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Abstract
We consider the Landweber iteration for solving linear as well as nonlinear inverse
problems in Banach spaces. Based on the discrepancy principle, we propose a heuristic
parameter choice rule for choosing the regularization parameterwhich does not require
the information on the noise level, so it is purely data-driven. According to a famous
veto, convergence in the worst-case scenario cannot be expected in general. However,
by imposing certain conditions on the noisy data, we establish a new convergence
result which, in addition, requires neither the Gâteaux differentiability of the forward
operator nor the reflexivity of the image space. Therefore, we also expand the applied
range of the Landweber iteration to cover non-smooth ill-posed inverse problems
and to handle the situation that the data is contaminated by various types of noise.
Numerical simulations are also reported.

Mathematics Subject Classification 65J20 Numerical solutions of ill-posed problems
in abstract spaces; regularization

1 Introduction

Consider ill-posed problems of the form

F(x) = y† (1.1)

where F : D(F) ⊂ X → Y , is a linear or a nonlinear operator, with domainD(F).We
assume (1.1) has a solution. To find a solution of (1.1) with specific properties, wemay
use a proper, lower semi-continuous, uniformly convex functionR : X → (−∞,∞].
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346 R. R. Real

Let ∂R denote the subdifferential of R, i.e.

∂R(x) := {
ξ ∈ X ∗ : R(x̄) ≥ R(x) + 〈ξ, x̄ − x〉X ∗,X for all x̄ ∈ X }

for all x in X , with X ∗ denoting the dual space of a Banach space X and 〈·, ·〉X ∗,X
the duality pairing between X ∗ and X . Also we denote by ‖·‖X the norm on X . We
use

DξR(x̄, x) := R(x̄) − R(x) − 〈ξ, x̄ − x〉X ∗,X , x̄ ∈ X

to denote the Bregman distance induced by R at x in the direction ξ . By picking
x0 ∈ D(∂R) and ξ0 ∈ ∂R(x0) as initial guesses, we define x† to be a solution of (1.1)
with the property

Dξ0R(x†, x0) := min
x∈D(F)

{
Dξ0R(x, x0) : F(x) = y†

}
. (1.2)

The exact data y† is either inaccessible or not precisely available. Instead, a noisy
measurement yδ ∈ Y is available that satisfies

∥∥∥yδ − y†
∥∥∥Y ≤ δ, (1.3)

where δ is the noise level. Then the Landweber iteration in Banach spaces has the
form

ξδ
n+1 = ξδ

n − μδ
nL(xδ

n)
∗ jYr

(
F(xδ

n) − yδ
)
,

xδ
n+1 = arg min

x∈X

{
R(x) − 〈

ξδ
n+1, x

〉
X ∗,X

}
.

(1.4)

where ξδ
0 = ξ0, xδ

0 = x0, the step size is given by

μδ
n := μ̃δ

n

∥∥F(xδ
n) − yδ

∥∥p−r
Y , where μ̃δ

n := min

⎧
⎪⎨

⎪⎩

μ0
∥∥F(xδ

n) − yδ
∥∥p(r−1)
Y∥∥∥L(xδ

n)
∗ jYr

(
F(xδ

n) − yδ
)∥∥∥

p

X ∗

, μ1

⎫
⎪⎬

⎪⎭
,

(1.5)

for some positive constants μ0 and μ1, p is a positive constant depending on the
convexity ofR, {L(x) : x ∈ D(F)} is a family of bounded linear operators from X to
Y satisfying certain properties, and jYr : Y → Y∗, with 1 ≤ r < ∞ is a selection of
the (possibly) multi-valued mapping JYr : Y → 2Y∗

, defined as the subdifferential of
the convex function y �→ ‖y‖rY /r .

The iteration must be terminated appropriately to produce a useful approximate
solution. The authors in [19] used the discrepancy principle i.e., the iteration (1.4) is
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terminated after nδ := n(δ, yδ) steps with

∥∥yδ − F(xδ
nδ

)
∥∥Y ≤ τδ <

∥∥yδ − F(xδ
n)
∥∥Y , 0 ≤ n < nδ, (1.6)

where τ is an appropriately chosen constant, and the regularization property of xδ
n

as δ → 0 has been extensively studied [3, 15, 19, 20, 26]. All previous conver-
gence analysis of Landweber iteration (under discrepancy principle) requires standard
assumptions on the forward operator F , as well as the following key conditions:

(a) the Banach space Y is uniformly smooth and 1 < r < ∞;
(b) the mapping x → L(x) from X toL (X ,Y) is continuous,

where L (X ,Y) denotes the Banach space of all bounded linear operators from the
Banach space X to the Banach space Y . The paper [24] relaxes conditions (a) and
(b) to address situations where the noisy data is contaminated by non-Gaussian noise
such as the impulsive noise or the uniform distributed noise.

The discrepancy principle (1.6) requires knowledge of the noise level, which is not
always available or reliable in real world applications. Overestimation or underesti-
mation of noise level may lead to significant loss of reconstruction accuracy when
using the discrepancy principle. Therefore, it is necessary to develop heuristic rules
for Landweber iteration that do not use any knowledge of the noise level. Based on
the discrepancy principle, we will propose a heuristic rule for Landweber iteration in
the spirit of the work of Hanke and Raus [10]. Our heuristic rule determines an integer
n∗ := n∗(yδ) by minimizing

�(n, yδ) := (n + a)
∥∥F(xδ

n) − yδ
∥∥p
Y

over the iteration,where a ≥ 1 is a fixed number. TheBakushinskii’s veto [2] states that
heuristic rules can not lead to convergence in the sense of worst case scenario for any
regularization methods. Despite this veto, by imposing certain conditions on the noisy
data, convergence results under heuristic rules are obtained for various regularization
methods [8, 12, 16, 18, 22, 30]. The Landweber iteration is computationally cheap to
implement, thus it is worth analyzing under heuristic rules.

In this paper we will present a convergence analysis of the Landweber iteration in
Banach spaces under the Hanke–Raus heuristic rule. To do this, we first present the
assumptions lifted from previous convergence analysis of the iteration, including a
compactness condition. Then we discuss the Hanke–Raus rule for the iteration and the
special assumption for our analysis, the noise condition. Next, we present the main
result on the convergence analysis of the Landweber iteration under the Hanke–Raus
rule. Finally, numerical examples are presented to illustrate the theoretical results.

2 Landweber iteration in Banach spaces

In analyzing the Landweber iteration in Banach spaces defined by (1.4)–(1.5), we will
assume the following standard assumptions concerning the regularization functional
F and the forward operator F , as also used in [19, 24].
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348 R. R. Real

Assumption 2.1 R : X → (−∞,∞] is proper, lower semi-continuous and p-convex
with p > 1 in the sense that there is a constant c0 > 0 such that

R(t x̄ + (1 − t)x) + c0t(1 − t)‖x̄ − x‖p
X ≤ tR(x̄) + (1 − t)R(x)

for all x̄, x ∈ X and 0 ≤ t ≤ 1.

Assumption 2.2 (a) F is weakly closed over D(F).
(b) There exist ρ > 0, x0 ∈ X and ξ0 ∈ ∂R(x0) such that B3ρ(x0) ⊂ D(F) and (1.1)

has a solution x∗ satisfying Dξ0R(x∗, x0) ≤ c0ρ p.
(c) There is a family of bounded linear operators {L(x) : X → Y}x∈B3ρ(x0) such that

‖L(x)‖ ≤ B for all x ∈ B3ρ(x0) for some constant B, and there is a constant
0 ≤ η < 1 such that

‖F(x̄) − F(x) − L(x)(x̄ − x)‖Y ≤ η‖F(x̄) − F(x)‖Y

for all x̄, x ∈ B3ρ(x0).

It can be easily checked that the p-convexity ofR in Assumption 2.1 implies that

Dξ R(x̄, x) ≥ c0 ‖x̄ − x‖p
X

for all x̄, x ∈ X and ξ ∈ ∂R(x). Let R∗ denote the Legendre-Fenchel conjugate of
R, i.e.

R∗(ξ) := sup
x∈X

{〈ξ, x〉X ∗,X − R(x)
}
, ξ ∈ X ∗,

then R∗ is Fréchet differentiable over X ∗ and

∥∥∇R∗(ξ̄ ) − ∇R∗(ξ)
∥∥X ≤

(∥∥ξ̄ − ξ
∥∥X ∗

2c0

)p∗−1

,

where p∗ is the number conjugate to p, i.e., 1/p + 1/p∗ = 1, see [33]. Using the
definition of xδ

n and the subdifferential calculus, we have xδ
n = ∇R∗(ξ δ

n ).
Assumption 2.2 (a)means that for any sequence {xn} ∈ D(F) satisfying xn⇀x ∈ X

and F(xn) → y ∈ Y there hold x ∈ D(F) and F(x) = y (here we denote weak
convergence and strong convergence by "⇀" and "→" respectively). Assumption 2.2
(c) is a version of the tangential cone condition, widely used in convergence analysis
of iterative regularization methods for nonlinear inverse problems [9]. Notice that it
is expressed in terms of a bounded linear operator L(x) which does not have to be
the Fréchet derivative of F . It is easy to see that Assumption 2.2 (c) implies that F is
continuous over B3ρ(x0).

When X is a reflexive Banach space, by using the p-convexity and the weakly
lower semi-continuity of R together with the weakly closedness of F , x† exists and
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is uniquely defined [19, Lemma 3.2]. Moreover, Assumption 2.2 (b) implies that

Dξ0R(x†, x0) ≤ c0ρ
p,

which, together with Assumption 2.1, implies that
∥∥x0 − x†

∥∥X ≤ ρ.
In order to make the method more transparent, it is necessary to give more explanation
on the mapping jYr : Y → Y∗ for 1 ≤ r < ∞. We use JYr : Y → 2Y∗

to denote
the subdifferential of the convex functional y → ‖y‖rY/r over Y . By the Asplund’s

theorem [5], JYr with 1 < r < ∞ is exactly the duality mapping on Y with the gauge
function t → tr−1/r , i.e.

JYr (y) = {y∗ ∈ Y∗ : ‖y∗‖Y∗ = ‖y‖r−1
Y and 〈y∗, y〉Y∗,Y = ‖y‖rY }. (2.1)

While for r = 1, one has

J1(y) =
{ {y∗ ∈ Y∗ : ‖y∗‖Y∗ = 1 and 〈y∗, y〉Y∗,Y = ‖y‖Y } if y �= 0,

{y∗ ∈ Y∗ : ‖y∗‖Y∗ ≤ 1} if y = 0.

Note that JYr in general is multi-valued. The mapping jYr in (1.4) denotes a selection
of JYr which is defined to be a single-valued mapping from Y to Y ∗ with the property
jYr (y) ∈ JYr (y) for each y ∈ Y . It is easily seen that

〈 jYr (y), y〉Y∗,Y = ‖y‖rY and ‖ jYr (y)‖Y∗ ≤ ‖y‖r−1
Y (2.2)

for all y ∈ Y and 1 ≤ r < ∞. Here we adopt the convention 00 = 1. For a bounded
linear operator A : X → Y , we use N (A) to denote its null space and we also use

N (A)⊥ := {ξ ∈ X ∗ : 〈ξ, x〉X ∗,X = 0 for all x ∈ N (A)}

to denote the annihilator of N (A).
When F is a linear operator, the Landweber iteration (1.4)–(1.5) was analyzed in

[3], in which the domain ofR is required to have a nonempty interior. This condition
excludes many important properties of the regularization functional R, so this was
removed in [19], extending the method to cover nonlinear inverse problems.

In order to show that the Landweber iteration (1.4)–(1.5) under the discrepancy
principle (1.6) is a regularization method for solving (1.1), besides the standard condi-
tions specified in Assumptions 2.1 and 2.2, the convergence analysis in [19] requires
the following additional conditions.

Assumption 2.3 (a) The Banach space Y is uniformly smooth and 1 < r < ∞;
(b) The mapping x → L(x) from X toL (X ,Y) is continuous.

Here a Banach space Y is called uniformly smooth in the sense that its modulus of
smoothness

ρY (t) := sup{‖ȳ + y‖Y + ‖ȳ − y‖Y − 2 : ‖ȳ‖Y = 1 and ‖y‖Y ≤ t}
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350 R. R. Real

satisfies limt↘0 ρY (t)/t = 0. The uniform smoothness of Y in Assumption 2.3 (a)
guarantees that the duality mapping JYr , for each 1 < r < ∞, is single-valued and
uniformly continuous on bounded sets [5]. Therefore, Assumption 2.3 is crucial for
establishing the stability of Landweber iteration in [19, lemma 3.8].

Under the discrepancy principle, the convergence result of Landweber iteration
(1.4)–(1.6) with 1 < r < ∞ is established in [19, theorem 3.9]. However, this depends
heavily on the uniform smoothness of Y and the continuity of the mapping X � x �→
L(x) ∈ L (X ,Y). There are situations where the noisy data is contaminated by
non-Gaussian noise such as the impulsive noise or the uniform distributed noise; in
such situations one may choose Y to be the L1-space or the L∞-space to effectively
remove the effects of noise [1, 6]. Note that both the L1-space and the L∞-space are
not uniformly smooth. On the other hand, there exist ill-posed inverse problems where
the forward operator F is non-smooth, i.e. not necessarily Gâteaux differentiable [7].
For such non-smooth ill-posed problems, one needs to choose L(x) carefully as the
replacement of the Gâteaux derivative; for instance, one may choose L(x) to be a
Bouligand subderivative of F at x which is defined as a limit of Fréchet derivative
of F in differentiable points. The Bouligand subderivative mapping in general is
not continuous unless the forward operator is Gâteaux differentiable. The paper [24]
revisits the iteration (1.4)–(1.6) to provide a new convergence result that requires
neither the reflexivity of Y nor the continuity of the mapping x → L(x). To replace
Assumption 2.3, the following compactness condition was used.

Assumption 2.4 There exists a Banach space Z such that

⋃

x∈B3ρ(x0)

Range(L(x)∗) ⊂ Z

and Z is compactly embedded into X ∗. Moreover, there is a constant B̂ such that
‖L(x)∗‖L (Y ∗,Z) ≤ B̂ for all x ∈ B3ρ(x0).

Assumption 2.4 places a condition on the smoothing properties of L(x)∗ for x ∈
B3ρ(x0) in a uniform sense. This assumption is inspired by the work [7] and is an
adaptation of their assumption in Hilbert spaces to Banach space setting. Also, this
assumption can be independent of the reflexivity of the Banach space Y , as illustrated
in [24, example 2.2 ] which uses a nonlinear inverse problem.

In order to show the convergence of xδ
nδ

to a solution of (1.1), it is necessary to
investigate for each n the behaviour of (ξ δ

n , xδ
n) as δ → 0 which is an important

step. Since the mapping x → L(x) is not assumed to be continuous, and because the
mapping y ∈ Y → jYr (y) ∈ Y∗ is no longer continuous, one may not expect the
convergence of (ξ δ

n , xδ
n) to a single point as δ → 0. For each n, (ξ δ

n , xδ
n) may have

many limit points as δ → 0. By picking any one of the limit points for each n, we
may form an iterative sequence {(ξn, xn)} in X ∗ ×X corresponding to the noise-free
case. It turns out that all these iterative sequences obey certain properties which will be
specified in the following. We will use 
μ0,μ1(ξ0, x0) to denote the set of all possible
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sequences {(ξn, xn)} in X ∗ × X constructed from (ξ0, x0) by

ξn+1 = ξn − μnψn, and xn+1 = arg min
x∈X

{R(x) − 〈ξn+1, x〉X ∗,X
}
, (2.3)

where

μn =
⎧
⎨

⎩
min

{
μ0

∥∥F(xn)−y†
∥∥p(r−1)
Y

‖ψn‖p
X∗

, μ1

}∥∥F(xn) − y†
∥∥p−r
Y if F(xn) �= y†

0 if F(xn) = y†
(2.4)

and ψn ∈ X ∗ satisfies the properties

〈
ψn, x̂ − xn

〉
X ∗,X ≤ −(1 − η)

∥∥∥F(xn) − y†
∥∥∥
r

Y ,

∣∣∣
〈
ψn, x̂ − x

〉
X ∗,X

∣∣∣ ≤ (1 + η)

∥∥∥F(xn) − y†
∥∥∥
r−1

Y

(
2
∥∥∥F(xn) − y†

∥∥∥Y +
∥∥∥F(x) − y†

∥∥∥Y

)
,

(2.5)

for any integer n, any x ∈ B3ρ(x0) and any solution x̂ of (1.1) in B3ρ(x0). As shown in
[24], (2.5) hold when ψn = L(xn)∗ JYr (F(xn) − y), ensuring the well-definedness of
(2.3) and (2.4). Indeed, for this choice of ψn , one may use Assumption 2.1, Assump-
tion 2.2 and the argument in [19] to show that xn ∈ B3ρ(x0) for all n ≥ 0. Hence

μ0,μ1(ξ0, x0) is non-empty.

The performance of the discrepancy principle depends heavily on the accurate
knowledge of noise level. Such noise level information, however, is not always
available or reliable in applications. Incorrect estimation on noise level may lead
to significant loss of reconstruction accuracy when using the discrepancy principle.
Therefore, it is necessary to develop heuristic rules for Landweber iteration that do
not use any knowledge of the noise level in case a reliable noise level information is
unavailable.

Based on modifying the discrepancy principle, we propose the following heuristic
rule for Landweber iteration in Banach spaces in the spirit of [10]. The Hanke–Raus
rule has been studied in variational regularization in Banach spaces [13], and has been
generalized for variational regularization in general topological spaces [22].

Rule 2.1 Let a ≥ 1 be a fixed number and let

�(n, yδ) := (n + a)
∥∥F(xδ

n) − yδ
∥∥p
Y .

We define n∗ := n∗(yδ) be an integer such that

n∗ ∈ argmin
{
�(n, yδ) : 0 ≤ n ≤ n∞

}
,

where n∞ := n∞(yδ) is the largest integer such that xδ
n ∈ D(F) for all 0 ≤ n ≤ n∞.
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Rule 2.1 can be easily implemented. During the iteration, the value of �(n, yδ) is
recorded versus n. After performing a large number of iterations, we stop and choose
n∗ to be the integer that minimizes �(n, yδ). Setting an upper limit in the number
of iterations due to the local convergence is an issue with the nonlinear Landweber
iteration [11]. This upper limit must be also large enough to prevent badly estimating
n∗ by the first local minimum, which is hardly the global minimum [11].

Using rule 2.1 requires the choice of a fixed number a, a scheme first introduced
in [16] which uses a rule just like rule 2.1 for the augmented Lagrangian method in
solving linear inverse problems. To use rule 2.1, we suggest choosing a to be suitably
large to generate an accurate solution.

Using a fixed constant similar to a in rule 2.1 prevents the regularization parameter
n∗ from becoming too small. This was first illustrated in the numerical simulations
in [16] for the augmented Lagrangian method. Meanwhile the paper [30] reported a
convergence analysis of Hanke–Raus rule for non-stationary iterated Tikhonov reg-
ularization using a fixed constant a ≥ 0. The choice of the lower bound for this
fixed constant for the Hanke–Raus rule could depend on the regularization method to
guarantee convergence. For the Landweber iteration, a ≥ 1 in rule 2.1 is crucial, as
illustrated later in the proof of Lemma 2.1.

With the integer n∗ := n∗(yδ) determined by Rule 2.1, we will use xδ
n∗(yδ)

as

an approximate solution. A natural question is, for a family of noisy data {yδ} with
yδ → y as δ → 0, if it is possible to guarantee the convergence of xδ

n∗(yδ)
to a solution

of (1.1) as δ → 0. The answer in general is no, according to the Bakushinskii’s
veto which states that heuristic rules can not lead to convergence in the sense of worst
case scenario for any regularizationmethod [2]. Therefore, to guarantee a convergence
result, one must impose certain conditions on the noisy data.Wewill use the following
noise condition.

Assumption 2.5
{
yδ
}
is a family of noisy data satisfying 0 <

∥∥yδ − y†
∥∥Y → 0 as

δ → 0 and there is a constant κ > 0 such that

∥∥yδ − F(x)
∥∥Y ≥ κ

∥∥∥yδ − y†
∥∥∥Y

for every yδ and every x ∈ S(yδ), where S(yδ) := {
xδ
n : 0 ≤ n ≤ n∞

}
generated by

(1.4).

Under Assumption 2.5 it is immediate to see that Rule 2.1 defines a finite integer n∗.
Indeed, if n∞ is finite, then there is nothing to prove. So we only consider n∞ = ∞.
It then follows from Assumption 2.5 that

�(n, yδ) = (n + a)
∥∥F(xδ

n) − yδ
∥∥p
Y ≥ (n + a)κ p

∥∥∥y† − yδ
∥∥∥
p

Y → ∞

as n → ∞. This implies that theremust exist a finite integer n∗ achieving theminimum
of �(n, yδ).

As of writing, Assumption 2.5 is a rather abstract condition and difficult to verify.
However, this is the best thing that can be done for now in order to come up with
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some analysis. The noise condition was introduced in the seminal paper [10] for linear
problems in Hilbert spaces. Under the Hanke–Raus rule, such condition was extended
in the convergence analyses for variational regularization [12, 13, 24], augmented
Lagrangian method [16], and non-stationary iterated Tikhonov regularization [30].
We can only illustrate this condition via numerical examples. Meanwhile, a very
comprehensive numerical study of heuristic rules, aside from the Hanke–Raus rule,
for nonlinear Landweber iteration can be found in [11].

2.1 Analysis of rule 2.1

In this section, we will show that

�(n∗(yδ), yδ) → 0 as δ → 0 (2.6)

To achieve this result, we introduce an auxiliary integer n̂δ defined by the stopping
rule

∥∥∥F(xδ
n̂δ

) − yδ
∥∥∥
p

Y + (2p − 1)c0ρ p

2μ1(n̂δ + a)2
≤ τ p

∥∥∥yδ − y
∥∥∥
p

Y <

∥∥∥F(xδ
n) − yδ

∥∥∥
p

Y + (2p − 1)c0ρ p

2μ1(n + a)2

(2.7)

for 0 ≤ n < n̂δ , where τ > 1 is a large number (not to be confused with the one in
(1.6)). This is a slight modification of the discrepancy principle (1.6) with an extra
term (2p−1)c0ρ p

2μ1(n+a)2
. This extra term ensures that n̂δ → ∞ as δ → 0, an important step in

establishing (2.6).

Lemma 2.1 Let Assumptions 2.1 and 2.2 hold. Let μ0 be chosen such that

c1 := 1 − η − 1

p∗

(
μ0

2c0

)p∗−1

> 0. (2.8)

If τ > (1 + η)/c1, then (2.7) defines a finite integer n̂δ with n̂δ → ∞ as δ → 0.
Moreover xδ

n ∈ B3ρ(x0) for all 0 ≤ n ≤ n̂δ .

Proof Using induction, we show first that xδ
n ∈ B3ρ(x0) for 0 ≤ n ≤ n̂δ . This is trivial

for n = 0. Now, suppose xδ
k ∈ B3ρ(x0) for all 0 ≤ k ≤ n for some n < n̂δ , we will

show that xδ
n+1 ∈ B3ρ(x0). Noting that we are considering the noisy case, by a similar

argument in [19, lemma 3.4], we have for 0 ≤ k ≤ n that

Dξδ
k+1

R(x†, xδ
k+1) − Dξδ

k
R(x†, xδ

k )

≤ 1

p∗(2c0)p∗−1

∥∥ξδ
k+1−ξδ

k

∥∥p∗
X ∗ −μδ

k

〈
jYr (F(xδ

k ) − yδ), L(xδ
k )(x

δ
k − x†)

〉

Y∗,Y
(2.9)
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Based on (1.4) and (2.1), we have

∥∥ξδ
k+1 − ξδ

k

∥∥p∗
X ∗ = (μδ

n)
p∗ ∥∥∥L(xδ

n)
∗ jYr (F(xδ

n) − yδ)

∥∥∥
p∗

X ∗ ≤ μ
p∗−1
0 μδ

n

∥∥F(xδ
n) − yδ

∥∥rY

Moreover, by invoking the iterative Eq. (1.4) and Assumption 2.2 (c), we have

− 〈
jYr (F(xδ

k ) − yδ), L(xδ
k )(x

δ
k − x†)

〉
Y∗,Y

= −
〈
jYr (F(xδ

k ) − yδ), F(xδ
k ) − yδ

〉

Y∗,Y +
〈
jYr (F(xδ

k ) − yδ), y† − yδ
〉

Y∗,Y
−
〈
jYr (F(xδ

k ) − yδ), F(x†) − F(xδ
k ) − L(xδ

k )(x
† − xδ

k )
〉

Y∗,Y
≤ − ∥∥F(xδ

k ) − yδ
∥∥rY + ∥∥F(xδ

k ) − yδ
∥∥r−1
Y

∥∥∥y† − yδ
∥∥∥Y

+ η
∥∥F(xδ

k ) − yδ
∥∥r−1
Y

∥∥∥F(x†) − F(xδ
k )

∥∥∥Y
≤ − ∥∥F(xδ

k ) − yδ
∥∥rY + ∥∥F(xδ

k ) − yδ
∥∥r−1
Y

∥∥∥y† − yδ
∥∥∥Y

+ η
∥∥F(xδ

k ) − yδ
∥∥r−1
Y (

∥∥∥F(x†) − yδ
∥∥∥Y + ∥∥yδ − F(xδ

k )
∥∥Y )

= −(1 − η)
∥∥F(xδ

k ) − yδ
∥∥rY + (1 + η)

∥∥F(xδ
k ) − yδ

∥∥r−1
Y

∥∥∥y† − yδ
∥∥∥Y

Therefore, with the definition of μδ
n in (1.5), we have

Dξδ
k+1

R(x†, xδ
k+1) − Dξδ

k
R(x†, xδ

k )

≤ −c1μ̃
δ
k

∥∥F(xδ
k ) − yδ

∥∥p
Y + (1 + η)μ̃δ

k

∥∥F(xδ
k ) − yδ

∥∥p−1
Y

∥∥∥y† − yδ
∥∥∥Y .

(2.10)

According to the definition of n̂δ , for k < n̂δ we have

∥∥F(xδ
k ) − yδ

∥∥p−1
Y

∥∥y† − yδ
∥∥Y ≤ 1

τ

∥∥F(xδ
k ) − yδ

∥∥p−1
Y

(∥∥F(xδ
k ) − yδ

∥∥p
Y + (2p − 1)c0ρ p

2μ1(k + a)2

)1/p

,

and by Young’s inequality, we further arrive at

∥∥F(xδ
k ) − yδ

∥∥p−1
Y

∥∥y† − yδ
∥∥Y

≤ 1

τ

(
1

p

(∥∥F(xδ
k ) − yδ

∥∥p
Y + (2p − 1)c0ρ p

2μ1(k + a)2

)
+ 1

p∗
∥∥F(xδ

k ) − yδ
∥∥p
Y

)

≤ 1

τ

(
1

p

(∥∥F(xδ
k ) − yδ

∥∥p
Y + (2p − 1)c0ρ p

2μ1(k + a)2

)
+ 1

p∗

(∥∥F(xδ
k ) − yδ

∥∥p
Y + (2p − 1)c0ρ p

2μ1(k + a)2

))

= 1

τ

(∥∥F(xδ
k ) − yδ

∥∥p
Y + (2p − 1)c0ρ p

2μ1(k + a)2

)
.
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Since μ̃δ
k ≤ μ1, we can conclude that

Dξδ
k+1

R(x†, xδ
k+1) − Dξδ

k
R(x†, xδ

k )

≤ −
(
c1 − 1 + η

τ

)
μ̃δ
k

∥∥F(xδ
k ) − yδ

∥∥p
Y + (1 + η)(2p − 1)c0ρ p

2τ(k + a)2
.

Then by taking the sum from k = 0 to k = n < n̂δ on both sides, we further obtain

Dξδ
n+1

R(x†, xδ
n+1) +

(
c1 − 1 + η

τ

) n∑

k=0

μ̃δ
k

∥∥F(xδ
k ) − yδ

∥∥p
Y

≤ Dξ0R(x†, x0) + (1 + η)(2p − 1)c0ρ p

2τ

n∑

k=0

1

(k + a)2

≤ c0ρ
p + (2p − 1)c0ρ p

2

∞∑

k=0

1

(k + a)2
,

where we used Assumption 2.2 (b) and the condition τ > (1 + η)/c1 which implies
that (1+ η)/τ < c1 < 1. Noting that a ≥ 1, and since

∑∞
k=0

1
(k+1)2

= π2/6 < 2, we
can obtain

Dξδ
n+1

R(x†, xδ
n+1) +

(
c1 − 1 + η

τ

) n∑

k=0

μ̃δ
k

∥∥F(xδ
k ) − yδ

∥∥p
Y ≤ c0(2ρ)p. (2.11)

By using the p-convexity of R, it follows that

c0
∥∥∥xδ

n+1 − x†
∥∥∥
p

X ≤ Dξδ
n+1

R(x†, xδ
n+1) ≤ c0(2ρ)p

which shows that
∥∥xδ

n+1 − x†
∥∥X ≤ 2ρ. Since

∥∥x0 − x†
∥∥X ≤ ρ, we therefore have

xδ
n+1 ∈ B3ρ(x0).
Next, we prove that n̂δ is finite. By contradiction, suppose n̂δ is infinite. Then the

previous argument shows that xδ
n ∈ B3ρ(x0) for all n ≥ 0. Consequently it follows

from (2.11) that

(
c1 − 1 + η

τ

) n∑

k=0

μ̃δ
k

∥∥F(xδ
k ) − yδ

∥∥p
Y ≤ c0(2ρ)p.

for all n ≥ 0. From the definition of μ̃δ
n , we have

μ̃δ
n ≥ min

{
μ0B

−p, μ1
}
.
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Then, for all n ≥ 0 we have

c3

n∑

k=0

∥∥F(xδ
k ) − yδ

∥∥p
Y ≤ c0(2ρ)p, (2.12)

where c3 :=
(
c1 − 1+η

τ

)
min

{
μ0B−p, μ1

}
> 0. In addition, the definition of n̂δ tells

us that

∥∥F(xδ
k ) − yδ

∥∥p
Y ≥ τ p

∥∥∥yδ − y†
∥∥∥
p

Y − (2p − 1)c0ρ p

2μ1(k + a)2

for all k ≥ 0. Summing up both sides of the previous inequality, and then using (2.12),
we further obtain

c3τ
p
∥∥∥yδ − y†

∥∥∥
p

Y (n + 1) ≤ 2pc0ρ
p + (2p − 1)c0ρ p

2μ1

n∑

k=0

1

(k + a)2

≤ 2pc0ρ
p + π2(2p − 1)c0ρ p

12μ1
< ∞,

and by taking n → ∞, we obtain a contradiction. Finally, from the definition of n̂δ in
(2.7),

(2p − 1)c0ρ p

2μ1(n̂δ + a)2
≤ τ p

∥∥∥yδ − y†
∥∥∥
p

Y → 0 as δ → 0.

Therefore we must have n̂δ → ∞ as δ → 0. ��

Lemma 2.2 Let Assumptions 2.1 and 2.2 hold. Let μ0 > 0 be chosen such that (2.8)
holds, and let

{
yδ
}
be a family of noisy data satisfying Assumption 2.5. Let n∗ :=

n∗(yδ) be the integer defined by rule 2.1. Then �(n∗(yδ), yδ) → 0 as δ → 0.

Consequently,
∥∥∥F(xδ

n∗(yδ)
) − yδ

∥∥∥Y → 0 and n∗(yδ)
∥∥yδ − y†

∥∥p
Y → 0 as δ → 0.

Proof Let n̂δ be the integer defined by (2.7). From the proof of Lemma 2.1 we have

n̂δ−1∑

n=0

∥∥F(xδ
n) − yδ

∥∥p
Y ≤ 2pc0ρ p

c3

By the minimality of �(n∗(yδ), yδ), it follows that

∥∥F(xδ
n) − yδ

∥∥p
Y = �(n, yδ)

n + a
≥ �(n∗(yδ), yδ)

n + a
.
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Hence,

�(n∗(yδ), yδ)

n̂δ−1∑

n=0

1

n + a
≤

n̂δ−1∑

n=0

∥∥F(xδ
n) − yδ

∥∥p
Y ≤ 2pc0ρ p

c3
.

Note that

n̂δ−1∑

n=0

1

n + a
≥

n̂δ−1∑

n=0

∫ n+1

n

1

t + a
dt =

∫ n̂δ

0

1

t + a
dt = log

n̂δ + a

a
.

Thus

�(n∗(yδ), yδ) ≤ 2pc0ρ p

c3 log(n̂δ + a)/a
.

Since n̂δ → ∞ we must have �(n∗(yδ), yδ) → 0 as δ → 0. Note that

a
∥∥∥F(xδ

n∗(yδ)
) − yδ

∥∥∥
p

Y ≤ �(n∗(yδ), yδ),

and Assumption 2.5 implies that

(
n∗(yδ) + a

)
κ p

∥∥∥yδ − y†
∥∥∥
p ≤ �(n∗(yδ), yδ).

Hence, by the recent claim,
∥∥∥F(xδ

n∗(yδ)
) − yδ

∥∥∥Y → 0 and n∗(yδ)
∥∥yδ − y†

∥∥p
Y → 0

as δ → 0. ��
Lemma 2.3 Let Assumptions 2.1 and 2.2 hold. Let μ0 > 0 be chosen such that (2.8)
holds, and let

{
yδ
}
be a family of noisy data satisfying Assumption 2.5. Let n∗ :=

n∗(yδ) be the integer defined by Rule 2.1. Then xδ
n ∈ B3ρ(x0) for all 0 ≤ n ≤ n∗ if δ

is sufficiently small.

Proof We use an induction argument. The result is trivial for n = 0. Now we assume
that xδ

n ∈ B3ρ(x0) for some n < n∗(yδ). We will use (2.10) to prove that xδ
n+1 ∈

B3ρ(x0). By the Young’s inequality we have

(1 + η)‖F(xδ
n) − yδ‖p−1

Y ‖yδ − y†‖Y ≤ c1
p∗ ‖F(xδ

n) − yδ‖p
Y + (1 + η)p

pcp−1
1

‖yδ − y†‖p
Y .

Combining this with (2.10), we have

Dξδ
n+1

R(x†, xδ
n+1) − Dξδ

n
R(x†, xδ

n) ≤ −c1
p

μ̃δ
n‖F(xδ

n) − yδ‖p
Y + c4‖yδ − y†‖p

Y ,

123



358 R. R. Real

where c4 := (1 + η)pμ1/(pc
p−1
1 ). Therefore

Dξδ
n+1

R(x†, xδ
n+1) + c1

p

n∑

k=0

μ̃δ
k‖F(xδ

k ) − yδ‖p
Y ≤ Dξ0R(x†, x0) + c4(n + 1)‖yδ − y†‖p

Y

≤ c0ρ
p + c4n∗(yδ)‖yδ − y†‖p

Y

By Lemma 2.2, we can guarantee that

c4n∗(yδ)‖yδ − y†‖p
Y ≤ (2p − 1)c0ρ

p

for sufficiently small δ. Then

Dξδ
n+1

R(x†, xδ
n+1) ≤ c0ρ

p + (2p − 1)c0ρ
p = c0(2ρ)p.

By the p-convexity of R we have c0‖xδ
n+1 − x†‖p

X ≤ c0(2ρ)p which show that
‖xδ

n+1 − x†‖X ≤ 2ρ. Since ‖x0 − x†‖X ≤ ρ, we therefore have xδ
n+1 ∈ B3ρ(x0). ��

We lift a previous result regarding the noise-free algorithm (2.3)–(2.5), which we
will use later.

Lemma 2.4 Let Assumptions 2.1 and 2.2 hold. Let μ0 > 0 be chosen such that (2.8)
holds. The for any sequence {(ξn, xn)} ∈ 
μ0,μ1(ξ0, x0) there exists a solution x∗ of
(1.1) such that DξnR(x∗, xn) → 0 as n → ∞. If, in addition, ξn+1−ξn ∈ N (L(x†))⊥
for all n, then x∗ = x†.

Proof This is [24, Lemma 2.5]. ��

2.2 Main result

Now we are about to prove the main result of this paper. We need two stability results
based also on Assumption 2.3 and Assumption 2.4. These stability results will link the
method (1.4) to the noise-free algorithm (2.3)–(2.5) so that lemma 2.4 can be applied.

Lemma 2.5 Let Assumptions 2.1 and 2.2 hold. Let μ0 > 0 be chosen such that (2.8)
holds, and let

{
yδ
}
be a family of noisy data satisfying Assumption 2.5. Let n∗ :=

n∗(yδ) be the integer defined by Rule 2.1.

(a) If Assumption 2.3 holds and 1 < r < ∞, then there is a sequence {(ξn, xn)} ∈

μ0,μ1(ξ0, x0) such that

xδ
n → xn and ξδ

n → ξn as δ → 0

for all 0 ≤ n ≤ lim infδ→0 n∗(yδ).
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(a) If Assumption 2.4 holds and 1 ≤ r < ∞, then for any subsequence
{
yδl

}
, with

δl → 0 as l → ∞, of
{
yδ
}
, by taking a subsequence if necessary, there is a

sequence {(ξn, xn)} ∈ 
μ0,μ1(ξ0, x0) such that

xδl
n → xn and ξδl

n → ξn as l → ∞

for all 0 ≤ n ≤ lim inf l→∞ n∗(yδl ).

If in addition N (L(x†)) ⊂ N (L(x)) for all x ∈ B3ρ(x0), then there also holds
ξn+1 − ξn ∈ N (L(x†))⊥ for all n.

Proof (a) The proof is similar to that of [19, lemma 3.8]. Note that since Assumption
2.3 holds, the mappings y �→ jYr (y) and x �→ L(x) are continuous [5].

(b) Since Assumption 2.4 holds, the proof follows from that of [24, lemma 2.3] with
N := lim inf l→∞ n∗(yδl ).

��
Now we are ready to prove the main result of this paper concerning the method

(1.4)–(1.5).

Theorem 2.6 Let Assumption 2.1 and 2.2 hold, and let μ0 be chosen such that (2.8)
holds. Let

{
yδ
}
be a sequence of noisy data satisfying assumption 2.5 and let n∗(yδ)

be the integer determined by Rule 2.1.

(a) If Assumption 2.3 holds and 1 < r < ∞, then there is a solution x∗ of (1.1) such
that

∥∥∥xδ
n∗(yδ)

− x∗
∥∥∥X → 0 and Dξδ

n∗(yδ )

R(x∗, xδ
n∗(yδ)

) → 0

as δ → 0. If in additionN (L(x†)) ⊂ N (L(x)) for all x ∈ B3ρ(x0), then x∗ = x†.
(b) If Assumption 2.4 holds and 1 ≤ r < ∞, then for any subsequence

{
yδl

}
, with

δl → 0 as l → ∞, of
{
yδ
}
, by taking a subsequence of

{
yδl

}
if necessary, there

hold
∥∥∥xδl

n∗(yδl )
− x∗

∥∥∥X → 0 and D
ξ

δl
n∗(yδl )

R(x∗, xδl

n∗(yδl )
) → 0

as l → ∞ for some solution x∗ of (1.1) in B3ρ(x0). If in addition N (L(x†)) ⊂
N (L(x)) for all x ∈ B3ρ(x0), then

∥∥∥xδ
n∗(yδ)

− x†
∥∥∥X → 0 and Dξδ

n∗(yδ )

R(x†, xδ
n∗(yδ)

) → 0

as δ → 0.

Proof We will only prove (b) since (a) can be proved similarly. Let
{
yδl

}
be a subse-

quence of
{
yδ
}
, and let N := lim inf l→∞ n∗(yδl ). By taking a subsequence of

{
yδl

}
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if necessary, we may assume N = liml→∞ n∗(yδl ) and, according to Lemma 2.5, we
can find a sequence {(ξn, xn)} ∈ 
μ0,μ1(ξ0, x0) such that

ξδl
n → ξn and xδl

n → xn as l → ∞ (2.13)

for all 0 ≤ n ≤ N . Let x∗ be the limit of {xn} which is a solution of (1.1) in B3ρ(x0).
We show that

lim
l→∞ D

ξ
δl
n∗(yδl )

R(x∗, xδl

n∗(yδl )
) = 0. (2.14)

If N < ∞, then (2.14) can be similarly proven using the argument for the
corresponding case in the proof of [24, theorem 2.6] since there requires only∥∥∥F(xδl

n∗(yδl )
) − yδl

∥∥∥Y → 0 as l → ∞, which is guaranteed by Lemma 2.2. If N = ∞
then for any fixed integer n ≥ 1 we have n∗(yδl ) > n for large l. According to the
proof of Lemma 2.3 we have

D
ξ

δl
k+1

R(x∗, xδl
k+1) − D

ξ
δl
k
R(x∗, xδl

k ) ≤ C
∥∥∥yδl − y†

∥∥∥
p

Y

for 0 ≤ k < n∗(yδl ), where C is a positive constant independent of l. Choose n such
that 0 ≤ n < n∗(yδl ). By taking the sum both sides from k = n to k = n∗(yδl ) − 1,
the previous inequality implies that

D
ξ

δl
n∗(yδl )

R(x∗, xδl

n∗(yδl )
) ≤ D

ξ
δl
n
R(x∗, xδl

n ) + C(n∗(yδl ) − n + 1)
∥∥∥yδl − y†

∥∥∥
p

Y

≤ D
ξ

δl
n
R(x∗, xδl

n ) + Cn∗(yδl )

∥∥∥yδl − y†
∥∥∥
p

Y .

We follow the argument for the corresponding case in the proof of [24, theorem 2.6].

From the proof of Lemma 2.3, the monotonicity of
{
Dξδ

n
R(x∗, xδ

n)
}
also holds. Using

this, (2.13), and the lower semi-continuity of R, we can obtain

0 ≤ lim sup
l→∞

D
ξ

δl
n∗(yδl )

R(x∗, xδl

n∗(yδl )
) ≤ lim sup

l→∞
D

ξ
δl
n
R(x∗, xδl

n )

≤ R(x∗) − lim inf
l→∞ R(xδl

n ) − lim
l→∞

〈
ξδl
n , x∗ − xδl

n

〉

≤ R(x∗) − R(xn) − 〈ξn, x∗ − xn〉
≤ DξnR(x∗, xn).

Since Lemma 2.4 implies that DξnR(x∗, xn) → 0 as n → ∞, we can conclude (2.14)
again. ��

For the Eq. (1.1) with a bounded linear operator F : X → Y , Assumption 2.4 can
be replaced by the compactness of F . This leads to the following convergence result.
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Corollary 2.7 Consider the Eq. (1.1) where F : X → Y is a compact bounded linear
operator. Let R satisfy Assumption 2.1 and let μ0 > 0 be chosen such that

1 − 1

p∗

(
μ0

2co

)p∗−1

> 0.

Then for the Landweber iteration (1.4) with the integer n∗(yδ) determined by rule 2.1
there hold

∥∥∥xδ
n∗(yδ)

− x†
∥∥∥X → 0 and Dξδ

n∗(yδ )

R(x†, xδ
n∗(yδ)

) → 0

as δ → 0.

3 Numerical examples

Example 3.1 Now we consider an example with a nonsmooth forward operator. To
start, consider an open bounded subset� ⊂ R

d , d ∈ {1, 2}, with a Lipschitz boundary
∂�, and consider the nonsmooth semilinear equation

{−�y + y+ = u in �,

y = 0 on ∂�,
(3.1)

with u ∈ L2(�) and y+(x) := max(y(x), 0) for almost every x ∈ �. Equation (3.1)
arises in a number of applications, such as modelling the deflection of a stretched
thin membrane partially covered by water (see [21]). It also appears in free boundary
problems for a confined plasma; see [21, 23, 28] for some examples. For each u ∈
L2(�), a unique solution yu in H1

0 (�)∩C(�) exists [29, theorem 4.7], so we consider
the inverse problem of estimating the source term u from noisy measurements of yu .

Define the forward operator F : L2 → H1
0 (�) ∩ C(�) where yu = F(u) for

u ∈ L2(�). As shown in [4, proposition 2.1, theorem 2.2], F is globally Lipschitz
continuous, and has a directional derivative F ′(u; h) in the direction h ∈ L2(�) given
by ν ∈ H1

0 (�) which solves

{−�ν + 1{yu=0}ν+ + 1{yu>0}ν = h in �,

ν = 0 on ∂�.

The operator F is Gâteaux differentiable in u ∈ L2(�) if and only if the Lebesgue
measure of the set {u : yu = 0} is zero [7, proposition 3.4]. Hence, in general F not is
Gâteaux differentiable. Moreover, computing the directional derivative of F could be
difficult, and a more convenient alternative is using the Bouligand subdifferential [4,
proposition 3.16]. Given u ∈ L2(�), a specific Bouligand subderivative of F is given
by the solution operator Gu : L2(�) → H1

0 (�) ↪→ L2(�) which maps h ∈ L2(�)
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to the unique solution ν ∈ H1
0 (�) of

{−�ν + 1{yu>0}ν = h in �,

ν = 0 on ∂�,
(3.2)

where yu = F(u). In fact Gu is uniformly bounded for all u ∈ L2(�) [7, lemmas 3.7
and 3.9], and consequently satisfies the generalized tangential cone condition. Hence,
Assumption 2.2(c) holds for Gu .

NowwecanuseLandweber iteration (1.4) to solve the inverse problemof recovering
u ∈ L2(�) from yu = F(u) satisfying (3.1). Since F is a mapping between Hilbert
spaces, we have r = 2 and J2 ≡ I . Since the convex quadratic penalty R(u) =
‖u‖L2(�) /2 is 2-convex, set p = 2. By choosing L = Gu , the iterative equation in
(1.4) reduces to the Bouligand-Landweber iteration [7] given by

uδ
n+1 = uδ

n − μδ
nG

∗
uδ
n

(
F(uδ

n) − yδ
)
. (3.3)

where uδ
n solves (3.1) given y = yδ

n , and μδ
n is a given stepsize. Under the discrepancy

principle (1.6), the authors in [7] established the convergence of (3.3) using a constant
stepsize

μδ
n = 2 − 2η

L̄2
, where L̄ = 5 · 10−2, (3.4)

where η = 0.1 is a tangential constant estimate in Assumption 2.2(c).
For the computation of the nonsmooth forward operator F , we discretize the non-

smooth semilinear elliptic problem (3.1) using standard continuous piecewise linear
finite elements, and then solve the resulting non-smooth nonlinear equation using
a semi-smooth Newton method. The same discretization scheme is also done for
computing the Bouligand subdifferential Gu in terms of (3.1). For more details, we
refer the reader to [7] and the reference therein.

We consider the two-dimensional problem with � = (0, 1) × (0, 1) ⊂ R
2

and use a uniform triangular Friedrichs-Keller triangulation with 1282 vertices. The
discretization scheme for computing the operator F and Gu involve standard con-
tinuous piecewise linear finite elements (see [7] for more details). We used the
Python implementation available in https://github.com/clason/bouligandlandweber.
The exact solution to be reconstructed is defined as

u†(x1, x2) =max(y†(x1, x2), 0)

+ [
4π2y†(x1, x2) − 2

(
(2x1 − 1)2 + 2(x1 − 1 + β)(x1 − β)

)
sin(2πx2)

]

× 1(β,1−β](x1)

where

y†(x1, x2) =
[
(x1 − β)2(x1 − 1 + β)2 sin(2πx2)

]
1(β,1−β](x1)
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Fig. 1 a plots the noisy data ydh with δ = 3.875 × 10−3; b plots the initial guess u0 = ū

with β = 0.005. Figure2(i) shows a plot of u†. The function y† ∈ H2(�) ∪ H1
0 (�)

satisfies (3.1) for the right-hand side u† and that y† vanishes on a set of measure 2β, so
the forward operator F is not Gâteaux differentiable at u† [7, proposition 3.4]. Hence
we can use the Bouligand–Landweber iteration (3.3).

Given the projection of y† to the finite element space, denoted by y†h , random

Gaussian noise is added to obtain the noisy data yδ
h , so that δ =

∥∥∥yδ
h − y†h

∥∥∥
L2(�)

.

Figure1b shows a noisy data with δ = 1.043 × 10−4.
Now we test the Landweber iteration in solving the problem under the discrepancy

principle (1.6) and the Hanke–Raus rule (Rule 2.1). We used two initial solutions: the
trivial point u0 ≡ 0 and the function

ū := u† − 10 sin(πx1) sin(2πx2),

plotted in Fig. 1a.
Now we test the iteration under rule 2.1, with μ0 = 0.6, μ1 = 5.0 × 105. For

comparision, we also test under discrepancy principle, by choosing the appropriate
parameter τ (see [19, theorem 3.9]. We terminated the iteration either when it satisfies
(1.6) or when it exceeds 5000 iterations.

Figures 2 and 3 report the numerical results using rule 2.1 and the discrepancy
principle. Using rule 2.1 for various choices of the parameter a, Figs. 2d–f and 3d–f
shows the reconstruction using u0 ≡ 0 and u0 = ū, respectively. To illustrate that
the noise condition in Assumption 2.5 is satisfied, we plot the residual against the
iteration number in Figs. 2g and 3g. Figure2(i) plots the exact solution u†. Notice the
iteration (3.3) converges faster and generates better reconstruction using the initial
point ū since it satisfies the general source condition with the exact solution u† [7].
The faster convergence is illustrated by the plots of �(n, uδ) versus n in Fig. 2a,
b for u0 ≡ 0, and Fig. 3a, b for u0 = ū. Since our convergence analysis do not
assume any source condition, the trivial initial point u0 ≡ 0 can still produce accurate
reconstruction under rule 2.1. For comparison, Figs. 2h and 3h plot the reconstructions
using discrepancy principle for the two different initial points u0.
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Fig. 2 The reconstruction for Example 3.1 with noise level δ =3.875e−3 and the trivial initial solution
u0 ≡ 0: a, b, and c plot the relationship between �(n, uδ) and n for a = 1, 100 and 10000, respectively;
d, e, and f plot the reconstructed solutions via rule 2.1 for a = 1, 100 and 10000, respectively; g plots the

residual
∥∥∥F(uδ

n) − yδ
∥∥∥
L2(�)

versus n.; h plots the reconstructed solution via discrepancy principle; and i

plots the exact solution

Tables 1 and 2 gives more details in the numeric results for rule 2.1 for various
noise levels using u0 ≡ 0 and u0 = ū, respectively. The regularization parameter n∗
and the relative errors

Eδ
n :=

∥∥uδ
h − u†

∥∥
L2(�)∥∥u†

∥∥
L2(�)

are shown.For consistencywealso show thevalues δrel =
∥∥∥yδ

h − y†h

∥∥∥
L2(�)

/

∥∥∥y†h
∥∥∥
L2(�)

.

For comparison, Table 3 report the stopping indices nδ via discrepancy principle for
both u0 ≡ 0 and u0 = ū as well as the relative errors Enδ . As expected using the vari-
able step (1.5) reduces the number of iterations to achieve convergence than using the
constant step (3.4). The tabular results further verifies the previously described effect
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Fig. 3 The reconstruction for Example 3.1 with noise level δ =3.875e−3 and u0 = ū: a, b, and c plot
the relationship between �(n, uδ) and n for a = 1, 100 and 10000, respectively; (d), (e), and (f) plot the
reconstructed solutions via Hanke–Raus rule for a = 1, 100 and 10000, respectively; g plots the residual∥∥∥F(uδ

n) − yδ
∥∥∥
L2(�)

versus n; and h plots the solution via discrepancy principle

using u0 = ū. Just More importantly, the figures and tables show that even without
information on the noise level, rule 2.1 can still produce accurate reconstructions.

Example 3.2 The problem of identifying the source or coefficient term/s in partial
differential equations arises in a number of applications. Here we consider a known
benchmark problem for regularizing nonlinear inverse problems.

Supposewewant to solve for the space-dependent source function c in the following
elliptic boundary value problem

{−�u + cu = f in �,

u = g on ∂�,
(3.5)
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Table 1 Results for the Bouligand-Landweber iteration with variable stepsize for Example 3.1 under Rule
2.1 with u0 ≡ 0

δrel Rule 2.1 for various a
1e0 1e1 1e2 1e3 1e4
n∗ Eδ

n∗ n∗ Eδ
n∗ n∗ Eδ

n∗ n∗ Eδ
n∗ n∗ Eδ

n∗

3.875e−1 1 5.129e−1 6 3.466e−1 6 3.466e−1 29 2.452e−1 59 2.840e−1

3.875e−2 7 3.142e−1 30 2.357e−1 54 2.108e−1 104 1.763e−1 255 1.571e−1

3.875e−3 53 1.855e−1 153 1.553e−1 192 1.479e−1 339 1.315e−1 1270 1.050e−1

Table 2 Results for the Bouligand–Landweber iteration with variable stepsize for Example 3.1 under Rule
2.1 with u0 = ū

δrel Rule 2.1 for various a
1e0 1e1 1e2 1e3 1e4
n∗ Eδ

n∗ n∗ Eδ
n∗ n∗ Eδ

n∗ n∗ Eδ
n∗ n∗ Eδ

n∗

3.875e−1 5 1.627e−1 5 1.627e−2 14 3.401e−2 14 3.401e−2 64 2.203e−1

3.875e−2 11 2.932e−3 11 2.932e−3 11 2.932e−3 11 2.932e−3 90 3.087e−2

3.875e−3 15 1.590e−4 19 9.823e−4 19 9.823e−4 19 9.823e−4 117 3.580e−3

given ameasurement u in�, where� ⊂ R
m withm ∈ N is a smooth bounded domain.

Given spaces X and Y , which are to be specified later, the forward operator F

F : D(F) ⊆ X → Y, (3.6)

its derivative F ′, and the adjoint of F ′, can be formally written as

F(c) = A(c)−1 f , F ′(c)h = −A(c)−1(h · F(c)), F ′(c)∗w = −u(c)A(c)−1w

for h, w ∈ L2(�), where

A(c) : H2(�) ∩ H1
0 (�) → L2(�)

u → −�u + cu.

To preserve ellipticity, a straightforward choice of the domain D(F) is

D(F) = {c ∈ X | c ≥ 0 a.e. ‖c‖X ≤ ρ} (3.7)

for some sufficiently small ρ > 0. For situations requiring a nonempty interior of
D(F) in X , the choice

D(F) = {
c ∈ X | ∃ĉ ∈ L∞(�), ĉ ≥ 0 a.e.

∥∥c − ĉ
∥∥
X ≤ ρ

}
(3.8)

for some sufficiently small ρ > 0 has been devised [9].
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Table 3 The reconstruction for Example 3.1 using the Bouligand-Landweber iteration (3.3) using the
discrepancy principle

δrel Using u0 ≡ 0 Using u0 = ū

DPw/ constant
step (3.4)

DP w/ variable
step (1.5)

DP w/ constant
step (3.4)

DP w/ variable
step (1.5)

nδ Eδ
nδ

nδ Eδ
nδ

nδ Eδ
nδ

nδ Eδ
nδ

3.875e−1 7 4.007e−1 6 3.466e−1 9 1.551e−1 9 3.854e−2

3.875e−2 118 2.200e−1 68 1.982e−1 16 1.401e−2 11 2.932e−3

3.875e−3 3288 1.227e−1 809 1.135e−1 23 1.286e−3 19 9.823e−4

So far, the problem has been studied in the context of regularization in Hilbert
spaces, by setting the preimage and image spaces X and Y to be L2(�) [9, 17, 18].
By treating the same X and Y as Banach spaces, the problem has also been studied
in a more general setting by incorporating a non-smooth convex penalty functional
to recover a non-smooth solution [13, 19, 30, 31]. However, as previously argued,
Y = L∞(�)orY = L1(�) aremore suitable choices forY , especially for a practically
relevant situation of impulsive noise. Hence, we treat this example in a more general
setting by using

X = L p(�), Y = Lr (�)

for p, r ∈ [1,∞]. The result in [27, proposition 1.2] guarantees that in this more
general setting the forward operator F and its derivative F ′ are still well-defined.

In addition, item (c) of Assumption 2.2 holds for small ρ > 0 [9]. Hence, we
can consider X = L2(�) and Y = L1(�) for numerical simulation. We use finite
differences to discretize the problem. We consider the two-dimensional problem with
� = [0, 1] × [0, 1] divided into N × N small squares of equal size. This results to a
grid with N + 1 grid points in both x- and y-directions with step size h = (N + 1)−1.
We also define the sought parameter c† as

c†(x, y) =

⎧
⎪⎨

⎪⎩

1, if (x − 0.65)2 + (y − 0.36)2 ≤ 0.182,

0.5, if (x − 0.35)2 + 4(y − 0.75)2 ≤ 0.22,

0, elsewhere.

Since c† is piecewise constant, we use the Landweber iteration in (1.4)–(1.5) with the
2-convex TV-like functional

R(x) := 1

2β
‖x‖2L2(�)

+ |x |T V (3.9)

where β > 0 and

|x |T V := sup

{∫

�

f divgdω : g ∈ C1
0(�;Rm) and ‖g‖L∞(�) ≤ 1

}
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denotes the total variation of f over �. For our chosen image and preimage spaces X
and Y , implementing the iteration (1.4) requires solving a minimization problem of
the form

x = arg min
z∈L2(�)

{R(z) − 〈ξ, z〉L2(�)

}

for any ξ ∈ L2(�). For our choice of R given by (3.9), this minimization problem is
equivalent to solving

x = arg min
z∈L2(�)

{
1

2β
‖z − βξ‖2L2(�)

+ |x |T V
}

, (3.10)

which is the total variation denoising problem, also known as the ROF model [25].
Since there is no explicit formula for the minimisation step in (1.4), numerical solvers
are used; we will use the primal-dual hybrid gradient (PDHG) algorithm [32]. The
penalty functional (3.9) is discretized first before applying PDHG, as illustrated in
[14]. After setting the exact data to be u(c†) = x + y, we add random uniform noise
to produce noisy data uδ with noise level δ := ∥∥uδ − u(c†)

∥∥
L2 .

By relaxing the uniform smoothness on Y , we use r = 1.0 in the duality mapping
jYr , in contrast to the implementation in [19]. For r ≥ 1 the duality mapping jYr (y)
for each y ∈ Y = Lr [0, 1] has the pointwise expression

[
jYr (y)

]
(t) := |y(t)|r−1 sign(x(t)), t ∈ [0, 1] .

Next we apply the Landweber iteration in (1.4)–(1.5) under the discrepancy prin-
ciple (1.6) and the Hanke–Raus rule (Rule 2.1). We used the parameters

β = 12.0, r = 1.0, p = 2.0, η = 0.01, τ = 1.001 · 1 + η

1 − η
,

and ξ0 = x0 = 0 as initial guess. For the step size (1.5), we choose

μ0 = 3.9

(
1 − η − 1 + η

τ

)
and μ1 = 10000

for both parameter choice rules, to ensure that μ0 > 0 and (2.8) holds. We picked
a large μ1 to ensure fast convergence. Since the Fréchet derivative of F satisfies
Assumption 2.2(c) for small ρ > 0 (see [9]), take L = F ′.

Figure4 shows the numerical results. The solution obtained using discrepancy
principle is plotted in Fig. 4b. Moreover, the plot in Fig. 4c illustrates that the noise
condition in assumption 2.5 is satisfied. The solution obtained in Fig. 4e shows that
Rule 2.1 can provide accurate reconstruction in the absence of information on the
noise level.

On the other hand, we also apply the Landweber iteration using a data filled with
impulse noise. Figure5 shows the reconstruction results. The noisy data in Fig. 5a
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Fig. 4 The reconstruction for Example 3.2 with a Gaussian noisy data with δ = 0.0005: a plots the exact
solution c†; b plots the reconstructed solution by discrepancy principle; c plots the relationship between the

residual
∥∥∥F(xδ

n) − yδ
∥∥∥
L2

and n; d plots the relationship between�(n, yδ) and n for a = 5000 respectively;

and e plots the reconstructed solutions via Hanke–Raus rule for a = 5000

Fig. 5 The reconstruction for example 3.2 using noisy data with impulse noise: a plots the noisy data yδ ;
b plots the relationship between �(n, yδ) and n for a = 50000; c and d plots the reconstructions via
discrepancy principle and rule 2.1, respectively

contains some outliers due to the impulse noise, making the noise level harder to
estimate. We used a large number of iterations to ensure we get n∗ as shown by the
plot in Fig. 5b.
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The inaccurate reconstruction in Fig. 5c shows that the discrepancy principle
becomes ineffective with a poorly estimated noise level. However, the reconstruc-
tion in Fig. 5d shows that rule 2.1 can overcome this scenario, since it does not depend
on the noise level.

Example 3.3 Nowweconsider an image deblurring problem,where an unknown image
x† ∈ R

M×N is to be reconstructed from an observed image ỹ = Fx† +ν downgraded
by a linear convolution blurring operator F and a salt-and-pepper-noise ν.

Since the image to be reconstructed has some periodic boundary conditions, we
use the total variation (TV) deblurring. The function R(x) is chosen as

R(x) = |x |T V + β

2
‖x‖2F

with β = 0.001, which is a small perturbation of the TV function. Here |x |T V and
‖x‖F denote the total variation of x and the Frobenius norm of x respectively. To
remove the salt-and-pepper noise efficiently, we use the data fidelity term as

1

r
‖Fx − ỹ‖rr

with r = 1.0.
Next we apply the Landweber iteration via (1.4)–(1.5) with r = 1.0, p = 2,

μ0 = 0.008, μ1 = 100. We choose ξ0 = x0 = 0 as initial guesses. In addition, the
minimization problem in (3.10) is solved by a primal-dual hybrid gradient method.

Figure6 shows the reconstructions using the Boats (576 × 720) motion blur
(fspecial(’motion’,35,50) in MATLAB). The noisy observed image was
obtained by adding salt-and-pepper noise with noise density 0.4. To measure the qual-
ity of the reconstructed image, we show the computed PSNR (peak signal-to-noise
ratio) defined by

PSNR = 10 · log10
2552

MSE
(dB)

where the MSE stands for the mean-squared error per pixel. We present the recon-
struction of Landweber iteration via discrepancy principle and via rule 2.1. Figure6g
illustrates that assumption 2.5 is satisfied. Moreover, Fig. 6h shows an eventual rising
of �(n, yδ), illustrating the existence of n∗ via rule 2.1. Both parameter choice rules
give satisfactory rules, and notice that rule 2.1 gives better reconstruction for a suf-
ficiently large fixed constant a. For this type of noisy data, the Hanke–Raus rule can
indeed provide accurate reconstruction.

4 Conclusion

A general convergence analysis for Landweber iteration for inverse problems under
the Hanke–Raus rule was established. By using the so-called noise condition, and the
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Fig. 6 a The original image; b observed image with 40% salt-and-pepper noise; c reconstruction result
via discrepancy principle with τ = 1.01; d–f are the reconstruction results via rule 2.1 with a = 10000,

50000, and 100000, respectively; g plots the residual
∥∥∥Fxδ

n − ỹ
∥∥∥
r

r
versus n; h plots �(n, ỹ) versus n for

a = 10000, 50000, and 100000

compactness condition, we obtain the convergence result. More importantly, since the
Hanke–Raus rule do not rely on any information about the noise level, this makes the
Landweber iteration purely data driven, while expanding its applied range towards
inverse problems with a nonsmooth forward operator and problems whose data is
corrupted by various types of noise.
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