·n)+ (ξ ·n⊥)(n̂ ·n⊥) and |n̂−n|2 = 2−2n · n̂.
On the other hand, using the fact (n̂ · n⊥)2 = 1− (n̂ · n)2 = |n̂−n|2

2 (1+ n · n̂), we
know that for α > γ (n), it holds

Pα(n, n̂) − 2γ (n) = 2α(n̂ · n⊥)2√
1 + α

γ (n)
(n̂ · n⊥)2 + 1

≥ 2α(n̂ · n⊥)2

2
√
1 + α

γ (n)

= α(1 + n̂ · n)

2
√
1 + α

γ (n)

|n̂ − n|2

≥
√

γ (n)(α − γ (n))

2
|n̂ − n|2. (3.6)

Combining (3.5) and (3.6), we know that for α ≥ α1 := (C1−2γ (n))2+γ 2(n)
γ (n)

< ∞, it

holds Pα(n, n̂) ≥ Q(n, n̂),∀n̂ ∈ S
1
n.

For the case n̂ ∈ S
1−n, by (1.6), when n̂ = −n, we know that

Q(n,−n) = γ (−n) + γ (n)(n · (−n)) − (ξ · n⊥)(−n · n⊥)

< 3γ (n) − γ (n) = 2γ (n). (3.7)

Thus for α = 0 := α−n < ∞, we know P0(n,−n) = 2γ (n) > Q(n,−n). By
continuity of Pα and Q, there exits an open set O−n,0 ⊂ S

1 such that −n ∈ O−n,0,
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and for all n̂ ∈ O−n,0 and α ≥ 0, we have Pα(n, n̂) − Q(n, n̂) ≥ 0. For a given p ∈
S
1−n, p �= −n,weknow that ( p·n⊥)2 > 0.Thereforewe can choose a sufficiently large

but finite α p < ∞, such that Pα p(n, p) − Q(n, p) > 0. And by the same argument,
there exists an open set O p,α p ⊂ S

1, such that p ∈ O p,α p and Pα(n, n̂) − Q(n, n̂) ≥
0,∀n̂ ∈ O p,α p , α ≥ α p. And we obtain an open cover for S1−n as

S
1−n ⊂

⋃
p∈S1−n

O p,α p . (3.8)

Since S
1−n is compact, by open cover theorem, there is a finite set of vectors

p1, . . . , pM ∈ S
1−n, such that

S
1−n ⊂

M⋃
i=1

O pi ,α pi
. (3.9)

If we take α2 := max
1≤i≤M

α pi < ∞, we have Pα(n, n̂) − Q(n, n̂) ≥ 0,∀n̂ ∈ S
1−n, α ≥

α2, hence

∞ > max(α1, α2) ∈
{
α ≥ 0 : Pα(n, n̂) − Q(n, n̂) ≥ 0, ∀n̂ ∈ S

1
}

. (3.10)

Which means k0(n) = inf
{
α ≥ 0 : Pα(n, n̂) − Q(n, n̂) ≥ 0,∀n̂ ∈ S

1
}

< ∞. ��
Remark 3.1 The n̂ ∈ S

1
n part only requires inequality (3.4), thus condition γ ( p) ∈

C2(R2\{0}) can be relaxed to γ ( p) is piecewise C2(R2 \ {0}). And the condition
γ (−n) < 3γ (n) is to ensure the existence of O−n,0, which suggests we may find
a larger α−n > 0 such that O−n,α−n exists for γ (n) satisfies γ (−n) ≤ 3γ (n). And
by the same argument, we can show such O−n,α−n exists if and only if ξ(ni ) =
γ (ni )ni ⇐⇒ γ (−ni ) = 3γ (ni ).

By the existence of k0(n), once the γ (n) is given, the minimal stabilizing function
k0(n) is then determined, i.e. there is a map from γ (n) to k0(n). Similar to the proof
when γ (n) is symmetric, i.e. γ (−n) = γ (n) in [2, 8], we can show such map is a
sub-linear with respect to γ (n) when it satisfies (1.6).

Lemma 3.1 (Positive homogeneity and subadditivity) Let γ1(n), γ2(n) and γ3(n) be
three functions satisfying (1.6) with minimal stabilizing functions k(1)

0 (n), k(2)
0 (n) and

k(3)
0 (n), respectively, then we have

(i) if γ2(n) = cγ1(n), where c > 0 is a positive number, then k(2)
0 (n) = ck(1)

0 (n);
and

(ii) if γ3(n) = γ1(n) + γ2(n), then k(3)
0 (n) ≤ k(1)

0 (n) + k(2)
0 (n).

Proof Let ξ (i), P(i)
α (n, n̂), Q(i)(n, n̂), k(i)

0 (n) be the ξ -vector, the auxiliary function
Pα(n, n̂), Q(n, n̂) and the minimal stabilizing function k0(n) for γi (n), i = 1, 2, 3,
respectively.
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(i) If γ2(n) = cγ1(n) with c > 0, then it is easy to see that

ξ (2) = c ξ (1), P(2)
c α (n, n̂) = c P(1)

α (n, n̂), Q(2)(n, n̂) = c Q(1)(n, n̂).

This, together with the definition of k(1)
0 (n) yields that

P(2)

c k(1)
0 (n)

(n, n̂) − Q(2)(n, n̂) = c

(
P(1)

k(1)
0 (n)

(n, n̂) − Q(1)(n, n̂)

)
≥ 0.

Which indicates k(2)
0 (n) ≤ c k(1)

0 (n). Similarly, γ1(n) = 1
cγ2(n) implies that

k(1)
0 (n) ≤ 1

c k
(2)
0 (n). Therefore, we obtain k(2)

0 (n) = c k(1)
0 (n).

(ii) If γ3(n) = γ1(n) + γ2(n), then from (2.40b) it is easy to see ξ (3) = ξ (1) + ξ (2)

and Q(3)(n, n̂) = Q(1)(n, n̂) + Q(2)(n, n̂).
On the other hand, for any a, b > 0, by using the Cauchy inequality and noting

(2.40a), we derive that

P(3)
a+b(n, n̂)

= 2
√[(

γ1(n) + a(n̂ · n⊥)2
)+ (

γ2(n) + b(n̂ · n⊥)2
)] [

(γ1(n)) + (γ2(n))
]

≥ 2

√(√(
γ1(n) + a(n̂ · n⊥)2

)
γ1(n) +

√(
γ2(n) + b(n̂ · n⊥)2

)
γ2(n)

)2

= P(1)
a (n, n̂) + P(2)

b (n, n̂). (3.11)

Taking a = k(1)
0 (n) > 0, b = k(2)

0 (n) > 0 in (3.11) and using the definition of k0(n),
we find that

P(3)

k(1)
0 (n)+k(2)

0 (n)
(n, n̂) − Q(3)(n, n̂)

≥ P(1)

k(1)
0 (n)

(n, n̂) + P(2)

k(2)
0 (n)

(n, n̂) − Q(1)(n, n̂) − Q(2)(n, n̂) ≥ 0,

which indicates k(3)
0 (n) ≤ k(1)

0 (n) + k(2)
0 (n). ��

3.2 Proof of the energy dissipation in (2.42)

To prove the main result, we first need the following lemma:

Lemma 3.2 Suppose h, ĥ are two non-zero vectors in R2 and n = − h⊥
|h| , n̂ = − ĥ

⊥

|ĥ| to
be the corresponding unit normal vectors. Then for any k(n) ≥ k0(n), the following
inequality holds

1

|h|
(
Gk(n)ĥ

)
· (ĥ − h) ≥ |ĥ|γ (n̂) − |h| γ (n). (3.12)
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Proof By applying the definition of Gk(n) in (2.7) and Pα(n, n̂) in (2.40a), and notic-

ing ĥ = n̂⊥|ĥ|, n · n̂⊥ = −n̂ · n⊥, the term 1
|h|
(
Gk(n)ĥ

)
· ĥ can be simplified

as

1

|h|
(
Gk(n)ĥ

)
· ĥ

= 1

|h|
[(

(γ (n)I2 + k(n)n(n)T ) + (ξ(n)T − n(ξ)T )
)
ĥ
]

· ĥ

= 1

|h|
[(

γ (n)I2 + k(n)n(n)T
)
ĥ
]

· ĥ

= 1

|h|
(
γ (n)|ĥ|2 + k(n)(n · ĥ)2

)

= 1

|h|
(
γ (n)|ĥ|2 + k(n)(n̂ · (n)⊥)2|ĥ|2

)
= |ĥ|2

4|h|γ (n)
P2
k(n)(n, n̂). (3.13)

Similarly, by applying the definition of Gk(n) in (2.7) and Q(n, n̂) in (2.40b), and
noticing h = n⊥|h|, ĥ = n̂⊥|ĥ|, h · ĥ = n · n̂|h| |ĥ|, n · n̂⊥ = −n̂ · n⊥, the term
1

|h|
(
Gk(n)ĥ

)
· h can be simplified as

1

|h|
(
Gk(n)ĥ

)
· h = 1

|h|
(
GT

k (n)h
)

· ĥ

= 1

|h|
[(

(γ (n)I2 + n(ξ)T ) + (−ξ(n)T + k(n)n(n)T )
)
h
]

· ĥ

= 1

|h|
[(

γ (n)I2 + n(ξ)T
)
h
]

· ĥ

= 1

|h|
[
γ (n)(h · ĥ) + (ξ · h)(n · ĥ)

]

= |ĥ|
(
γ (n)(n · n̂) + (ξ · n⊥)(n · n̂⊥

)
)

= |ĥ|
(
γ (n)(n · n̂) − (ξ · n⊥)(n̂ · n⊥)

)
= |ĥ| (Q(n, n̂) − γ (n̂)

)
. (3.14)

Finally, combining the definition of k0(n) (2.41), (3.13), (3.14), and the fact
a2

4|h|γ (n)
≥ ab − |h|γ (n)b2 yields that

1

|h|
(
Gk(n)ĥ

)
· (ĥ − h) = |ĥ|2

4|h|γ (n)
P2
k(n)(n, n̂) − |ĥ| (Q(n, n̂) − γ (n̂)

)

≥ |ĥ|Pk(n) − |h|γ (n) − |ĥ| (Pk(n)(n, n̂) − γ (n̂)
)

= |ĥ|γ (n̂) − |h| γ (n), (3.15)

which validates (3.12). ��
Now we can prove the energy dissipation part in our main result Theorem 2.1.
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Proof The key point of the proof is to establish the following energy estimation

(
Gk(nm)∂sXm+1, ∂s(Xm+1 − Xm)

)h
�m

≥ Wm+1 − Wm, m ≥ 0. (3.16)

For any 1 ≤ j ≤ N , take h = hmj , ĥ = hm+1
j in Lemma 3.2, we know that

n = − h⊥
|h| = nmj , n̂ = nm+1

j , and the following inequality holds

1

|hmj |
(
Gk(nmj )hm+1

j

)
· (hm+1

j − hmj ) ≥ |hm+1
j |γ (nm+1

j ) − |hmj | γ (nmj ). (3.17)

Taking the summation over 1 ≤ j ≤ N for (3.17) and notice (2.28) and (2.39b), we
have

(
Gk(nm)∂sXm+1, ∂s(Xm+1 − Xm)

)h
�m

=
N∑
j=1

[
|hmj |

(
Gk(nmj )

hm+1
j

|hmj |

)
· h

m+1
j − hmj

|hmj |

]

=
N∑
j=1

[
1

|hmj |
(
Gk(nmj )hm+1

j

)
· (hm+1

j − hmj )

]

≥
N∑
j=1

[
|hm+1

j |γ (nm+1
j ) − |hmj | γ (nmj )

]

= Wm+1 − Wm, ∀m = 0, 1, . . .

which proves the energy estimation in (3.16).
Finally, take ϕh = μm+1 in (2.36a) and ωh = Xm+1 − Xm in (2.36b), we have

0 ≥ −τ
(
∂sμ

m+1, ∂sμ
m+1

)h
�m

=
(
nm+ 1

2 ·
(
Xm+1 − Xm

)
, μm+1

)h
�m

=
(
Gk(nm)∂sXm+1, ∂s(Xm+1 − Xm)

)h
�m

≥ Wm+1 − Wm,

this is true for anym; therefore, the energyWm decreases monotonically, and the proof
is completed. ��
Remark 3.2 The condition γ ( p) ∈ C2(R2\{0}) in (1.6) is natural, but γ (−n) < 3γ (n)

looks quite complicated and seems not very sharp. However, the proof shows the
condition γ (−n) < 3γ (n) is indeed natural! To see this, inequality (3.12) in Lemma
3.2 is essential in showing the energy estimate (3.16). And if we take ĥ = −h in
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Lemma 3.2, then n̂ = −n, and the inequality (3.12) becomes

2γ (n) |h| ≥ |h| γ (−n) − γ (n) |h| ⇐⇒ γ (−n)|h| ≤ 3γ (n)|h|, (3.18)

which means γ (−n) ≤ 3γ (n). Our sufficient condition for energy stability, as stated
in (1.6), replaces ≥ with >, thus it is both natural and almost necessary.

4 Extension to other anisotropic geometric flows

In fact, the energy stable condition on γ (n) in (1.6), the definition of Gk(n) in (2.7),
the alternative expression for μ in (2.9), and the definition of k0(n) in (2.41) are
independent of the anisotropic surface diffusion flow. Thus these definitions and even
the proof of energy stability can be directly extended to other anisotropic geometric
flows.

4.1 Anisotropic curvature flow

Similar to (2.12), for the anisotropic curvature flow in (1.3), we have a conservative
geometric PDE as

n · ∂tX = −μ, (4.1a)

μn = −∂s(Gk(n)∂sX). (4.1b)

Suppose the initial curve X(T, 0) = (x(T, 0), y(T, 0))T := �0 ∈ [H1(T)]2 and
the initial weighted curvature μ(·, 0) := μ0(·) ∈ H1(T). Based on the conservative
form (4.1), the variational formulation for anisotropic curvature flow is as follows: For
any t > 0, find the solution (X(·, t), μ(·, t)) ∈ [H1(T)]2 × H1(T) satisfying

(
n · ∂tX, ϕ

)
�(t)

+
(
μ, ϕ

)
�(t)

= 0, ∀ϕ ∈ H1(T), (4.2a)
(
μn,ω

)
�(t)

−
(
Gk(n)∂sX, ∂sω

)
�(t)

= 0, ∀ω ∈ [H1(T)]2. (4.2b)

And the SP-PFEM for the anisotropic curvature flow (4.2) is as follows: Suppose the
initial approximation �0 = X0(T) ∈ [Kh]2 is given by X0(ρ j ) = X0(ρ j ),∀0 ≤ j ≤
N , then for anym = 0, 1, 2, . . ., find the solution (Xm(·), μm(·)) ∈ [Kh]2 ×K

h , such
that

(
nm+ 1

2 · X
m+1 − Xm

τ
, ϕh

)h
�m

+
(
μm+1, ϕh

)h
�m

= 0, ∀ϕh ∈ K
h, (4.3a)

(
μm+1nm+ 1

2 ,ωh
)h

�m
−
(
Gk(nm)∂sXm+1, ∂sω

h
)h

�m
= 0, ∀ωh ∈ [Kh]2. (4.3b)

We refer nm+ 1
2 to (2.38)

For the SP-PFEM (4.3), we have
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Theorem 4.1 (Structure-preserving) Supposeγ (n) satisfies (1.6) and take a stabilizing
function k(n) ≥ k0(n), then the SP-PFEM (4.3) preserves area decay rate and energy
dissipation, i.e.,

Am+1 − Am

τ
= −

(
μm+1, 1

)h
�m

, Wm+1 ≤ Wm ≤ . . . ≤ W 0, ∀m ≥ 0. (4.4)

Proof From [8, Theorem 2.1], we know that

Am+1 − Am =
(
nm+ 1

2 · (Xm+1 − Xm), 1
)h

�m
. (4.5)

Thus, by taking ϕh ≡ 1 ∈ K
h in (4.3a), we obtain

Am+1 − Am

τ
=
(
nm+ 1

2 · X
m+1 − Xm

τ
, 1
)h

�m
= −

(
μm+1, 1

)h
�m

, (4.6)

which is the desired decay rate in (4.4).
For energy dissipation, we have already known that (3.16) is true. Taking ϕh =

μm+1 in (4.3a) and ωh = Xm+1 − Xm in (4.3b), we know that

0 ≥ −τ
(
μm+1, μm+1

)h
�m

=
(
Gk(nm)∂sXm+1, ∂s(Xm+1 − Xm)

)h
�m

≥ Wm+1 − Wm,

which proves the claim. ��
Remark 4.1 It is worthwhile to compare our SP-PFEM (4.3) with the energy-stable
PFEM for anisotropic curvature flow in [10] (often named the BGN scheme) proposed
byBarrett, Garcke, andNürnberg. The BGN scheme requires γ (n) to be a special form

γBGN (n) =
(∑L

l=1

√
(nT Gln)r

) 1
r
with ∞ > r ≥ 1, L ≥ 1 and Gl ∈ R

2×2 positive

definite ∀1 ≤ l ≤ L . Clearly, γBGN (−n) = γBGN (n) < 3γBGN (n); thus, it satisfies
the energy-stable condition (1.6). Therefore, our (4.3) can handle a broader range of
anisotropies compared to the BGN scheme.

4.2 Area-conserved anisotropic curvature flow

Similarly, for the area-conserved anisotropic curvature flow in (1.3), the conservative
geometric PDE is given as

n · ∂tX = −μ + λ(t), (4.7a)

μn = −∂s(Gk(n)∂sX), (4.7b)

where λ(t) is given as (1.4) by replacing λ and � by λ(t) and �(t), respectively. And
the variational formulation can be derived in a similar way.
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In order to design a structure-preserving full discretization, we need to properly
discretize λ(t). Denote λm,∗ with respect to �m as

λm,∗ :=
(
μm+1, 1

)h
�m

(1, 1)h�m

. (4.8)

By adopting this λm,∗, the SP-PFEM for the area-conserved anisotropic curvature
flow in (1.3) is as follows: Suppose the initial approximation �0 = X0(T) ∈ [Kh]2 is
given by X0(ρ j ) = X0(ρ j ),∀0 ≤ j ≤ N ; for any m = 0, 1, 2, . . ., find the solution
(Xm(·), μm(·)) ∈ [Kh]2 × K

h , such that

(
nm+ 1

2 · X
m+1 − Xm

τ
, ϕh

)h
�m

+
(
μm+1 − λm,∗, ϕh

)h
�m

= 0, ∀ϕh ∈ K
h, (4.9a)

(
μm+1nm+ 1

2 ,ωh
)h

�m
−
(
Gk(nm)∂sXm+1, ∂sω

h
)h

�m
= 0, ∀ωh ∈ [Kh]2. (4.9b)

For the above SP-PFEM (4.9), we have

Theorem 4.2 (structure-preserving) Suppose γ (n) satisfies (1.6) and take a finite sta-
bilizing function k(n) ≥ k0(n), then the SP-PFEM (4.3) is structure-preserving, i.e.,

Am+1 ≡ A0, Wm+1 ≤ Wm ≤ . . . ≤ W 0, ∀m ≥ 0. (4.10)

Proof For the area conservation, taking ϕh ≡ 1 in (4.9a) yields that

(
nm+ 1

2 · (Xm+1 − Xm), 1
)h

�m
= −τ

(
μm+1 − λm,∗, 1

)h
�m

= −τ
(
μm+1, 1

)h
�m

+ τ

(
μm+1, 1

)h
�m

(1, 1)h�m

(
1, 1

)h
�m

= 0, m ≥ 0.

By noting (4.4), we deduce that Am+1 − Am = 0, which shows area conservation
(2.39a).

For energy dissipation, by the Cauchy inequality, we have

(
λm,∗, μm+1

)h
�m

= λm,∗(1, μm+1
)h

�m

= 1

(1, 1)h�m

((
1, μm+1

)h
�m

)2

≤ 1

(1, 1)h�m

(
1, 1

)h
�m

(
μm+1, μm+1

)h
�m

=
(
μm+1, μm+1

)h
�m

, m ≥ 0.
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Taking ϕh = μm+1 in (4.9a) andωh = Xm+1−Xm in (4.9b), and adopting the energy
estimation (3.16) yields that

Wm+1 − Wm ≤ −τ
(
μm+1 − λm,∗, μm+1

)h
�m

≤ 0, m ≥ 0, (4.11)

which implies the energy dissipation in (4.10). ��

5 Numerical results

In this section, we present numerical experiments to illustrate the high performance
of the proposed SP-PFEMs. The implementations and performances of the three SP-
PFEMs are very similar. Thus in Sect. 5.1, we only show test results of the SP-PFEM
(2.36) for the anisotropic surface diffusion. The morphological evolutions for three
anisotropic geometric flows are shown in Sect. 5.2.

To compute the minimal stabilizing function k0(n), we first solve the optimization
problem (2.41) for 20 uniformly distributed points n j = (− sin π

10 j, cos
π
10 j)

T ∈
S
1 to get k0(n j ) for j = 1, . . . , 20. Then for the general intermediate point n =

(− sin θ, cos θ)T ∈ S
1, say π

10 j < θ < π
10 ( j + 1), we do linear interpolation and set

k0(n) = 10
π

[(θ − π
10 j)k0(n j ) + ( π

10 ( j + 1) − θ)k0(n j+1)]. In Newton’s iteration, the
tolerance value ε is set as 10−12.

5.1 Results for the anisotropic surface diffusion

Here we provide convergence tests to show the quadratic convergence rate in space
and linear convergence rate in time. To this end, the time step τ is always chosen as
τ = h2 except it is stated otherwise. The distance between two closed curves �1, �2
is given by the manifold distance M(�1, �2) in [50] as

M(�1, �2) := 2|�1 ∪ �2| − |�1| − |�2|, (5.1)

where �1,�2 are the interior regions of �1, �2, respectively, and |�| denotes the area
of �. Let �m be the numerical approximation of �h(t = tm), tm := mτ with mesh
size h and time step τ , the numerical error is thus given as

eh(t)
∣∣∣
t=tm

:= M(�m, �(tm)). (5.2)

To numerically test the energy stability, area conservation and good mesh quality,

we introduce the following indicators: the normalized energy Wh(t)
Wh(0)

∣∣∣
t=tm

:= Wm

W 0 , the

normalized area loss and the mesh ratio

�Ah(t)

Ah(0)

∣∣∣
t=tm

:= Am − A0

A0 , Rh(t)
∣∣∣
t=tm

:=
max

1≤ j≤N
|hmj |

min
1≤ j≤N

|hmj | . (5.3)
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Fig. 2 Convergence rates of the SP-PFEM (2.36) with k(n) = k0(n) for: a anisotropy in Case I at different
times t = 0.125, 0.25, 0.5; and b anisotropy in Case II at time t = 0.5 with different β

Fig. 3 Normalized energy of the SP-PFEM (2.36) with k(n) = k0(n) and different h for: a anisotropy in
Case I; b anisotropy in Case II with β = 1

3

In the following numerical tests, the initial curve �0 is given as an ellipse �0 =
{(2 cos θ, 1

2 sin θ)T ,∀0 ≤ θ < 2π} with major axis 4 and minor axis 1. The exact
solution �(t) is approximated by choosing k(n) = k0(n) with h = 2−8 and τ =
2−16 in (2.36). Here are two typical anisotropic surface energies to be taken in our
simulations:

• Case I: γ (n) =
√(

5
2 + 3

2 sgn(n1)
)
n21 + n22 [20];

• Case II: γ (n) = 1 + β cos(3θ) with n = (sin θ,− cos θ)T and |β| < 1 [32]. It is
weakly anisotropic when |β| < 1

8 , and otherwise it is strongly anisotropic.

Figure2 presents the convergence rates of the proposed SP-PFEM (2.36) at dif-
ferent times and with different anisotropic strengths β for fixed time t = 0.5. It is
apparent from this figure that the second-order convergence in space is independent
of anisotropies and computation times, which indicates the convergence rate is very
robust.
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Fig. 4 Normalized area loss (blue dashed line) and iteration number (black line) of the SP-PFEM (2.36)
with k(n) = k0(n) and h = 2−7, τ = h2 for: a anisotropy in Case I; b anisotropy in Case II with β = 1

3

Fig. 5 Mesh ratio of the SP-PFEM (2.36) with k(n) = k0(n) and different h for: a anisotropy in Case I; b
anisotropy in Case II with β = 1

3 (color figure online)

The time evolution of the normalized energy Wh(t)
Wh(0)

with different h, the normalized

area loss �Ah(t)
Ah(0)

and the number of Newton iterations with h = 2−7, and the mesh

ratio Rh(t) with different h are summarised in Figs. 3, 4, 5, respectively.
It can be seen from Figs. 3, 4, 5 that

(i) The normalized energy is monotonically decreasing when the surface energy
density satisfies the energy stable condition (1.6) (cf. Fig. 3);

(ii) The normalized area loss is at 10−15 which is almost in the same order as the
round-off error (cf. Fig. 3), which confirms the area conservation in practical
simulations;

(iii) Interestingly, the numbers of iterations in Newton’s method are initially 2 and
finally 1 (cf. Fig. 4). This finding suggests that although the proposed SP-PFEM
(2.36) is full-implicit, but it can be solved very efficiently with a few iterations;

(iv) In Fig. 5 there is a clear trend of convergence of the mesh ratio Rh . Moreover,
in contrast to the symmetrized SP-PFEM for symmetric γ (n) in [4], Rh keeps
small even with the strongly anisotropy γ (n) = 1 + 1

3 cos 3θ .
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Fig. 6 Morphological evolutions of an ellipse with major axis 4 and minor axis 1 under anisotropic surface
diffusion with four different anisotropic energies: a anisotropy in Case I; b–d anisotropies in case II with
β = 1/9, 1/7, 1/3, respectively. The red and blue lines represent the initial curve and the numerical
equilibrium, respectively; and the black dashed lines represent the intermediate curves. The mesh size and
time step are taken as h = 2−7, τ = h2 (color figure online)

5.2 Application for morphological evolutions

Finally, we apply the proposed SP-PFEMs to simulate the morphological evolutions
of an ellipse with major axis 4 and minor axis 1 driven by the three anisotropic
geometric flows. Figure6 plots the morphological evolutions of anisotropic surface
diffusion for the four different anisotropic energies: (a) anisotropy in case I; (b)–
(d) anisotropies in case II with β = 1/9, 1/7, 1/3, respectively. Figures7 and 8
depict the anisotropic surface diffusion, area-conserved anisotropic curvature flow,
and anisotropic curvature flow at different times with anisotropy in case I and in case
II with β = 1/3, respectively. Since anisotropic curvature flow will shrink to a point,
we also illustrate its area Ah(t) and its area decay rate in Fig. 9.

As shown in Fig. 6b–d, the edges emerge during the evolution and corners become
sharper as the strength β increases. In fact, if the equilibrium is a polygon, γ (n)

is termed ’crystalline’ [36]. While studies such as [4, 10, 38] mainly focus on the
regularization of symmetric crystalline, our SP-PFEM (2.36) can also work for non-
symmetric case.

In contrast, from Fig. 6a, we observe that there are no edges or corners in the
morphological evolutions with anisotropy in Case I. This suggests that even γ ( p) =√(

5
2 + 3

2 sgn(p1)
)
p21 + p22 is not aC

2-function, it ismore likeweak anisotropy! From

Figs. 7, 8, we can see that the anisotropic surface diffusion and the area-conserved
anisotropic curvature flow have the same equilibriums in shapes, while they have
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Fig. 7 Morphological evolutions of an ellipse with major axis 4 and minor axis 1 under anisotropic sur-
face diffusion (left column), area-conserved anisotropic curvature flow (middle column) and anisotropic
curvature flow (right column) with the anisotropic surface energy density in Case I at different times. The
evolving curves and their enclosed regions are colored blue and black. The mesh size and time step are
taken as h = 2−7, τ = 0.001 (color figure online)
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Fig. 8 Morphological evolutions of an ellipse with major axis 4 and minor axis 1 under anisotropic surface
diffusion (left column), area-conserved anisotropic curvature flow (middle column) and anisotropic curva-
ture flow (right column) with the anisotropic surface energy density in Case II with β = 1/3 at different
times. The evolving curves and their enclosed regions are colored blue and black. The mesh size and time
step are taken as h = 2−7, τ = 0.001
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Fig. 9 Area and area decay rate of an ellipse with major axis 4 and minor axis 1 under anisotropic curvature
flow by SP-PFEM (4.3) with different anisotropic energy densities: (i) γ (n) = 1 (gray line); (ii) γ (n) =√(

5
2 + 3

2 sgn(n1)
)
n21 + n22 (blue line) and (iii) γ (n) = 1 + 1

3 cos 3θ (green line). The area decay rate is

given by the chemical potential and the equilibrium. And the equilibriums are obtained from Fig. 6

different dynamics, i.e., the equilibriums are different in positions, and the anisotropic
surface diffusion evolves faster than the area-conserved anisotropic curvature flow.

In isotropic curvature flow, the area decay rate d A(t)
dt = − ∫

�
κ ds = −2π remains

a constant during the whole process [14]. It is important to examine the impact of
anisotropic effects on the area decay rate. As illustrated in Fig. 9, the area Ah(t)
exhibits a nearly linear decay rate for different anisotropies. However, the area decay
rate does not remain at −2π . Instead, it approaches a different constant, − ∫

�
μ ds,

where � is the equilibrium state of the anisotropic surface diffusion (see Fig. 6). We
also observe that the area decay rate may deviate from − ∫

�
μ ds at the beginning,

presenting a remarkable contrast to the constant area decay rate of −2π in isotropic
curvature flow.

6 Conclusions

By introducing a novel surface energy matrix Gk(n) depending on the anisotropic
surface energy density γ (n) and the Cahn-Hoffman ξ -vector as well as a nonnega-
tive stabilizing function k(n), we proposed conservative geometric partial differential
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equations for several geometric flows with anisotropic surface energy density γ (n).
We derived their weak formulations and applied PFEM to get their full discretiza-
tions. Subsequently, we proved these PFEMs are structure-preserving under a mild
condition on γ (n) with proper choice of the stabilizing function k(n). Although our
surface energy matrix Gk(n) is no longer symmetric, our experiments have shown
it maintains a robust second-order convergence rate in space, a linear convergence
rate in time, and unconditional energy stability. Specifically, the mesh quality of the
proposed SP-PFEM, i.e. the mesh ratio is much smaller, is much better than that in
the symmetrized SP-PFEM proposed recently for anisotropic surface diffusion with
a symmetric surface energy density [4, 6]. Moreover, our SP-PFEMs work well for
the piecewise C2 anisotropy, which is a significant achievement compared with other
PFEMs. In the future, we will generalize the surface energy matrix Gk(n) to three
dimensions (3D) and propose efficient and accurate SP-PFEM for anisotropic geo-
metric flows in 3D.
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