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Abstract
In this paper, we consider the structure-preserving model order reduction problem
for multi-input/multi-output bilinear control systems by tangential interpolation. We
propose a new type of tangential interpolation problem for structured bilinear systems,
for which we develop a new structure-preserving interpolation framework. This new
framework extends and generalizes different formulations of tangential interpolation
for bilinear systems from the literature and also provides a unifying framework. We
then derive explicit conditions on the projection spaces to enforce tangential interpo-
lation in different settings, including conditions for tangential Hermite interpolation.
The analysis is illustrated by means of three numerical examples.

Mathematics Subject Classification 30E05 · 34K17 · 65D05 · 93A15 · 93C10

1 Introduction

Modeling of various real-world applications, e.g., biological, electrical or population
dynamics, results in bilinear control systems [1, 30, 31, 34, 39]. Those bilinear systems
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usually inherit special structures based on their underlying physical meaning. For
example, in the case of bilinearmechanicalmodels, one obtains a second-order bilinear
control system of the form

Mq̈(t) + Dq̇(t) + Kq(t) =
m∑

j=1

Np, j q(t)u j (t) +
m∑

j=1

Nv, j q̇(t)u j (t) + Buu(t),

y(t) = Cpq(t) + Cvq̇(t), (1)

where q(t) ∈ R
n are the (internal) degrees of freedom; u(t) ∈ R

m and y(t) ∈ R
p

are, respectively, the inputs and outputs of the system; M, D, K , Np, j , Nv, j ∈ R
n×n

for all j = 1, . . . ,m, Bu ∈ R
n×m and Cp,Cv ∈ R

p×n . Due to the usual request for
high-fidelity modeling, the number of differential equations, n, describing the dynam-
ics of systems as in (1), quickly increases. This often results in a high demand for
computational resources such as time and memory. One remedy is model order reduc-
tion: a new, reduced, system is created, consisting of a significantly smaller number
of differential equations than the original one while still accurately approximating the
input-to-output behavior [2, 3, 14–16]. Then one can use this lower order approxi-
mation as a surrogate model for faster simulations or within algorithms for design
optimization and controller synthesis.

In the case of unstructured bilinear systems with the state-space form

Eẋ(t) = Ax(t) +
m∑

j=1

N j x(t)u j (t) + Bu(t),

y(t) = Cx(t),

(2)

where E, A, N j ∈ R
n×n for all j = 1, . . . ,m, B ∈ R

n×m andC ∈ R
p×n , there already

exist different model reduction methodologies, e.g., bilinear balanced truncation [1,
11, 27], different types of interpolation approaches for the underlying multi-variate
transfer functions in the frequency domain [3, 5, 17, 19, 20], complete Volterra series
interpolation [9, 21, 42], the bilinear Loewner framework [4, 25], and the Koop-
man operator framework with the dynamic mode decomposition [23, 24, 28, 32]. For
structured bilinear control systems as in (1), recently [13] developed the structure-
preserving interpolation framework where interpolation for multi-input/multi-output
(MIMO) systems was enforced as for single-input/single-output (SISO) systems, i.e.,
using full matrix interpolation. One of our major contributions in this paper is to devise
a proper interpolation framework for structured MIMO systems.

Reduction of MIMO bilinear systems is an intricate problem and only a few of the
aforementioned approaches provide suitable extensions for model reduction ofMIMO
structured bilinear systems. The lack of a proper extension is especially persistent
for subsystem interpolation since enforcing matrix interpolation results in quickly
increasing reduced-order dimension. ForMIMOlinear dynamical systems, the concept
of tangential interpolation resolves this issue [22] by interpolating the matrix-valued
transfer function along selected direction vectors. It is important to note that the optimal
approximation in a specific, namely the H2-norm, satisfies tangential interpolation,
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not matrix interpolation [3]. For interpolatory model reduction of bilinear systems,
it is not clear so far what the proper extension of tangential interpolation would be.
For the unstructured case, [10, 35] provide one potential extension where only certain
blocks of the subsystem transfer functions are employed in tangential interpolation. In
this paper, we will introduce a new unifying framework for tangential interpolation of
structured bilinear systems, inspired by the original ideas of tangential interpolation
for matrix-valued functions [6]. This new framework will cover different extensions
of tangential interpolation to bilinear systems under one umbrella. Especially, it will
allow us to formulate a direct extension of the ideas from [10, 35] to the structured
system case.

Parts of the theoretical results presented here were derived in the course of writing
the dissertation of the corresponding author [40].

The rest of the paper is organized as follows: In Sect. 2, we briefly recall the the-
ory of bilinear systems and Volterra series, introduce the structured transfer functions
considered in this paper and revisit the tangential interpolation problem for linear
dynamical systems. In Sect. 3, we will motivate our new unifying tangential interpo-
lation framework and provide conditions on underlying projection spaces to satisfy
interpolation conditions in this framework. Three benchmark examples are presented
in Sect. 4 that illustrate the established theory by comparing different interpolatory
model reduction approaches for (structured) MIMO bilinear systems, followed by the
conclusions in Sect. 5.

2 Mathematical preliminaries

In this section,webriefly reviewvarious system-theoretic concepts for bilinear systems
and the idea of tangential interpolation for linear systems.

2.1 Frequency-domain representation of structured bilinear systems

For the unstructured bilinear system (2), define N = [
N1 . . . Nm

]
. Assume E to be

invertible and zero initial conditions, i.e., x(0) = 0. Then, under some mild assump-
tions specified in [36], the output of (2) can be expressed in terms of a Volterra series,
i.e.,

y(t) =
∞∑

k=1

t∫

0

t1∫

0

. . .

tk−1∫

0

gk(t1, . . . , tk)

(
u(t −

k∑

i=1

ti ) ⊗ · · · ⊗ u(t − t1)

)
dtk · · · dt1,

where gk , for k ≥ 1, is the k-th regular Volterra kernel given by

gk(t1, . . . , tk) = CeE
−1Atk

⎛

⎝
k−1∏

j=1

(Im j−1 ⊗ E−1N )(Im j ⊗ eE
−1Atk− j )

⎞

⎠

× (Imk−1 ⊗ E−1B),

(3)
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where Im j denotes the identity matrix of sizem j ×m j and⊗ is the Kronecker product.
Using the multivariate Laplace transform [36], the regular Volterra kernels (3) yield
a representation of (2) in the frequency domain by the so-called multivariate regular
transfer functions

Gk(s1, . . . , sk) = C(sk E − A)−1

⎛

⎝
k−1∏

j=1

(Im j−1 ⊗ N )(Im j ⊗ (sk− j E − A)−1)

⎞

⎠

×(Imk−1 ⊗ B), (4)

with s1, . . . , sk ∈ C.

Remark 1 (Systems with differential-algebraic equations) To simplify the discussion,
we have assumed that the E matrix in (2) is invertible. This, however, is not needed
for the interpolation theory discussed below. Indeed, only the regularity of the matrix
pencil sE − A is needed for the considered transfer function formulation to exist. For
the details of interpolatory model reduction for systems with differential-algebraic
equations (i.e., when E is not invertible), we refer the reader to [26] for unstructured
linear and [12] for unstructured bilinear systems. Similar ideas could be employed for
the more general structured tangential interpolation theory developed here; however,
this is outside the scope of this work.

Motivated by the structured linear case [8] and structured bilinear systems as in (1),
[13] introduced the frequency domain representation of structured bilinear systems in
terms of the structured regular subsystem transfer functions of the form

Gk(s1, . . . , sk) = C(sk)K(sk)
−1

⎛

⎝
k−1∏

j=1

(
Im j−1 ⊗ N(sk− j )

)(
Im j ⊗ K(sk− j )

−1)
⎞

⎠

×(
Imk−1 ⊗ B(s1)

)
, (5)

for k ≥ 1, where C(s) : C → C
p×n , K(s) : C → C

n×n , B(s) : C → C
n×m , and

N j : C → C
n×n for j = 1, . . . ,m are matrix-valued functions, and we denote

N(s) = [N1(s) . . . Nm(s)
]
. This general frameworks contains the unstructured bilin-

ear systems (2) as a special case, where

C(s) = C, K(s) = sE − A, B(s) = B, N(s) = [
N1 . . . Nm

]
.

Also, it recovers the bilinear second-order system (1) by choosing

C(s) = Cp + sCv, K(s) = s2M + sD + K , B(s) = Bu, N(s) = Np + sNv,

where Np = [
Np,1 . . . Np,m

]
and Nv = [

Nv,1 . . . Nv,m
]
. We refer the reader to [13]

for a more detailed derivation of structured multivariate transfer functions and other
structured examples.
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For the full-order structured bilinear control system with subsystem transfer func-
tions (5), we will construct structure-preserving reduced bilinear systems using
Petrov-Galerkin projection: Given two model reduction basis matrices W , V ∈ C

n×r

for the test and trial spaces, respectively, with r � n, the reduced-order quantities are
given by

Ĉ(s) = C(s)V , K̂(s) = WHK(s)V , B̂(s) = WHB(s) and

N̂ j (s) = WHN j (s)V ,
(6)

for j = 1, . . . ,m, where (·)H denotes the conjugate transpose. The correspond-
ing reduced-order system Ĝ is then given by the underlying reduced-order matrices
from (6) and the corresponding multivariate transfer functions

Ĝk(s1, . . . , sk) = Ĉ(sk)K̂(sk)
−1

⎛

⎝
k−1∏

j=1

(
Im j−1 ⊗ N̂(sk− j )

)(
Im j ⊗ K̂(sk− j )

−1)
⎞

⎠

×(Imk−1 ⊗ B̂(s1)), (7)

for k ≥ 1. For example, for the mechanical bilinear system in (1), the reduced-order
model will have the form

M̂ ¨̂q(t) + D̂ ˙̂q(t) + K̂ q̂(t) =
m∑

j=1

N̂p, j q̂(t)u j (t) +
m∑

j=1

N̂v, j
˙̂q(t)u j (t) + B̂uu(t),

ŷ(t) = Ĉpq̂(t) + Ĉv
˙̂q(t),

where M̂, D̂, K̂ , N̂p, j , N̂v, j ∈ R
r×r for j = 1, . . . ,m, B̂u ∈ R

r×m , and Ĉp, Ĉv ∈
R

p×r are given by

M̂ = WHMV , D̂ = WHDV , K̂ = WHKV , B̂u = WHBu,

N̂p, j = WHNp, j V , N̂v, j = WHNv, j V , Ĉp = CpV , and Ĉv = CvV .

We will construct the model reduction bases W and V such that the reduced-order
subsystem transfer functions Ĝk in (7) are multivariate (tangential) interpolants to
the full-order ones Gk at some selected frequencies {σ1, σ2, . . . , σk} ⊂ C. Below, we
will make it precise what we mean by tangential interpolation in this setting. But first,
it is worth noting the dimension of Gk . For a MIMO bilinear system with m inputs
and p outputs, Gk , evaluated at given frequencies, is a p × mk matrix, i.e., it has a
polynomial growth in the input dimension. Then, full matrix interpolation ofGk by Ĝk

imposes a rather large number of interpolation conditions to satisfy, leading to rapid
growth of the reduced order. We will resolve this issue via tangential interpolation.
With respect to the number of interpolation points and interpolated subsystem transfer
function levels, tangential interpolation in the new framework reduces the dimensional
growth of reduced-order models to scale only linearly rather than exponentially as for
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matrix interpolation. It will help to recall the tangential interpolation problem for the
linear case first.

2.2 Tangential interpolation for linear dynamical systems

The tangential interpolation replaces the full matrix interpolation of a matrix-valued
function with interpolation along selected directions and can be interpreted as adding
constraints to the matrix interpolation problem [6]. For given interpolation points
σ1, . . . , σk ∈ C, given function values h1, . . . , hk ∈ C

p and right tangential directions
b1, . . . , bk ∈ C

m , the task of the right tangential interpolation is to find an interpolating
function H : C → C

p×m such that

H(σ j )b j = h j , for j = 1, . . . , k. (8)

The left interpolation problem is defined similarly.
It was then proposed in [6] and utilized in [22] to employ tangential interpo-

lation for model reduction of linear unstructured multi-input/multi-output systems
by restricting the interpolant (8) to a rational matrix-valued function and using the
system’s transfer function evaluations along certain directions as function values
to interpolate. In other words, given the original linear system’s transfer function
G(s) = C(sE − A)−1B, the goal is to construct a reduced-order system with
transfer function Ĝ(s) = Ĉ(s Ê − Â)−1 B̂ such that for given interpolation points
σ1, . . . , σk ∈ C and directions b(1), . . . , b(k) ∈ C

m as well as c(1), . . . , c(k) ∈ C
p, the

right or left tangential interpolation conditions

G(σ j )b
( j) = Ĝ(σ j )b

( j) or
(
c( j))HG(σ j ) = (

c( j))HĜ(σ j ), (9)

for j = 1, . . . , k, hold. It has been shown via numerous examples that tangential
interpolation yields accurate reduced-order models while allowing to choose the size
of the reduced-order model independent of the input and output dimensions (unlike in
the matrix interpolation framework) and thus results in smaller reduced-order models.
Indeed, tangential interpolation, not the matrix interpolation, forms the necessary
conditions for optimal model reduction of linear systems in the H2 norm [3]. The
tangential interpolation problem (9) (and the projection-based solution framework)
was later extended to structure-preserving Hermite interpolation in [8] of structured
transfer functions of the form G(s) = C(s)K(s)−1B(s).

2.3 Blockwise tangential interpolation for unstructured bilinear systems

Extending tangential interpolation to unstructured bilinear systems of the form (2) was
first considered in [10, 35], using the observation that multiplying out the Kronecker
products in (4) yields

Gk(s1, . . . , sk) = [
C(sk E − A)−1N1 · · · N1(s1E − A)−1B,

C(sk E − A)−1N1 · · · N2(s1E − A)−1B,
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. . . ,

C(sk E − A)−1Nm · · · Nm(s1E − A)−1B
]
.

Each block entry in this formula is then considered as separate transfer function,
which will be interpolated along the same chosen directions. For example, with a right
tangential direction b ∈ C

m , the blockwise evaluation of the transfer function along b
is given by

Gk(s1, . . . , sk)(Imk−1 ⊗ b) = [
C(sk E − A)−1N1 · · · N1(s1E − A)−1Bb,

C(sk E − A)−1N1 · · · N2(s1E − A)−1Bb,

. . . ,

C(sk E − A)−1Nm · · · Nm(s1E − A)−1Bb
]
,

leading to the concept of the blockwise tangential interpolation problem: Given inter-
polation points σ1, . . . , σk ∈ C and tangential directions b ∈ C

m and c ∈ C
p, find a

reduced-order model such that

Gk(σ1, . . . , σk)(Imk−1 ⊗ b) = Ĝk(σ1, . . . , σk)(Imk−1 ⊗ b) or (10)

cHGk(σ1, . . . , σk) = cHĜk(σ1, . . . , σk) (11)

hold. Also, the bi-tangential interpolation condition,

cHGk(σ1, . . . , σk)(Imk−1 ⊗ b) = cHĜk(σ1, . . . , σk)(Imk−1 ⊗ b), (12)

will be of high interest in the bilinear system case. While, in principle, (10) and (11)
imply (12), we will see later that it is possible to match subsystem transfer functions
of higher level k in the sense of (12) by enforcing (10) and (11) on lower level transfer
functions.

The blockwise tangential interpolation problem can be viewed as a mixture of
tangential interpolation, as it is done for the linear system case (9), combined with
the blocks of multivariate transfer functions. While in the case of linear systems, the
tangential interpolation restricts the problem to vectors or scalars of fixed sizes to
be interpolated, this is not true anymore for the blockwise approach in the bilinear
system case. As already observed in [10, 35], the blockwise approach still leads to the
interpolation of an exponentially increasing number of vectors or matrices, making it
only marginally better than the matrix interpolation method for model reduction.

2.4 Notation

To simplify notation in this work, we will use:

∂
s
j1
1 ···s jkk

f (z1, . . . , zk) := ∂ j1+···+ jk f

∂s j11 · · · ∂s jkk
(z1, . . . , zk) (13)
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to denote the differentiation of an analytic function f : Ck → C
� with respect to the

complex variables s1, . . . , sk and evaluated at z1, . . . , zk ∈ C. We denote for matrix-
valued functions K : C → C

n×n , which map complex scalars onto square matrices,
the inverse of their evaluation by K−1 := K(.)−1. This notation of the inverse of
evaluated matrix-valued functions will occur together with the notation of partial
derivatives (13). For example, given two matrix-valued functions B : C → C

n×m and
K : C → C

n×n , we denote the partial derivative of the product of B with the inverse
of K evaluated in the points z1, z2 ∈ C by

∂
s
j1
1 s

j2
2

(K−1B)(z1, z2) := ∂ j1+ j2K(.)−1B(.)

∂s j11 ∂s j22
(z1, z2).

Also, we will use the notion of the Jacobi matrix given by

∇ f = [
∂s1 f . . . ∂sk f

]
, (14)

denoting the concatenation of all partial derivatives of an analytic function f : Ck →
C

� with respect to the complex variables s1, . . . , sk .
For bilinear systems, we have already introduced the notation

N(s) = [N1(s) . . . Nm(s)
]

to denote horizontally concatenated matrix functions corresponding to the bilinear
terms. Additionally, we use

Ñ(s) =
⎡

⎢⎣
N1(s)

...

Nm(s)

⎤

⎥⎦

for denoting the vertical concatenation of the matrix functions corresponding to the
bilinear terms. We denote the vector of ones of length m by 1m .

3 Generalized structured tangential interpolation framework

In this section, we will start with two different interpretations of tangential interpola-
tion (9) and their corresponding interpolation problems for bilinear systems.Motivated
by these formulations, we introduce a unifying framework for tangential interpolation
of structured bilinear systems and give subspace conditions for structure-preserving
model reduction of the corresponding bilinear systems. As a special case of the uni-
fying framework, we derive the theory for structure-preserving blockwise tangential
interpolation as reviewed in Sect. 2.3 and previously employed in the literature for
standard (unstructured) bilinear systems.
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3.1 Tangential interpolation in the frequency domain

Examining the original formulation of tangential interpolation (8) and the multivariate
transfer functions (5), a first natural approach to tangential interpolation for bilinear
systems would be to choose an appropriately sized vector b̂ ∈ C

mk
, where

b̂ =
[(

b̂(11...1)
)H (

b̂(21...1)
)H · · ·

(
b̂(mm...m)

)H]H

and b( j1... jk ) ∈ C
m for all 1 ≤ j1, . . . , jk ≤ m, as right tangential direction and to

consider interpolating

Gk(s1, . . . , sk)b̂ =
m∑

j1=1

· · ·
m∑

jk−1=1

C(sk)K(sk)
−1N jk−1(sk−1)K(sk−1)

−1

× · · · × N j1(s1)K(s1)
−1B(s1)b̂

( j1... jk ).

(15)

This general approach comes along with a computational drawback. For every new
transfer function level k, a different part of b̂ is multiplied with the matrix-valued
function B(s) in each term of the sum (15). Then, the corresponding basis for model
reductionwould grow according to the different block entries of b̂ and, thus, even faster
than for the blockwise tangential interpolation problem (Sect. 2.3). A remedy to this
problem is to restrict the full direction vector b̂ to the repetition of an m-dimensional
direction b ∈ C

m , i.e.,

b̂ = 1mk−1 ⊗ b =
⎡

⎢⎣
b
...

b

⎤

⎥⎦ . (16)

With this particular choice of b̂ in (16), the right tangential interpolation problem can
be written as

Gk(σ1, . . . , σk)(1mk−1 ⊗ b) = Ĝk(σ1, . . . , σk)(1mk−1 ⊗ b), (17)

for given interpolation points σ1, . . . , σk ∈ C. This restricts the interpolation problem
to a vector of constant length with respect to the transfer function level and thus
allows for an efficient construction of the projection basis. It is not clear how much
approximation accuracy in the reduced-order model is lost by this specific choice of b̂
in (16). The most unrestricted type of interpolation is given by the matrix interpolation
approach, and in Sect. 4, we will present numerical comparisons.

For the left tangential interpolation problem, a direct extension of the classical
approach (8) would lead to the same results as in the blockwise tangential interpo-
lation case (11) since the first dimension of the transfer function is constant for all
transfer function levels. To consider a dual formulation of (15) for the left tangential

123



454 P. Benner et al.

interpolation problem (one for which the basis dimension does not grow exponen-
tially), we choose

cHGk(σ1, . . . , σk)(1mk−1 ⊗ Im) = cHĜk(σ1, . . . , σk)(1mk−1 ⊗ Im), (18)

for a given direction c ∈ C
p and interpolation points σ1, . . . , σk ∈ C. Consequently,

we consider

cHGk(σ1, . . . , σk)(1mk−1 ⊗ b) = cHĜk(σ1, . . . , σk)(1mk−1 ⊗ b) (19)

as the bi-tangential interpolation problem.

3.2 Time domain interpretation of tangential interpolation

A different way to look at tangential interpolation of transfer functions is its interpre-
tation in the time domain. We start with the tangential interpolation problem for linear
dynamical systems (9). For simplicity, we consider only the case of linear unstructured
first-order systems as given in the time domain by

Eẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),
(20)

with E, A ∈ R
n×n , B ∈ R

n×m and C ∈ R
p×n , and in the frequency domain by the

transfer function

G(s) = C(sE − A)−1B.

We note that the following derivations work for all structured linear systems as well
[8]. The multiplication with tangential directions in the frequency domain can be
considered independent of the chosen interpolation points, which gives new systems
in the frequency domain described by the transfer functions

G̃b(s) = G(s)b and G̃c(s) = cHG(s), (21)

with the tangential directions b ∈ C
m and c ∈ C

p. Those new systems (21) allow now
for re-interpretation in the time domain. In fact, the resulting tangential systems can
be seen as embedding the original linear system G into single-input or single-output
systems. We set the outer inputs and outputs as u(t) = bũ(t) and ỹ(t) = cHy(t),
respectively, and obtain the new systems:

G̃b :
{
Eẋ(t) = Ax(t) + Bbũ(t),

y(t) = Cx(t),
(22)
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for embedding the inputs, and

G̃c :
{
Eẋ(t) = Ax(t) + Bu(t),

ỹ(t) = cHCx(t),
(23)

for the outputs. Thereby, in the setting of tangential interpolation, we are restricting
the system inputs to a single input signal that is spread along a given direction b to be
fed into the original system (20) or we restrict the output to a linear combination of
the observations of the original system (20) using the direction c.

Now, we consider the bilinear unstructured systems (2) and make use of the time
domain interpretation of tangential interpolation we have done for the linear case (22)
and (23). Using the same tangential directions as before and the embedding strategy
for the bilinear system (2), with b = [

b1 b2 . . . bm
]T we obtain

G̃b :

⎧
⎪⎪⎨

⎪⎪⎩

Eẋ(t) = Ax(t) +
m∑

j=1

N j x(t)b j ũ(t) + Bbũ(t),

y(t) = Cx(t),

(24)

for the embedded inputs,

G̃c :

⎧
⎪⎪⎨

⎪⎪⎩

Eẋ(t) = Ax(t) +
m∑

j=1

N j x(t)u j (t) + Bu(t),

ỹ(t) = cHCx(t),

(25)

for embedding the outputs. Additionally, we consider here the fully embedded system

G̃cb :

⎧
⎪⎪⎨

⎪⎪⎩

Eẋ(t) = Ax(t) +
m∑

j=1

N j x(t)b j ũ(t) + Bbũ(t),

ỹ(t) = cHCx(t),

(26)

as it relates to the bi-tangential interpolationproblem.Thesenewbilinear systems (24)–
(26) will be used to derive a new concept of tangential interpolation for bilinear
systems. The corresponding regular transfer functions for the embedded systems are
given as follows:

G̃b,k(s1, . . . , sk) = C(sk E − A)−1

⎛

⎝
k−1∏

j=1

(
m∑

i=1

bi Ni

)
(sk− j E − A)−1

⎞

⎠ Bb, (27)

G̃c,k(s1, . . . , sk) = cHC(sk E − A)−1

⎛

⎝
k−1∏

j=1

(Im j−1 ⊗ N )(Im j ⊗ (sk− j E − A)−1)

⎞

⎠

× (Imk−1 ⊗ B), (28)

123



456 P. Benner et al.

G̃cb,k(s1, . . . , sk) = cHC(sk E − A)−1

⎛

⎝
k−1∏

j=1

(
m∑

i=1

bi Ni

)
(sk− j E − A)−1

⎞

⎠ Bb,

(29)

for k ≥ 1. These new transfer functions (27)–(29) can now be combined with our
structured transfer function setting (5). For a given direction vector b ∈ C

m , we
denote the scaled summation of the structured multivariate transfer functions by

G̃k(s1, . . . , sk) = C(sk)K(sk)
−1

⎛

⎝
m∑

j=1

b jN j (sk−1)

⎞

⎠K(sk−1)
−1

× · · · ×
⎛

⎝
m∑

j=1

b jN j (s1)

⎞

⎠K(s1)
−1B(s1).

(30)

The bilinear terms in (30) collapsed from large concatenated matrices in (5) to simple
n-dimensional matrices. Therefore, the Kronecker products become classical matrix
multiplications such that G̃k : Ck → C

p×m .
Denoting the scaled and summed transfer function of the reduced-order model by

̂̃Gk(s1, . . . , sk), the corresponding right tangential interpolation problem is given by

G̃k(σ1, . . . , σk)b = ̂̃Gk(σ1, . . . , σk)b, (31)

for given interpolation points σ1, . . . , σk ∈ C. As before, motivated by duality, the
left and bi-tangential interpolation problems are chosen to be

cHG̃k(σ1, . . . , σk) = cĤ̃Gk(σ1, . . . , σk) and (32)

cHG̃k(σ1, . . . , σk)b = cĤ̃Gk(σ1, . . . , σk)b, (33)

respectively.

Remark 2 (Relation to other control systems) The idea of a time domain interpretation
of tangential interpolation can easily be extended to other types of control systems, e.g.,
to systems with polynomial nonlinearities. This might lead to new efficient tangential
interpolation approaches for nonlinear multi-input/multi-output control systems.

3.3 Structured tangential interpolation framework

Now, employing the scaled and summed transfer functions we introduced in (30), we
develop a generalized framework for tangential interpolation of multivariate trans-
fer functions that unifies the different approaches to bilinear tangential interpolation
discussed in Sects. 2.3, 3.1 and 3.2. The new framework will encompass all these dif-
ferent approaches under one umbrella and thus give one formulation to cover all these
different interpretations of bilinear tangential interpolation, filling an important gap
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in the interpolatory model reduction theory of bilinear systems. Moreover, we will
develop this new framework for the structured bilinear dynamical systems for which
tangential interpolation has not been studied yet.

We start by defining the modified multivariate transfer functions

Gk(s1, . . . , sk | d(1), . . . , d(k−1))

:= C(sk)K(sk)
−1

⎛

⎝
k−1∏

j=1

N(sk− j | d(k− j))K(sk− j )
−1

⎞

⎠B(s1),
(34)

for k ≥ 1, with frequency points s1, . . . , sk ∈ C and scaling vectors d(1), . . . , d(k−1) ∈
C
m , where

N(s j | d( j)) = N(s j )(d
( j) ⊗ In) =

m∑

i=1

d( j)
i Ni (s j )

denotes the scaled sum of the bilinear terms. Note that the first modified transfer
function does not depend on a scaling vector and it holds that

G1(s1) = G1(s1).

In this setting, ̂Gk(s1, . . . , sk | d(1), . . . , d(k−1)) denotes the modified transfer func-
tions of the reduced-order model. For the modified transfer functions, we define the
following tangential interpolation problem:

Problem 1 (Tangential modified transfer function interpolation) For given interpo-
lation points σ1, . . . , σk ∈ C, scaling vectors d(1), . . . , d(k−1) ∈ C

m, and tangential
directions b ∈ Cm and c ∈ C

p, find a reduced-order model such that

Gk(σ1, . . . , σk | d(1), . . . , d(k−1))b = ̂Gk(σ1, . . . , σk | d(1), . . . , d(k−1))b, (35)

cHGk(σ1, . . . , σk | d(1), . . . , d(k−1)) = cĤGk(σ1, . . . , σk | d(1), . . . , d(k−1)), or
(36)

cHGk(σ1, . . . , σk | d(1), . . . , d(k−1))b = cĤGk(σ1, . . . , σk | d(1), . . . , d(k−1))b (37)

hold.

Before we present our results that show how to construct the reduced bilinear
systems to solve the structure-preserving tangential interpolation problem in the new
generalized framework, we formally state in the following corollary that the earlier
bilinear tangential interpolation frameworks are special cases of the proposed unifying
framework. Due to its significance in the literature and its more complex formulation
in the unifying framework, the case of blockwise tangential interpolation is treated
separately in Sect. 3.4.
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Corollary 1 (Choices of the scaling vectors) Consider the proposed tangential inter-
polation problem (Problem 1) with the corresponding scaling vectors d( j) in (34).
Then:

(a) Choosing d(1) = · · · = d(k−1) = 1m yields the extension of classical tangential
interpolation to the multivariate transfer functions of bilinear systems (17)–(19)
from Sect.3.1.

(b) Choosing d(1) = · · · = d(k−1) = b, with b ∈ C
m as the right tangential direction,

yields the re-interpretation of tangential interpolation in time domain (31)–(33)
from Sect.3.2.

The following theorem establishes the subspace conditions on the model reduction
bases V and W to construct the reduced-order model (6) that satisfies the tangential
interpolation conditions (35)–(37).

Theorem 1 (Modified structured tangential interpolation) Let G be a bilinear system,
associated with its modified transfer functions Gk in (34), and Ĝ the reduced-order
bilinear system, constructed as in (6)with itsmodified transfer functionŝGk . Given sets
of interpolation points σ1, . . . , σk ∈ C and ς1, . . . , ςκ ∈ C such that the matrix func-
tions C(s), K(s)−1, N(s), B(s), K̂(s)−1 are defined for s ∈ {σ1, . . . , σk, ς1, . . . , ςκ },
two tangential directions b ∈ C

m and c ∈ C
p, and two sets of scaling vectors

d(1), . . . , d(k−1) ∈ C
m and δ(1), . . . , δ(κ−1) ∈ C

m, the following statements hold:

(a) If V is constructed as

v1 = K(σ1)
−1B(σ1)b,

v j = K(σ j )
−1N(σ j−1 | d( j−1))v j−1, 2 ≤ j ≤ k,

span(V ) ⊇ span ([v1, . . . , vk]) ,

then the following interpolation conditions hold true:

G1(σ1)b = ̂G1(σ1)b,

G2(σ1, σ2 | d(1))b = ̂G2(σ1, σ2 | d(1))b,

...

Gk(σ1, . . . , σk | d(1), . . . , d(k−1))b = ̂Gk(σ1, . . . , σk | d(1), . . . , d(k−1))b.

(b) If W is constructed as

w1 = K(ςκ)−HC(ςκ)Hc,

wi = K(ςκ−i+1)
−HN(ςκ−i+1 | δ(κ−i+1))Hwi−1, 2 ≤ i ≤ κ,

span(W ) ⊇ span ([w1, . . . , wκ ]) ,

then the following interpolation conditions hold true:

cHG1(ςκ) = cĤG1(ςκ),
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cHG1(ςκ−1, ςκ | δ(κ−1)) = cĤG1(ςκ−1, ςκ | δ(κ−1)),

...

cHGκ(ς1, . . . , ςκ | δ(1), . . . , δ(κ−1)) = cĤGκ(ς1, . . . , ςκ | δ(1), . . . , δ(κ−1)).

(c) Let V be constructed as in Part (a) and W as in Part (b). Then, additionally to the
results in (a) and (b), the following interpolation conditions hold:

cHGq+η(σ1, . . . , σq , ςκ−η+1, . . . , ςκ | d(1), . . . , d(q−1), z, δ(κ−η+1), . . . , δ(κ−1))b

= cĤGq+η(σ1, . . . , σq , ςκ−η+1, . . . , ςκ | d(1), . . . , d(q−1), z, δ(κ−η+1), . . . , δ(κ−1))b,

for 1 ≤ q ≤ k, 1 ≤ η ≤ κ and an additional arbitrary scaling vector z ∈ C
m.

Proof For brevity of the presentation, we restrict ourselves to prove Part (c) of the
theorem. Parts (a) and (b) can be proven analogously using the same projectors con-
structed in the following. The modified transfer functions of the reduced-order model
are given by

cĤGq+η(σ1, . . . , σq , ςκ−η+1, . . . , ςκ | d(1), . . . , d(q−1), z, δ(κ−η+1), . . . , δ(κ−1))b

= cHĈ(ςκ)K̂(ςκ)−1

⎛

⎝
η−1∏

i=1

̂N(ςκ−i | δ(κ−i))K̂(ςκ−i )
−1

⎞

⎠

︸ ︷︷ ︸
=: ŵH

η

̂N(σq | z)

×
⎛

⎝
q−2∏

j=0

K̂(σq− j )
−1

̂N(σq− j−1 | d(q− j−1))

⎞

⎠ K̂(σ1)
−1B̂(σ1)b

︸ ︷︷ ︸
=: v̂η

= ŵH
η
̂N(σq | z)v̂q

= ŵH
η W

HN(σq | z)V v̂q ,

for 1 ≤ q ≤ k, 1 ≤ η ≤ κ , and an arbitrary vector z ∈ C
m . The right-most product of

the right-hand side can then be rewritten using the construction of V such that

V v̂q = V

⎛

⎝
q−3∏

j=0

K̂(σq− j )
−1

̂N(σq− j−1 | d(q− j−1))

⎞

⎠ K̂(σ2)
−1

̂N(σ1 | d(1))

× K̂(σ1)
−1B̂(σ1)b

= V

⎛

⎝
q−3∏

j=0

K̂(σq− j )
−1

̂N(σq− j−1 | d(q− j−1))

⎞

⎠ K̂(σ2)
−1WHN(σ1 | d(1))

× V K̂(σ1)
−1WHK(σ1)︸ ︷︷ ︸
=: Pv1

K(σ1)
−1B(σ1)b︸ ︷︷ ︸
= v1
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= V

⎛

⎝
q−3∏

j=0

K̂(σq− j )
−1

̂N(σq− j−1 | d(q− j−1))

⎞

⎠ K̂(σ2)
−1WHN(σ1 | d(1))v1

= · · ·
= V K̂(σq)

−1WHN(σq−1 | d(q−1))vq−1

= V K̂(σq)
−1WHK(σq)︸ ︷︷ ︸
=: Pvq

K(σq)
−1N(σq−1 | d(q−1))vq−1︸ ︷︷ ︸

= vq

= vq ,

where Pv1 , . . . , Pvq are projectors onto span(V ), i.e., it holds Pv j v = v for all v ∈
span(V ) and their recursive application gives the identity above. Analogously, one
can show that

W ŵη = wη,

where w1, . . . , wη ∈ span(W ). Combining this last equality together with V v̂q = vq
yields

cĤGq+η(σ1, . . . , σq , ςκ−η+1, . . . , ςκ | d(1), . . . , d(q−1), z, δ(κ−η+1), . . . , δ(κ−1))b

= ŵH
η W

HN(σq | z)V v̂q

= wH
ηN(σq | z)vq

= cHGq+η(σ1, . . . , σq , ςκ−η+1, . . . , ςκ | d(1), . . . , d(q−1), z, δ(κ−η+1), . . . , δ(κ−1))b,

which proves Part (c). �
Remark 3 (Implicit realization of blockwise interpolation) Part (c) of Theorem 1 high-
lights an interesting interpolation property: The modified bilinear term in the middle
between the interpolation by left and right projection allows for a completely arbi-
trary scaling vector z. Especially, by concatenation of higher-order transfer functions
with respect to z, blockwise interpolation conditions hold true corresponding to the
centering bilinear term. To further illustrate this point via a simple example, construct
span(V ) and span(W ) as in Theorem 1 such that G1(σ )b and cHG1(ς) are actively
interpolated for chosen interpolation pointsσ, ς ∈ C, and tangential directions b ∈ C

m

and c ∈ C
p. Then, by two-sided projection it holds additionally (Part (c) of Theorem1)

that

cHG2(σ, ς | z)b = cĤG2(σ, ς | z)b,

for all z ∈ C
m . Choosing z = [

1 0
]T and z = [

0 1
]T yields the blockwise bi-tangential

interpolation condition by concatenation:

cHG2(σ, ς)(Im ⊗ b) = cHĜ2(σ, ς)(Im ⊗ b),
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More details on structure-preserving blockwise tangential interpolation and its relation
to the unifying framework are shown later in Sect. 3.4.

In addition to matching transfer function values, in practice, the interpolation of
sensitivities with respect to the frequency points, i.e., partial derivatives, is crucial. The
following theorem extends the interpolation results for modified transfer functions to
Hermite interpolation.

Theorem 2 (Modified structured tangential Hermite interpolation) Let G be a bilin-
ear system, associated with the modified transfer functions Gk in (34), and Ĝ the
reduced-order bilinear system, constructed by (6) with its modified transfer func-
tions ̂Gk . Given sets of interpolation points σ1, . . . , σk ∈ C and ς1, . . . , ςκ ∈ C

such that the matrix functions C(s), K(s)−1, N(s), B(s), K̂(s)−1 are analytic in
s ∈ {σ1, . . . , σk, ς1, . . . , ςκ }, two tangential directions b ∈ C

m and c ∈ C
p, and

two sets of scaling vectors d(1), . . . , d(k−1) ∈ C
m and δ(1), . . . , δ(κ−1) ∈ C

m, the
following statements hold:

(a) If V is constructed as

v1, j1 = ∂s j1 (K−1B)(σ1)b, j1 = 0, . . . , �1,

v2, j2 = ∂s j2K−1(σ2)∂s�1 (N(. | d(1))K−1B)(σ1)b, j2 = 0, . . . , �2,

...

vk, jk = ∂s jkK−1(σk)

×
⎛

⎝
k−2∏

j=1

∂
s�k− j (N(. | d(k− j))K−1)(σk− j )

⎞

⎠

× ∂s�1

(
N(. | d(1))K−1B

)
(σ1)b, jk = 0, . . . , �k,

span(V ) ⊇ span([v1,0, . . . , vk,�k ]),

then the following interpolation conditions hold true:

∂
s
j1
1
G1(σ1)b = ∂

s
j1
1

̂G1(σ1)b, j1 = 0, . . . , �1,

∂
s
�1
1 s

j2
2
G2(σ1, σ2 | d(1))b = ∂

s
�1
1 s

j2
2

̂G2(σ1, σ2 | d(1))b, j2 = 0, . . . , �2,

...

∂
s
�1
1 ···s�k−1

k−1 s
jk
k
Gk(σ1, . . . , σk | d1, . . . , dk−1)b

= ∂
s
�1
1 ···s�k−1

k−1 s
jk
k

̂Gk(σ1, . . . , σk | d1, . . . , dk−1)b, jk = 0, . . . , �k .

(b) If W is constructed as

w1,iκ = ∂siκ

(
K−HCH

)
(ςκ)c, iκ = 0, . . . , νκ ,
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w2,iκ−1 = ∂siκ−1

(
K−HN(. | δ(κ−1))H

)
(ςκ−1)

× ∂sνκ (K−HCH)(ςκ)c, iκ−1 = 0, . . . , νκ−1,

...

wκ,i1 = ∂si1

(
K−HN(. | δ(1))H

)
(ς1)

×
(

κ−1∏

i=2

∂sνi

(
K−HN(. | δ(i))H

)
(ςi )

)

× ∂sνκ

(
K−HCH

)
(ςκ)c, i1 = 0, . . . , ν1,

span(W ) ⊇ span([w1,0, . . . , wκ,νκ ]),

then the following interpolation conditions hold true:

cH∂siκ1
G1(ςκ) = cH∂siκ1

̂G1(ςκ), iκ = 0, . . . , νκ ,

cH∂
s
iκ−1
1 sνκ2

G2(ςκ−1, ςκ | δ(κ−1))

= cH∂
s
iκ−1
1 sνκ2

̂G2(ςκ−1, ςκ | δ(κ−1)), iκ−1 = 0, . . . , νκ−1,

...

cH∂
s
i1
1 s

ν2
2 ···sνκκ

Gκ(ς1, . . . , ςκ | δ1, . . . , δκ−1)

= cH∂
s
i1
1 s

ν2
2 ···sνκκ

̂Gκ(ς1, . . . , ςκ | δ1, . . . , δκ−1), i1 = 0, . . . , ν1.

(c) Let V be constructed as in Part (a) and W as in Part (b). Then, additionally to the
results in (a) and (b), the following conditions hold:

cH∂
s
�1
1 ···s�q−1

q−1 s
jq
q s

iκ−η+1
q+1 s

νκ−η+2
q+2 sνκq+η

Gq+η(σ1, . . . , σq , ςκ−η+1, . . . , ςκ |

d(1), . . . , d(q−1), z, δ(κ−η+1), . . . , δ(κ−1))b

= cH∂
s
�1
1 ···s�q−1

q−1 s
jq
q s

iκ−η+1
q+1 s

νκ−η+2
q+2 sνκq+η

̂Gq+η(σ1, . . . , σq , ςκ−η+1, . . . , ςκ |

d(1), . . . , d(q−1), z, δ(κ−η+1), . . . , δ(κ−1))b,

for jq = 0, . . . , �q; iκ−η+1 = 0, . . . , νκ−η+1; 1 ≤ q ≤ k, 1 ≤ η ≤ κ , and an
additional arbitrary scaling vector z ∈ C

m.

Proof The proof works analogously to Theorem 1, using appropriate projectors onto
span(V ) or span(W ) and the ideas from the proof of [13, Thm. 9] for fixed scaling
vectors d(1), . . . , d(k−1) and δ(1), . . . , δ(κ−1). �

To complete the theory for our new unifying interpolation framework, we consider
the special cases of Theorems 1 and 2 by using identical sets of interpolation points
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and scaling vectors in the bi-tangential interpolation case. As in [8, 13], this allows
interpolation of partial derivatives implicitly. Due to the dependency of the modified
transfer functions on the scaling vectors, we will also interpolate now derivatives with
respect to those scaling vectors. Therefore, the notion of the Jacobian matrix (14) for
the modified transfer functions will be given as

∇Gk =
[
∂s1Gk, . . . , ∂skGk, ∂d(1)

1
Gk, . . . , ∂d(1)

m
Gk, . . . , ∂d(k−1)

1
Gk, . . . , ∂d(k−1)

m
Gk

]
.

Theorem 3 (Modified structured bi-tangential interpolation with identical point sets)
Let G be a bilinear system, associated with the modified transfer functions Gk in (34),
and Ĝ the reduced-order bilinear system, constructed by (6) with its modified transfer
functions ̂Gk . Given a set of interpolation points σ1, . . . , σk ∈ C such that the matrix
functions C(s), K(s)−1, N(s), B(s), K̂(s)−1 are analytic in s ∈ {σ1, . . . , σk}, two
tangential directions b ∈ C

m and c ∈ C
p, and scaling vectors d(1), . . . , d(k−1) ∈ C

m,
the following statements hold:

(a) Let V and W be constructed as in Theorem 1Parts (a) and (b) for the interpolation
points σ1 = ς1, . . ., σk = ςk and the scaling vectors d(1) = δ(1), . . ., d(k−1) =
δ(k−1). Then, in addition to the interpolation conditions in Theorem 1, it holds

∇
(
cHGkb

)
(σ1, . . . , σk | d(1), . . . , d(k−1))

= ∇
(
cĤGkb

)
(σ1, . . . , σk | d(1), . . . , d(k−1)).

(b) Let V and W be constructed as in Theorem 2Parts (a) and (b) for the interpolation
points σ1 = ς1, . . ., σk = ςk , the derivative orders �1 = ν1, . . ., �k = νk , and
the scaling vectors d(1) = δ(1), . . ., d(k−1) = δ(k−1). Then, in addition to the
interpolation conditions in Theorem 2, it holds

∇
(
cH∂

s
�1
1 ···s�kk

Gkb

)
(σ1, . . . , σk | d(1), . . . , d(k−1))

= ∇
(
cH∂

s
�1
1 ···s�kk

̂Gkb

)
(σ1, . . . , σk | d(1), . . . , d(k−1)).

Proof First, we consider the partial derivatives with respect to the scaling vectors. For
arbitrary 1 ≤ j ≤ k − 1 and 1 ≤ i ≤ m, we obtain

∂
d( j)
i

(
cĤGkb

)
(σ1, . . . , σk | d(1), . . . , d(k−1))

= cHĈ(σk)K̂(σk)
−1

⎛

⎝
k− j−1∏

�=1

̂N(σk−� | d(k−�))K̂(σk−�)
−1

⎞

⎠

︸ ︷︷ ︸
=: ŵH

k− j−1

(
∂
d( j)
i

̂N(σ j | d( j))
)
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×
⎛

⎝
k−1∏

�= j+1

̂N(σk−� | d(k−�))K̂(σk−�)
−1

⎞

⎠ B̂(s1)b

︸ ︷︷ ︸
=: v̂k− j−1

= ŵH
k− j−1

(
∂
d( j)
i

̂N(σ j | d( j))
)

v̂k− j−1

= ŵH
k− j−1W

H
(
∂
d( j)
i
N(σ j | d( j))

)
V v̂k− j−1

such that only the modified bilinear term corresponding to the scaling vector d( j)

needs to be differentiated. Using the same approach as in the proof of Theorem 1 and
the construction of span(V ) and span(W ) yields the two equalities

V v̂k− j−1 = vk− j−1 and W ŵk− j−1 = wk− j−1,

which gives

∂
d( j)
i

(
cĤGkb

)
(σ1, . . . , σk | d(1), . . . , d(k−1))

= ŵH
k− j−1W

H
(
∂
d( j)
i
N(σ j | d( j))

)
V v̂k− j−1

= wH
k− j−1

(
∂
d( j)
i
N(σ j | d( j))

)
vk− j−1

= ∂
d( j)
i

(
cHGkb

)
(σ1, . . . , σk | d(1), . . . , d(k−1)),

for all 1 ≤ j ≤ k − 1 and 1 ≤ i ≤ m. Therefore, the interpolation condition holds
for all partial derivatives with respect to the scaling vectors. The results for the partial
derivatives with respect to the frequency arguments can be proven analogously and
in principle follow the ideas from [13, Cor. 2]. This proves Part (a). Part (b) can be
proven analogously to Part (a) by replacing the simple interpolation by the Hermite
version from Theorem 2. For brevity of the paper, we skip those details. �

Remark 4 (Using multiple sets of interpolation points) While all results in this section
are formulated for a single set of interpolation points σ1, . . . , σk ∈ C, they can be
extended to multiple sets by concatenation of the model reduction bases. Consider, for
example, Part (a) of Theorem 1. Let σ (1)

1 , . . . , σ
(1)
k , . . ., σ (ns)

1 , . . . , σ
(ns)
k ∈ C be ns sets

of interpolation points and V (1), . . . , V (ns) be the corresponding basis matrices such
that the corresponding reduced-order models (tangentially) interpolate the original
model for the given sets of interpolation points. Then, another reduced-ordermodel can
be constructed to satisfy all interpolation conditions associated with V (1), . . . , V (ns)

by choosing

span(V ) ⊇ span([V (1), . . . , V (ns)]),
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as the new truncation matrix V , and any W of appropriate dimension and full column
rank. Analogously, multiple sets of scaling vectors and tangential directions can be
incorporated.

3.4 Special case: structured blockwise tangential interpolation

As mentioned in Sect. 3.3, the new unifying tangential interpolation framework can
also be used to obtain results for blockwise tangential interpolation.Due to its relevance
and common use in model reduction of MIMO bilinear systems, we will state the
corresponding results in this section in more detail.

First, we will generalize the idea of blockwise tangential interpolation introduced
in Sect. 2.3 to the structured case. Therefore, we start by analyzing the multivariate
transfer functions (5). Multiplying out the Kronecker products, we observe that (5)
is actually given as concatenation of products of the linear dynamics and the bilinear
terms

Gk(s1, . . . , sk)

= [C(sk)K(sk)
−1N1(sk−1)K(sk−1)

−1 · · ·N1(s1)K(s1)
−1B(s1),

C(sk)K(sk)
−1N1(sk−1)K(sk−1)

−1 · · ·N2(s1)K(s1)
−1B(s1),

. . .

C(sk)K(sk)
−1Nm(sk−1)K(sk−1)

−1 · · ·Nm(s1)K(s1)
−1B(s1)

]
.

(38)

Extending on the ideas from Sect. 2.3, we consider each block entry of (38) as separate
transfer function and for each of them use tangential interpolation with the same
directions. In other words, given the right tangential direction b ∈ C

m , we consider

Gk(s1, . . . , sk)(Imk−1 ⊗ b)

= [C(sk)K(sk)
−1N1(sk−1)K(sk−1)

−1 · · ·N1(s1)K(s1)
−1B(s1)b,

C(sk)K(sk)
−1N1(sk−1)K(sk−1)

−1 · · ·N2(s1)K(s1)
−1B(s1)b,

. . .

C(sk)K(sk)
−1Nm(sk−1)K(sk−1)

−1 · · ·Nm(s1)K(s1)
−1B(s1)b

]

as blockwise evaluation of the transfer function in the direction b. This formulation
extends the blockwise tangential interpolation problem from (10)–(12) to the structure-
preserving setting.

The modified tangential interpolation framework can now be used to obtain the
subspace conditions on the blockwise tangential interpolation. Choose the scaling
vectors d( j) in (34) to be columns of the m-dimensional identity matrix. Then, the
single block entries of (38) are given as themodified transfer functions (34) for specific
choices of scaling vectors. For example, choosing d(1) = · · · = d(k−1) = e1 to be the
first column of the m-dimensional identity matrix yields

Gk(s1, . . . , sk | e1, . . . , e1)
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= C(sk)K(sk)
−1N1(sk−1)K(sk−1)

−1 · · ·N1(s1)K(s1)
−1B(s1),

which is the first block in (38). By column concatenation of these modified transfer
functions, (38) can be completely recovered:

Gk(s1, . . . , s1) = [
Gk(s1, . . . , sk | e1, . . . , e1),
Gk(s1, . . . , sk | e1, . . . , e2),
. . . ,

Gk(s1, . . . , sk | em, . . . , em)
]
.

(39)

Consequently, the blockwise interpolation results are given by concatenation of the
corresponding model reduction bases constructed for all necessary modified transfer
functions and the tangential directions. Due to the significance of the blockwise tan-
gential interpolation in the literature [9, 35] and the complexity of its recovery from
the unifying framework, we will state in the following the structure-preserving inter-
polation results for blockwise tangential interpolation. Note that the proofs directly
follow from the previous section and by concatenation as discussed above.

Remark 5 (Matrix interpolation) It should be noted that thematrix interpolation results
from [13] can also be recovered from themodified tangential interpolation framework.
As the relation (39) shows, removing the tangential directions in the construction of the
projection spaces will yield the matrix interpolation results. Thus matrix interpolation
is also a special case of the modified tangential interpolation framework.

The first result follows from Theorem 1.

Corollary 2 (Structured blockwise tangential interpolation) Let G be a bilinear sys-
tem, described by its subsystem transfer functions in (5), and Ĝ the reduced-order
bilinear system, constructed by (6) with the corresponding subsystem transfer func-
tions Ĝk . Given sets of interpolation points σ1, . . . , σk ∈ C and ς1, . . . , ςκ ∈ C

such that the matrix functions C(s), K(s)−1, N(s), B(s), K̂(s)−1 are defined for
s ∈ {σ1, . . . , σk, ς1, . . . , ςκ }, and two tangential directions b ∈ C

m and c ∈ C
p,

the following statements hold:

(a) If V is constructed as

V1 = K(σ1)
−1B(σ1)b,

Vj = K(σ j )
−1N(σ j−1)(Im ⊗ Vj−1), 2 ≤ j ≤ k,

span(V ) ⊇ span ([V1, . . . , Vk]) ,

then the following interpolation conditions hold true:

G1(σ1)b = Ĝ1(σ1)b,

G2(σ1, σ2)(Im ⊗ b) = Ĝ1(σ1)(Im ⊗ b),

...

Gk(σ1, . . . , σk)(Imk−1 ⊗ b) = Ĝk(σ1, . . . , σk)(Imk−1 ⊗ b).
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(b) If W is constructed as

W1 = K(ςκ)−HC(ςκ)Hc,

Wi = K(ςκ−i+1)
−HÑ(ςk−i+1)

H(Im ⊗ Wi−1), 2 ≤ i ≤ κ,

span(W ) ⊇ span ([W1, . . . ,Wκ ]) ,

then the following interpolation conditions hold true:

cHG1(ςκ) = cHĜ1(ςκ),

cHG2(ςκ−1, ςκ) = cHĜ2(ςκ−1, ςκ),

...

cHGκ(ς1, . . . , ςκ) = cHĜκ(ς1, . . . , ςκ).

(c) Let V be constructed as in Part (a) and W as in Part (b). Then, additionally to the
results in (a) and (b), the following conditions hold:

cHGq+η(σ1, . . . , σq , ςκ−η+1, . . . , ςκ)(Imq+η−1 ⊗ b)

= cHĜq+η(σ1, . . . , σq , ςκ−η+1, . . . , ςκ)(Imq+η−1 ⊗ b),

for 1 ≤ q ≤ k and 1 ≤ η ≤ κ .

The next corollary corresponds to Theorem 2 stating the results for Hermite inter-
polation.

Corollary 3 (Structured blockwise tangential Hermite interpolation) Let G be a
bilinear system, described by its subsystem transfer functions in (5), and Ĝ the reduced-
order bilinear system, constructed by (6) with the corresponding subsystem transfer
functions Ĝk . Given sets of interpolation points σ1, . . . , σk ∈ C and ς1, . . . , ςκ ∈ C

such that the matrix functions C(s), K(s)−1, N(s), B(s), K̂(s)−1 are analytic in
s ∈ {σ1, . . . , σk, ς1, . . . , ςκ }, and two tangential directions b ∈ C

m and c ∈ C
p,

the following statements hold:

(a) If V is constructed as

V1, j1 = ∂s j1 (K−1Bb)(σ1), j1 = 0, . . . , �1,

V2, j2 = ∂s j2K−1(σ2)∂s�1 (N(Im ⊗ K−1Bb))(σ1), j2 = 0, . . . , �2,

.

.

.

Vk, jk = ∂
s jk

K−1(σk )

⎛

⎝
k−2∏

j=1

∂
s
�k− j ((Im j−1 ⊗ N)(Im j ⊗ K))(σk− j )

⎞

⎠

× ∂s�1 ((Imk−2 ⊗ N)(Imk−1 ⊗ KBb))(σ1), jk = 0, . . . , �k ,

span(V ) ⊇ span([V1,0, . . . , Vk,�k ]),
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then the following interpolation conditions hold true:

∂
s
j1
1
G1(σ1)b = ∂

s
j1
1
Ĝ1(σ1)b, j1 = 0, . . . , �1,

...

∂
s
�1
1 ···s�k−1

k−1 s
jk
k
Gk(σ1, . . . , σk)(Imk−1 ⊗ b)

= ∂
s
�1
1 ···s�k−1

k−1 s
jk
k
Ĝk(σ1, . . . , σk)(Imk−1 ⊗ b), jk = 0, . . . , �k .

(b) If W is constructed as

W1,iκ = ∂siκ (K−HCHc)(ςκ), iκ = 0, . . . , νκ ,

W2,iκ−1 = ∂siκ−1 (K−HÑH
)(ςκ−1)

×
(
Im ⊗ ∂sνκ (K−HCHc)(ςκ)

)
, iκ−1 = 0, . . . , νκ−1,

...

Wκ,i1 = ∂si1 (K−HÑH
)(ς1)

×
(

κ−1∏

i=2

∂sνi (Imi−1 ⊗ K−HÑH
)(ςi )

)

×
(
Imκ−1 ⊗ ∂sνκ (K−HCHc)(ςκ)

)
, i1 = 0, . . . , ν1,

span(W ) ⊇ span([W1,0, . . . ,Wκ,νκ ]),

then the following interpolation conditions hold true:

cH∂siκ1
G1(ςκ) = cH∂siκ1

Ĝ1(ςκ), iκ = 0, . . . , νκ ,

...

cH∂
s
i1
1 s

ν2
2 ···sνκκ

Gκ(ς1, . . . , ςκ) = cH∂
s
i1
1 s

ν2
2 ···sνκκ

Ĝκ(ς1, . . . , ςκ), i1 = 0, . . . , ν1.

(c) Let V be constructed as in Part (a) and W as in Part (b). Then, additionally to the
interpolation conditions in (a) and (b), the following conditions hold:

cH∂
s
�1
1 ···s�q−1

q−1 s
jq
q s

iκ−η+1
q+1 s

νκ−η+2
q+2 ···sνκq+η

Gq+η(σ1, . . . , σq , ςκ−η+1, . . . , ςκ)

× (Imq+η−1 ⊗ b)

= cH∂
s
�1
1 ···s�q−1

q−1 s
jq
q s

iκ−η+1
q+1 s

νκ−η+2
q+2 ···sνκq+η

Ĝq+η(σ1, . . . , σq , ςκ−η+1, . . . , ςκ)

× (Imq+η−1 ⊗ b),

for jq = 0, . . . , �q; iκ−η+1 = 0, . . . , νκ−η+1; 1 ≤ q ≤ k and 1 ≤ η ≤ κ .
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Last, we give the results on implicit blockwise tangential interpolation of additional
partial derivatives by using two-sided projection, corresponding to Theorem 3.

Corollary 4 (Structured blockwise bi-tangential interpolationwith identical point sets)
Let G be a bilinear system, described by its subsystem transfer functions in (5),
and Ĝ the reduced-order bilinear system, constructed by (6) with the corresponding
subsystem transfer functions Ĝk . Given a set of interpolation points σ1, . . . , σk ∈
C such that the matrix functions C(s), K(s)−1, N(s), B(s), K̂(s)−1 are analytic in
s ∈ {σ1, . . . , σk}, and two tangential directions b ∈ C

m and c ∈ C
p, the following

statements hold:

(a) Let V andW be constructed as inCorollary 2Parts (a) and (b) for the interpolation
points σ1 = ς1, . . ., σk = ςk . Then, in addition to the interpolation conditions in
Corollary 2, it holds

∇(
cHGk(Imk−1 ⊗ b)

)
(σ1, . . . , σk) = ∇(

cHĜk(Imk−1 ⊗ b)
)
(σ1, . . . , σk).

(b) Let V andW be constructed as inCorollary 3Parts (a) and (b) for the interpolation
points σ1 = ς1, . . ., σk = ςk and derivative orders �1 = ν1, . . ., �k = νk . Then,
in addition to the interpolation conditions in Corollary 3, it holds

∇
(
cH∂

s
�1
1 ···s�kk

Gk(Imk−1 ⊗ b)

)
(σ1, . . . , σk)

= ∇
(
cH∂

s
�1
1 ···s�kk

Ĝk(Imk−1 ⊗ b)

)
(σ1, . . . , σk).

Remark 6 (Projection space dimensions) It will be useful to understand the growth of
the size of the model reduction bases and thus the order of the resulting interpolatory
reduced-order model for the different interpolation approaches. Let ns be the number
of sets of interpolation points and tangential directions at which we want to enforce
interpolation. Also, assume w.l.o.g. the recursively generated columns in V and W
are all linearly independent (since otherwise, the dimensions of the corresponding
projection spaces can be reduced while still enforcing interpolation). Then, for the
matrix interpolation approach from [13, Thm. 8], we obtain

dim(span(Vmtx)) ≥ ns

⎛

⎝
k∑

j=1

mk

⎞

⎠ and dim(span(Wmtx)) ≥ ns

⎛

⎝
k∑

j=1

pmk−1

⎞

⎠

(40)

for the right and left projection spaces, respectively. The blockwise tangential approach
from Corollary 2 reduces those dimensions to

dim(span(Vbwt)) = dim(span(Wbwt)) ≥ ns

⎛

⎝
k∑

j=1

mk−1

⎞

⎠ . (41)
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Comparing (40) and (41) shows that the blockwise tangential interpolation approach,
similar tomatrix interpolation, has exponentially growing dimensions of the projection
spaces. In contrast, the newmodified tangential interpolation approach as in Theorem1
yields

dim(span(Vst)) = dim(span(Wst)) ≥ nsk,

which now grows only linearly. This gives more freedom in the choice of the order of
interpolating reduced-order models, as well as more possibilities to adapt the choice
of interpolation points to the problem.

Concerning the computational complexity of the different interpolation approaches,
we note that each column of the basis matrices V andW is obtained by solving a linear
systemof equations.However, formatrix and blockwise tangential interpolation,many
of these linear systems have the same system matrix but different right-hand sides,
which can be bundled and solved all at once to reduce the computational complexity of
these approaches. Therefore, it is computationally more efficient to construct reduced-
order models of fixed order r with matrix interpolation than with blockwise tangential
interpolation, which are both more efficient than the new tangential framework. This
increase in computational complexity for the tangential approaches leads to the typical
trade-off between efficiency of the computations and approximation quality of the
reduced-ordermodel. This results from the fact that the new tangential approach allows
to impose interpolation conditions at more different frequency points than matrix or
blockwise tangential interpolation to compute a reduced-order model of size r ; see, for
example, [6, 22] and our numerical experiments in Sect. 4. While in most cases, sparse
direct solvers are sufficient for the solution of the linear systems, it has been shown that
the computational complexity can be further reduced using iterative (inexact) solution
techniques; see [7] for the linear structured case and [18] for unstructured bilinear
systems.

4 Numerical examples

In this section, we will compare different structure-preserving interpolation frame-
works. We compute reduced-order models by:

MtxInt the structure-preserving matrix interpolation from [13],
BwtInt the structure-preserving blockwise tangential interpolation as in Sect. 3.4,
SftInt the modified structure-preserving tangential interpolation framework moti-

vated in the frequency domain (Sect. 3.1), and
SttInt the generalized structure-preserving tangential interpolation frameworkmoti-

vated in the time domain (Sect. 3.2).

In the experiments, we use MATLAB notation to define the interpolation points: We
write logspace(a, b, k) to denote k logarithmically equidistant points in the
interval [10a, 10b].

For the qualitative analysis of the computed reduced-ordermodels, wewill consider
approximation errors in time and frequency domains. In time domain, we consider the
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pointwise relative output error for a given input signal, i.e.,

‖y(t) − ŷ(t)‖2
‖y(t)‖2 ,

where y and ŷ denote the original and reduced-order system outputs, respectively, in
the time range t ∈ [0, tf ]. Additionally, we compute the maximum error over time by

errsim := max
t∈[0,tf ]

‖y(t) − ŷ(t)‖2
‖y(t)‖2 .

In frequency domain, the pointwise relative error of the first and second transfer
functions on the imaginary axis in the spectral norm is considered, i.e.,

‖G1(iω1) − Ĝ1(iω1)‖2
‖G1(iω1)‖2 and

‖G2(iω1, iω2) − Ĝ2(iω1, iω2)‖2
‖G2(iω1, iω2)‖2 ,

in the frequency range ω1, ω2 ∈ [ωmin, ωmax] together with the corresponding maxi-
mum errors over the frequency of interest defined as

errG1 := max
ω1∈[ωmin,ωmax]

‖G1(iω1) − Ĝ1(iω1)‖2
‖G1(iω1)‖2 ,

errG2 := max
ω1,ω2∈[ωmin,ωmax]

‖G2(iω1, iω2) − Ĝ2(iω1, iω2)‖2
‖G2(iω1, iω2)‖2 .

Note that the time and frequency domain errors reported are actually approximated
by evaluating the above expressions on a fine grid covering [0, tf ] or [ωmin, ωmax],
respectively.

The experiments reported here have been executed on machines with 2 Intel(R)
Xeon(R) Silver 4110 CPU processors running at 2.10GHz and equipped with either
192GB or 384GB total main memory. The computers run on CentOS Linux release
7.5.1804 (Core) with MATLAB 9.9.0.1467703 (R2020b). The source code, data and
results of the numerical experiments are open source/open access and available at [41].

4.1 Cooling of steel profiles

We first consider a classical, unstructured bilinear system as in (2). For the optimal
cooling of steel profiles, the heat transfer process is described by the two dimensional
heat equation

cρ∂tv(t, ζ ) − λΔv(t, ζ ) = 0,

v(0, ζ ) = v0(ζ ),

123



472 P. Benner et al.

with (t, ζ ) ∈ (0, tf) × Ω , the initial value v0(ζ ) ∈ Ω , and the Robin boundary
conditions

λ∂νv(t, ζ ) =
{
qiui (t)

(
1 − v(t, ζ )

)
, on Γi , i = 1, . . . , 6,

q7
(
u7(t) − v(t, ζ )

)
, on Γ7,

such that
⋃7

i=1 Γi = ∂Ω and Γi ∩ Γ j = ∅ for i �= j , where ∂ν denotes the derivative
in direction of the outer normal ν and ui (t) are the exterior cooling fluid temperatures
used as controls. The spatial discretization of the rail shaped domain and parameters
are chosen as described in [33, 37]. As a result, we consider a system of structure (2)
with n = 5,054,209 states, m = 7 inputs, non-zero bilinear terms corresponding to
the first 6 inputs, and p = 6 outputs. The data for this example is available in [38].

The reduced-order models are constructed as follows:

MtxInt with the interpolation points ±logspace(-8, 2, 3)i for the first and
second subsystem transfer functions. Due to the rank deficiency in the
generated columns, a rank truncation is performed to compress the model
reduction basis, which yields a reduced-order model size of rmtx = 146.

BwtInt with the interpolation points ±logspace(-8, 2, 8)i for the first and
second subsystem transfer functions resulting in the reduced order rbwt =
112.

SftInt with the interpolation points±logspace(-8, 2, 28)i and the scaling
vectors d(i) = 1m for the first and second subsystem transfer functions
resulting in the reduced order rsft = 112.

SttInt with the interpolation points±logspace(-8, 2, 28)i and the scaling
vectors d(i) = b(i) for the first and second subsystem transfer functions such
that the reduced-order model size is rstt = 112.

For all reduced-order models, we have chosen the same interval for the interpolation
points. However, since the reduced-order dimension grows differently for different
approaches, the number of interpolation points over the same interval differs so that the
reduced-order models have the same (or at least comparable) order. For all directions,
normalized random vectors from a uniform distribution on [0, 1] have been used. For
all reduced-order models only one-sided projections (W is set to W = V ) have been
applied resulting in reduced-order models having asymptotically stable linear parts.
Note that the matrix interpolation has a much larger reduced order as anticipated.

Figure 1 shows the results for a time simulation using a unit step signal as input.
All reduced-order models yield accurate approximations. The relative errors reveal
that overall, SftInt and SttInt perform best, whileMtxInt and BwtInt are several orders
of magnitude worse in accuracy over the whole time interval. The maximum errors
attained are given in Table 1. There, the two new tangential approaches SftInt and SttInt
are both three orders of magnitude better thanMtxInt for the time domain simulation.

The frequency domain analysis (Figs. 2 and 3) illustrates similar conclusions. In
the case of the first subsystem transfer function, MtxInt performs overall worst fol-
lowed by BwtInt. The new approaches SftInt and SttInt again show the smallest errors
over the full frequency range. For the second transfer function level, all approaches
behave comparable. The tangential approaches provide better errors than MtxInt if

123



A unifying framework for tangential interpolation of… 473

Fig. 1 Steel profile: time simulations of the full- and reduced-order models. The new approaches perform
around two orders of magnitude better than the classical MtxInt and BwtInt in terms of pointwise relative
errors

Table 1 Steel profile: Maxima of the pointwise relative errors in time and frequency domain. In the time
simulation and for the first subsystem transfer function, the new tangential approaches SftInt and SttInt
outperform the classical methods by at least one order of magnitude. For the second subsystem transfer
functions, all methods provide a worst-case error larger than one due to the fast decay of the transfer
function for large frequencies and the lack of interpolation points in those regions. This pointwise large
errors apparently do not affect the overall good accuracy of the reduced-order model for time domain
simulations

MtxInt BwtInt SftInt SttInt

errsim 4.0019e-01 1.6248e-02 3.2016e-04 3.3950e-04

errG1 6.3977e-01 2.0925e-01 2.3971e-02 1.9581e-02

errG2 2.1258e+00 5.0533e+00 3.1073e+00 2.6049e+00

both frequency arguments are close to each other andMtxInt is more accurate for very
small frequencies. For both transfer function levels, the maximum errors are given in
Table 1. While for the time simulations and the first subsystem transfer functions, the
worst-case relative approximation errors are as expected, for the second subsystem
transfer functions these exceed 1 for all methods. This results from the fast decay of
the original second subsystem transfer function for large frequency points and the lack
of interpolation points for the second subsystem transfer function with mixed orders
of magnitude in the different arguments. These large errors could easily be fixed by
adding further interpolation points in the corresponding frequency regions. However,
there is no known interpretation of the worst-case approximation error of the second
subsystem transfer function for the overall approximation quality of the reduced-order
models and the time simulations perform already sufficiently well.

4.2 Time-delayed heated rod

Here, we consider the single-input/single-output structured bilinear system from [13,
25] that models a heated rod with distributed control and homogeneous Dirichlet
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Fig. 2 Steel profile: frequency domain results for the first subsystem transfer functions. The new approaches
provide the smallest approximation errors over thewhole frequency domain.MtxInt yields theworst approx-
imation and even diverges visibly from the full-order model around 1 rad/s

Fig. 3 Steel profile: the plots show the pointwise relative approximation errors of the second subsystem
transfer functions. All methods provide comparable errors, where MtxInt, BwtInt and SttInt are more
accurate for small frequencies in both arguments than SftInt
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Fig. 4 Time-delay system: time simulations of the full- and reduced-order models. The MtxInt method
performs best for this example with around one order of magnitude smaller errors than SttInt, closely
followed by the other approaches

boundary conditions, which is cooled by a delayed feedback. The underlying dynamics
are described by the one dimensional heat equation

∂tv(t, ζ ) = Δv(t, ζ ) − 2 sin(ζ )v(t, ζ ) + 2 sin(ζ )v(t − 1, ζ ) + u(t), (42)

with (t, ζ ) ∈ (0, tf) × (0, π) and boundary conditions v(t, 0) = v(t, π) = 0 for all
t ∈ [0, tf ]. As extension of (42) to the MIMO case, we consider independent control
signals on equally sized sections of the rod as well as analogous measurements. Using
centered differences for the spatial discretization, we obtain the bilinear time-delay
system

ẋ(t) = Ax(t) + Adx(t − 1) +
m∑

k=1

Nkx(t)uk(t) + Bu(t),

y(t) = Cx(t),

with A, Ad, Nk ∈ R
n×n , for k = 1, . . . ,m, B ∈ R

n×m and C ∈ R
p×n . For our

experiments, we have chosen n = 5000, m = 5 and p = 2.
The reduced-order models are constructed as follows:

MtxInt with the interpolation points±1i for the first and second subsystem transfer
functions. To overcome stability issues, only a one-sided projection was
applied. The generated columns for the basis are rank deficient, therefore, a
rank truncation has been performed to compress the model reduction basis
resulting in the reduced order rmtx = 36.

BwtInt with the interpolation points±logspace(-4, 4, 3)i for the first and
second subsystem transfer functions with two-sided projection yielding the
reduced order rbwt = 36.

SftInt with the interpolation points±logspace(-4, 4, 9)i and the scaling
vectors d(i) = 1m for the first and second subsystem transfer functions
with two-sided projection to get a reduced-order model of size rsft = 36.
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Fig. 5 Time-delay system: frequency domain results for the first subsystem transfer functions. For small
frequencies, BwtInt has around two orders of magnitude larger errors than the other approaches. Overall
SftInt performs best

SttInt with the interpolation points±logspace(-4, 4, 9)i and the scaling
vectors d(i) = b(i) for the first and second subsystem transfer functions
with two-sided projection to get a reduced-order model of size rstt = 36.

For all directions, normalized random vectors from a uniform distribution on [0, 1]
have been used. Note that all reduced-order models have the same time-delay structure
as the original system (42). All reduced-order models are chosen to be of the same
size.

Figure 4 shows the results in time domain for the input signal

u(t) = [
0.05(cos(10t) + cos(5t)) 0.05(sin(10t) + sin(5t)) 0.01 0.01 0.01

]T
.

This time, MtxInt is a few orders of magnitude better than the other methods in the
overall behavior closely followed by SttInt, then BwtInt and SftInt. But in terms of
the maximum errors (Table 2), SftInt and SttInt are almost one order of magnitude
better than MtxInt. The results are different in frequency domain. Figure5 shows the
results for the first subsystem transfer functions. While BwtInt still performs worst,
SftInt performs now better than MtxInt, which is also shown in Table 2. The error of
SttInt is mainly following MtxInt over the whole frequency range and only minorly
diverging at the end. This changes for the second transfer functions in Fig. 6. Here,
MtxInt performs best with SttInt having comparable accuracy. BwtInt and SftInt are
worse than the other two approaches but both with a comparable error. In terms of the
maximum errors (Table 2), BwtInt and MtxInt perform the best.

Further results for tangential interpolation of a related example using different
choices of interpolation points can be found in [40, Sect. 5.6.5.2].

4.3 Dampedmass-spring systemwith bilinear springs

As the third and final example, we consider the MIMO bilinear damped mass-spring
system from [13]. The system has a mechanical second-order structure as the exam-
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Fig. 6 Time-delay system: the plots show the pointwise relative approximation errors of the second sub-
system transfer functions. MtxInt has the most accurate approximation behavior, but all methods provide
very similar results

Table 2 Time-delay system: Maxima of the pointwise relative errors in time and frequency domain. Except
for the second subsystem transfer function, SftInt provides the best approximation out of all the employed
methods. For the second subsystem transfer functions,MtxInt produces a better error than SftInt by half an
order of magnitude

MtxInt BwtInt SftInt SttInt

errsim 1.2251e-06 1.2111e-05 2.1393e-07 5.2099e-07

errG1 5.0048e-03 4.2078e-02 5.1565e-04 3.6159e-02

errG2 8.6292e-03 8.3005e-02 4.2940e-02 2.0130e-01

ple (1) and takes the form

Mẍ(t) + Dẋ(t) + Kx(t) = Np,1x(t)u1(t) + Np,2x(t)u2(t) + Buu(t),

y(t) = Cpx(t),
(43)

where M, D, K ∈ R
n×n are symmetric positive definite matrices chosen as in [29].

The external forces are applied to the first and last masses, Bu = [e1,−en], the
displacement of the second and fifth masses is observed, Cp = [e2, e5]T; thus the
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Fig. 7 Dampedmass-spring system: time simulations of the full- and reduced-order models. All approaches
provide a similar error behavior

system has m = p = 2 inputs and outputs. The bilinear springs are chosen to be

Np,1 = −S1K S1 and Np,2 = S2K S2,

where S1 is a diagonal matrix with entries linspace(0.2,0,n) and S2 a diagonal
matrix with linspace(0,0.2,n). For the experiments, we chose n = 1000.

It has already been shown in [13] that only the structure-preserving approximations
give reasonable results for this example. Therefore, we only compare the structured
approaches in this paper, i.e., all reduced-ordermodels also have themechanical system
structure as (43). The reduced-order models are constructed as follows:

MtxInt with the interpolation points±logspace(-4, 4, 2)i for the first and
second subsystem transfer functions,which yields the reducedorder rmtx =
24.

BwtInt with the interpolation points±logspace(-4, 4, 4)i for the first and
second subsystem transfer functions such that the reduced order is rbwt =
24.

SftInt with the interpolation points±logspace(-4, 4, 6)i and the scaling
vectors d(i) = 1m for the first and second subsystem transfer functions
such that the reduced order is rsft = 24.

SttInt with interpolation points ±logspace(-4, 4, 6)i and the scaling
vectors d(i) = b(i) for the first and second subsystem transfer functions
such that the reduced order is rstt = 24.

To preserve the symmetry of the system matrices, only one-sided projections have
been used for the construction. For all directions, normalized random vectors have
been generated by drawing their entries from a uniform distribution on [0, 1]. All
reduced-order models have the same order.

Figure 7 shows the time simulation results for

u(t) =
[

sin(200t) + 200
− cos(200t) − 200

]
.
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Fig. 8 Damped mass-spring system: frequency domain results for the first subsystem transfer functions.
All methods provide a similar error behavior

Table 3 Damped mass-spring system: Maxima of the pointwise relative errors in time and frequency
domain. All methods provide similar worst-case errors compared to each other in time and frequency
domain. SttInt performs best by around a factor of 1.5 compared to the rest

MtxInt BwtInt SftInt SttInt

errsim 3.0779e-03 4.0813e-03 2.8056e-03 1.9722e-03

errG1 6.3187e-05 5.0642e-05 5.7109e-05 3.2660e-05

errG2 4.5523e-04 4.3227e-04 4.2240e-04 2.8460e-04

All reduced-order models yield accurate results with practically the same approxima-
tion quality. As Table 3 shows, the new tangential approaches perform a little bit better
than MtxInt but still have the same order of accuracy. Also, in the frequency domain,
the tangential interpolation as well as the matrix interpolation behave in principle
all the same, where the matrix interpolation is again a bit worse than the tangential
approaches as it can be seen in Figs. 8 and 9, and Table 3.

Further results for tangential interpolation of a related example using different
choices of interpolation points can be found in [40, Sect. 5.6.5.1].

5 Conclusions

We developed the tangential interpolation framework for structure-preserving interpo-
lation of multi-input/multi-output bilinear control systems. By revisiting the classical
tangential interpolation in frequency domain and its interpretation in time domain, we
developed a new unifying tangential interpolation framework for structure-preserving
model reduction ofMIMObilinear systems and proved conditions on themodel reduc-
tion subspaces to satisfy interpolation conditions in this new framework. We also used
the new framework to obtain results on the blockwise tangential interpolation approach
and extended the theory from the literature to structured bilinear systems. Motivated
by classical tangential interpolation in frequency domain and its interpretation in time
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Fig. 9 Damped mass-spring system: the plots show the pointwise relative approximation errors of the
second subsystem transfer functions. All methods provide a similar error behavior

domain, the generality of the new approach extends beyond the results explored in this
paper as the construction of interpolating structured reduced-order models is now fully
independent of the system dimensions adding more flexibility in choosing interpola-
tion conditions than in previous approaches. The numerical examples illustrate that
the new approach is as good as and even better in many situation than the full matrix
or the blockwise tangential interpolation methods. In other words, the new approach
gives sufficiently accurate results while allowing more freedom in choosing the order
of the reduced-order model compared to the existing approaches.

While we used a rather simple choice for interpolation points (logarithmically
equidistant on the imaginary axis), the question of better or even optimal choices
of interpolation points remains open. Other choices for interpolation point selections,
heuristically inspired by the linear system case, have been used in numerical examples
in [40]. Also, in the setting of tangential interpolation, the question of appropriate
tangential directions needs to be answered. For our new framework, we gave two
approaches for choosing the scaling vectors. Still the influence of the choice of the
scaling vectors needs to be investigated as well as the question of an optimal choice.
These issues will be considered in future works.
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