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Abstract
The solution to the elastodynamic equation in the exterior of a polyhedral domain or a
screen exhibits singular behavior from the corners and edges. The detailed expansion
of the singularities implies quasi-optimal estimates for piecewise polynomial approxi-
mations of the Dirichlet trace of the solution and the traction. The results are applied to
hp and graded versions of the time domain boundary element method for the weakly
singular and the hypersingular integral equations. Numerical examples confirm the
theoretical results for the Dirichlet and Neumann problems for screens and for poly-
gonal domains in 2d. They exhibit the expected quasi-optimal convergence rates and
the singular behavior of the solutions.
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1 Introduction

Solutions to elliptic and parabolic boundary value problems in polyhedral domains
exhibit singularities in a neighborhoodof the corners and edges.Numerical approxima-
tions by finite or boundary element methods take into account the nonsmooth behavior
with local mesh refinements or higher polynomial degrees to recover optimal conver-
gence rates. The resulting h, p and hp methods have been studied for several decades,
see e.g. [49] for finite elements and [28] for boundary elements.

For hyperbolic equations in conical or wedge domains the singular behavior of the
solution has been clarified by Plamenevskiı̌ and collaborators since the late 1990’s
[34, 35, 40, 46]. The explicit singular expansions were used by Müller and Schwab to
prove optimal convergence rates for a finite element method on algebraically graded
meshes for the wave and elastodynamic equations in polygonal domains in R

2 [42,
43]. Corresponding results for the wave equation in R

3 were obtained by two of the
authors, leading to approximation results for boundary element methods (TDBEM) on
graded meshes [21], hp versions [23] and the efficiency of a posteriori error estimates
for adaptive refinement procedures [24].

In this article we initiate the study of h, p and hp time domain boundary element
methods for the Dirichlet and Neumann problems of elastodynamics in a polyhedral
domain � ⊂ R

n , n = 2, 3. Based on the approach by Plamenevskiı̌ and singular
expansions for the time independent Lamé equation, we obtain a detailed description
of the singularities of the solution for the model 3d geometries of a wedge and a cone,
as well as 2d polygonal domains. The expansions imply quasi-optimal convergence
rates for piecewise polynomial approximations on graded meshes and by hp versions.

To be specific, we formulate the set-up and results for exterior problems. Let � ⊂
R

n , n = 2, 3, be a screen or closed surface and denote by � the connected exterior
� ⊂ R

n of �. This article considers the dynamics of a linear elastic body with
Lamé parameters λ,μ > 0 and mass density ρ, as described by the time dependent
elastodynamic equation

(λ+ μ)∇(∇ · u)+ μ�u− ρü = 0, x ∈ �, t ∈ (0, T ] . (1)

We impose homogeneous initial conditions u(0, x) = ∂tu(t, x) = 0 and consider
either Dirichlet boundary conditions, u = g, or Neumann boundary conditions involv-
ing the traction, p(u) = h.

To solve (1) numerically, we formulate it as an equivalent time dependent integral
equation on �. For Dirichlet boundary conditions we study

V���(x, t) =
(
K + 1

2

)
g(x, t), (x, t) ∈ � × [0, T ] , (2)

involving theweakly singular integral operatorV and the double layer integral operator
K. V and K are defined from a fundamental solution G to (1) and its traction pξξξ (G)

V���(x, t) =
∫ t

0

∫
�

G(x, ξξξ ; t, τ )���(ξξξ, τ )d�ξξξdτ ,
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Higher-order time domain boundary elements… 37

K���(x, t) =
∫ t

0

∫
�

pξξξ (G)(x, ξξξ ; t, τ )T���(ξξξ, τ )d�ξξξdτ .

The Neumann problem is similarly formulated as an equation for the hypersingular
integral operator W , see (13). The weak formulation of these integral equations is

approximated using Galerkin boundary elements ���h,�t ∈
(

V�t,q ⊗ X−1h,p

)n
, based

on tensor products of piecewise polynomial functions on a quasi-uniform or graded
mesh in space and a uniform mesh in time.

The convergence rate of the error is determined by the singularities of the solution
of (1) at non-smooth boundary points of the domain �. Near an edge or a cone point
of the boundary � ⊂ R

3 we obtain a singular expansion of the solution into a leading
part of explicit singular functions plus smoother remainder terms. Expansions in a
wedge, respectively a cone, are obtained in (45) and (59): if we treat the variable along
the edge as a parameter, the expansion in a wedge reduces to the case of a polygon in
2d, where in a neighborhood of a vertex it takes the form

u(t, x) = χ(r)rν
∗
a(t, φ)+ u0(t, r , φ) ,

p(u)(t, x) = χ(r)rν
∗−1b(t, φ)+ φφφ0(t, r , φ) .

Here, (r , φ) are polar coordinates centered at the vertex, the exponent ν∗ is determined
by the opening angle ω at the vertex and by the elastic parameters, and u0, φφφ0 are
remainder terms of lower order. In particular, for a fixed time t the solution to (1)
admits an explicit singular expansion with the same behavior as the time independent
Lamé equation.

This asymptotic expansion of the solution u and the traction p(u) gives rise to quasi-
optimal convergence rates in space-time anisotropic Sobolev norms. See (85) for the
definition of the Sobolev space Hr

σ (R
+, H̃ s(�)) and (86) for the definition of the norm

‖ · ‖r ,s,�,∗. We consider the approximation error of the solution on graded meshes,
as defined in (62), in Corollary 5.4a) and the hp version on quasi-uniform meshes in
Corollary 5.8a). There the approximation error is determined by an exponent α̃, which
depends on the geometry (wedge, cone) and the elastic parameters, see (68):

Theorem Let ε > 0 and σ > 0.
a) Let ��� be the solution to the single layer integral equation (2) and ���

β̃
h,�t ∈(

V�t,q ⊗ X−1h,0

)n
the best approximation to��� in the norm of Hr

σ (R
+, H̃− 1

2 (�))n on a

β̃-graded spatial mesh with�t � h1. Then for p = 1, 2, 3, . . . ‖���−���β̃
h,�t‖r ,− 1

2 ,�,∗ ≤
Cβ̃,εhmin{β̃α̃−ε, 32 }.
b) Let ��� be the solution to the single layer integral Eq. (2) and ���h,�t ∈(

V�t,p ⊗ X−1h,p

)n
the best approximation in the norm of Hr

σ (R
+, H̃− 1

2 (�))n to ���

on a quasiuniform spatial mesh with �t � h. Then for p = 0, 1, 2, . . .

‖���−���h,�t‖r ,− 1
2 ,�,∗ �

(
h

(p + 1)2

)α̃−ε
+

(
�t

p + 1

)p+1−r

+
(

h

p + 1

) 1
2+η

,
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38 A. Aimi et al.

where r ∈ [0, p+1) andφφφ0 ∈ H p+1
σ (R+, H̃η(�))n is the regular part of the singular

expansion of ppp(u)|� .

Corresponding results in the case of a 2d polygon are obtained as a result of the
edge problem. Corollaries 5.4b) and 5.8b) contain analogous results for the hypersin-
gular integral equation of the Neumann problem. As the analysis is local on �, the
extension to the single layer and hypersingular integral equations for interior problems
is immediate.

Numerical experiments are presented for the weakly singular and hypersingular
integral operators in polygonal and crack geometries inR2. They achieve the predicted
convergence rates on gradedmeshes and for the hp version. Furthermore, they confirm
the leading singular exponents of the solution, and the hp version on a geometrically
graded mesh (82) exhibits faster than algebraic convergence.

Boundary elementmethods for timedependent problemshave attractedmuch recent
interest, see [13, 20, 29, 47] for an overview. They are of particular relevance for prob-
lems which cannot be reduced to the frequency domain, such as nonlinear problems
or problems involving a broad range of frequencies [22]. While their application to
elasticity has long been studied in engineering [4], their analysis for elastodynamic
scattering and crack problemswas initiated byBécache andHaDuong in [7, 8]. Recent
developments include space-time Galerkin and convolution quadrature methods, fast
discretizations [3, 17, 32, 48], as well as more complex elastic behavior [30].

For the time independent Lamé equation in singular domains, such as with a crack,
detailed asymptotic expansions have been studied extensively, partly motivated by
applications to computing quantities of interest like stress intensity factors, see e.g.
[6, 14, 25, 27, 45]. Using such expansions, von Petersdorff [50] derived quasi-optimal
error estimates for boundary elements on graded meshes. The hp version on geometri-
cally graded meshes was studied in [39]. Sharp hp-explicit estimates on smooth open
surfaces with quasiuniform meshes are due to Bespalov [9], following earlier work of
Bespalov and Heuer for the Laplace and Lamé equations [10, 11].
Structure of this article: Section 2 reviews the Dirichlet and Neumann boundary value
problems for (1) and their formulation as boundary integral equations in terms of the
weakly singular, respectively hypersingular operators. Proposition 2.1 establishes the
well-posedness of these equations. The regularity of solutions to the elastodynamic
problem is addressed in Sect. 3, see also Appendix B for the theoretical setting used to
formulate the results. Taking their traces we get corresponding results for the solutions
of the integral equations. In Sect. 3.2 the solution of the elastodynamic problem in
a wedge is analyzed, in Sect. 3.3 in a cone. Special consideration is given to 2d
problems in Sect. 3.1. The BEM discretization and time integration are discussed in
Sect. 4. In Sect. 5 approximation results are derived, both for the h version TDBEM
on graded meshes and the hp version. Both a circular wedge and a cone geometry are
considered. The 2d case of a polygon corresponds to the theoretical error estimates
for the numerical results in Sect. 7. Section 6 discusses algorithmic aspects of the
implementation. Appendix A introduces the relevant Sobolev space setting for the
error analysis together with the mapping properties of the integral operators and the
associated weak formulations. Appendix B describes crucial theoretical ingredients
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Higher-order time domain boundary elements… 39

for the analysis of the elastodynamic problem in a wedge and in a cone. In Appendix
C we collect some additional auxiliary results for the error analysis.
Notation: For vectors/vector fields (written in bold letters) the operators and norms are
understood componentwise and not marked additionally. We write f � g provided
there exists a constant C such that f ≤ Cg. If the constant C is allowed to depend on
a parameter σ , we write f �σ g.

2 Model problem and boundary integral equations

We consider elastic wave propagation in a Lipschitz domain � = R
n \ �′ exterior

to the bounded domain �′, with piecewise smooth boundary � = ∂�, n = 2 or 3.
As a limiting case, also screen problems in � = R

n \ � are considered, outside an
open arc � ⊂ R

2 or open surface � ⊂ R
3. In the absence of external body forces the

displacement field u(x, t) = (u1, . . . , un)

(x, t), x = (x1, . . . , xn)


 ∈ R
n , satisfies

the elastodynamic equation:

(λ+ μ)∇(∇ · u)+ μ�u− �ü = 0, x ∈ �, t ∈ (0, T ], (3)

whereλ,μ > 0 are theLamé parameters and� represents themass density. Upper dots
indicate the derivative with respect to time, and we later in particular consider T = ∞.
Using the Hooke tensor Ckl

ih = λδihδkl +μ(δikδhl + δilδhk), i, h, k, l = 1, . . . , n, we
rewrite Eq. (3) in components as

n∑
h,k,l=1

∂

∂xh

(
Ckl

ih
∂uk

∂xl
(x, t)

)
− �üi (x, t) = 0, x ∈ �, t ∈ (0, T ], i = 1, . . . , n.

(4)

We also define the traction p = (p1, . . . , pn)

 along �,

pi (x, t) = pi (u)(x, t) =
n∑

h,k,l=1
Ckl

ih
∂uk

∂xl
(x, t)nxh, x ∈ �, t ∈ (0, T ], i = 1, . . . , n,

where nx is the unit normal vector to � calculated in x, pointing from � to �′.
To emphasize that p is defined on �, we also use the notation p|� . Equation (3) is
equipped with initial vanishing conditions (5) and a Dirichlet boundary condition on
�, modelling a soft scattering by the boundary:

u(x, 0) = u̇(x, 0) = 0, x ∈ �, (5)

u(x, t) = g(x, t), (x, t) ∈ � := � × (0, T ]. (6)

In addition to (6), also hard scattering is considered, corresponding to a prescribed
Neumann boundary condition

p(u)(x, t) = h(x, t), (x, t) ∈ � := � × (0, T ]. (7)
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40 A. Aimi et al.

We remark that the unknown u can be written as the sum of two displacements u =
uP + uS (Chapter V of [18]): the term uP, called primary wave, spreads in � with
phase speed cP =

√
(λ+ 2μ)/� > 0, while uS, called secondary wave, propagates

in � with phase speed cS = √μ/� > 0.

2.1 Representation formula and direct boundary integral formulation

If pure Dirichlet conditions (6) are imposed, to describe the unknown u in�× (0, T ]
we consider the following direct integral representation formula:

ui (x, t) =
n∑

j=1

∫ t

0

∫
�

Gi j (x, ξξξ ; t, τ )p j (ξξξ, τ )d�ξξξdτ

−
n∑

j=1

∫ t

0

∫
�

n∑
h,k,l=1

Ckl
jh
∂Gik

∂ξl
(x, ξξξ ; t, τ )u j (ξξξ, τ )nξξξhd�ξξξdτ,

(x, t) ∈ �× (0, T ], i = 1, . . . , n, (8)

where the traction p is unknown on the boundary �. This formula is compactly written
as

u(x, t) = Vp(x, t)−Ku(x, t), (x, t) ∈ �× (0, T ],

with the space-time single layer integral operator V = (Vi j )
n
i, j=1 and the double layer

integral operator K = (Ki j )
n
i, j=1.

The second order tensorG = (Gi j )
n
i, j=1 in formula (8) is the fundamental solution

of the considered differential problem: in 2d

Gi j (x, ξξξ ; t, τ ) :=H [cP(t − τ)− r ]
2π�cP

⎧⎨
⎩

ri r j

r4
2c2P(t − τ)2 − r2√

c2P(t − τ)2 − r2
− δi j

r2

√
c2P(t − τ)2 − r2

⎫⎬
⎭

− H [cS(t − τ)− r ]
2π�cS

⎧⎨
⎩

ri r j

r4
2c2S(t − τ)2 − r2√

c2S(t − τ)2 − r2
− δi j

r2
c2S(t − τ)2√

c2S(t − τ)2 − r2

⎫⎬
⎭ ,

i, j = 1, 2, (9)

while in 3d

Gi j (x, ξξξ ; t, τ ) := t − τ

4π�r2

(
rir j

r3
− δi j

r

)
(H [cP(t − τ)− r ] − H [cS(t − τ)− r ])

+ rir j

4π�r3

(
c−2P δ(cP(t − τ)− r)− c−2S δ(cS(t − τ)− r)

)

+ δi j

4π�rc2S
δ(cS(t − τ)− r), i, j = 1, 2, 3. (10)
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Higher-order time domain boundary elements… 41

Here we set the vector r = (r1, . . . , rn)

 = x−ξξξ = (x1− ξ1, . . . , xn− ξn)


, r = |r|,
H is the Heaviside function and δ the Dirac distribution.
Exploiting the Dirichlet boundary condition (6), we obtain the following boundary
integral equation:

V���(x, t) =
(
K + 1

2

)
g(x, t), (x, t) ∈ �, (11)

with solution��� = p|� . This solution can then be used in the representation formula
(8).

In case of hard scattering problems, namely with assigned condition (7), the
unknown displacement can be calculated in� considering the representation formula
(8) with the Hooke tensor applied:

n∑
h,k,l=1

Ckl
ih
∂uk

∂xl
(x, t)nxh =

n∑
j=1

n∑
h,k,l=1

∫ t

0

∫
�

Ckl
ih
∂G jk

∂xl
(x, ξξξ ; t, τ )p j (ξξξ, τ )nxhd�ξξξdτ

−
n∑

j=1

n∑
h,k,l=1

n∑
h′,k′,l ′=1

∫ t

0

∫
�

Ckl
ihCk′l ′

jh′
∂Gkk′

∂xl∂ξl ′
(x, ξξξ ; t, τ )u j (ξξξ, τ )nξξξh′nxhd�ξξξdτ,

(x, t) ∈ �× (0, T ], k = 1, . . . , n,
(12)

where the the displacement u is unknown on the boundary �. The related compact
notation is

p(x, t) = K′p(x, t)−Wu(x, t), (x, t) ∈ �× (0, T ],

where the operator K′ = (K ′
i j )

n
i, j=1 is the adjoint double layer operator and W =

(Wi j )
n
i, j=1 is the space-time hypersingular integral operator.

Letting x ∈ � tend to � in (12), we obtain the time dependent boundary integral
equation

W���(x, t) =
(
K′ − 1

2

)
h(x, t), (x, t) ∈ �, (13)

with solution��� = u|� depending on the Neumann condition p(u) = h as prescribed
in (7). Therefore, our purpose is the numerical solution of the system (13) through the
approximation of���, which can then be used in the representation formula (8).

The Galerkin approximations to the integral Eqs. (11) and (13) are based on their
weak formulations. Theweak formulation of (11) in the space-time cylinder� is given
in terms of the bilinear form

BD,�(���, �̃̃�̃�) := 〈V∂t���,�̃̃�̃�〉L2(�). (14)
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42 A. Aimi et al.

Find ��� ∈ H1
σ ((0, T ], H̃− 1

2 (�))n , such that

BD,�(���, �̃̃�̃�) = 〈∂t (K + 1/2) g, �̃̃�̃�〉L2(�), (15)

for all �̃̃�̃� = (�̃1, . . . , �̃n)

 ∈ H1

σ ((0, T ], H̃− 1
2 (�))n .

Similarly, the weak formulation of (13) is given in terms of the bilinear form

BN ,�(���, �̃̃�̃�) := 〈W∂t���, �̃̃�̃�〉L2(�). (16)

Find ��� ∈ H1
σ ((0, T ], H̃

1
2 (�))n , such that

BN ,�(���, �̃̃�̃�) = 〈∂t
(
K′ − 1/2

)
h, �̃̃�̃�〉L2(�), (17)

for all �̃̃�̃� = (�̃1, . . . , �̃n)

 ∈ H1

σ ((0, T ], H̃
1
2 (�))n .

As in previous works the theoretical analysis requires a σ -dependent weight in the
inner product for T = ∞, see (87). Then the boundary integral equation (15) for the
Dirichlet problem in the infinite space-time cylinder �×R

+ is well-posed, as follows
from the coercivity and continuity of V shown in Appendix A, together with a proper
setting of the functional spaces. Corresponding results for the hypersingular operator
W in formulation (17) go back to [7, 8], where the 2d case is analyzed. The results
easily generalize to 3d, for example, following the arguments in Appendix A.

Proposition 2.1 Let σ > 0, r ∈ R.

a) Assume that g ∈ Hr+1
σ (R+, H

1
2 (�))n. Then there exists a unique solution ��� ∈

Hr
σ (R

+, H̃− 1
2 (�))n of (15) and

‖���‖r ,− 1
2 ,�,∗ �σ ‖g‖r+1, 12 ,� . (18)

b) Assume that h ∈ Hr+1
σ (R+, H− 1

2 (�))n. Then there exists a unique solution ��� ∈
Hr
σ (R

+, H̃
1
2 (�))n of (17) and

‖���‖r , 12 ,�,∗ �σ ‖h‖r+1,− 1
2 ,�

. (19)

The proof for r = 0 follows from Proposition A.3 and the mapping properties of
K,K′, as found in [12]. The result for general r then follows by the result for r = 0
by differentiating the equation r times, and complex interpolation for non-integer r .

3 Regularity of solutions to the Dirichlet problem

In this section we obtain precise results for the singular behaviour of the solution to the
original initial-boundary value problem of elastodynamics with Dirichlet conditions
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(4)–(6) for two model geometries, the circular cone and the wedge. The decompo-
sition results for the solution of the differential equation lead (by taking traces) to
decompositions also for the solutions of the integral equations in singular terms and
more regular remainders. The problem with Neumann conditions can be dealt with by
appropriate modifications; therefore this is omitted for brevity. The analysis is local
and therefore applies to both exterior and interior problems. While we treat arbitrary
polygonal domains in R

2, an extension to arbitrary polyhedral domains in R
3 would

require the extension of the analysis recalled in Appendix B to general corner singu-
larities. Results in this generality are not currently available in the analysis literature
and beyond the scope of this article.

Section 3.1 outlines the asymptotics of solutions near a vertex in a polygonal domain
in R

2, corresponding to the numerical experiments in Sect. 7. It includes a detailed
discussion of the singular exponents for both the elastodynamic boundary problem and
the scalar wave equation. First, we consider the time-independent case (Proposition
3.1). The results for the time-dependent case in a polygon follow from the analysis for
a wedge in R

3, see Corollary 3.6 in Sect. 3.2, by explicit calculation of the singular
exponents and the singular functions. Theorem 3.5 in Sect. 3.2 presents the abstract
asymptotic expansion for the solution in a wedge. It turns out that the singular expo-
nents are the same as in the time-independent case, but the coefficients of the singular
functions depend additionally on time. The behavior of the solution in a wedge is
obtained by applying a partial Fourier transform along the edge and in time. Then the
leading term of the resulting system (36) decouples into a 2d elastic system for the
plane components of the elastodynamic field and into a scalar inhomogeneous wave
Eq. (40) for the z component along the edge. In Theorem 3.3 we therefore recall our
results for the wave equation in a wedge. Then we apply Dauge’s approach [15] to the
full system (36) with parameter (ξ, τ ) by inserting the expansions (23) and (30) of the
time-independent, elliptic situation. In this way we obtain the expansion (44) and via
inverse Fourier transform the expansion (45) for the time-dependent problem.

The solution of the elastodynamic boundary problem in a circular cone is discussed
in Sect. 3.3. We consider the elastodynamic system in spherical coordinates. For fixed
time t we derive rotationally symmetric solutions (54). Its asymptotic expansion is
obtained in Theorem 3.7.

Wedenotemodel geometries byD. For ease of reference to theworkofPlamenevskiı̌
and coauthors, as well as to Appendix B and to [23], this section adopts some of the
notation from the analysis community, rather than the notation commonly found in
numerical works. In particular, the σ > 0 from other sections in the article is here
called γ , singular exponents λk are denoted by iλk , and the definition of the Fourier
transform and its inverse are interchanged.

3.1 Behavior of solutions in a 2d sector

In the 2d case, for the inhomogeneous elastodynamic equation in a polygonal interior
or exterior domain �, we introduce the radial and tangential components of u, ur =
rν
∗
ϕr (φ, t) and uφ = rν

∗
ϕφ(φ, t) locally near a vertex of interior opening angle ω.
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44 A. Aimi et al.

The system then becomes

μ∂2φϕr + (λ+ 2μ)((ν∗)2 − 1)ϕr + ((λ+ μ)ν∗

− (λ+ 3μ))∂φϕφ − r2−ν∗Fr = �r2∂2t ur , (20)

(λ+ 2μ)∂2φϕφ + μ((ν∗)2 − 1)ϕφ + ((λ+ μ)ν∗

+ (λ+ 3μ))∂φϕr − r2−ν∗Fφ = �r2∂2t uφ . (21)

The time independent solutions of this system with right hand side (Fr , Fφ) = (0, 0)
are given by (cos(1+ν∗)φ,− sin(1+ν∗)φ)T , (sin(1+ν∗)φ, cos(1+ν∗)φ)T , (cos(1−
ν∗)φ,−ν̄ sin(1− ν∗)φ)T , (sin(1− ν∗)φ, ν̄ cos(1− ν∗)φ)T with ν̄ = 3+ν∗−4ν

3−ν∗−4ν where

ν = λ
2(λ+μ) is the Poisson number.

We briefly review the time independent problem with Dirichlet conditions
ur (±ω/2) = uϕ(±ω/2) = 0: with arbitrary constants A, B,C, D we obtain

A cos(1+ ν∗)ω/2± B sin(1− ν∗)ω/2+ C cos(1− ν∗)ω/2
±D sin(1− ν∗)ω/2 = 0

∓A sin(1+ ν∗)ω/2+ B cos(1+ ν∗)ω/2∓ ν̄C sin(1− ν∗)ω/2
+ν̄D cos(1− ν∗)ω/2 = 0 ,

and therefore the plane strain condition

sin ν∗ω = ± ν̄ − 1

ν̄ + 1
sinω with

ν̄ − 1

ν̄ + 1
= ν∗

3− 4ν
. (22)

Since one can proceed analogously for Neumann boundary conditions one gets the
following theorem for the time-independent problem.

Proposition 3.1 Let f ∈ Hs−1(�)2 and s > 0, s /∈ Re ν∗jk with ν∗jk as in (25), (26).

Then the weak solution u ∈ H1(�)2 of the time-independent Eqs. (20), (21) admits
with C∞ cut-off functions χ j near the vertex t j with interior opening angle ω j the
decomposition

u = u0 +
∑

Re ν∗jk<s

a∗jkS
∗
jk(r , φ)χ j (r) (23)

with a regular part u0 ∈ H1+s(�)2, a jk ∈ C and the singularity functions

S∗jk(r , φ) =
{

rν
∗
jkϕϕϕ∗jk(φ) for ν∗jk /∈ N,

rν
∗
jk ln r ϕϕϕ∗jk(φ)+ rν

∗
jk ϕ̃̃ϕ̃ϕ∗jk(φ) for ν∗jk ∈ N,

(24)

Here the singular exponents ν∗jk ∈ C with Re ν∗jk > 0 are solutions of the following
equations depending on the kind of boundary conditions at the two sides meeting at
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the corner t j

Dirichlet: sin ν∗jkω j = ± ν∗jk
k∗ sinω j (25)

Neumann: sin ν∗jkω j = ±ν∗jk sinω j (26)

The functionsϕϕϕ jk with the components (ϕ jk)r in r-direction and (ϕ jk)φ in φ-direction
are of the form

(ϕ∗jk)r = A cos(1+ ν∗jk)φ + B sin(1+ ν∗jk)φ

+C cos(1− ν∗jk)φ + D sin(1− ν∗jk)φ (27)

(ϕ∗jk)φ = −A sin(1+ ν∗jk)φ + B cos(1+ ν∗jk)φ

−γ jkC sin(1− ν∗jk)φ + γ jk D cos(1− ν∗jk)φ (28)

with constants A, B,C, D ∈ C depending on the type of boundary conditions at the
corner and the constants

γ jk = 3+ν∗jk−4ν
3−ν∗jk−4ν , k∗ = 3− 4ν .

As remarked in [26], p. 73, for Dirichlet boundary conditions there exist two leading
real roots of the equation (25) in (0, 1).

Remark 3.2 For a crack, i.e.ω j = 2π for Dirichlet and Neumann boundary conditions
ν∗j1 = 1/2.

More generally, we can use (25) to study the leading singular exponents for the
solution of the Dirichlet problem near an angle ω when ω→ 0, respectively ω→ 2π .

To do so, note that for the leading singular exponent ν∗ = ν∗j1

sin ν∗ω = ν∗

k∗
sinω = ν∗ω

k∗
+ o(ω) (29)

for ω→ 0, or

sin ν∗ω
ν∗ω

→ 1

k∗
.

We conclude ν∗ = c
ω
+ O(1), where c satisfies sin c

c = 1
k∗ .

For the corresponding exterior angle,ω = 2π−εwith ε→ 0,we set ν∗ = 1
2+ν̃(ε).

Then sin ν∗ω = sin
(
( 12 + ν̃(ε))(2π − ε)

)
, and Taylor expanding for ε, ν̃(ε) → 0

leads to

sin ν∗ω = −2πν̃(ε)+ ε

2
+ o(ε) .
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On the other hand, from Eq. (25) sin ν∗ω = ν∗
k∗ sinω = − ν∗

k∗ ε + o(ε), so that
−2πν̃(ε)+ ε

2 = − 1
2k∗ ε + o(ε), or ν̃(ε) = ε

4π

(
1+ 1

k∗
)+ o(ε) and

ν∗ = 1

2
+ ε

4π

(
1+ 1

k∗

)
+ o(ε) .

Figure 10 numerically illustrates ν∗ as a function of ω, when λ = 2, μ = 1 and
ρ = 1. It confirms the above analysis.

In the next section we also require a corresponding description of the singularities
for the scalar wave equation [23]

�∂2t u = (∂2x + ∂2y )u − F .

in � with Dirichlet or Neumann boundary conditions.
Again, we first describe the singularities for the well-studied time independent

problem. In this case near the vertex t j with interior opening angle ω j the weak
solution u admits the decomposition

u = u0 +
∑
ν jk<s

a jk S jk(r , φ)χ(r) (30)

with C∞ cut-off functions χ j , a regular part u0 ∈ H1+s(�), a jk ∈ C and the singu-
larity functions

S jk(r , φ) =
{

rν jkϕ jk(φ) for ν jk /∈ N,

rν jk ln r ϕ jk(φ)+ rν jk ϕ̃ jk(φ) for ν jk ∈ N,
(31)

where ν jk = kπ
ω j

. For Dirichlet boundary conditions ϕ jk,D = sin(ν jkφ), k ∈ N, while
for Neumann boundary conditions ϕ jk,N = cos(ν jkφ), k ∈ N0.

3.2 Behavior of solutions in a wedge

The behavior of solutions in a wedge of opening angle ω, D = K × R with K =
{(r , φ) : r > 0, φ ∈ (0, ω)}, generalizes the discussion in Sect. 3.1 from dimension
n = 2 to n = 3. As long as we discuss this model geometry with only one non-smooth
subset {0}×R of ∂D, we omit the index numbering the non-smooth subsets ( j in Sect.
3.1).

We here consider the elastodynamic system (3) in the space-time cylinder Q =
D× R with a right hand side f

L(∂x , ∂y, ∂z, ∂t )u := −(λ+ μ)∇(∇ · u)− μ�u+ �ü = f (32)
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Applying a partial Fourier transform F(z,t) �→(ξ,τ ) along the edge and in time, the
equation becomes

L(∂x , ∂y,−iξ,−iτ)û(x, y, ξ, τ ) = f̂ (x, y, ξ, τ ), (33)

posed in the sector K.
More precisely, the operator L here takes the form

L(∂x , ∂y , ∂z , ∂t ) =⎛
⎝−(λ+ 2μ)∂2x − μ(∂2y + ∂2z )+ �∂2t −(λ+ μ)∂x ∂y −(λ+ μ)∂x ∂z

−(λ+ μ)∂x ∂y −(λ+ 2μ)∂2y − μ(∂2x + ∂2z )+ �∂2t −(λ+ μ)∂y∂z

−(λ+ μ)∂x ∂z −(λ+ μ)∂y∂z −(λ+ 2μ)∂2z − μ(∂2x + ∂2y )+ �∂2t

⎞
⎠.

(34)

The Fourier transform F(z,t) �→(ξ,τ ) transforms the system into

L(∂x , ∂y ,−iξ,−iτ) =⎛
⎝−(λ+ 2μ)∂2x − μ∂2y + μξ2 − �τ 2 −(λ+ μ)∂x ∂y i(λ+ μ)ξ∂x

−(λ+ μ)∂x ∂y −(λ+ 2μ)∂2y − μ∂2x + μξ2 − �τ 2 i(λ+ μ)ξ∂y

i(λ+ μ)ξ∂x i(λ+ μ)ξ∂y −μ(∂2x + ∂2y )+ (λ+ 2μ)ξ2 − �τ 2

⎞
⎠ .

(35)

With ζ 2 = (μξ2 − �τ 2)−1, we obtain

M(∂x , ∂y, ξ, τ ) = ζ 2L(ζ−1∂x , ζ
−1∂y,−iξ,−iτ) = L0 + L1 + L2

=
⎛
⎝−(λ+ 2μ)∂2x − μ∂2y −(λ+ μ)∂x∂y 0

−(λ+ μ)∂x∂y −(λ+ 2μ)∂2y − μ∂2x 0
0 0 −μ(∂2x + ∂2y )

⎞
⎠

+
⎛
⎝ 0 0 i(λ+ μ)ξζ∂x

0 0 i(λ+ μ)ξζ∂y

i(λ+ μ)ξζ∂x i(λ+ μ)ξζ∂y 0

⎞
⎠

+
⎛
⎝1 0 0
0 1 0
0 0 ζ 2[(λ+ 2μ)ξ2 − �τ 2]

⎞
⎠ . (36)

The principal part L0 of the operator M in (36) is

L0 := −
(
�∗x,y 0
0 μ�x,y

)
, (37)

and (33) becomes

Mv = ζ 2 f̂ =: k(ζ ) . (38)
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We study this equation in rescaled variables v(x̃, ỹ) = û(x, y, ξ, τ ), with (x̃, ỹ) =
ζ−1(x, y) and r̃ = |(x̃, ỹ)| = r/ζ , and in this way obtain uniform assertions for û in
ζ below.

The leading term L0 decomposes into the Laplace operator �x,y (in direction of
the edge) and into the two-dimensional elasticity operator �∗x,y on the cross section
K. L0 decouples the equations for the components (vx , vy) and vz into a 2d elastic
system for the plane components of v, discussed in Sect. 3.1, and a scalar problem for
the z-component, both posed in the sector K.

The singularities for M result from the singularities of L0 plus correction terms
of higher regularity, which come from the differential operators of lower order. For
time-independent problems this is shown in Proposition 16.8 and equation (5.9) in
[15], as well as in [50].

For the Dirichlet problem the singularities for L0 follow directly from Proposition
3.1, giving for û the expansion (43) for p = 0. Here the singularities Sk,0 = (0, 0, Sk),
S∗k,0 are those in (31), respectively (24). (Recall that we omit the index j numbering
the vertices in Sect. 3.1.)

The singularities for the whole operator M are then obtained as follows. First, one
moves the lower-order terms in the operator to the right hand side of the differential
equation and repeats this process.

The additional correction terms Sk,�, S∗k,� for � > 0 are defined recursively as

Sk,1 = −RL1Sk,0, Sk,� = −RL2Sk,�−2 − RL1Sk,�−1 (� > 1), (39)

and correspondingly for S∗k,�. Here R = (R∗�, R�) is the solution operator for �,
respectively �∗.

More explicitly, we obtain

L1Sk,0 =
(

i(λ+ μ)ξζ∇Sk

0

)
,

and we make the ansatz Sk,1 = (Bk,1, Ak,1) with a scalar function Ak,1 in the edge
direction and a two-component vector Bk,1 for the components in the cross section.

Then

Ak,1 = −(λ+ μ)R�0 = 0, Bk,1 = −(λ+ μ)ξζ R∗�∇Sk .

Corresponding formulas can be derived for the higher singular functions Sk,�.
They satisfy S∗k,�(r , φ) ∼ rν

∗
k+�ϕϕϕ∗k,�(φ), respectively Sk,�(r , φ) ∼ rνk+�ϕϕϕk,�(φ), with

ϕϕϕk,0 = (0, 0, ϕk) from (31). This is abstractly described in [40], p. 495, relying on
Proposition 3.9 in [44], and explicit formulas are not easily derived for the wedge.
While only the leading terms are given explicitly, and confirmed in our numerical
experiments, the general structure of the singular functions is sufficient for the error
analysis in Sect. 5.

For the time-dependent situation we first consider the third equation, for uz in
(34), which up to operators of lower order in x and y is simply the wave equation
in the wedge geometry D × R. As above, D = K × R ⊂ R

3 and K is the sector
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{(r , φ) : r > 0, φ ∈ (0, ω)}. Using (35) in cylindrical coordinates and taking the
Fourier transform F(z,t) �→(ξ,τ ), we obtain

−�x,y ûz(r , φ, ξ, τ )+
(
λ+ 2μ

μ
ξ2 − �

μ
τ 2

)
ûz(r , φ, ξ, τ ) = μ−1k̂ , (40)

up to lower order terms. Here k is the third component of k(ζ ). To find the behavior
of the solutions of (40), after rescaling τ, ξ it suffices to study the wave equation

−�x,y ûz − (τ 2 − ξ2)ûz = k̂ . (41)

The approach in [23] makes an ansatz

ûz = r iλ−kϕ−k(φ)ρ−k(rη) = r iλ−k sin (iλ−kφ) ρ−k(rη)

with η2 = ξ2 − τ 2 and reduces (40) for k̂ = 0 to a Bessel differential equation:

r2η2ρ′′−k(rη)+ (2iλ−k + 1) rηρ′−k(rη)+ r2η2ρ−k(rη) = 0 .

For the edgewithDirichlet orNeumannboundary conditions, iλ−k = πk
ω
. The solution

of the Bessel differential equation can be given explicitly in terms of a Bessel function
as in [23]:

ρ−k(tτ) = c (rτ)iλ−k Kiλ−k (irτ).

The resulting asymptotic expansion obtained for ρ−k(tτ) in Theorem 14 from [21]
corresponds to the expansion of ûz . Theorem B.10 describes the general singular
behavior in the space-time cylinder Q = D × R. The above arguments lead to the
followingmore precise expansion in Theorem 3.3 for the wedgeD = K×R, involving
the following special solutionsw−k,B of the Dirichlet (B = D) or Neumann (B = N )
problem with ϕk,B as at the end of Sect. 3.1 (see [36, (3.5)], respectively [35, (4.4)]):

w−k,B(r , φ, ξ, τ ) = 21−iλk,B

�(iλk,B)
(ir

√
−|ξ |2 + τ 2)iλk,B Kiλk,B (ir

√
−|ξ |2 + τ 2)r−iλk,Bϕk,B(φ) .

We recall the following theorem for the wave equation in the wedge, which gives an
expansion of the solution in terms of singular functions (Theorem 14 in [21], n = 3,
d = 1 in their notation).

Theorem 3.3 ( [21]) Let β ≤ 1 and γ > 0, ( f , g) ∈ RHβ,q(Q, γ ), and assume that
the line Im λ = β − 1 does not intersect the spectrum of AB from (107). Further,
define

Jβ,B =
{
k : 0 > Im λk,B > β − 1

} ∪ A ,

with A = {0} for β ≤ 0 and A = ∅ otherwise.
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If u is a strong solution to the inhomogeneous wave equation with homogeneous
Dirichlet or Neumann boundary conditions (B = D, resp. N), then near the edge u
is of the form

∑
j∈Jβ,B

�(1+ ν j,B)r
iλ j,Bϕ j,B(φ)

N j∑
m=0

(∂2t −�z)
m(ir)2m

22mm!�(m + ν j,B + 1)
(
F−1(ξ,τ )→(z,t)c j,B(r , φ, ξ, τ )

)
+ ǔ0(r , φ, z, t) ,

assuming that iλ j,B = ν j,B = π
ω
/∈ N0. Here N j sufficiently large, and depending on

the boundary conditions

c j,D(ξ, τ ) = 〈 f̂ (·, ξ, τ ), w− j,D(·, ξ, τ )〉L2(K) + (ĝ(·, ξ, τ ), ∂νw− j,D(·, ξ, τ ))L2(∂K);
c j,N (ξ, τ ) = 〈 f̂ (·, ξ, τ ), w− j,N (·, ξ, τ )〉L2(K) + (ĥ(·, ξ, τ ), w− j,N (·, ξ, τ ))L2(∂K).

The regularity of c j,B is determined by the right hand side, and the remainder ǔ0 is
less singular than u, in the sense that ‖ǔ0‖DVβ,q (Q;γ ) � ‖( f , g)‖RHβ,q (Q,γ ) for the
Dirichlet problem, with analogous results in the Neumann case. We refer to Appendix
B for the definition of the weighted spaces DVβ(Q, γ ),RHβ,q(Q, γ ). If iλ j,B ∈ N0,
additional terms r iλ j,B log(r) appear.

While Theorem 3.3 is for homogeneous Dirichlet or Neumann boundary condi-
tions, it is readily translated into inhomogeneous boundary conditions, as for elliptic
problems [52, Section 5]: For Dirichlet boundary conditions u = g, choose an exten-
sion g̃ in the domain with Dirichlet trace g. The function U = u − g̃ then satisfies
homogeneous Dirchlet boundary conditions U = 0. Theorem 3.3 then assures an
asymptotic expansion of U , and therefore of u = U + g̃.
An analogous argument applies to Neumann boundary conditions, using an extension
g̃ with the given Neumann trace.

In particular, we mention the leading term of the expansion for the Dirichlet prob-
lem:

Corollary 3.4 Let γ > 0, β < 1, and assume that iλ1 = π
ω

is the only eigenvalue in the
strip β − 1 ≤ Im λ ≤ 0. Then for ( f , g) ∈ RVβ(Q, γ ) the solution u ∈ DV1(Q, γ )

of the inhomogenous boundary problem admits the representation

u(r , φ, z, t) = χ(r)rπ/ωϕ(φ)Xc(r , φ, z, t)+ u0(r , φ, z, t),

where u0 ∈ DVβ(Q, γ ), γ > γ0, χ is a cut-off function, X as in (123), and

c(r , φ, z, t) =
∫ {〈 f (t ′),W (t − t ′)〉D + 〈g(t ′), ∂νW (t − t ′)〉∂D

}
dt ′ . (42)

Here,

W (r , φ, z, t) = F−1(ξ,τ )→(z,t)w(r , φ, ξ, τ )
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and w solves (41) with Dirichlet boundary condition w|∂K = 0.

Near the edge, the function w behaves like r
π
ω ϕ(φ) from (113).

Now the expansions (23) and (30) can be applied to v in (38), yieldingwith (x̃, ỹ) =
ζ−1(x, y) and r̃ = |(x̃, ỹ)| = r/ζ ,

v = v0 + χ(r̃)
( ∑
Re νk<s

ak,(ζ )

∑
0≤�<s−Re νk

Sk,�(r̃ , φ)+
∑

Re ν∗k <s

a∗k,(ζ )
∑

0≤�<s−Re ν∗k

S∗k,�(r̃ , φ)
)
(43)

with v0 ∈ Hs+1(K )n , ak,(ζ ), a∗k,(ζ ) ∈ C for fixed ζ . Here, as before, the singular
functions Sk,� are to leading order those of the wave equation, in the third compo-
nent (0, 0, Sk), while S∗k,� are to leading order those of the 2d elastostatic system
(31). In the following we consider the case of large ζ (see [15]). We transform
(43) back in the coordinates ξ, x, y. When Sk,� and S∗k,� have no log term, then
Sk,�(ζ

−1r , φ) = ζ−νk−�Sk,�(r , φ) and correspondingly for S∗k,�. Using that ĉk,(ζ ) =
ζ−νk ak,(ζ ) and ĉ∗k,(ζ ) = ζ−ν∗k a∗k,(ζ ) we obtain ak,(ζ )

∑
0≤�<s−Re νk

Sk,�(ζ
−1r , φ) =∑

0≤�<s−Re νk
ζ−�ĉk,(ζ )Sk,�(r , φ) and correspondingly for S∗k,�. With v(x̃, ỹ) =

û(x, y, ξ, τ ) and v0(x̃, ỹ) = û0(x, y, ξ, τ ) we obtain

û(x, y, ξ, τ ) = û0(x, y, ξ, τ )+ χ(r/ζ )
( ∑
Re νk<s

ak,(ζ )

∑
0≤�<s−Re νk

Sk,�(ζ
−1r , φ)

+
∑

Re ν∗k <s

a∗k,(ζ )
∑

0≤�<s−Re ν∗k

S∗k,�(ζ−1r , φ)
)

= û0(x, y, ξ, τ )+ χ(r/ζ )
( ∑
Re νk<s

∑
0≤�<s−Re νk

ζ−�ĉk,(q)Sk,�(ζ
−1r , φ)

+
∑

Re ν∗k <s

∑
0≤�<s−Re ν∗k

ζ−�ĉ∗k,(ζ )S
∗
k,�(ζ

−1r , φ)
)
. (44)

In the notation of Appendix B, we obtain by applying the inverse Fourier transform
F−1(ξ,τ ) �→(z,t)

u(x, y, z, t) = u0(x, y, z, t)+
∑

Re νk<s

∑
0≤�<s−Re νk

(Xck,�)( y, z, t)Sk,�(r , φ)

+
∑

Re ν∗k <s

∑
0≤�<s−Re νk

(Xc∗k,�)( y, z, t)S∗k,�(r , φ). (45)

Here, ĉk,� = ζ−�ĉk,(ζ ), ĉ∗k,� = ζ−�ĉ∗k,(ζ ), with ζ 2 = (μξ2 − �τ 2)−1 as before. As in
Appendix B, the smoothing operator X is given by

Xc( y, z, t) = F−1(ξ,τ )→(z,t)χ(
√
|ξ |2 + |τ |2 y)ĉ(ξ, τ )
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for ĉ = ĉk,�, ĉ∗k,�. The regularity of u0 and of the edge functions ck,p, c∗k,p follows
corresponding to the case of the scalar wave equation in Theorem 3.3, generalizing
the results of [23] to elastodynamics.

Altogether, we obtain the following theorem, formulated corresponding to Theorem
B.10 in Appendix B.

Theorem 3.5 Let γ > 0, q ∈ N0, β ∈ (βr+1, βr ) with 0 < βr − β < 1, ( f , g) ∈
RVβ,q(Q, γ ) and assume that the orthogonality condition (128) holds for all νk, ν

∗
k

with Re νk,Re ν∗k ∈ [1− βr , 1− β1]. Then the solution of the initial-boundary value
problem (4)–(6) admits the expansion (45) in terms of the singular functions Sk,�, S∗k,�
constructed from (31), respectively (24). Further, in (45) s < min{Re νk,Re ν∗k } +
�+ 1+ β for all k and u0 ∈ DVβ,q(Q, γ ).

By considering the coordinate z along the edge as a parameter, we recover and refine
the results for polygonal domains in 2d from Sect. 3.1. More precisely, we obtain for
the solution of the elastodynamic problem (20)-(21):

Corollary 3.6 Let γ > 0, q ∈ N0, β ∈ (βr+1, βr ) with 0 < βr − β < 1, ( f , g) ∈
RVβ,q(Q, γ ) and assume that the orthogonality condition (128) holds for all ν∗k with
Re ν∗k ∈ [1−βr , 1−β1]. Then in the neighborhood of a vertex t j with interior opening
angle ω j the solution to (4) - (6) admits the expansion

u(x, y, t) = u0(r , φ, t)+
∑
k,�

(Xc∗k,�)(t)S∗k,�(r , φ), (46)

where s < min{Re νk,Re ν∗k } + �+ 1+ β for all k and u0 ∈ DVβ,q(Q, γ ).

Corollary 3.6 recovers Theorem 3.5 in [43]; note that the sum in k in both (45) and
(46) implicitly includes multiplicities of the eigenvalues.

We finally recall embedding theorems DVβ,q(Q, γ ) ⊂ Hr
σ (R

+, Hs(D))n [42].
Corollary 3.6 then says that given parameters β, γ , the solution may be written as the
sum of a remainder term u0 ∈ DVβ,q(Q, γ ) ⊂ Hr

σ (R
+, Hs(D))n and, depending on

the order s, a finite number of singular functions S∗k,�.

3.3 Behaviour of solutions in a circular cone

We consider the elastodynamic system in spherical coordinates (r , θ, φ) with origin
at the apex. It takes the form

(λ+ μ)∂r (∇ · u)+ μ[∇2ur − 2ur

r2

− 2

r2 sin θ
∂θ (uθ sin θ)− 2

r2 sin θ
∂φuφ] + fr = �∂2t ur (47)

(λ+ μ)

r
∂θ (∇ · u)+ μ[∇2uθ + 2

r2
∂θur − uθ

r2 sin2 θ

− 2 cos θ

r2 sin2 θ
∂φuφ] + fθ = �∂2t uθ (48)
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(λ+ μ)

r sin θ
∂φ(∇ · u)+ μ[∇2uφ + 2

r2 sin θ
∂φur + 2cosθ

r2 sin2 θ
∂φuθ

− uφ
r2 sin2 θ

] + fφ = �∂2t uφ (49)

with

∇ · u = 1

r2
∂r (r

2ur )+ 1

r sin(θ)
∂θ (sin(θ)uθ )+ 1

r sin(θ)
∂φuφ (50)

∇2ui = 1

r2
∂r (r

2∂r ui )+ 1

r2 sin(θ)
∂θ (sin(θ)∂θui )

+ 1

r2 sin(θ)
∂2φui , with i = r , φ, θ. (51)

Note that we include a force term f = ( fr , fφ, fθ )
 in the domain.
Wedenote by x the pointwith spherical coordinates (r , φ, θ). The local orthonormal

basis vectors are

er = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ))
,
eθ = (cos(θ) cos(φ), cos(θ) sin(φ),− sin(θ))
,
eφ = (− sin(φ), cos(φ), 0)
,

and we write the components of an arbitrary vector u in this basis as u = ur er +
uθ eθ + uφeφ .

Any vector field symmetric under rotations in φ will take the form

u(x, t) = ur (r , θ, t)er + uθ (r , θ, t)eθ =: (er , eθ )
ũ(r , θ, t) .

First we consider the system (47)–(49) for fixed t . Beagles and Sändig [6] use
Papkovich-Neuber potentials to construct solutions from the ansatz

u = 4(1− ν)B − ∇(x · B + B4) (52)

with Poisson’s ratio ν and where the components of B = (B1, B2, B3)

 and B4 are

harmonic functions. In spherical coordinates (52) becomes

u = (ur , uθ , uφ)

 = (3− 4ν)(B · er , B · eθ , B · eφ)


− (rer · ∂r B + ∂r B4, er · ∂θ B + 1

r
∂θ B4,

1

sin(θ)
er · ∂φB + 1

r sin(θ)
∂φ B4)


.

(53)

Set B1 = B2 = 0,

B3 = c1rα Pα(cos(θ)), B4 = c2rα+1Pα+1(cos(θ)),

123



54 A. Aimi et al.

where Pα(cos(θ)) are Legendre functions of the first kind and α > 0 will be specified
below. Substituting this ansatz into (53) gives the general form of the rotationally
symmetric solutions to (47)– (49) at fixed time t ,

u(r , θ) = c1rα
(

A11(α, θ)

A21(α, θ)

)
+ c2rα

(
B11(α, θ)

B21(α, θ)

)
(54)

with (A11(α, θ), A21(α, θ)) = ((3 − 4ν − α)Pα cos(θ), P ′α cos(θ) sin(θ) − (3 −
4ν)Pα sin(θ)) as well as (B11(α, θ), B21(α, θ)) = (−(α + 1)Pα+1, sin(θ)P ′α+1).

Using the Mellin transform with respect to r ,

w̃(α, θ, φ) = 1√
2π

∫ ∞

0
r−α−1w(r , θ, φ) dr

the system (47)–(49) with Dirichlet boundary conditions transforms into a parameter-
dependent boundary value problem. The exponents α are given by the roots of the
equation

det

(
A11(α, ω) B11(α, ω)

A21(α, ω) B21(α, ω)

)
= 0 ,

where ω is the opening angle. The vanishing of the determinant is equivalent to the
following transcendental equation for α:

0 = −(α + 1)

sin(ω)

(
P2
α cos(ω)(α + 4ν − 3)+ Pα Pα+1(3− 4ν − cos2(ω)(2α + 1))

+P2
α+1 cos(ω)(α + 1)

)
. (55)

Imposing homogeneous Dirichlet conditions on u in (54) determines the coefficients
c1, c2 and hence the corresponding eigenfunction. For numerical results for α� and
their dependence on ω, see [6].

Now we apply the partial Fourier transform Ft→τ to the system (47) - (49) and
obtain the following parameter dependent Lamé equation in the coneK with opening
angle ω,

(λ+ μ)∇(∇ · û)+ μ�û+ τ 2û = f̂ , x ∈ K, (56)

with Dirichlet boundary condition û|∂K = ĝ. Let f̂ ∈ H0
β (K)

n , ĝ ∈ H3/2
β (∂K)n

Assume that no eigenvalues of the pencilAD from (107), more concretely no roots of
(55), lie on the lines

Re α = −β + 1

2
=: h Re α = −β ′ + 1

2
=: h′. (57)

We apply the framework of Appendix B, especially Section B.1. We observe that
the eigenfunctions A11(α, θ), A21(α, θ), B11(α, θ), B21(α, θ) with α from (55) for
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the homogeneous Dirichlet problem are just the eigenfunctions ϕϕϕ(k)� in the power-like
solution (109) of the homogeneous Dirichlet boundary value problem (110), (111).
NowEq. (56)withDirichlet boundary conditions is just (102), (103) inAppendixB.We
can therefore apply Theorem B.5 in Appendix B with iλ� = α� and Re α� = −Im λ�.
Now if h < Re α� < h′, then there holds the following result as a consequence of
Theorem B.5 (with inhomogeneous Dirichlet data g): the solution of (47)–(49) has the
expansion

û(r , θ, φ, τ ) = χ(pr)
∑
�

∑
k, j

ĉ(k, j)
� (φ, τ )u(k, j)

� (r , θ)+ û0(r , θ, φ, τ ) , (58)

with û0 ∈ DHβ ′(K, τ ), u
(k, j)
� as in (54)withα = α� a root of (55) and h < Re α� < h.

The sumextends over the index k of the rootsα�. The coefficients ĉ(k, j)
� in the expansion

(58) can be computed from the results by Maz’ya and Plamenevskiı̌, see [6].
Taking an inverse Fourier transform from τ to t , the results by Matyukevich and

Plamenevskiı̌ [40] in Sect. B give through Theorem B.10 the following result, using
the function spaces in (125), (126):

Theorem 3.7 Let γ > 0 and β ∈ (βr+1, βr ) with 0 < βr − β < 1, ( f , g) ∈
RVβ(Q, γ ) and assume that the orthogonality condition (128) holds for all α� with
Re α� ∈ [ 12 − β1,

1
2 − βr ]. Then the solution of (47)–(49) with Dirichlet condition

u|∂Q = g admits an expansion

u(r , θ, φ, t) =
∑
�

∑
k, j

c̃k, j
� (φ, t)uk, j

� (r , θ)+ u0(r , θ, φ, t), (59)

where u0 ∈ DHβ(Q, γ ), with uk, j
� from (54) and the variable coefficients c̃k, j

� as in
Theorem B.10. The sum in � is over all α� withRe α� = 1

2−βr , while the sum over k, j

extends over all the generalized eigenfunctions uk, j
� of the form (54) corresponding

to α�.

Analogous to Corollary 3.6 for the wedge, Theorem 3.7 for the cone says that
the solution may be written as the sum of a remainder term u0 ∈ DVβ(Q, γ ) ⊂
Hr
σ (R

+, Hs(D))n and, depending on the order s, a finite number of singular functions

uk, j
� .

4 BEM discretization

To solve the energetic weak formulations (15) and (17) in a discretized form, we
consider a uniform decomposition of the time interval [0, T ] with time step �t =
T/N�t , N�t ∈ N

+, generated by the N�t + 1 times tn = n�t , n = 0, . . . , N�t . We
define the corresponding space V�t,s of piecewise polynomial functions of degree s
in time (continuous and vanishing at t = 0 if s ≥ 1).

For the space discretization in 2d, we introduce a boundary mesh constituted by
a set of straight line segments T = {e1, ..., eM } such that hi := length(ei ) ≤ h,
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ei ∩e j = ∅ if i �= j and∪M
i=1ei = � if� is polygonal, or a suitably fine approximation

of � otherwise. In 3d, we assume that � is triangulated by T = {e1, · · · , eM }, with
hi := diam(ei ) ≤ h, ei ∩ e j = ∅ if i �= j and if ei ∩ e j �= ∅, the intersection is either
an edge or a vertex of both triangles.

On T we define Pp as the space of polynomials of degree p, and consider the
spaces of piecewise polynomial functions

X−1h,p =
{
w ∈ L2(�) : w|ei ∈ Pp, ei ∈ T

}
⊂ H̃−1/2(�)

and

X0
h,p =

{
w ∈ C0(�) : w|ei ∈ Pp, ei ∈ T

}
⊂ H̃1/2(�).

The Galerkin approximations of (15), (17) corresponding to these discrete spaces
read, with BD/N ,� as in (14), (16):

Find ���h,�t ∈
(

V�t,sp ⊗ X−1h,p

)n
such that

BD,�(���h,�t , �̃̃�̃�h,�t ) = 〈∂t
(
K′ + 1/2

)
g, �̃̃�̃�h,�t 〉L2(�), (60)

for all �̃̃�̃�h,�t ∈
(

V�t,sp ⊗ X−1h,p

)n
.

Find ���h,�t ∈
(

V�t,sq ⊗ X0
h,q

)n
such that

BN ,�(���h,�t , �̃̃�̃�h,�t ) = 〈∂t (K − 1/2) h, �̃̃�̃�h,�t 〉L2(�), (61)

for all �̃̃�̃�h,�t ∈
(

V�t,sq ⊗ X0
h,q

)n
.

Remark 4.1 Due to the continuity and coercivity of the bilinear forms (15) (Proposition
A.3), respectively (17) [7], the discretized Eqs. (60), respectively (61), admit a unique
solution. Stability and a priori error estimates for the numerical error follow as in [5].
The intention of this article is to show that the use of graded meshes and of higher-
order polynomials leads to improved approximation rates for the solution. This is the
subject of Sect. 5.

In this articlewe consider the approximation on quasiuniformand β̃-gradedmeshes,
for a constant β̃ ≥ 0. To define β̃-graded meshes on the interval [−1, 1], by symmetry
it suffices to specify the nodes in [−1, 0]. There we let

xk = −1+
(

k

Nl

)β̃

(62)

for k = 1, . . . , Nl . We denote by h the size of the longest interval and by h1 = x1− x0
the size of the smallest interval. For the square [−1, 1]2, the nodes of the β̃-graded
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Fig. 1 β̃-graded meshes for the square and the circular screen with β̃ = 2 (a) and β̃-graded meshes for 1D
obstacles with β̃ = 3 (b)

mesh are tuples of such points, (xk, xl), k, l = 1, . . . , Nl . For β̃ = 1 we recover a
uniform mesh.

For general polyhedral geometries graded meshes can be locally modeled on these
examples. In particular, on the circular screen of radius 1, for β = 1 we take a uniform
mesh with nodes on concentric circles of radius rk = 1− k

Nl
for k = 0, . . . , Nl − 1.

For the β̃-graded mesh, the radii are moved to rk = 1− ( k
Nl
)β̃ for k = 0, . . . , Nl − 1.

While the triangles become increasingly flat near the boundary, their total number
remains proportional to N 2

l .
The global mesh size h of a graded mesh is defined to be the diameter of the largest

element. The diameter of the smallest element is of order hβ̃ .
Examples of the resulting 2-graded meshes on the square and the circular screens

are depicted in Fig. 1a.
Wealso consider geometrically gradedmeshes on�. To define themon the reference

interval [−1, 1] and with a refinement parameter σ ∈ (0, 1/2], in [−1, 0] we let
x0 = −1,

xk = σ Nl+1−k − 1 (63)

for k = 1, . . . , Nl , and we specify corresponding nodes in [0, 1] by symmetry. For
the hp version the polynomial degree p increases linearly from ∂�: p = �μk� in
[xk, xk+1] for a given μ > 0.

5 Approximation results for Dirichlet and Neumann traces

This section splits into three subsections. In Sect. 5.1 we consider the time-dependent
elastodynamic problem in an exterior Lipschitz domain � ⊂ R

n \ �′, where �′ has
a piecewise smooth boundary with curved, non-intersecting edges, respectively cone
points. Using the results from Sect. 3, we see that the solution admits an explicit
singular expansion with the same singular behavior in the spatial variables as the
time independent Lamé equation. This behavior is then used to analyze the error of
piecewise polynomial approximations on a graded mesh in Sect. 5.2, respectively hp
approximations on a quasi-uniform mesh in Sect. 5.3.
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Fig. 2 Geometry and graded
mesh on the wedge

5.1 Statement of regularity results

Wefirst consider a circularwedge (Fig. 2), leading to the regularity result in Proposition
5.1. The case of a circular cone (Fig. 3) is then discussed, leading to Proposition 5.2.

For the exterior of a circular wedge with opening angle ω and edge {(x1, x2, 0) ∈
R
3 : x21 + x22 = 1}, in a neighborhood of the edge we use local cylindrical coordinates

(r , φ, z) as in Sect. 3.2: the distance to the edge is given by r = |1 −
√

x21 + x22 |, φ
is the polar angle, while the edge variable z is the azimuthal angle in the x1 − x2-
plane, along the equator, tan(z) = x2

x1
. For ω → 2π−, the wedge degenerates into

the circular screen {(x1, x2, 0) ∈ R
3 : x21 + x22 ≤ 1}. The geometry of the wedge and

its discretization by a graded mesh are illustrated in Fig. 2. As in [53], an analogous
expansion to Theorem 3.5 for the solution of the elastodynamic Eq. (3) also holds for
curved edges, with the same leading singular term rν

∗
.

For the Dirichlet problem (B = D), respectively the Neumann problem (B = N ),
assume that the spectrum σ(AB) of the pencil AB (from (107) and its special case
(108)) is constant on the edge and that there exists β ∈ R such that {λ ∈ C : Im λ =
β − 1} ∩ σ(AB) = ∅.

Using Sect. 3 and Appendix B we can show the following regularity result for the
boundary traces of the solution:

Proposition 5.1 a) Let γ > 0, q ∈ N0 and ν∗ the leading singular exponent, which
is the minimum between π

ω
and the minimal root of (25). Let ( f , g) ∈ RVβ,q(Q, γ )

and assume that the orthogonality condition (128) holds. Then the Neumann trace of
the solution u of the Dirichlet problem (3), (6) with right hand side f , Dirichlet data
g and initial conditions (5) satisfies

pi (u)(r , φ, z, t)|� = bi (φ, z, t)rν
∗−1 + φi,0(r , φ, z, t) . (64)

Here, bi is smooth for smooth data and φi,0 is a less singular remainder.
b) Let γ > 0, q ∈ N0 and ν∗ the leading singular exponent, which is the minimum of π

ω
and the minimal root of (26). Assume that iλ1 = ν∗ is the only eigenvalue in the strip
β − 1 ≤ Im λ1 ≤ 0. Let ( f , h) ∈ RVβ,q−1(Q, γ ) and assume that the orthogonality
condition (128) holds. Then the Dirichlet trace of the solution u of the Neumann
problem (4), (7) with right hand side f , Neumann data h and initial conditions (5)
satisfies

ui (r , φ, z, t)|� = ai (φ, z, t)rν
∗ + ui,0(r , φ, z, t) . (65)
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Fig. 3 Geometry and graded mesh on a circular cone: viewed from the side (a) and from above (b)

Here, ai is smooth for smooth data and ui,0 is a remainder which is less singular in
the variable r .

Proof a) First we note that for the Dirichlet problem with u|� = 0 we locally have the
regularity estimate in Proposition B.7 by use of a partition of unity (see Proposition
9.3, (160) in [40]). The corresponding estimate for the solution of the inhomogeneous
problem is estimate (159) in Proposition 9.3, [40]. Here, for curved edges, one intro-
duces local charts in a neighborhood of the edge, to obtain a problem with variable
coefficients in a wedge D = D j in the j-th coordinate chart. First one uses a function
(y, z) �→ ζ ( j)(y, z) ∈ C∞(D j ) which is independent of z and, for sufficiently small

δ > 0, ζ ( j) = 1 for |y| < δ and ζ ( j) = 0 for |y| > 2δ. Set ζ ( j)
τ (y, z) = ζ ( j)(|τ |y, z).

Then one glues the functions ζ ( j)
τ together with a partition of unity. In the proof of

(122) one replaces χτ by the map (y, z) �→ η(z)ζ ( j)
τ (y, z) supported in a small neigh-

borhood of z = 0, and η = 1 near z = 0. Compared to PropositionB.7 some additional
terms arise from the differentiation of the cut-off functions in z. This differentiation
does not increase the order of growth in |τ |. Therefore, with a sufficiently large con-
stant γ0 > 0 and γ > γ0 in Proposition B.7, we can remove these additional terms
from the estimate. The expansion (129) in Theorem B.10 is thereby also obtained for
curved edges, and expression (64) follows by taking traces.

Smoother data f , g lead to a smoother remainder term in the expansion (129).
b) The proof for the Neumann problem is analogous. The relevant regularity estimates
may be found in Proposition 9.4 in [40]. ��

We now consider the elastodynamic equations in the exterior of a cone K with
vertex at r = 0, as illustrated in Fig. 3.

For the Dirichlet problem (B = D), respectively the Neumann problem (B = N ),
assume that the spectrum σ(AB) of the pencil AB (from (107) and its special case
(108)) is constant on the edge and that there exists β ∈ R such that {λ ∈ C : Im λ =
β − 1

2 } ∩ σ(AB) = ∅.
Using Sect. 3.3 and Appendix B we can show the following result near the vertex

of the cone for the boundary traces of the solution in spherical coordinates:

Proposition 5.2 a) Let γ > 0, q ∈ N0. Assume that iλ1 = α is the only eigenvalue
of the pencil AD in the strip β − 1

2 ≤ Im λ1 ≤ 0. Let ( f , g) ∈ RVβ,q(Q, γ ) and
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assume that the orthogonality condition (128) holds. Then the Neumann trace of the
solution u of the Dirichlet problem (3), (6) with right hand side f , Dirichlet data g
and initial conditions (5) satisfies

pi (u)(r , φ, θ, t)|� = χ(r)rα−1bi (φ, θ, t)+ φi,0(r , φ, θ, t) . (66)

Here, bi is smooth for smooth data and φi,0 a less singular remainder.
b) Let γ > 0, q ∈ N0. Assume that iλ1 = α is the only eigenvalue of the pencil
AN in the strip β − 1

2 ≤ Im λ1 ≤ 0. Let ( f , h) ∈ RVβ,q−1(Q, γ ) and assume that
the orthogonality condition (128) holds. Then the Dirichlet trace of the solution u of
the Neumann problem (4), (7) with right hand side f , Neumann data h and initial
conditions (5) satisfies

ui (r , φ, θ, t)|� = χ(r)rαai (φ, θ, t)+ ui,0(r , φ, θ, t) . (67)

Here, ai is smooth for smooth data and ui,0 a less singular remainder.

Proof a) First one notices that locally for the coneK the estimate (106) for theDirichlet
problem holds, see also Proposition 9.1, (150) in [40]. Taking traces of the resulting
expansion (59) gives (67). As in the case of a wedge (Proposition 5.1 and Theorem
B.10), using the analogue of (106) for smoother data f , g, we can derive expansion
(66) by taking the boundary traction pi (u) of the decomposition (129) of the solution
of the Dirichlet boundary value problem of the elastodynamic equations.

b) For the Neumann problem, Proposition 9.2 in [40] gives an estimate analogous
to (106) for γ > γ0 > 0 sufficiently large. Again one derives an expansion for the
solution like in Theorem B.10, and takes the trace. ��

For both the wedge and the cone, we may assume, after possibly expanding ui,0
and φi,0 further in (65), (64), respectively (67), (66), that the regular part ui,0 belongs
to H3 in space and φi,0 belongs to H1 in space. Corresponding expansions then also
hold for the solutions��� and��� to the integral equations (11), respectively (13).

To simplify notation, for a domain in R
3 with both wedge and cone singularities

we define

α̃ = min

{
Re ν∗,Re α + 1

2

}
, (68)

wherewe recall that ν∗ denotes the leading singular exponent at the edge (theminimum
of π

ω
and the minimal root of (26)), while α is the leading singular exponent at the

cone (the leading eigenvalue of the pencil AD/N ). For a polygonal domain in R2, we
set α̃ = Re ν∗. Note that ν∗ = 1

2 for a screen in R
3, respectively a crack in R2.

5.2 Approximation on gradedmeshes

We use the regularity results from the beginning of this section to deduce approxima-
tion properties on graded meshes:
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Theorem 5.3 Let r ≥ 0 and ε > 0. a) Let u be a strong solution to the homogeneous
elastodynamic equation (3) with inhomogeneous Dirichlet boundary conditions u|� =
g, with g smooth. Further, let���β̃

h,�t ∈
(

V�t,q ⊗ X−1h,0

)n
be the best approximation to

p(u) in the norm of Hr
σ (R

+, H̃− 1
2 (�))n on a β̃-graded spatial mesh with �t � h1.

Then ‖ p(u)|� −���
β̃
h,�t‖r ,− 1

2 ,�,∗ ≤ Cβ̃,εhmin{β̃α̃−ε, 32 }.
b) Let u be a strong solution to the homogeneous elastodynamic equation (3)

with inhomogeneous Neumann boundary conditions p(u)|� = h, with h smooth.

Further, let ���β̃
h,�t ∈

(
V�t,q ⊗ X0

h,1

)n
be the best approximation to u|� in the norm

of Hr
σ (R

+, H̃
1
2−s(�))n on a β̃-graded spatial mesh with �t � h1. Then ‖u|� −

���
β̃
h,�t‖r , 12−s,�,∗ ≤ Cβ̃,εhmin{β̃(α̃+s)−ε, 32+s}, where s ∈ [0, 1

2 ].

Recall that ‖ · ‖r ,± 1
2 ,�,∗ denotes the norm on Hr

σ (R
+, H̃± 1

2 (�))n , as in Appendix
A, and that h is the diameter of the largest element in the graded mesh. Theorem 5.3
implies a corresponding result for the solutions of the single layer and hypersingular
integral equations on the surface:

Corollary 5.4 Let r ≥ 0 and ε > 0. a) Let ��� be the solution to the single layer

integral equation (11) and ���
β̃
h,�t ∈

(
V�t,q ⊗ X−1h,0

)n
the best approximation to ���

in the norm of Hr
σ (R

+, H̃− 1
2 (�))n on a β̃-graded spatial mesh with �t � h1. Then

‖���−���
β̃
h,�t‖r ,− 1

2 ,�,∗ ≤ Cβ̃,εhmin{β̃α̃−ε, 32 }.

b) Let ��� be the solution to the hypersingular integral Eq. (17) and ���
β̃
h,�t ∈(

V�t,q ⊗ X0
h,1

)n
the best approximation to ��� in the norm of Hr

σ (R
+, H̃

1
2−s(�))n

on a β̃-graded spatial mesh with �t � h1. Then ‖��� − ���
β̃
h,�t‖r , 12−s,�,∗ ≤

Cβ̃,εhmin{β̃(α̃+s)−ε, 32+s}, where s ∈ [0, 1
2 ].

Indeed, the solutions to the integral equations are given by ��� = u|� in terms of the
solution u which satisfies traction conditions p(u)|� = g, respectively��� = p(u)|� in
terms of the solution u which satisfies Dirichlet conditions u|� = f .

The proof extends the arguments for the wave equation in [21], where ν∗ = 1
2 . It

uses the decompositions fromSect. 5. In the approximation a cone is locallymapped by
affine transformations onto a square, as in Fig. 4. Further, the following approximation
properties in 1d are crucial. They may be found in [50, Satz 3.7, Satz 3.10].

Lemma 5.5 Let ε > 0, a ∈ C with Re a > 0 and s ∈ [−1,−Re a + 1
2 ). Then there

holds with the piecewise constant interpolant �0
r r−a of r−a on a β̃-graded mesh

‖r−a −�0
r r−a‖H̃ s ([0,1]) � hmin{β̃(−Re a−s+ 1

2 )−ε,1−s}.
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Lemma 5.6 Let ε > 0, a ∈ C with Re a > 0 and s ∈ [0,Re a + 1
2 ). Then there holds

with the linear interpolant �1
r ra of ra on a β̃-graded mesh

‖ra −�1
r ra‖H̃ s ([0,1]) � hmin{β̃(Re a−s+ 1

2 )−ε,2−s}.

Proof of Theorem 5.3 (a), wedge singularity: Approximating p(u) on a rectangular
mesh �h = ⋃

� j , we obtain with the triangle inequality and the approximation
properties in the time variable:

‖p(u)−�x�tp(u)‖r ,− 1
2 ,�,∗

≤
∑

k

‖p(u)−�tp(u)‖r ,− 1
2 ,(tk ,tk+1]×�,∗ +

∑
k, j

‖�tp(u)−�x�tp(u)‖r ,− 1
2 ,(tk ,tk+1]×� j ,∗

≤
∑

k

(�t)a‖p(u)‖r+a,− 1
2 ,(tk ,tk+1]×� +

∑
k, j

‖�tp(u)−�x�tp(u)‖r ,− 1
2 ,(tk ,tk+1]×� j ,∗ .

Now, we use the decomposition (64) for p(u) and consider the singular and regular
parts separately. For the second sum,we use the singular expansion of each component,

‖�t pi (u)−�x�t pi (u)‖r ,− 1
2 ,(tk ,tk+1]×� j ,∗

≤ ‖�t bi (φ, z, t)rν
∗−1 −�t�x bi (φ, z, t)rν

∗−1‖r ,− 1
2 ,(tk ,tk+1]×� j ,∗

+ ‖�tφi,0 −�x�tφi,0‖r ,− 1
2 ,(tk ,tk+1]×� j ,∗ .

For the first term we deduce from Lemma C.2

‖�t bi (φ, z, t)rν
∗−1 −�t�x bi (φ, z, t)rν

∗−1‖r ,− 1
2 ,(tk ,tk+1]×� j ,∗

≤ ‖�t bi (φ, z, t)−�t�zbi (φ, z, t)‖r ,ε− 1
2
‖rν∗−1‖−ε

+ ‖�t�zbi (φ, z, t)‖r ,0‖rν∗−1 −�r rν
∗−1‖− 1

2
.

FromLemma 5.5we have ‖rν∗−1−�r rν
∗−1‖− 1

2
� hβ̃Re ν∗−ε and ‖�t bi (φ, z, t)−

�t�zbi (φ, z, t)‖r ,ε− 1
2

� h3/2−ε‖�t bi‖r ,H1 , by the approximation properties in z.
Finally, with Lemma C.4 and Lemma C.1, in the anisotropic rectangle R with

sidelengths h1, h2 in the x1, respectively x2 directions:

‖�tφ0,i −�x�tφ0,i‖r ,− 1
2 ,(tk ,tk+1]×R,∗

� (�t)ρ−r‖∂ρt φ0,i‖L2([tk ,tk+1]×R) +max{h1, h2,�t} 12(
h1‖φ0,i,x1‖L2([tk ,tk+1]×R) + h2‖φ0,i,x2‖L2([tk ,tk+1]×R)

)
.

Note that the approximation error for the smooth term is of higher order. By summing
over all rectangles � j of the mesh of the screen and all components, we conclude that

‖p(u)−�x�tp(u)‖r ,− 1
2 ,�,∗ � hβ̃Re ν∗−ε if �t ≤ min{h1, h2}.
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(a), cone singularity: To discuss the approximation of p(u) in the cone geometry, for
simplicity, we let � be the square R̃ = [0, 1]2. Figure 4 shows how to reduce the mesh
on the cone to this case by an affine map, with the exception of a small number of
triangular elements.

For the rectangular elements, the approximation of the singular function follows
closely the proof in [21], and we present it below for the convenience of the reader.

For the additional triangular elements in Fig. 4b with linear basis functions, the
crucial observation is that their angles are independent of h, leading to a shape-regular
mesh. In particular, the quotient ρ of the radii of the smallest circumscribed to the
largest inscribed circle remains bounded and the expected interpolation inequalities
hold: For the linear interpolant p of a function f determined by the vertices of a
triangle T of circumscribed radius ≤ h, one has

‖ f − p‖Hs (T ) ≤ C0h2−s‖ f ‖H2(T ) .

Here, s ∈ [0, 1] and the constant C0 only depends on ρ and s. The respective proofs
for the regular part φφφ0 and the singular function rλ−1bi in this way directly apply to
the arising triangles.

As the approximation of the regular part φφφ0 in the expansion (66) has already been
considered in the proof for the circular wedge, it remains to analyze the approximation
of the vertex singularity in (66).

In the following we approximate the corner singularity:
In every space-time element we estimate

‖...‖r ,− 1
2 ,R̃,∗ ≤ ‖...‖r ,− 1

2 ,R̃,∗
+ ‖...‖r ,− 1

2 ,R̃,∗.

As bi is smooth in time, the first term ‖rα−1bi (φ, θ, t) −�t rα−1bi (φ, θ, t)‖ can be
estimated using standard approximation properties in time and is neglible for small�t .
�t bi (φ, θ, t) is of the same form as the function bi in the elliptic case [28]. One may
therefore adapt the elliptic approximation results to ‖(1 −�r ,φ)rα−1�t bi (φ, θ, t)‖.
This is then summed over all elements. We consider

‖rα−1�t bi −�φ,r rα−1�t bi‖ = ‖(1−�φ,r )r
α−1�t bi (φ, θ, t)‖.

Let �t bi (φ, θ, t) =∑
j

t j bi, j (φ, θ) and f j (r , φ) = rα−1bi, j (φ, θ) on [tk, tk+1).

With p j |Rkl =
∑

j

t j

hk hl

∫
Rkl

f j (x, y)dydx one obtains from (132)

‖rα−1�t bi −�r ,φrα−1�t bi‖2r ,− 1
2 ,R̃,∗

�
∑∑

max{�t, hk, hl}
(h2

k‖∂1(rα−1�t bi )‖2r ,0,[t j ,t j+1)×Rkl
+ h2

l ‖∂2(rα−1�t bi )‖2r ,0,[t j ,t j+1)×Rkl
)
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+ ‖rα−1�t bi −�r ,φrα−1�t bi‖2r ,− 1
2 ,R11

The individual summands are estimated for different ranges of l, k:
Estimate for k ≥ 2, l ≥ 2: Note for k ≥ 2, x ∈ [xk−1, xk] there holds |hk | ≤

β̃2β̃γ̃ h x γ̃ with γ̃ = 1− 1
β̃
> 0. Therefore, if �t ≤ hk for all k

max{hk, hl ,�t}h2
k‖∂x (r

α−1�t bi )‖2r ,0,[t j ,t j+1)×Rkl

� h3‖∂x (r
α−1�t bi )max{x γ̃ , yγ̃ }1/2x γ̃ ‖2r ,0,[t j ,t j+1)×Rkl

and

‖rα−1�t bi −�x,yrα−1�t bi‖2r ,− 1
2 ,
⋃

k≥2,l≥2 Rkl ,∗
� h3‖∂x (r

α−1�t bi )max{x γ̃ , yγ̃ }x2γ̃ ‖r ,0,R̃

+ h3‖∂y(r
α−1�t bi )max{x γ̃ , yγ̃ }y2γ̃ ‖r ,0,R̃ . (69)

As |∂1(rα−1�t bi )| � rα−2b̃i (φ, θ, t) for some b̃i square-integrable in space, and
max{x γ̃ , yγ̃ } ≤ r γ̃ , the right hand side of (69) is finite if

β̃ >
3

2(α + 1/2)
. (70)

Therefore

‖rα−1�t bi −�r ,φrα−1�t bi‖2r ,− 1
2 ,
⋃

k≥2,l≥2 Rkl ,∗ � h3,

provided �t ≤ hk for all k.
Estimate for k = 1, l > 1 (analogously k > 1, l = 1): With f (x, y) =

rα−1bi (φ, θ)

∑
j

N∑
l=2
‖(1−�r ,φ)�t f ‖2

r ,− 1
2 ,[t j ,t j+1)×Rkl ,∗

≤
∑

j

N∑
l=2

max{�t, hk, hl}
(

h2
1‖∂1(rα−1�t bi )‖2r ,0,[t j ,t j+1)×Rkl ,∗

+h2
l ‖∂2(rα−1�t bi )‖2r ,0,[t j ,t j+1)×Rkl ,∗

)

Proceed as in (69) to see that also this term is bounded for β̃ > 3
2(α+ 1

2 )
.

Estimate for k = 1, l = 1: rα−1 ∈ L2(R11) because α > 0. Now ‖(1 −
�r ,φ)rα−1‖L2(R11)

� ‖rα−1‖L2(R11)
, by the L2-stability of �r ,φ , and

‖rα−1�t bi (φ, θ, t)−�r ,φrα−1�t bi (φ, θ, t)‖2
r ,− 1

2 ,R11,∗
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� ‖(1−�r ,φ)r
α−1�t bi (φ, θ, t)‖r ,−1,R11,∗‖(1−�r ,φ)r

α−1�t bi (φ, θ, t)‖r ,0,R11,∗

The second term is ≤ hα . For the first

‖(1−�r ,φ)r
α−1�t bi (φ, θ, t)‖r ,−1,R11,∗ ≡

sup
g∈H−r (R+,H̃1(R11))

〈(1−�r ,φ)rα−1�t bi (φ, θ, t), g〉
‖g‖−r ,1,R11

Replacing g by g − p, p the H−r (R+, H0(R11))-projection of g, we obtain for
�t ≤ h1:

‖(1−�r ,φ)r
α−1�t bi (φ, θ, t)‖r ,−1,R11,∗

≤ ‖(1−�r ,φ)r
α−1�t bi (φ, θ, t)‖r ,0,R11 sup

g

‖g − p‖−r ,0,R11

‖g‖−r ,1,R11

.

The first factor is bounded by hα1 , while the second factor is bounded by h1. We
conclude

‖rα−1�t bi (φ, θ, t)−�t�r ,φrα−1�t bi (φ, θ, t)‖2
r ,− 1

2 ,R11,∗ � h2α+1
1 .

The assertion follows by noting that h1 = hβ̃ .
(b), wedge singularity: For the approximation of u a key ingredient is Lemma C.5.
Proceeding as above, using the expansion (65) one estimates the i-th component on
every rectangle R of the mesh:

‖�t ui −�x�t ui‖r , 12 ,(tk ,tk+1]×R,∗
≤ ‖�t ai (φ, z, t)rν

∗ −�t�x ai (φ, z, t)rν
∗‖r , 12 ,(tk ,tk+1]×R,∗

+ ‖�t ui,0 −�x�t ui,0‖r , 12 ,(tk ,tk+1]×R,∗ .

For the first term we note with Lemma C.3, with �x = �r ,z ,

‖�t ai (φ, z, t)rν
∗ −�t�x ai (φ, z, t)rν

∗‖r , 12 ,(tk ,tk+1]×R,∗
≤ ‖�t ai (φ, z, t)−�t�zai (φ, z, t)‖r , 12 ,(tk ,tk+1]×R,∗‖rν

∗‖ 1
2

+ ‖�t�zai (φ, z, t)‖r , 12 ,(tk ,tk+1]×R,∗‖rν
∗ −�r rν

∗‖ 1
2 ,R,∗ .

From the approximation properties in space note that

‖�t ai (φ, z, t)−�t�zai (φ, z, t)‖r , 12
≤ C‖�t ai (φ, z, t)‖r ,H2h

3
2
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and, from Lemma 5.6,

‖rν∗ −�r rν
∗‖ 1

2
� hmin{β̃Re ν∗−ε, 32 } .

Each component of the regular part u0 in the expansion (64) may be approximated

as in [21, Theorem 18]: We let q ∈ Sβ̃h denote the interpolant of u0 in space and time.
On R̃ := [0, 1] × [0, 1], decomposed into rectangles R jk := [x j−1, x j ] × [yk−1, yk]
with side lengths h j , hk ,

‖u0 − q‖2
r ,0,R̃

� max{h,�t}4‖u0‖2r ,3,R̃
and

‖u0 − q‖2
r ,1,R̃

� max{h,�t}2‖u0‖2r ,3,R̃ .

Here we have used hk ≤ β̃ h and recall that we do not indicate the time interval in the
norm when it is R+. Interpolation yields ‖u0 − q‖r , 12 ,R̃

� max{h,�t}3/2‖u0‖r ,3,R̃ .

To approximate each component of the singular part, we set f1(z, t) := ai (φ, z, t),
f2(r) := rν

∗
and q(x, t) := q1(z, t)q2(r) with piecewise linear interpolants q j of f j .

Hence for 0 ≤ s < 1

‖ f − q‖r ,s,R̃ ≤‖q1‖r ,0,I ‖ f2 − q2‖Hs (I ) + ‖q1‖r ,s,I ‖ f2 − q2‖L2(I )

+ ‖ f1 − q1‖r ,0,I ‖ f2‖Hs (I ) + ‖ f1 − q1‖r ,s,I ‖ f2‖L2(I ) . (71)

Using the approximation results for rν
∗
in Lemma 5.6, we conclude

‖ f − q‖r , 12 ,R̃
≤ c hβ̃Re ν∗−ε .

The approximation of the singular function on the cone closely follows the proof
for the traction p(u) in part a) above. For the wave equation the details are presented
in [21]. ��
The approximation argument extends from rectangular to triangular elements as in
[50].

The results for the approximation of the edge singularity in n = 3 translate into
corresponding results for a linear crack in n = 2. In particular, in Fig. 6 we observe
the predicted rates for β̃ = 1, 2, 3, when ν∗ = 1

2 , and in Fig. 12 for ν∗ = 0.5372.

5.3 Approximation by hpmethods

We use the regularity results from the beginning of this section to deduce approxima-
tion properties of the hp version on quasi-uniform meshes:

To state the main result for the approximation error of hp-methods, recall from (68)
that α̃ = min

{
Re ν∗,Re α + 1

2

}
.
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Fig. 4 Affine map between meshes on (a) square and (b) cone. The parallelograms in (b) correspond to
rectangles in (a), and two adjacent triangles in (b) are mapped to the diagonal squares Rii in (a)

Theorem 5.7 Let r ≥ 0 and ε > 0. a) Let u be a strong solution to the homogeneous
elastodynamic Eq. (3) with inhomogeneous Dirichlet boundary conditions u|� = g,

with g smooth. Further, let ���h,�t ∈
(

V�t,p ⊗ X−1h,p

)n
be the best approximation in

the norm of Hr
σ (R

+, H̃− 1
2 (�))n to the traction p(u)|� on a quasiuniform spatial mesh

with �t � h. Then for p = 0, 1, 2, . . .

‖ p(u)|� −���h,�t‖r ,− 1
2 ,�,∗ �

(
h

(p + 1)2

)α̃−ε
+

(
�t

p + 1

)p+1−r

+
(

h

p + 1

) 1
2+η

,

where r ∈ [0, p+1) andφφφ0 ∈ H p+1
σ (R+, H̃η(�))n is the regular part of the singular

expansion of p(u).
b) Let u be a strong solution to the homogeneous elastodynamic Eq. (3) with

inhomogeneous Neumann boundary conditions p(u)|� = h, with h smooth. Fur-

ther, let ���h,�t ∈
(

V�t,p ⊗ X0
h,p

)n
be the best approximation in the norm of

Hr
σ (R

+, H̃
1
2−s(�))n to the Dirichlet trace u|� on a quasiuniform spatial mesh with

�t � h. Then for p = 1, 2, 3, . . .

‖u|� −���h,�t‖r , 12−s,�,∗ �
(

h

p2

)α̃+s−ε
+

(
�t

p

)p−r

+
(

h

p

)− 1
2+s+η

,

where r ∈ [0, p) and u0 ∈ H p
σ (R

+, H̃η(�)) is the regular part of the singular
expansion of u.

Theorem 5.7 implies a corresponding result for the solutions of the single layer and
hypersingular integral equations on the surface:

Corollary 5.8 Let r ≥ 0 and ε > 0. a) Let ��� be the solution to the single layer

integral Eq. (11) and ���h,�t ∈
(

V�t,p ⊗ X−1h,p

)n
the best approximation in the norm

of Hr
σ (R

+, H̃− 1
2 (�))n to ��� on a quasiuniform spatial mesh with �t � h. Then for

123



68 A. Aimi et al.

p = 0, 1, 2, . . .

‖���−���h,�t‖r ,− 1
2 ,�,∗ �

(
h

(p + 1)2

)α̃−ε
+

(
�t

p + 1

)p+1−r

+
(

h

p + 1

) 1
2+η

,

where r ∈ [0, p+1) andφφφ0 ∈ H p+1
σ (R+, H̃η(�))n is the regular part of the singular

expansion of ���.
b) Let ��� be the solution to the hypersingular integral Eq. (17) and ���h,�t ∈(

V�t,p ⊗ X0
h,p

)n
the best approximation in the norm of Hr

σ (R
+, H̃

1
2−s(�))n to ���

on a quasiuniform spatial mesh with �t � h. Then for p = 1, 2, 3, . . .

‖��� −���h,�t‖r , 12−s,�,∗ �
(

h

p2

)α̃+s−ε
+

(
�t

p

)p+1−r

+
(

h

p

)− 1
2+s+η

,

where r ∈ [0, p), s ∈ [0, 1
2 ] and u0 ∈ H p+1

σ (R+, H̃η(�))n is the regular part of the
singular expansion of ��� = u|0.

For the proof, we recall [10, Theorem 3.1]:

Lemma 5.9 For ε > 0, Re a < 1 and s ∈ [−1,min{−Re a + 1
2 , 0}) there holds with

the piecewise polynomial interpolant of degree p, �p
r r−a, of r−a

‖r−a −�
p
r r−a‖s,[0,1],∗ �

(
h

(p + 1)2

)−Re a−s+ 1
2−ε

.

Similarly, for positive powers of r we recall [11, Theorem 3.1]:

Lemma 5.10 For ε > 0, 0 < Re a and s ∈ [0,Re a+ 1
2 ) there holds with the piecewise

polynomial interpolant of degree p + 1, �p+1
r ra, of ra

‖ra −�
p+1
y ra‖s,[0,1],∗ �

(
h

p2

)min{Re a−s+ 1
2 ,2−s}−ε

.

Proof of Theorem 5.7 For the proof of part a), we focus on the case of the wedge
singularity, as the approximation of the singular function on the cone closely follows
the proof in [21].

We choose ���h,�t = �
p
x �

p
t p(u). Using the decomposition (64) for p(u), we can

separate the singular and regular parts on the rectangular mesh:

‖pi (u)−�
p
x �

p
t pi (u)‖r ,− 1

2 ,�,∗ ≤ ‖bi (φ, z, t)rν
∗−1

−�
p
t �

p
x bi (φ, z, t)rν

∗−1‖r ,− 1
2 ,�,∗ + ‖φi,0 −�

p
t �

p
x φi,0‖r ,− 1

2 ,�,∗
≤ ‖bi (φ, z, t)rν

∗−1 −�
p
t bi (φ, z, t)rν

∗−1‖r ,− 1
2 ,�,∗

+ ‖�p
t bi (φ, z, t)rν

∗−1 −�
p
t �

p
x bi (φ, z, t)rν

∗−1‖r ,− 1
2 ,�,∗
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+ ‖φi,0 −�
p
t �

p
x φi,0‖r ,− 1

2 ,�,∗
≤ ‖bi (φ, z, t)−�

p
t bi (φ, z, t)‖r ,ε− 1

2
‖rν∗−1‖−ε,I ,∗

+ ‖�p
t bi (φ, z, t)rν

∗−1 −�
p
t �

p
z bi (φ, z, t)rν

∗−1‖r ,− 1
2 ,�,∗

+ ‖�p
t �

p
z bi (φ, z, t)rν

∗−1 −�
p
t �

p
z bi (φ, z, t)�p

y rν
∗−1‖r ,− 1

2 ,�,∗ + ‖φi,0 −�
p
t �

p
x φi,0‖r ,− 1

2 ,�,∗ .

In the second term we used�p
x = �

p
z �

p
r . The first term was estimated using Lemma

C.2, and the result is now bounded by

‖bi (φ, z, t)−�
p
t bi (φ, z, t)‖r ,ε− 1

2
�

(
�t

p + 1

)p+1−r

‖bi (φ, z, t)‖p+1,ε− 1
2
.

Using Lemma C.2, we obtain for the second and third terms:

‖�p
t bi (φ, z, t)rν

∗−1 −�
p
t �

p
z bi (φ, z, t)rν

∗−1‖r ,− 1
2 ,�,∗

+ ‖�p
t �

p
z bi (φ, z, t)rν

∗−1 −�
p
t �

p
z bi (φ, z, t)�p

r rν
∗−1‖r ,− 1

2 ,�,∗
� ‖�p

t bi (φ, z, t)−�
p
t �

p
z bi (φ, z, t)‖r ,ε− 1

2
‖rν∗−1‖−ε,I ,∗

+ ‖�p
t �

p
z bi (φ, z, t)‖r ,0‖rν∗−1 −�

p
r rν

∗−1‖− 1
2 ,I ,∗ .

We finally note that

‖rν∗−1 −�
p
r rν

∗−1‖ 1
2 ,I ,∗ �

(
h

(p + 1)2

)Re ν∗−ε

from Lemma 5.9, as well as

‖�p
t bi (φ, z, t)−�

p
t �

p
z bi (φ, z, t)‖r ,ε− 1

2
�

(
h

p + 1

) 1
2+k−ε

‖bi (φ, z, t)‖r ,k .

When the regular part φφφ0 in (64) is Hη in space, we obtain from the approximation
properties [23]:

‖φi,0 −�
p
t �

p
x φi,0‖r ,− 1

2 ,�,∗ �σ

((
�t

p + 1

)p+1−r

+
(

h

p + 1

)1/2+η )
‖φi,0‖p+1,η,� .

Combining these estimates, the asserted estimate follows for �t � h

‖p(u)−�
p
x �

p
t p(u)‖r ,− 1

2 ,�,∗

�
(

h
(p+1)2

)Re ν∗−ε +
( (

�t
p+1

)p+1−r +
(

h
p+1

)1/2+η )‖φi,0‖p+1,η,� .

The approximation of the Dirichlet trace u|� to prove part b) follows the above argu-
ments. ��
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The approximation argument extends from rectangular to triangular elements as in
[50].

A similar estimate is obtained for V�t,1, with (�t)p replaced by �t .

6 Algorithmic details

The numerical experiments in Sect. 7 consider the two-dimensional case, therefore in

the following we keep the dimension n = 2 fixed.We introduce the set
{
w
(p)
m (x)

}M(p)
h

m=1 ,
containing the basis functions of the space X−1h,p, which are piecewise polynomi-
als depending on the Lagrangian polynomials on each element ei . Similarly, the set{
w
(q)
m (x)

}M(q)
h

m=1 corresponds to a basis of the functional space X0
h,q . For the time dis-

cretization we choose piecewise constant basis functions for the approximation of���
(sp = 0),

v(0)n (t) = H [t − tn] − H [t − tn+1], n = 0, ..., N�t − 1,

and linear basis functions for the approximation of��� (sq = 1),

v(1)n (t) = t − tn
�t

H [t − tn] − t − tn+1
�t

H [t − tn+1], n = 0, ..., N�t − 1.

Hence, the components of the discrete functions ���h,�t and ���h,�t can be expressed
in space and time as

���i,h,�t (x, t) =
N�t−1∑

n=0

M(p)
h∑

m=1
αi

nmw
(p)
m (x)v(0)n (t), i = 1, 2,

and

��� i,h,�t (x, t) =
N�t−1∑

n=0

M(q)
h∑

m=1
β i

nmw
(q)
m (x)v(1)n (t), i = 1, 2,

The space-time Galerkin Eq. (60) leads to the linear system

⎛
⎜⎜⎜⎜⎜⎜⎝

E (0)
V 0 0 · · · 0

E (1)
V E (0)

V 0 · · · 0
E (2)
V E (1)

V E (0)
V · · · 0

...
...

...
. . .

...

E (N�t−1)
V E (N�t−2)

V E (N�t−3)
V · · · E (0)

V

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

ααα(0)
ααα(1)
ααα(2)
...

ααα(N�t−1)

⎞
⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎝

g(0)
g(1)
g(2)
...

g(N�t−1)

⎞
⎟⎟⎟⎟⎟⎠
, (72)
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where for all l = 0, ..., N�t − 1 the l-th block, the l-th entry of the solution vector
and the l-th entry of the right hand side are organized as

E (l)
V =

(
E (l)
V,11 E (l)

V,12
E (l)
V,21 E (l)

V,22

)
,

ααα(l) =
(
α1

l1 · · · α1
l M(p)

h

α2
l1 · · · α2

l M(p)
h

)

g(l) =

(
g1l1 · · · g1l M(p)

h

g2l1 · · · g2l M(p)
h

)
 .

Solving (72) by backsubstitution leads to amarching-on-in-time time stepping scheme
(MOT). To obtain the generic matrix entry of the sub-block E (l)

V , where l = n − ñ is
the nonnegative difference between two time indexes, we can perform an analytical
integration in the time variables t , obtaining

(
E
(l)
V,i j

)
m̃,m

= 〈Vi jw
(p)
m ∂tv

(0)
n , w

(p)
m̃ v

(0)
ñ 〉L2(�) = −〈Vi jw

(p)
m v(0)n , w

(p)
m̃ ∂tv

(0)
ñ 〉L2(�)

= −
1∑

ξ,ς=0
(−1)ξ+ς

∫
�

w
(p)
m̃ (x)

∫ t̃n+ξ

0

∫
�

Gi j (x, ξξξ ; t̃n+ξ , τ )w(p)
m (ξξξ)

H [τ − tn+ς ]d�ξξξdτd�x. (73)

Further, it is also possible to compute exactly the integration in τ of (73), leading to
the matrix entry

(
E (l)
V,i j

)
m̃,m

= −
1∑

ξ,ς=0

(−1)ξ+ς
2πρ

∫
�

∫
�

w
(p)
m̃ (x)w(p)

m (ξξξ)νVi j (r;�ñ+ξ,n+ς )d�xd�ξξξ ,

(74)

for all i, j = 1, 2; m, m̃ = 1, ..., M (p)
h and n, ñ = 0, ..., N�t − 1. Here, the positive

time difference t̃n+ξ − tn+ς = �ñ+ξ,n+ς and the integration kernel νVi j

νVi j (r;�ñ+ξ,n+ς ) :=
�ñ+ξ,n+ς

(
rir j

r4
− δi j

2r2

)
[

H [cP�ñ+ξ,n+ς − r ]
cP

ϕP(r;�ñ+ξ,n+ς )− H [cS�ñ+ξ,n+ς − r ]
cS

ϕS(r;�ñ+ξ,n+ς )
]

+ δi j

2[
H [cP�ñ+ξ,n+ς − r ]

c2P
ϕ̂P(r;�ñ+ξ,n+ς )+ H [cS�ñ+ξ,n+ς − r ]

c2S
ϕ̂S(r;�ñ+ξ,n+ς )

]
.

(75)

For each γ = P,S the specific kernel functions are given by

ϕγ (r;�ñ+ξ,n+ς ) :=
√

c2γ�
2
ñ+ξ,n+ς − r2, (76)
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ϕ̂γ (r;�ñ+ξ,n+ς ) := log
(√

c2γ�
2
ñ+ξ,n+ς − r2 + cγ�ñ+ξ,n+ς

)
− log(r). (77)

If 0 ≤ r ≤ cS�ñ+ξ,n+ς < cP�ñ+ξ,n+ς the kernel νi j has a reduced form:

νVi j (r;�ñ+ξ,n+ς )

= c2P − c2S
cPcS

(
rir j

r2
− δi j

2

)
�ñ+ξ,n+ς

cP
√

c2S�
2
ñ+ξ,n+ς − r2 + cS

√
c2P�

2
ñ+ξ,n+ς − r2

− c2P + c2S
c2Pc2S

δi j

2
log(r)

+ δi j

2

[
1

c2P
log

(
cP�ñ+ξ,n+ς +

√
c2P�

2
ñ+ξ,n+ς − r2

)

+ 1

c2S
log

(
cS�ñ+ξ,n+ς +

√
c2S�

2
ñ+ξ,n+ς − r2

)]
, (78)

with space singularity of kindO (log(r)) for r → 0. This behavior is well-studied for
boundary integral operators related to 2D elliptic problems.
The discrete functionψψψ i,h,�t in the weak formulation (61) produces the linear system
EWβββ = h, similar to the one obtained by the discretization of the single layer operator
V . In particular, the same Toeplitz structure is obtained in time, and the matrix entries
are computed with analytical integrations in time variables, similar to those adopted
in (73), leading to

(
E (l)
W,i j

)
m̃,m

= −
1∑

ξ,ς=0

(−1)ξ+ς
2πρ�t2

∫
�

∫
�

w
(q)
m̃ (x)w(q)

m (ξξξ)νWi j (r;�ñ+ξ,n+ς )d�xd�ξξξ ,

(79)

for all i, j = 1, 2; m, m̃ = 1, ..., M (q)
h and n, ñ = 0, ..., N�t −1. Here, t̃n+ξ − tn+ς =

�ñ+ξ,n+ς and the integration kernel νWi j is

νWi j (r;�ñ+ξ,n+ς ) =
H [cP�ñ+ξ,n+ς − r ]

c3P[(
Di j
ϕ,cP + Di j

cP

�2
ñ+ξ,n+ςc2P

r2

)
�ñ+ξ,n+ς ϕP(r;�ñ+ξ,n+ς )

r2
+ Di j

ϕ̂,cP

ϕ̂P(r;�ñ+ξ,n+ς )
cP

]

−H [cS�ñ+ξ,n+ς − r ]
c3S[(

Di j
ϕ,cS + Di j

cS

�2
ñ+ξ,n+ςc2S

r2

)
�ñ+ξ,n+ς ϕS(r;�ñ+ξ,n+ς )

r2
+ Di j

ϕ̂,cS

ϕ̂S(r;�ñ+ξ,n+ς )
cS

]
,

(80)
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where the coefficients Di j
ϕ,cγ , Di j

cγ and Di j
ϕ̂,cγ

are defined in the Appendix A.3 of [16].

If 0 ≤ r ≤ cS�ñ+ξ,n+ς < cP�ñ+ξ,n+ς the kernel νWi j has a reduced form with

singularity O(r−2) for r → 0.
We also have to take into account that both kernels νVi j and νWi j depend on the

difference c2γ�
2
ñ+ξ,n+ς − r2 through the Heaviside functions, which lead to a jump

at the points where the argument vanishes. To overcome this issue related to the
possible presence of one or two wave fronts which can reduce the integration domain
in local space variables, we apply to the latter a suitable decomposition. This splitting
procedure drastically reduces the number of quadrature nodes required to achieve
single precision accuracy [3].

Moreover, to numerically evaluate (74) and (79), we employ specific quadrature
rules to treat the singularities of the kernels νVi j and ν

W
i j defined in (78) and (80). The

interested reader is refered to [3] for a detailed description of the applied quadrature
schemes in case of the integration of the weakly singular kernel. For the numerical
evaluation of the hypersingular integrals we refer to [16].

7 Numerical results

The numerical experiments in this section consider h, p and hp discretizations for
the soft scattering problem (15) (Sects. 7.1-7.2) and the hard scattering problem (17)
(Sect. 7.3). They illustrate the singular behavior of the solution near the crack tip and
the theoretically expected convergence rates.

Unless stated otherwise, for the h version on uniform or graded meshes piecewise
constant basis functions in space and time are chosen to approximate the solution
of the Dirichlet problem (60). Piecewise linear functions are used for the Neumann
problem (61). The p and hp versions are implemented with higher polynomial degrees
in space, up to p = 7. The Lamé parameters and the mass density, where it is not
otherwise specified, are set to be λ = 2, μ = 1 and � = 1 for all the results presented
in this section.

All the numerical results for the Dirchlet problem are computed for a prescribed
right hand side g̃ = (K+ 1/2)g in (15). While the analysis in Sects. 3 and 5 relies on
this form of g̃, as typical in the BEM literature, for numerical convenience we directly
prescribe g̃. Analogously, for the Neumann problem we prescribe h̃ = (K′ − 1/2)h.
Also, we set the weight σ = 0.

7.1 Soft scattering problems on flat obstacle

Example 1 Here we consider the discrete weakly singular integral Eq. (60) on a flat
obstacle � = {(x, 0) ∈ R | x ∈ [−0.5, 0.5]} up to time T = 1. The Dirichlet datum
corresponds to g̃i (x, t) = g̃(x, t) = H [t] f (t)x4, i = 1, 2, where the function

f (t) =
{
sin2(4π t), t ∈ [0, 1/8]
1, t > 1/8

(81)

123



74 A. Aimi et al.

Fig. 5 Horizontal component of
���, calculated on the obstacle �
at the time instant T = 1. This
plot is obtained from the h
version on a 3-graded mesh with
81 nodes and �t = 0.00625

is a temporal profile that leads to an exact solution��� which becomes static in time.

In Fig. 5, the horizontal component of the discrete solution��� of (60) is represented
on the obstacle� at a fixed time instant: as we can observe from the plot, the behaviour
of the solution is singular near the crack tips. Tables 1, 2 and 3 contain the values
ααα
EVααα, namely the squared energy norm of the Galerkin solution, as the number
of spatial degrees of freedom (DOF) is increased (see Sect. 6 for details about the
constructionof the vectorααα and thematrix EV ). This number, in particular, corresponds
to the L2(�) product at the left hand side of (60) with the discrete solution ���h,�t

replacing the test function. For simplicity, in the following tables the number of DOF
is indicated only for one component of the vector-valued solution. The values reported
in 1 are obtained by applying a p version in space: the boundary is uniformly discretized
with segments of length h = 0.1, while the degree p of the space basis function is
increased. For p = 1 we set the time step �t = 0.025 and we halve it whenever p
increases.

The energy values reported in Table 2 refer to the solution of the problem with the
h version: we fix an algebraically graded mesh on the arc as in (62), for given grading
parameter β̃ = 1, 2, 3 and number ofmesh points 2N+1. In Table 3 the discretization
method used is the hp version. We set on � the mesh points geometrically graded, as
indicated in the rule

{
x0,L = − 1

2 , xL, j = 1
2

(
σ N+1− j − 1

)
j = 1, . . . , N + 1

xN+1 = 1
2 , xR, j = 1

2

(
1− σ j

)
, j = 1, . . . , N

, (82)

with σ = 0.2, 0.5 and, for ease of programming, at each refinement of the mesh the
degree p increases uniformly on all the space elements. The parameter Lσ in the table
represents the length of the smallest segment of the mesh.

The energy is increasing towards a common benchmark value for the tested dis-
cretization methods: to illustrate the related convergence rate, in Fig. 6 the squared
error in energy norm is plotted with respect to the spatial DOF. We observe that the
decay of the error follows a straight line in the logarithmic plots for both the p ver-
sion and the h version with β̃ = 1, corresponding to algebraic convergence with rate
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Table 2 Energy norm squared of the approximate solution for T = 1 (h version with algebraically graded
mesh)

�t DOF ααα
EVααα, β̃ = 1 ααα
EVααα, β̃ = 2 ααα
EVααα, β̃ = 3

1.2500× 10−2 10 3.0143× 10−2 3.6212× 10−2 3.7315× 10−2

6.2500× 10−3 20 3.3906× 10−2 3.7501× 10−2 3.7835× 10−2

3.1250× 10−3 40 3.5933× 10−2 3.7813× 10−2 3.7903× 10−2

1.5625× 10−3 80 3.6943× 10−2 3.7890× 10−2 3.7914× 10−2

2 (p), respectively 1 (h) in terms of DOF. This means that the error tends to 0 like
p−1, respectively h1/2. This convergence rate is expected from Corollary 5.8. Indeed,
by Proposition A.3 the energy ααα
EVααα is bounded by the Sobolev norm considered
in Corollary 5.8. Analogous results are obtained for the h version with polynomial
degrees p = 1, 2 in space.

On algebraically graded meshes with β̃ = 2 and 3 the error similarly decays along
a straight line, but of slope −β̃ with increasing DOF. In particular, the BEM on the
graded mesh (62) with β̃ = 3 recovers the optimal convergence order h3/2 expected
in the energy norm for smooth solutions, as in Corollary 5.4.

The fastest convergence in Fig. 6 is obtained by the hp version, for which the error
decays faster than a straight line for both σ = 0.2, 0.5. The graph of the squared error
indicates exponential decay. Convergence is fastest for σ = 0.2, which is close to the
theoretically optimal σ " 0.17. The nodes in this case are more densely clustered near
the endpoints of � than for σ = 0.5.

To illustrate the singular behavior of the solution, Fig. 7 plots the horizontal and the
vertical components of the approximate��� with respect to the distance r towards the
left end of the arc (−0.5, 0)
 for various time instants: one observes that the singular
behavior is independent of time, and the components increase asO(r−1/2) for r → 0.
This confirms the discussion in Sect. 3.1. The solution in this figure is obtained from
the h version on a 3-graded mesh with 81 nodes.

Example 2 Similar results as in Example 1 are obtained also for other boundary data
on a flat obstacle� = {(x, 0) ∈ R | x ∈ [−0.5, 0.5]}.We here set g̃i (x, t) = g̃(x, t) =
H [t] f (t)x , i = 1, 2, where the function f (t) is the temporal profile defined in (81).
The solution of the problem (60) is again singular at the end points of the arc and, as
observed in the previous experiment, the components of��� increase asO(r−1/2)when
the distance r tends to zero (see Fig. 8).

We again study the decay of the error in energy norm for this new Dirichlet con-
dition, leading to similar considerations for the rate of convergence of the different
discretization methods. The spatial and temporal discretization parameters for the h,
p and hp version are chosen as in the previous experiment. The results are shown in

Fig. 9. The squared error for the h version is O
(

hβ̃
)
on the algebraically β̃-graded

mesh, as in Corollary 5.4. The corresponding result for the p version is O
(

p−2
)
, in

agreement with Corollary 5.8. Faster than algebraic convergence is achieved by the
hp version on a geometrically graded mesh.
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Fig. 6 Squared error of the energy norm for various discretization methods

Fig. 7 Asymptotic behaviour towards the left end of �

Fig. 8 Behaviour of the horizontal component�1 on � and w.r.t the distance towards the right endpoint at
T = 1. Both plots are obtained imposing on � an algebraically 3-graded mesh of 80 segments
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Fig. 9 Squared error of the energy norm for various discretization methods

7.2 Soft scattering problems on polygonal obstacles

In the following we consider the weakly singular integral equation (15) on different
types of closed obstacles �, as shown in Fig. 10b, where the four considered convex
polygonal geometries are collected.

Recalling the notation stated in Sect. 2, a closed arc � determines a partition of
R
2 made by the bounded interior domain �′, with ∂�′ = �, and its complement

� = R
2 \ �′. From Sect. 3.1 we know that the solution u in the exterior set � and

near a corner point of � locally behaves like a power of the distance r to the vertex:

ui ≈ Ci,ωext (t)r
ν∗(ωext ), r → 0,

where ωext is the considered exterior angle (with complement ωint ) and the exponent
ν∗(ωext ) is the smallest solution of the equation (25), namely

sin2(ωext ν
∗) =

(
ν∗

k
sinωext

)2

, (83)

with positive real part, where k = 3−2λ/(λ+μ). The prefactorCi,ωext (t) is a smooth
function in t , independent of r , so the leading singular behaviour does not change with
time. The solution��� = p(u)|� of the boundary integral Eq. (15) represents the traction
at the obstacle and, from the discussion in Sect. 3, its asymptotic behaviour a the vertex
can be expressed as

�i ≈ C̃i,ωext (t)r
ν∗(ωext )−1, r → 0.

For Lamé parameters λ = 2, μ = 1 and mass density � = 1, Fig. 10(a) shows the
exterior and interior exponents, ν∗(ωext ) = ν∗(2π −ωint ) and ν∗(ωint ), as a function
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Fig. 10 Expected exponent with dependence onωint and its complementary (k = 5/3) and tested polygonal
meshes (a and b); plot of the vertical component of��� on the base of �1 (c)

Fig. 11 Asymptotic behavior towards the vertices

of ωint . Red crosses indicate the exponents ν∗ corresponding to the red corners of the
polygons depicted on the right of Fig. 10(b), for interior angles 7π

24 (ν∗ = 0.5372), π3
(ν∗ = 0.5451), 3π

8 (ν∗ = 0.542) and 3π
5 (ν∗ = 0.6306).

Example 3 We consider the Galerkin solution of the weakly singular integral Eq. (60)
on the polygons represented in Fig. 10b up to time T = 1. In all cases the right
hand side imposed is g̃1(x, t) = 0, g̃2(x, t) = H [t] f (t)100|x |9.5. An example of
the solution produced by the boundary condition is in Fig. 10(c), where the vertical
component of ��� is plotted at the base of the equilateral triangle �1. The solution is
characterized by a high gradient near the corners on the base. The mesh on each side
of polygons �i , i = 1, . . . , 4, is algebraically graded towards the corners following
(62), for given grading parameter β̃ = 1, 2, 3. The polygons �1 and �4, which are
both equilateral, are discretized with 80 segments per side, while for �2 and �3 we use
80 segments on the two sides which are of equal length and 75 and 87 segments on
the base, respectively. The time step is chosen as �t = 0.00625 for all experiments.

In Fig. 11, for each geometry the Euclidean norm of��� is plotted with respect to the
distance r towards the angle indicated in Fig. 10. We observe that the solution follows
the expected behaviorO(r−(1−ν∗)) for all the considered geometries. In particular, the
asymptotic behavior for acute corners leads to stronger singularities (1 − ν∗ ≈ 0.5)
than for the obtuse angle of the pentagon (1−ν∗ ≈ 0.37). This confirms the theoretical
discussion in Sect. 3.1.

We finally consider the convergence in energy on the polygonal obstacles. In par-
ticular, we examine the equilateral triangle �1 and report in Table 4 the value of the
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Table 4 Energy norm squared of the approximate solution for T = 1

�t DOF ααα
EVααα, β̃ = 1 ααα
EVααα, β̃ = 2 ααα
EVααα, β̃ = 3

5.00× 10−2 30 5.7394× 10−2 7.4875× 10−2 7.6829× 10−2

2.50× 10−2 60 6.8490× 10−2 7.6828× 10−2 7.7460× 10−2

1.25× 10−2 120 7.3821× 10−2 7.7448× 10−2 7.7566× 10−2

6.25× 10−3 240 7.5989× 10−2 7.7558× 10−2 7.7582× 10−2

Fig. 12 Squared error of the energy norm with h version on �1, β̃-graded mesh

energy for each level of the space discretization. The energy tends to a benchmark
value with increasing DOF (also in this case the number refers to one component of
the vector solution), and the squared error in energy norm is shown in Fig. 12. The
decay of the squared error in a log scale plot is linear, corresponding toO(DOF−2ν∗β̃ )
in each experiment as in Corollary 5.4.

Example 4 In this example we show numerically that the singular behavior at the
corners and the decay of the energy error do not depend on the boundary data imposed
at the obstacle. We specifically consider the triangular obstacle �2 in Fig. 10b. The
solution��� of (60) is calculated for a right hand side with trivial horizontal direction
g̃1(x, t) = 0 and different vertical components g̃2(x, t) = H [t] f (t), g̃2(x, t) =
H [t] f (t)x4 and g̃2(x, t) = 100H [t] f (t)|x |9.5. In Fig. 13a, we consider the behavior
of the Euclidean norm of ��� for these different boundary data, plotted as a function
of the distance r to the vertex which is highlighted in red (Fig. 10b, geometry �2).
The singular exponent is expected to be ν∗ " 0.542 for a base angle of 3π/8. Indeed,
we find that, in log scale, the slope of the norm for r → 0 is parallel to the dashed
line corresponding to r−(1−0.542) for each of the tested boundary data. In Fig. 13b the
vertical component of��� is shown on the base of �2 at time T = 1, highlighting the
singular behavior at the corners.

123



82 A. Aimi et al.

Fig. 13 Asymptotic behavior towards the vertices in �2 for different boundary conditions (a) and plot of
the vertical component of��� on the base of �2 for the indicated boundary condition (b)

Fig. 14 Squared error of the
energy norm with h version on
�1, β̃-graded mesh,
g̃2(x, t) = H [t] f (t)x4

In Fig. 14 we consider the equilateral triangle�1 of 10(b) and study the decay of the
error for increasing degrees of freedom for the h version. The number of segments and
the time step are the same as in 4. The right hand side is here given by g̃1(x, t) = 0,
g̃2(x, t) = H [t] f (t)x4. An algebraically β̃-graded mesh is used on each side, where
β̃ = 1, 2. The energy tends to a benchmark value as the number of degrees of freedom
increases, and the squared error in energy norm in a log scale plot decays linearly as
O(DOF−2ν∗β̃ ), in agreement with Corollary 5.4.

7.3 Hard scattering problems on flat obstacle

In the followingwe consider the discrete hypersingular integral Eq. (17) on the obstacle
� = {(x, 0) ∈ R | x ∈ [−0.5, 0.5]} for a time independent Neumann condition. We
focus, in particular, on the solution of the discrete problem (61) using h, p and hp
versions.
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Fig. 15 Time history of �1 and �2 calculated at the middle point of � for the couples of velocities
cS = 1, cP = 2 and cS = 1, cP = 3 (a). Vertical component �2 calculated at the final time instant
T = 7.5 and the related elastostatic solution �2,∞(x, t) = k2

√
1/4− x2 (k2 = −4/3 for cP = 2 and

k1 = −9/8 for cP = 3) (b)

Example 5 WeconsiderNeumanndata corresponding to h̃i (x, t) = ηi , whereηi ∈ R is
constant for i = 1, 2. The datum at the boundary is independent of time. Therefore, as
time increases, the components�i (x, t) of the solution tend to the stationary functions

�i,∞(x) = ki

√
1/4− x2, ki = − c2P

ρc2S
(
c2P − c2S

)ηi , i = 1, 2, (84)

representing the components of the solution for the reference elastostatic Neumann
problem with boundary datum h∞(x) = ηi . We specifically set ηi = 1 for i = 1, 2, so
that both components of��� converge to the same elastostatic function �1,∞ = �2,∞.
Two different sets of velocities are considered, cS = 1, cP = 2 and cS = 1, cP = 3.

Figure 15a shows the time history of �1 and �2, calculated at the midpoint (0, 0)
of �, for both sets of velocities on the time interval [0, 7.5]. We observe that after an
initial transient phase the solution approaches the stationary value (84). In Fig. 15b the
vertical component�2 is plotted on � for speeds cP = 2, 3 at time T = 7.5. This time
is large enough so that for both problems the numerical solution closely matches the
stationary reference solution in (84). For the plots in Fig. 15 equation (61) is solved on
a uniform space-time mesh with mesh size h = 0.025 and�t = 0.0125, respectively.

To illustrate the behaviour of the solution near ∂�, Fig. 16 shows the components
of −���, for cS = 1, cP = 2, with respect to the distance r towards the right end
point of the segment (0.5, 0)
 for various time instants: one observes that the singular
behaviour is independent of time, and the numerical solutions decrease like r1/2 for
r tending to zero. The plots in Fig. 16 are obtained using the h version on a β̃-graded
mesh with 81 nodes, with time step �t = 0.00625.

For the case cS = 1, cP = 2, we study the decay of the error in energy norm for the
approximate solution of (61) up to time T = 2 analysing the value βββ
EWβββ, namely
the squared energetic norm of the approximate solution, which increases towards a
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Fig. 16 Asymptotic behaviour of −�1 and −�2 towards the right end of � for various time instants
(cS = 1, cP = 2). The arc is discretized by a β̃-graded mesh with β̃ = 2 and 81 mesh points

common benchmark value for all tested discretization methods. We refer the reader
to Sect. 6 for construction details of βββ and EW . The number of spatial DOF in the
following, as previously, corresponds to one component of the vector solution. For the
h version we choose a β̃-graded mesh on � with β̃ = 1, 2 and 10, 20, 40, respectively
80 segments. The time step �t = 0.05 in the case of 10 segments is halved at each
refinement of the spatial mesh. The log scale plot in Fig. 17 shows a linear decay of
the error for the h version, parallel to the lines O(DOF−β̃ ). The results confirm the
prediction in Corollary 5.4. For the p version we consider a uniform discretization
of the obstacle with h = 0.1 and a uniform time step �t = 1/(2·DOF). The log
scale plot shows a linear decay of the error parallel to the expected line O(DOF−2).
The hp version with a geometrically graded mesh is considered for meshes on � with
4, 6, 8, 10 and 12 segments. At each refinement of themesh the degree p, starting from
2, increases uniformly on all the space elements. The time step is chosen as�t = 0.125
for 4 segments and halved at each iteration. Similarly to the soft scattering problems
presented above the hp method shows the fastest decay of the error with respect to
increasing spatial DOF.

8 Conclusions

In this work we initiate the study of higher-order versions of the boundary element
method for linear elastodynamics, including h, p and hp versions. The asymptotic
expansions for the solution obtained near geometric singularities of the domain give
rise to efficient discretizations, with the same approximation rates as known for h, p
and hp approximations of time independent problems.

The quasi-optimal hp explicit estimates in this article complement the recent anal-
ysis for the wave equation, for both finite and boundary element methods [21, 23,
42], and for linear elastodynamics in 2d [43]. The convergence is determined by the
singular behavior of the solution near the non-smooth boundary points of the domain.
Our analysis relies on the classical approximation results for time independent prob-
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Fig. 17 Squared error of the energy norm calculated up to time instant T = 2

lems [15], in combination with the analysis of the leading singular terms in the time
dependent problem [40].

Extensive numerical experiments for a slit and polygonal domains in 2d illustrate
the quasi-optimal convergence rates and confirm the expected leading asymptotic
behavior of the solution near a vertex. On a slit the energy error O(p−1) of the p
version converges with the same rate as an h version on a 2-graded mesh. For closed
polygonal domains the solution is less singular near the vertices, depending on the
material parameters and the opening angle. Accordingly, higher convergence rates are
obtained in both the analysis and in the numerical experiments.
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Appendix A

In this appendix we introduce space–time anisotropic Sobolev spaces on the boundary
� as a convenient functional analytic setting for the analysis of the time dependent
boundary integral operators. A detailed exposition may be found in [19, 29]. Further-
more, we collectmapping properties of the integral operatorsV,W in these space-time
anisotropic spaces (TheoremA.2) and show continuity and coercivity of the associated
bilinear forms (Proposition A.3). The latter imply the stability of the Galerkin schemes
in Sect. 4. In the case of an open screen or line segment, ∂� �= ∅, we first extend � to
a closed, orientable Lipschitz manifold �̃. On � we recall the usual Sobolev spaces
of supported distributions:

H̃ s(�) = {u ∈ Hs(�̃) : supp u ⊂ �} , s ∈ R .
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The Sobolev space Hs(�) is the quotient space Hs(�̃)/H̃ s(�̃ \ �). To define a family
of Sobolev norms, αi be a partition of unity subordinate to a covering of �̃ by open
sets Bi . Given diffeomorphisms ϕi from Bi to the unit cube in Rn , Sobolev norms are
induced from R

n , with parameter ω ∈ C \ {0}:

||u||s,ω,�̃ =
( p∑

i=1

∫
Rn
(|ω|2 + |ξξξ |2)s |F

{
(αi u) ◦ ϕ−1i

}
(ξξξ)|2dξξξ

) 1
2

.

Here,F = Fx �→ξξξ denotes the Fourier transformFϕ(ξξξ) = ∫
e−ix·ξξξ ϕ(x) dx. Different

ω ∈ C\{0} induce equivalent norms on Hs(�), ‖u‖s,ω,� = infv∈H̃ s (�̃\�) ‖u+v‖s,ω,�̃

and on H̃ s(�), ‖u‖s,ω,�,∗ = ‖e+u‖s,ω,�̃ . e+ extends the distribution u by 0 from �

to �̃. When a specific ω is fixed, we write Hs
ω(�) for Hs(�), respectively H̃ s

ω(�) for
H̃ s(�). The norm ‖u‖s,ω,�,∗ is stronger than ‖u‖s,ω,� .

We may now define a family of space-time anisotropic Sobolev spaces:

Definition A.1 For σ > 0 and r , s ∈ R define

Hr
σ (R

+, Hs(�)) = {u ∈ D′
+(Hs(�)) : e−σ t u ∈ S ′+(Hs(�)) and ||u||r ,s,� <∞} ,

Hr
σ (R

+, H̃ s(�)) = {u ∈ D′
+(H̃ s(�)) : e−σ t u ∈ S ′+(H̃ s(�)) and ||u||r ,s,�,∗ <∞} .

(85)

Here,D′
+(E) denotes the space of all distributions onRwith support in [0,∞), taking

values in a Hilbert space E = Hs(�), respectively E = H̃ s(�). S ′+(E) ⊂ D′
+(E)

denotes the subspace of tempered distributions. The Sobolev spaces are endowed with
the norms

‖u‖r ,s := ‖u‖r ,s,� =
(∫ +∞+iσ

−∞+iσ
|ω|2r ‖û(ω)‖2s,ω,� dω

) 1
2

,

‖u‖r ,s,∗ := ‖u‖r ,s,�,∗ =
(∫ +∞+iσ

−∞+iσ
|ω|2r ‖û(ω)‖2s,ω,�,∗ dω

) 1
2

. (86)

They are Hilbert spaces. For r = s = 0 they correspond to the weighted L2-space
with scalar product

∫∞
0 e−2σ t

∫
�

uvd�x dt . Because � is Lipschitz, these spaces are
independent of the choice of αi and ϕi when |s| ≤ 1, as for standard Sobolev spaces.

We shall also use the norms ‖u‖r ,s,(t1,t2]×� and ‖u‖r ,s,(t1,t2]×�,∗ for restrictions on
the time interval (t1, t2].

Let now �̃ = ∂�′ the boundary of a Lipschitz subset �′ ⊂ R
n and � ⊂ �̃ open.

Denote � = R
n \�′.

We review the mapping properties for the weakly singular integral operator V and
the hypersingular operator W .
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Theorem A.2 The single layer potential operator and the hypersingular operator are
continuous for σ > 0 and r ∈ R:

V : Hr+1
σ (R+, H̃− 1

2 (�))→ Hr
σ (R

+, H
1
2 (�)) , ,

K′ : Hr+1
σ (R+, H̃− 1

2 (�))→ Hr
σ (R

+, H− 1
2 (�)) ,

K : Hr+1
σ (R+, H̃

1
2 (�))→ Hr

σ (R
+, H

1
2 (�)) ,

W : Hr+1
σ (R+, H̃

1
2 (�))→ Hr

σ (R
+, H− 1

2 (�)) .

This may be found in Theorem 3.1 in [12], see also [8] forW in 2d, with an analogous
proof. See also [31] for a recent discussion ofmappingproperties for thewave equation.

For convenience of the reader we recall basic properties of the bilinear form for the
Dirichlet problem in the infinite space-time cylinder � × R

+,

BD,�×R+(���, �̃̃�̃�) :=
∫
R+

∫
�

V∂t���(t, x) �̃̃�̃�(t, x) d�x dσ t , (87)

where dσ t = e−2σ t dt , as well as the corresponding bilinear form for the Neumann
problem,

BN ,�×R+(���, �̃̃�̃�) :=
∫
R+

∫
�

W∂t���(t, x) �̃̃�̃�(t, x) d�x dσ t , (88)

Proposition A.3 Let σ > 0.

a) For every ���,�̃̃�̃� ∈ H1
σ (R

+, H− 1
2 (�))n there holds:

|BD,�×R+(���, �̃̃�̃�)| � ‖���‖1,− 1
2 ,�,∗‖�̃̃�̃�‖1,− 1

2 ,�,∗ (89)

and

‖���‖2
0,− 1

2 ,�,∗
� BD,�×R+(���,���). (90)

b) For every ���, �̃̃�̃� ∈ H1
σ (R

+, H
1
2 (�))n there holds:

|BN ,�×R+(���, �̃̃�̃�)| � ‖���‖1, 12 ,�,∗‖�̃̃�̃�‖1, 12 ,�,∗ (91)

and

‖���‖2
0, 12 ,�,∗

� BN ,�×R+(���,���). (92)

Proof The inequalities (89) and (91) follow from the mapping properties in Theorem
A.2. The coercivity (92) was shown in [7, 8] in 2d, and the proof holds verbatim in
any dimension.
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To show (90), we consider the elastic problem in the frequency domain:

{
(λ+ μ)∇(∇ · u)+ μ�u+ ρω2u = div σ(u)+ ρω2u = 0, x ∈ �′ ∪�

u = g, x ∈ �̃.
.(93)

We assume Im (ω) ≥ σ > 0. The energeticweak formulation for the single layer equa-
tion for the traction [p] = [σ(u)n] in frequency domain is given by (using Parseval’s
identity):

Find [p] ∈ H
− 1

2
ω (�̃)n such that

BD,ω([p],qqq) = 〈−iωVω[p],qqq〉�̃ = 〈−iωg,qqq〉�̃ (94)

for all qqq ∈ H
− 1

2
ω (�̃)n .

It involves the single layer operator Vω obtained from V by Fourier transformation.
Using Green’s formula as in [8], Thm 3.1, we have

∫
�′∪�

(
σ(u) : ε(u)− ρω2|u|2

)
dx =

∫
�̃

u · [σ(u)n]d�̃ ≡ 〈Vω[p], [p]〉�̃ .

Now note that |〈−iωVω[p], [p]〉�̃| ≥ Re iω〈Vω[p], [p]〉�̃ and

Re iω〈Vω[p], [p]〉�̃ = Re

(
iω

∫
�′∪�

σ(u) : ε(u)dx
)
+ Re

(
−iω

∫
�′∪�

ρ|ω|2|u|2dx
)

= 2Im(ω)Eω ≥ 0, (95)

with

Eω = 1

2

∫
�′∪�

(
σ(u) : ε(u)+ ρ|ω|2|u|2

)
dx .

Physically, Eω is the energy of the displacement u, and it satisfies

Eω ≥ Cσ‖u‖21,ω,�′∪� (96)

for a positive constant Cσ . From (95) and (96) we deduce that

|〈−iωVω[p], [p]〉�̃| ≥ C̃σ‖u‖21,ω,�′∪� .

From the trace theorem there exists a positive constant Ctrace such that

2Ctrace‖u‖21,ω,�′∪� ≥ 2‖p|�̃+‖2−1/2,ω,�̃ + 2‖p|�̃−‖2−1/2,ω,�̃ ≥ ‖[p]‖2−1/2,ω,�̃.

Coercivity in the frequency domain follows:

|〈−iωVω[p], [p]〉�̃| ≥
C̃σ

2Ctrace
‖[p]‖2−1/2,ω,�̃. (97)
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To show (90), it remains to translate the coercivity (97) from the frequency domain
into the time domain. Integrating (94) in ω and using the Parseval identity, noting
F−1ω→t (ϕ̂(ω + iσ)) = ϕ(t)e−σ t , we get the identity

∫
R+iω0

I

∫
�̃

−iωVω�̂�� · �̂��d�̃dω =
∫ +∞

0

∫
�̃

e−2σ t ∂

∂t
(V���) ·���d�̃dt = BD (���,���) .

We now use (97):

Re BD (���,���) =
∫
R+iσ

Re iω〈Vω�̂̂�̂�, �̂̂�̂�〉�̃ ≥
C̃σ

2Ctrace

∫
R+iσ

‖�̂̂�̂�‖2−1/2,ω,�̃dω .

Therefore

|BD (���,���) | ≥ C̃ωI

2Ctrace
‖���‖20,−1/2,�̃ .

Proposition A.3 follows by restricting to distributions supported in � ⊂ �̃. ��

Appendix B

In the following, let us describe the approach by Matyukevich and Plamenevskiı̌ from
[40] to prove the asymptotic expansion of the solution to the elastodynamic Dirichlet
problem (4)–(6) in a neighborhood of a non-smooth boundary point of the domain.
For ease of reference to the work of Plamenevskiı̌ and coauthors, as well as [23],
this section adopts some of the notation from the analysis community, rather than the
notation commonly found in numerical works. In particular, the σ > 0 from other
sections in the article is here called γ , singular exponents λ� are denoted by iλ�, and
the definition of the Fourier transform and its inverse are interchanged. However, note
that the dimensions n and m are interchanged compared to the specific reference [40],
but they agree with the main body of this paper.

In the following we consider two model geometries, wedge and corner, to describe
the local behavior of solutions to this and more general systems near non-smooth
boundary points of the domain. They are of the form D = K × R

n−m ⊂ R
n , with

m ≥ 2 and K ⊂ R
m an open cone. We use local coordinates x = ( y, z) in the wedge

D.
For n ≥ 2we consider the elastodynamic problem (4)–(6) in the space-time cylinder

D× R, written abstractly in the form:

L(Dx, Dt )u(x, t) = f (x, t), (x, t) ∈ D× R , (98)

u(x, t) = g(x, t), (x, t) ∈ ∂D× R . (99)

with the matrix differential operator (L(Dx, Dt )u(x, t))p = ∂2t u(x, t)
−∑n

k,l,q=0 ∂kakl
pq(x)∂luq(x, t), p = 1, . . . , n.
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Applying the Fourier transformFt �→τ leads to a parameter-dependent elliptic prob-
lem, with τ = σ − iγ , γ > 0, σ ∈ R:

L(Dx, τ )v(x, τ ) = f̂ (x, τ ), x ∈ D, v(x, τ ) = 0, x ∈ ∂D . (100)

We denote byAD(τ ) = L(Dx, τ ) the closure of this operator in L2(D). We first note
a well-posedness result, Theorem 4.1.2 in [40].

Proposition B.1 For every f̂ ∈ L2(D) and τ = σ − iγ , σ ∈ R, γ > 0, there exists
a unique solution v of (100). Further, there exists a constant c > 0 independent of τ
and f̂ such that

γ 2
∫
D

(|τ |2|v(x, τ )|2 + |Dxv(x, τ )|2)dx ≤ c
∫
D

| f̂ (x, τ )|2dx . (101)

Proof On the standard Sobolev space H1
0 (D) we define the sesquilinear form

Bτ
D(u, v) =

∫
D

∑
i, j,k,l

Ci j
kl (x)∂kui (x)∂lv j (x)dx − τ 2

∫
D

u(x) · v(x)dx ,

where Ci j
kl denotes the Hooke tensor from Sect. 2. A key property of Bτ

D is the Korn
inequality, which estimates Bτ

D in terms of the norm of H1(D); see Proposition 4.1.3
in [40]: If τ 2 ∈ C \ R+, then there exists δ = δ(τ ) > 0 such that |Bτ

D(u, u)| ≥
δ‖u; H1(D)‖2.

The assertion then follows by applying the Lax-Milgram theorem. ��

B.1 Solution of parameter-dependent Dirichlet problem in a cone

For a finer analysis one performs a Fourier transform Fz �→ξ in the variable z in (98),
(99) and introduces polar coordinates in K: r = | y|, ωωω = y

| y| . We first assume that
v solves the non-homogeneous Dirichlet problem with parameters τ ∈ R − iγ and
ξ ∈ R,

L(D y, ξ, τ )v( y, ξ, τ ) = f̂ ( y, ξ, τ ), y ∈ K (102)

v( y, ξ, τ ) = ĝ( y, ξ, τ ), y ∈ ∂K . (103)

For simplicity, we first consider the homogeneousDirichlet problem, corresponding
to g = 0. The corresponding statements for nonzero Dirichlet data g can be deduced
from the general results for a wedge in Sect. B.2.

Proposition B.2 (Theorem 6.2.5, [40]) Let τ ∈ R−iγ with γ > 0. For all f̂ ∈ L2(K),
There exists a unique, strong solution v of (102), (103), and

γ 2(p2‖v; L2(K)‖2 + ‖Dxv; L2(K)‖2) ≤ c‖ f̂ ; L2(K)‖2 .

Here p = √|ξ |2 + |τ |2, and c is independent of ξ , τ .
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Define the weighted Sobolev norms

‖v; Hs
β(K)‖ =

⎛
⎝∑
|α|≤s

∫
K

r2(β+|α|−s)|Dα
xv|2

⎞
⎠

1
2

dx , (104)

‖v; Hs
β(K, p)‖ =

(
s∑

k=0
p2k‖v; Hs−k

β (K)‖2
) 1

2

. (105)

Let χ ∈ C∞0 (K) be a cut-off function which is = 1 in a neighborhood of the vertex
of the cone K, and χτ (x) = χ(|τ | y). From Proposition B.2 one obtains with p =√|ξ |2 + |τ |2, and c independent of ξ , τ ,

γ 2‖v; H1
β (K, p)‖2 + ‖χτv; H2

β (K, p)‖2

≤ c

{
‖L(D y, ξ, τ )v; H0

β (K)‖2 +
p2(1−β)

γ 2 ‖L(D y, ξ, τ )v; L2(K)‖
}
. (106)

Set " = K ∩ Sm−1. For every λ ∈ C the pencil

AD(λ)ϕϕϕ =
{

r2−iλL(D y, 0, 0)r
iλϕϕϕ,ϕϕϕ|∂"

}
(107)

defines a map

AD(λ) : H2(")→ L2(")× H3/2(∂") ,

which is an isomorphism except for a discrete set of eigenvalues {λ�}.
For the elastodynamic equation L has constant coefficients and is of the form

L(Dx, Dt )v = ∂2t v + A(Dx)v with

A(Dx) = A(D y, Dz) = Dk Akl Dl ,

where each of the Akl is a constant matrix Akl = (akl
i j )i, j . The operator pencil is then

given by

{
r2−iλA(D y, 0)r

iλϕϕϕ,ϕϕϕ|∂"
}
. (108)

We assume that the strip {λ ∈ C : m − 3 ≤ 2Im λ ≤ m − 2} does not intersect the
spectrum of AD . For an eigenvalue λ� of AD we take a power-like solution

u�( y) = r iλ�
k∑

q=0

1

q! (i ln(r))
qϕϕϕ

(k−q)
� (ωωω) (109)
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of the homogeneous Dirichlet problem with τ = 0, ξ = 0:

L(D y, 0, 0)u( y) = 0, y ∈ K , (110)

u( y) = 0, y ∈ ∂K . (111)

Here, {ϕϕϕ(0)� , . . . ,ϕϕϕ
(k)
� } is a Jordan chain to λ�, consisting of an eigenvector ϕϕϕ(k)� and

generalized eigenvectors ϕϕϕ(0)� , . . . ,ϕϕϕ
(k−1)
� . Let κ1 ≥ κ2 ≥ · · · ≥ κJ denote the partial

multiplicities of the λ� , and let {ϕϕϕ(0, j)
� , . . . ,ϕϕϕ

(κ j−1, j)
� : j = 1, . . . , J } be a canonical

system of Jordan chains. The functions

u(k, j)
� ( y) = r iλ�

k∑
q=0

1

q! (i ln(r))
qϕϕϕ

(k−q, j)
� (ωωω), (112)

where k = 0, . . . , κ j−1 and j = 1, . . . , J , constitute a basis in the space of power-like
solutions corresponding to λ�.

Remark B.3 In special geometries the spectral problem for AD admits an explicit
solution. See Sect. 3.1 for a discussion of the eigenvalues and eigenfunctions in the
case of a polygon, Sect. 3.2 for an edge, and Section 3.3 for a circular cone.

Let V (k, j)
� be the infinite series of dual functions satisfying the homogeneous Eqs.

(110), (111), and let V (k, j)
�,M be its truncation after M terms.

The dual vector functions

v
(k, j)
� ( y) = r iλ�−(m−2)

k∑
q=0

1

q! (i ln(r))
qψψψ

(k−q, j)
� (ωωω), (113)

form a basis in the space of power-like solutions to (110), (111) that correspond to
the eigenvalue λ� + i(m − 2). The bases match under specific orthogonality and
normalization conditions (see, for example, (114) in [40]), respectively [44].

Denote by {uk, j
� }, {vk, j

� } the matched bases of power-like solutions of (110), (111).
Next we consider the homogeneous problem with parameters τ ∈ R − iγ and ξ ∈
R

n−m , corresponding to (102), (103),

L(D y, ξ, τ )v( y, ξ, τ ) = 0, y ∈ K (114)

v( y, ξ, τ ) = 0, y ∈ ∂K . (115)

Substituting u(k, j)
� in (114), (115), we construct the formal series

U (k, j)
� ( y, ξ, τ ) =

∞∑
q=0

r iλ�+q P(k, j)q(ωωω, ξ, τ, ln(r)) (116)
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satisfying (114), (115). Here P(k, j)q are polynomials in ξ, τ, ln(r), with coefficients

smoothly depending on ωωω ∈ ". Replacing {uk, j
� } by {vk, j

� }, we obtain the formal
series

V (k, j)
� ( y, ξ, τ ) =

∞∑
q=0

r i(λ�+i(m−n−2))+q Q(k, j)q(ωωω, ξ, τ, ln(r)), (117)

satisfying (114), (115). The functions Q(k, j)q again obey analogous properties to
P(k, j)q .

In reference [40] the formal series U (k, j)
� , V (k, j)

� are constructed for these bases.

Consider now (102), (103) with χv ∈ H2
β (K), f̂ ∈ H0

β (K) ∩ H0
γ (K), for γ < β.

As above, χ ∈ C∞0 (K) denotes a cut-off function which is = 1 in a neighborhood of
the vertex of the cone K. If the line {λ ∈ C : Im λ = γ + m

2 − 2} does not intersect
the spectrum of the pencil AD , then we have

v = χ
∑

c(k, j)
� U (k, j)

�,M + h ,

where the remainder h is such that χh ∈ H2
γ (K). Here U (k, j)

�,M is the partial sum of

the series U (k, j)
� containing M terms such that χr iλ�+(M+1)P (k, j)

M+1 ∈ H2
γ (K). The

asymptotic formula for v involves the summands corresponding to the eigenvalues
of the pencil in the strip {λ ∈ C : Im λ ∈ (γ + m

2 − 2, β + m
2 − 2)}, so that

χU (k, j)
�,M ∈ H2

β (K) and χU
(k, j)
�,M /∈ H2

γ (K)

To state the main result for the expansion of the parameter-dependent problem near
the vertex of the cone K, we introduce the following function spaces:

‖v; DHβ(K, ξ, τ )‖ =
(
γ 2‖v; H1

β (K, p)‖2 + ‖χpv; H2
β (K, p)‖2

) 1
2
,

‖ f̂ ; RHβ(K, ξ, τ )‖ =
(
‖ f̂ ; H0

β (K)‖2 + p2(1−β)γ−2‖ f̂ ; L2(K)‖2
) 1

2
,

where p = √|ξ |2 + |τ |2 and τ = σ − iγ (σ ∈ R, γ > 0). By Proposition B.2 and
(106), the operator L(D y, ξ, τ ) from Problem (102), (103), defines a continuous map
L(D y, ξ, τ ) : DHβ(K, ξ, τ )→ RHβ(K, ξ, τ ).

In [40], Matyukevich and Plamenevskiı̌ investigate the dependence of properties
of L(D y, ξ, τ ) on β. Let 1 > β1 > β2 > . . . be numbers in (−∞, 1] such that every
line {λ ∈ C : Im λ = βr + m

2 − 2} contains at least one eigenvalue of the pencil AD .
Matyukevich and Plamenevskiı̌ obtain the following results:

Theorem B.4 (Theorem 6.3.5, [40]) Suppose that β ∈ (β1, 1], γ > 0 and f̂ ∈
RHβ(K, ξ, τ ). Then (102), (103) with right hand side f̂ admits a unique solution v

satisfying

‖v; DHβ(K, ξ, τ )‖ ≤ c‖ f̂ ; RHβ(K, ξ, τ )‖,
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where c is independent of (ξ, τ ).

Theorem B.5 (Proposition 6.4.1, [40]) Suppose γ > 0, β ∈ (βr+1, βr ), 0 < βr−β <

1, f̂ ∈ RHβ(K, ξ, τ ) and

( f̂ ,w(k, j)
� (·, ξ, τ ))L2(K) = 0

for all w(k, j)
� corresponding to eigenvalues of AD in the strip {Im λ ∈ (βr+1 + m

2 −
2, β1 + m

2 − 2)}. Then the solution v of (102), (103), admits the representation

v( y, ξ, τ ) = χ(p y)
∑
�

∑
k, j

c(k, j)
� (ξ, τ )u(k, j)

� ( y)+ v0( y, ξ, τ ) .

Here the outer summmation over � sums over all eigenvalues λ� of the pencil with
Im λ = βr+ m

2 −2, while the inner summation sums over a basis {u(k, j)
� } of power-like

solutions as in (109) corresponding to λ�. The remainder v0 belongs to DHβ(K, ξ, τ ).
There holds

c(k, j)
� (ξ, τ ) = piλ�

∑
q

1

q! (i ln(p))qd(k+q, j)
� (ξ, τ ) ,

with

d(k, j)
� (ξ, τ ) = p−2

(
f̂ (p−1·, ξ, τ ),w(k, j)

� (·, ξ/p, τ̄ /p)
)

L2(K)
.

Moreover there holds

‖v0; DHβ(K, ξ, τ )‖ ≤ c‖ f̂ ; RHβ(K, ξ, τ )‖,
|d(k, j)
� (ξ, τ )| ≤ cpβ+

m
2 −2‖ f̂ ; RHβ(K, ξ, τ )‖,

with a constant c independent of ξ , τ and f̂ .

B.2 Solution of a parameter-dependent Dirichlet problem in a wedge

By means of an inverse Fourier transformF−1ξ �→z in the dual edge variable ξ , we obtain
results for the general Dirichlet problem in the wedge D,

L(x, Dx, τ )v(x, τ ) = f̂ (x, τ ), x ∈ D, (118)

v(x, τ ) = ĝ(x, τ ), x ∈ ∂D , (119)

the problem in the frequency domain corresponding to (98), (99).
The regularity of the solutions is described in the following weighted Sobolev

spaces on D = K× R
n−m . In D, one uses the coordinates x = ( y, z) and introduces
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polar coordinates in K: r = | y|, ωωω = y
| y| . Define

‖u; Hs
β(D)‖ =

⎛
⎝∑
|α|≤s

∫
D

r2(β+|α|−s)|Dα
xu|2

⎞
⎠

1
2

, (120)

‖u; Hs
β(D, p)‖ =

(
s∑

k=0
p2k‖u; Hs−k

β (D)‖2
) 1

2

. (121)

Corresponding spaces Hs
β(∂D) and Hs

β(∂D, p) on ∂D are obtained as trace spaces for
Hs
β(D), respectively Hs

β(D, p).
The basic existence result is given by:

Proposition B.6 (Theorem 4.2.2, [40]) Suppose that the wedge D is admissible in the
sense of [40], { f̂ , ĝ} ∈ L2(D) × H1(∂D) and τ = σ − iγ , σ ∈ R, γ > 0. Then
there exists a unique strong solution v of (118) and (119). Furthermore, there exists a
constant c > 0 independent of τ such that

γ 2‖v, H1(D, |τ |)‖2 + γ ‖ p(v), L2(∂D)‖2 ≤ c
(
‖ f̂ ‖2L2(D)

+ γ ‖ ĝ, H1(∂D, |τ |)‖2
)
.

Higher regularity has been obtained byMatyukevich and Plamenevskiı̌ in the spaces
Hs
β(D). Following [40] we only state the result for homogeneous boundary conditions.

Proposition B.7 (Proposition 5.1.1, [40]) Let β ≤ 1. Assume Im λ = β + m
2 − 2

does not intersect the spectrum of AD. Then for v ∈ H2
β (D, 1) ∩ H1

β=0(D) with

L(Dx, 0)v ∈ L2(D) there holds

‖χτv, H2
β (D, |τ |)‖2 + γ 2‖v, H1

β (D, |τ |)‖2

≤ c
{
‖L(Dx, τ )v, H0

β (D)‖2 + |τ |2(1−β)γ−2‖L(Dx, τ )v, L2(D)‖2
}
, (122)

where χτ (x) = χ(|τ | y) for some χ ∈ C∞0 (K) which is = 1 in a neighborhood of the
vertex of the cone K. The constant c is independent of v, τ = σ − iγ , σ ∈ R, γ > 0.

A corresponding result for the wave equation with inhomogeneous boundary con-
ditions has been considered in [46], Formula (7), but we omit the more involved
statement.

The proof in [40] is based on three steps: (i) estimates far from the edge, (ii) estimates
near the edge, (iii) the global a priori estimate (101).

B.3 Solution of a time-dependent problem in a wedge; non-homogeneous
boundary conditions

We now present results for the time-dependent system (98), (99), with constant coeffi-
cients, obtained from the frequency-domain results via the inverse Fourier transform.
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They are stated in terms of the following weighted function spaces in the space-time
cylinder Q = D× R, with coordinates x = ( y, z) ∈ D and parameter q > 0:

‖w; Hs
β(Q)‖ =

⎛
⎝∑
|α|≤s

∫
R

∫
D

r2(β−s+|α|)|Dα
x,tw(x, t)|2 dx dt

⎞
⎠

1/2

,

‖w; Hs
β(Q, q)‖ =

(
s∑

k=0
q2k‖w; Hs−k

β (Q)‖2
)1/2

.

If γ > 0, we set wγ (x, t) := exp(−γ t)w(x, t) and define

‖w; V s
β (Q, γ )‖ = ‖wγ ; Hs

β(Q, γ )‖ .

The corresponding spaces on the boundary ∂Q are defined as the trace spaces of
Hs
β(Q), respectively V s

β (Q, γ ).

Definition B.8 Assume ( f , g) ∈ V 0
0 (Q, γ ) × V 3/2

0 (∂Q, γ ), and let v be a strong

solution to (118), (119) in D with right hand side ( f̂ , ĝ). Then u( y, z, t) =
F−1(ξ,τ )→(z,t)v( y, ξ, τ ) is called a strong solution of (98), (99).

Proposition B.6 implies that for any ( f , g) ∈ V 0
0 (Q, γ )×V 3/2

0 (∂Q, γ )with γ > 0
the problem (98), (99) admits a unique strong solution and

γ 2‖u; V 1
0 (Q, γ )‖2 + γ ‖ p(u), V 0

γ (∂D, γ )‖2

≤ c
(
‖ f ; V 0

0 (Q, γ )‖2 + γ ‖g; V 3/2
0 (∂Q, γ )‖2

)
,

for a constant c > 0 independent of γ .
Let χ ∈ C∞(K) be a cut-off function which is identically 1 in a neighborhood of

the conical point 0. Define

Xu( y, z, t) = F−1(ξ,τ )→(z,t)χ(p y)F(z′,t ′)→(ξ,τ )u( y, z′, t ′) (123)

and

$μu( y, z, t) = F−1τ→t |τ |μFt ′→τ u( y, z, t ′) . (124)

Higher regularity theorems involve the following norms in Q: For β ∈ R and γ > 0

‖v; DVβ(Q, γ )‖ =
(
γ 2‖v; V 1

β (Q, γ )‖2 + ‖Xv; V 2
β (Q, γ )‖2 + γ ‖∂νv; V 0

β (∂Q, γ )‖2
)1/2

,

(125)

‖ f ; RVβ(Q, γ )‖ =
(
‖ f ; V 0

β (Q, γ )‖2 + γ−2‖$1−β f ; V 0
0 (Q, γ )‖2

)1/2
. (126)

‖( f , g);RVβ(Q, γ )‖ =
(
‖ f ; RVβ(Q, γ )‖2 + ‖X g; V 3/2

β (∂Q, γ )‖2 + γ ‖g; V 1
0 (∂Q, γ )‖2
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+γ−1‖$1−β g; V 1
0 (∂Q, γ )‖2

)1/2
. (127)

More generally, one may introduce for q ∈ N0

‖ f ; RVβ,q(Q, γ )‖

=
⎛
⎝ q∑

j=0
γ−2 j‖$ j f ; V q− j

β+q− j (Q, γ )‖2 + γ−2(1+q)‖$1−β+q f ; V 0
0 (Q, γ )‖2

⎞
⎠

1/2

,

and similarlyRVβ,q(Q, γ ) and DVβ,q(Q, γ ).
The following result may then be found in Theorem 7.4, [40], for g = 0 and q = 0.

It may be extended to inhomogeneous boundary conditions and q > 0 using the
arguments in [33].

Theorem B.9 Suppose q ∈ N0, γ > 0 and ( f , g) ∈ RVβ,q(Q, γ ). a) If β ∈ (β1, 1),
the strong solution u to (98), (99) belongs to DVβ,q(Q, γ ) and there exists c > 0
independent of γ such that

‖u; DVβ,q(Q, γ )‖ ≤ c‖( f , g);RVβ,q(Q, γ )‖ .

b) If β ∈ (βr+1, βr ), then there exists a solution u to (98), (99) if and only if for all
ξ ∈ R

n−m, for all τ ∈ R − iγ and for all wk, j
� corresponding to eigenvalues λ� of

AD with Im λ ∈ [βr + m
2 − 2, β1 + m

2 − 2],

( f̂ (·, ξ, τ ),wk, j
� (·, ξ, τ ))L2(K) + ( ĝ(·, ξ, τ ), ppp(wk, j

� )(·, ξ, τ ))L2(∂K) = 0 . (128)

We can now state the main result of this section, which gives the asymptotics of the
time-dependent problem in a neighborhood of the edge. It may be found in Theorem
7.5, [40], for g = 0 and q = 0. The extension to inhomogeneous boundary data g
follows as in Sect. 3: choose an extension g̃ in the domain with Dirichlet trace g.
Theorem 7.5, [40] then assures an asymptotic expansion of the function U = u − g̃,
which satisfies homogeneous boundary conditions. The expansion of u = U+ g̃ then
follows.

Theorem B.10 Suppose γ > 0 and ( f , g) ∈ RVβ,q(Q, γ ) for β ∈ (βr+1, βr ) with

0 < βr − β < 1. Assume that for all ξ ∈ R
n−m, for all τ ∈ R− iγ and for all wk, j

�

corresponding to eigenvalues λ� of AD with Im λ ∈ [βr + m
2 − 2, β1 + m

2 − 2] the
relation (128) holds. Then the solution u to (98), (99) admits an asymptotic expansion

u( y, z, t) =
∑
�

∑
k, j

(Xc̃k, j
� )( y, z, t)uk, j

� ( y)+ u0( y, z, t) , (129)

with u0 ∈ DVβ,q(Q, γ ). Here the first sum is over all eigenvalues λ� with Im λ = βr+
m
2 −2, while the second sum is over all generalized eigenfunctions uk, j

� corresponding
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to λ�. The coefficients c̃k, j
� (z, t) are defined by

c̃k, j
� = F−1(ξ,τ )→(z,t)c

k, j
� ,

where

ck, j
� = piλ�

∑
q

1

q! (i ln p)qd(k+q, j)
� (ξ, τ ), (130)

and, with p = √|ξ |2 + |τ |2 and w
k, j
� as in Theorem B.9,

d(k+q, j)
� (ξ, τ ) = p−2( f̂ (p−1·, ξ, τ ),wk, j

� (·, ξ/p, τ/p))L2(K)

+p−1( ĝ(p−1·, ξ, τ ), ppp(wk, j
� )(p−1·, ξ/p, τ/p))L2(∂K).

Moreover, the following estimates hold: ‖e−γ t d̃�; H2−m
2 −β(Rn−m+1)‖ ≤ c‖( f , g);

RVβ,q(Q, γ )‖ and ‖u0; DVβ,q(Q, γ )‖ ≤ c‖( f , g);RVβ,q(Q, γ )‖.
The explicit formulas show that for f smooth in time also the coefficients d� will be
smooth in time.

Analogous results for the Neumann problem may be obtained in a similar way, see
[34, 40]. The boundary condition affects the corresponding stencil AN and conse-
quently its eigenvalues iλ� and singular functions wk, j

� .

Appendix C

We recall certain auxiliary results from [21], which are used in the proofs of Theorem
5.3 and Theorem 5.7.

Lemma C.1 ( [21], Lemma 3) Let �, � j ( j = 1, . . . , N ) be Lipschitz domains

with � =
N⋃

j=1
� j , s ∈ [−1, 1] and r ∈ R. Then for all ũ ∈ Hr

σ (R
+, H̃ s(�)),

u ∈ Hr
σ (R

+, Hs(�)),

N∑
j=1
‖u‖2r ,s,� j

≤ ‖u‖2r ,s,� , ‖ũ‖2r ,s,�,∗ ≤
N∑

j=1
‖ũ‖2r ,s,� j ,∗ . (131)

Lemma C.2 ( [21], Lemma 8) Let I j = [0, h j ], r ∈ R, 0 ≤ s j ≤ 1, f2 ∈ H̃−s2(I2),
f1 ∈ H̃r (R+, H−s1(I1). Then there holds

‖ f1(t, x) f2(y)‖r ,−s1−s2,I1×I2,∗ ≤ ‖ f1‖r ,−s1,I1,∗‖ f2‖H̃−s2 (I2)
.

A similar result holds in the positive Sobolev norms:
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Lemma C.3 ( [21], Lemma 9) Let I j = [0, h j ], 0 ≤ s ≤ 1, f2 ∈ H̃ s(I2), f1 ∈
H̃ s(R+, Hs(I1). Then there holds

‖ f1(t, x) f2(y)‖r ,s,I1×I2,∗ ≤ ‖ f1‖r ,s,I1,∗‖ f2‖H̃ s (I2)
.

Lemma C.4 ( [21], Lemma 10) Let 0 ≤ r ≤ ρ ≤ q + 1, −1 ≤ s ≤ 0, R =
[0, h1] × [0, h2], u ∈ Hρ([0,�t), H1(R)), �q

t u the orthogonal projection onto
piecewise polynomials in t of order q, �0

x,yu = 1
h1h2

∫
R

u(t, x, y)dy dx. Then for

p = �
q
t �

0
x,yu we have

‖u − p‖r ,s,R,∗ � (�t)ρ−rmax{h1, h2,�t}−s‖∂ρt u‖L2([0,�t)×R)

+max{h1, h2,�t}−s (h1‖ux‖L2([0,�t)×R) + h2‖uy‖L2([0,�t)×R)

)
. (132)

If u(t, x, y) = u1(t, x)u2(y), u1 ∈ Hρ([0,�t), H1([0, h1])), u2 ∈ H1([0, h2])
then

‖u − p‖r ,s,R,∗ � (�t)ρ−rmax{h1, h2,�t}−s‖∂ρt u‖L2([0,�t)×R)

+
(

h1−s
1 ‖ux‖L2([0,�t)×R) + h1−s

2 ‖uy‖L2([0,�t)×R)

)
.

Lemma C.5 ( [21], Lemma 11) Let Q = [0, h1] × [0, h2], u ∈ H3([0,�t) × Q), p
the bilinear interpolant of u at the vertices of Q. Then there holds for r ∈ R

‖u − p‖r ,0,[0,�t)×Q � max{h1,�t}2‖uxx‖r ,0,[0,�t)×Q

+max{h2,�t}2‖uyy‖r ,0,[0,�t)×Q

+ (max{h1,�t}2 +max{h2,�t}2)‖utt‖r ,0,[0,�t)×Q

+max{h1,�t}2 max{h2,�t}‖uxxy‖r ,0,[0,�t)×Q (133)

‖(u − p)x‖r ,0,[0,�t)×Q � max{h1,�t}‖uxx‖r ,0,[0,�t)×Q

+max{h1,�t}‖uxt‖r ,0,[0,�t)×Q

+max{h2,�t}2‖uxyy‖r ,0,[0,�t)×Q . (134)
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