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Abstract

We study the stochastic p-Laplace system in a bounded domain. We propose two new
space—time discretizations based on the approximation of time-averaged values. We
establish linear convergence in space and 1/2 convergence in time. Additionally, we
provide a sampling algorithm to construct the necessary random input in an efficient
way. The theoretical error analysis is complemented by numerical experiments.
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1 Introduction

Let O C R” be a polygonal domain,n > 1, N > 1, T > 0 be finite. We are interested
in the approximation of the solution process u : 2x [0, T]x O — R to the stochastic
p-Laplace system. Given an initial datum u( and a stochastic forcing term G (u) dW
(for the precise assumptions see Assumption 1), u is determined by the relations

du — div S(Vu) dr = G(u) dW inQx (0,7T) x O,
u=20 onQx (0,7T) x 00, (1.1)
u(0) = ug on 2 x O,

where S(£) := (k + |E))P72 & € RN*", p € (1, 00) and k > 0. Closely related to S
p—2
is the nonlinear operator V (§) := (x + IEI)IT £ e RV,

1.1 Model

The system (1.1) has many important applications in nature. As one major example,
it provides a prototype system towards the modeling of non-Newtonian fluids. More
specifically, it is closely related to power law fluids [14, 69]. The case p = 2 corre-
sponds to the famous stochastic heat equation and has been studied extensively, both
analytically e.g. [12, 47, 48] as well as numerically e.g. [1, 24, 36, 42, 67].

The p-Laplace system arises as a stochastically perturbed gradient flow of the
energy J : WO1 "P(0) - [0, 0o) defined by

T (u) 1=/O<p(|Vu|)dx, (1.2)
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Averaged discretization of stochastic p-Laplace 559

where ¢(t) := fot (k + s)P~2s ds. In the case k = O the energy (1.2) corresponds to
the classical p-Dirichlet energy.

1.2 Existence and well-posedness

The existence of analytically weak solutions in the space L2 (2; C ([0, T1; L? (0)))N

L? (Q; L? (O, T; WO1 P 0) )) can be established by standard monotonicity arguments
[61]. It requires a linear growth assumption on the noise coefficient G and L?(0)-
integrable initial data.

First results on the existence of strong solutions to stochastically perturbed gradient
flows have been obtained by Gess [43]. It includes the degenerate, p > 2, p-Laplace
equation.

In the literature different generalization of (1.1) have been considered. Well-
posedness for merely L !-initial data has been addressed in [68]. More general systems,
where p is allowed to depend on (w, ¢, x) respectively on (¢, x), are considered in [73,
74] respectively in [9]. It was further extended by Breit and Gmeineder [17] to electro-
rheological fluids. Electro-rheological fluids are modeled by (1.1) complemented by
an additional divergence-free constraint and a free pressure variable. The singular case
p € [1, 2) has been analyzed in [60], [44] and [5].

1.3 Regularity

Regularity properties of a function u become particularly important when it comes to
the approximability of # within a discrete function class. Prominently, discrete tensor
spaces generated via a time stepping scheme and a finite element discretization in space
can approximate smooth functions more easily compared to non-smooth functions.

Historically, many authors addressed Holder and C'-*-regularity of solutions to
the deterministic steady p-Laplace equation, e.g. [26, 34, 56, 64, 70-72]. In general
« € (0, 1) is an unknown quantity. While C!:%-regularity can be used to measure the
approximation quality of finite elements, they usually fail to produce optimal results,
since in general o < 1.

Sobolev regularity provides an alternative scale of smoothness. In the singular case,
p € (1,2), W?2-regularity has been proven by Liu and Barrett [59]. The degenerate
setting is more delicate and one can not expect V2u to be well-defined on {Vu = 0}.
In fact, due to the nonlinear structure of the equation, solutions have limited regular-
ity even for smooth data. A sharp result in the 2-dimensional setting about limited
regularity for the Holder as well as Sobolev scale has been obtained by Iwaniec and
Manfredi [51].

The nonlinear character of the equation naturally introduces the additional quan-
tities S(Vu) and V (Vu). In the scalar case both expressions are robust with respect
to p € (1, 00). Here it is possible to prove V(Vu) € W2 via a difference quotient
technique [13, 58] and S(Vu) € w2 by a functional inequality [20]. The result
V(Vu) € W2 generalizes to the vectorial case. However, the functional inequality
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560 L. Diening, M. Hofmanové and J. Wichmann

fails in the vectorial case at least point-wise for p < 2(2 — V2) &~ 1.1715. There-
fore, it is unclear whether a regularity result S(Vu) € W2 is achievable for small p.
Nevertheless, for p > 2(2 — V2) it is shown in [2] that S(Vu) € W12, Regularity
for S(Vu) on the Besov and Triebel-Lizorkin scale in the plane for p > 2 has been
obtained in [3]. Estimates of S(Vu) in terms of Riesz potentials were derived in [53,
54].

Regularity results for the parabolic p-Laplace system were derived in [41, The-
orem 6.2.1] (cf. [57] for p > 2). It was shown that u € Cl_, (0, T;L*(0)) N

weak
Cweak (0, T Wé "7(0)). It was extended in [30] to the nonlinear tensor V(Vu). The
authors showed, by formally testing the equation with —Au respectively —8t2u, that

V(Vu) € L2 (o, T, Wwh? (O)) Awlh? (0, T; L2 (O)) : (1.3a)

wel® (o, T Wwh? (O)) nwhe (o, T: 12 (0)) . (1.3b)

Additionally, S(Vu) € L?(0, T; W'2(©)) was proven in [22] for either p € (1, o0)
and N=1orp>2and N > 1.

Within the context of the stochastic p-Laplace system it is possible to prove similar
spatial regularity as in (1.3). The formal testing needs to be replaced by a suitable
application of Itd6’s formula as done by Breit [15]. However, the time regularity is
limited due to the presence of the stochastic forcing. In the super-quadratic regime
partial time regularity can be recovered by exploiting the strong formulation of the p-
Laplace system as done by Wichmann [76]. Overall, for appropriate data assumptions
it is possible to verify (see Sect. 2.5)

V(v e 12 (212 (0.7: W2 () N BYZ (0.7: 12 (0))), (1.4a)

ue L’ (sz; L (0, T; w2 (O)) NBy’ .. (0, T: L2 (O))) . (14b)

Here @;(s) := ¢*> — 1 and B denotes a Besov-Orlicz space (see Sect. 2.1).

1.4 Approximation

In the past many authors have studied the numerical approximation of the deterministic
counterpart of (1.1), e.g. [6-8, 10, 11, 16, 19, 25, 30, 33, 35, 37, 75]. The error of
the discrete and analytic solution has been expressed in various different quantities. It
turned out that the natural quantity to measure the error is given by

M
2 2
omax [uttn) = 20 +7 D0V (V) = VTumi 20y (15

m=1
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Averaged discretization of stochastic p-Laplace 561

where V(&) := (k + ISI)I%2 & and u,, j is an approximation of u(t,,). In [33] it has

been proved that the expression ||V (Vu) — V(Vuy) 112 12(0) is equivalent to the energy

error J (up) — J (u). Here uy, is a minimizer of the energy on a subspace V), C WO1 P
In the steady case, starting with the seminal work by Barrett and Liu [6] and further
improvements in [37] and [29], it has been proved that

IV (V) = V(Vun)lli20) S hIVV (V)20 -

This settles the question about optimal convergence for piece-wise linear continu-
ous elements. In fact, the paper [30] deals with the parabolic system and optimal
convergence under the regularity assumption (1.3) has been achieved, i.e.,

M
2 2
0SmaM [ty = . ||L2(0) T E :1 [V (V) - V(V”m,h)“LZ(O)
m=

(1.6)
<h? 412

The error quantity (1.6) relies on the fact that the mapping t > |V (Vu(1))[l 120 is
continuous. However, if the data is not sufficiently smooth, point-values might not be
well-defined. In general, dealing with irregular data and therefore irregular solutions
is a delicate task. Different methods have been suggested to recover well-defined error
quantities.

In [16] the first and the third author develop a numerical scheme based on time
averages to circumvent the usage of point evaluations. A more probabilistic approach
has been used in [38]. There the authors replace deterministic evaluation points by
random ones.

First results for monotone stochastic equations were derived by Gyongy and Millet
[45, 46]. They developed an abstract discretization theory that also covers the system
(1.1) in the superquadratic case. In [45] they gave conditions that guarantee plain con-
vergence of their discretization even for the full degenerate, k = 0, system. Contrary,
convergence rates have been obtained under a non-degeneracy assumption, k > 0,
in [46]. In both cases, they require restrictive assumptions on the regularity of the
solution.

In the stochastic case, due to the limited time regularity (1.4), robust error quantities
need to be used. Breit, Hofmanova and Loisel [18] use randomized time steps to
construct an algorithm that achieves almost optimal convergence in time and optimal
convergence in space, i.e., for all ¢ € (0, 1/2),

2
Et®E |: ina<x ”lfi(tm) — Um,h H L2(0O)

+Z/

tn—1

[V(Vu(s) = V(Vim ) |20, s }
< h? 4T
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562 L. Diening, M. Hofmanové and J. Wichmann

Here E; denotes the expectation with respect to the random time steps t,, centered
around deterministic grid-points #,,,. They use Holder and Sobolev-Slobodeckij spaces
to measure the time regularity of the solution. This excludes the limiting case « = 1/2.

The classical Euler-Maruyama scheme has been analyzed in [39]. The authors
show, for general multi-valued monotone equations, convergence of the algorithm
with convergence rate 1/4. In particular, the p-Laplace system can be treated. The
authors infer convergence towards the spatially discrete solution v, € Vj, of

dvy, — div S(Vuy) dr = G(vp) dW
with rate 1/4 measured in the error

max E [H v (t) — Mmh”iz] < 12,
m<M x

The method has the advantage that no regularity on the abstract solution needs to be
assumed. However, only a sub-optimal convergence rate can be obtained.

1.5 Main results

Based on deterministic time averages we propose two algorithms (3.14) and (3.15)
that are essentially driven by the update rule, P-a.s. forallm > 2 and &, € Vj,

(Vm = Vm—1,8&n) + T (S(Vm), V&) = (C(m—2) AW, &) . (1.7)

The randomness enters through the averaged increments A, W := (W), — (W),,—_1,
where (W), is the time averaged value of W on the interval [#,,_1, t,].

Importantly, we manage to achieve optimal convergence in time with rate 1/2
without assuming any time Holder regularity on the solution process. Instead, we
measure time regularity in terms of Nikolskii spaces. Our main results, Theorem 19
and 25, verify under the condition

uel? (sz B, (0, T; L2 ((9)) nL® (0, T, wh? (O))) . (1.8a)

V(Vu) € L2 (Q B2 (0, T: 12 ((9)) nL? (0, T, w2 (0))) : (1.8b)

the optimal convergence

IV (Vu(s)) = V(Vom)li72 ds}

E[mi???‘.,M'“ Y — Ul 2+Zf

m=1"tm~1

We want to stress that the regularity assumption (1.8) is even weaker than the provable
regularity (1.4).
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Averaged discretization of stochastic p-Laplace 563

On the other hand if the solution process u has certain amount of time regularity,
e.g. (1.4b), one can recover point evaluations, cf. Lemma 17,

E [me?llaxM} llue(tm) — <u)m”i%:| Stin(l+ Tﬁl)]E |:[14]2 12 L%il .

»»»»» B @5,00

For the implementation of (1.7) one needs to sample according to the distribution
of the random variable A,, W. We show in Corollary 33 that A,, W is a Gaussian ran-
dom variable whose variance is slightly reduced compared to the classical increments
AW = W(t,) — W(t,,—1). Ultimately, we provide a sampling algorithm (4.9) that
samples not only the marginal distributions but the joint distribution of the random
vector (A, W, AmW)%zl.

1.6 Outline

In Sect. 2 we formulate the functional analytic setup, construct the multiplicative forc-
ing term G and recall known regularity results. Section 3 introduces the discrete setup
and contains the main results Theorem 19 and Theorem 25. Next, Sect. 4 clarifies the
construction of the discrete random input vectors and provides a sampling algorithm.
Lastly, Sect. 5 contains numerical experiments.

2 Mathematical setup

This section contains classical definitions and preliminary results. It is structured as
follows: Sect. 2.1 introduces the function analytical framework. Section 2.2 presents
the construction of the stochastic forcing. Section 2.3 is about the nonlinear operators
S and V. The solution concept is fixed in Sect. 2.4. Lastly, Sect. 2.5 collects regularity
results.

Let O C R” forn > 1 be a bounded Lipschitz domain (further assumptions on
O will be needed for the regularity of solutions). For some given T > 0 we denote
by I := [0, T'] the time interval and write Or := I x O for the time space cylinder.
Moreover let (2, F, (Ft)ter, P) denote a stochastic basis, i.e. a probability space
with a complete and right continuous filtration (F;);c;. We write f < g for two
non-negative quantities f and g if f is bounded by g up to a multiplicative constant.
Accordingly we define 2 and ~. We denote by ¢ a generic constant which can change
its value from line to line.

2.1 Function spaces

As usual, L9(0) denotes the Lebesgue space and W!-7 () the Sobolev space, where
1 < g < co. We denote by Wol’q (O) the Sobolev spaces with zero boundary values.
It is the closure of C;°(O) (smooth functions with compact support) in the wha(0)-

norm. We denote by W’l"f/((’)) the dual of Wol’q((’)). We do not distinguish in the
notation between vector- and matrix-valued functions.
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564 L. Diening, M. Hofmanové and J. Wichmann

For a Banach space (X, ||-||x) let LY(/; X) be the Bochner space of Bochner-
measurable functions u : I — X satisfying ¢t — |lu(t)||y € L?(I). Moreover,
C(I; X) is the space of continuous functions with respect to the norm-topology. We
also use C*(I; X) for the space of Holder continuous functions. Given an Orlicz-
function @ : [0, o] — [0, oc], i.e. a convex function satisfying lim,_,o @ (¢)/t = 0
and lim,_, o @(#)/t = co we define the Luxemburg-norm

lull e . x) = inf {A >0: /@ (%) ds < 1}.
I

The Orlicz space L®(I; X) is the space of all Bochner-measurable functions with
finite Luxemburg-norm. For more details on Orlicz-spaces we refer to [32]. Given
h € I and u : I — X we define the difference operator 7, : {u:1 — X} —
{fu:1N1—{h} — X} via t(u)(s) := u(s + h) — u(s). The Besov-Orlicz space
Bg’r(l; X) with differentiability « € (0, 1), integrability @ and fine index » € (1, 0o]
is defined as the space of Bochner-measurable functions with finite Besov-Orlicz norm
I8¢  (1;x)» Where

lullpg  (r:x) »= llullpo 1, x) + [lBg (1:x),

1
L o ey ) i€ 1100,

lulpg (r:x) . '
esssupye; h thullpo rnr—ny.xy i r = oo.

The case r = oo is commonly called Nikolskii-Orlicz space. When @(¢) = t? we
write B}, . (I; X) and call the space Besov space.

Similarly, given a Banach space (Y, ||-||y), we define L7 (€2; Y) as the Bochner space
of Bochner-measurable functions u : 2 — Y satisfying w — |u(w)|ly € LY(R).
The space L(}(Q x I; X) denotes the subspace of X-valued (F;);ej-progressively
measurable processes. Let (U, ||-||;y) be a separable Hilbert space. L,(U; L*(0))
denotes the space of Hilbert-Schmidt operators from U to L?(O) with the norm
”Z”iz(U;LE) = ZjeN Hz(uj)Hiz(o) where {”j}jeN is some orthonormal basis
of U. We abbreviate the notation LLLY LY = L4(Q; L9(I; L9(0))) with obvi-
ous modifications for Sobolev, Besov and Holder spaces. Additionally, we write
L™=, L".

2.2 Stochastic integrals

In order to construct the stochastic forcing term, we impose the following conditions:

Assumption 1 (a) Let (U, ||-||y) be a separable Hilbert space. We assume that W is
an U-valued cylindrical Wiener process with respect to (F;);cy. Formally W can
be represented as

W=> u;pl 2.1

jeN
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Averaged discretization of stochastic p-Laplace 565

where {u;} jeN is an orthonormal basis of U and {8/} jen are independent 1-

dimensional standard Brownian motions.
(b) Letv e L2 FQx I L2) We assume that G(v)(-) : U — L2 F(Qx I L? +) is given
by

> G)w) =Y g, v)uj, )y,

jeN
where {g;} ;. € C(O x RY; RV) with

(i) (sublinear growth) for all x € O and £ € RY it holds

31850 O < corown (1 + £, 2.2)

jeN
(ii) (Lipschitz continuity) for all x € O and &1, & € RY it holds

> g gD — g )] < cip 61 — 2l 2.3)

jeN

Now it is a classical result, see for example the book of Prévot and Rockner [66],
that we can construct a corresponding stochastic integral.

Proposition 2 Let Assumption 1 be true. Then the operator I defined through

TGW)) = /0 G)(dWy) ==Y f g v) 4! 2.4)

jeN

defines a bounded linear operator from L2 (Q x1; Lo(U; L2)) fo L2 C,L2 Moreover,

(a) Z(G(w)) is an Li-valued martingale with respect to (F;),¢y,
(b) (It6 isometry) for all t € I it holds

E[IZG@)H(12, ] [ / IG@I, .12, ] 2.5)

2.3 Perturbed gradient flow

Letx > Oand p € (1, 00). For £ € RVN*" we define

S(&) —<p(|§|)é—| (c + EDP7E (2.6)

and

V(E) = w(lél)% k + (6D &, @7
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566 L. Diening, M. Hofmanové and J. Wichmann

where ¢(t) 1= fot (k + s)P~% s ds. The nonlinear functions S and V are closely related.
In particular the following lemmata are of great importance. The proofs can be found
in e.g. [31]. For more details we refer to [10, 27, 29].

Lemma 3 (V-coercivity) Let £1, & € RN*". Then it holds

(SE) - SE) : G1—&) = |[V(E) - VE)I

2.8)
=k E 4 18— &8)P 2 E — &)

Lemma 4 (generalized Young’s inequality) Let &1, &2, &3 € RN¥*" and § > 0. Then
there exists cs > 1 such that

(SE) —SE)) : (B2 — &) <8IV(E) - VEI +c1VE) - VEDP. (29)
Lemma5 Let &y, &, & € RN*" and § > 0. Then there exists cs > 1 such that

(S(E1) — S(&2)) 1 & < 8|V(E) — V(EDI* +cs (i + |E1] + &1 — &P &3]
(2.10)

Remark 6 A continuous, convex and strictly increasing function ¢ : [0, co) — [0, 00)
satisfying

t t
im 2@ — im0
t—0 t t—00 @(t)

is called an N-function. It is called uniformly convex if ¢ € C'[0, c0) N C%(0, 00)
and ¢'(t) = ¢”(¢)t uniformly in 7 > 0. Lemmas 3 and 4 are still valid if one replaces
¢ in (2.6) and (2.7) by any uniformly convex N-function. For more details we refer

toe.g. [27].

Given some initial condition ug : © x @ — R¥ and a stochastic force (G, W) in
the sense of Assumption 1 we are interested in the system

du —divS(Vu)dt = G(u)dW in Q x Or, (2.11a)
with boundary and initial conditions given by

u=0 onQx I xd0, (2.11b)
u(0) =ug on 2 x O. 2.11¢c)

The system (2.11a) is a perturbed version of the gradient flow of the energy J :
W(},‘f — [0, 00) given by

T @) = /O(p(|Vu|)dx. (2.12)
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Averaged discretization of stochastic p-Laplace 567

2.4 Weak and strong solutions

We fix the concept of solutions as follows.

Definition 7 Let ug € L2 L2 be Fo-measurable, p € (1, 00) and (G, W) be given by
Assumption 1. An (F;)- adapted process u € L)zc is called weak solution to (2.11) if

@ u e L2CLENLELY W, Y,
(b) forallt € 1,& € C&‘; and P — a.s. it holds

t t
/ (u(t)—uo)'édx—i—/ / S(Vu) : VEdx ds =/ / G(u)dWs - & dx.
(@] 0o JO 0 Jo 2.13)

The process u is called strong solution if it is a weak solution and additionally satisfies

(a) divS(Vu) e L2112,
(b) forallt € I and P — a.s. it holds

t t
u(t) —ug — / divS(Vu)ds = / G(u)dW; (2.14)
0 0

as an equation in L2.

The next step is to answer the question about existence of weak or even strong
solutions. Weak solutions can be constructed through a variational approach that uses
the monotonicity of the nonlinear diffusion operator S as presented in [61, Exam-

ple 4.1.9]. They rely on the Gelfand triple W0 — L2 — W, P for p > 2. A
quick observation shows that the Gelfand triple remains valid for p > 2n/(n + 2).
Below the threshold we need to modify the energy space. A good choice is the triple
Wol,’f NL2 — L2 — (Wol,’f NL2)". Now, similar arguments as done in [61, Section 4]
lead to the existence of a unique weak solution. Proving existence of a strong solution
is more delicate and usually requires, not only assumptions on the growth of G, but
also on the gradient of G, e.g. forallx € O, & e RV

3 Vegi O < e +1ED%, (2.152)
jeN
3 Vegi 6 < (2.15b)
jeN

In [43] a general approach for the construction of strong solutions to gradient flow like
equations is presented. In particular, it includes the case of the p-Laplace equations.

Theorem 8 ([43], Theorem 4.12) Assume p > 2 and O is a bounded convex
domain. Let (G, W) be given by Assumption 1. Additionally, assume (2.15) and
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568 L. Diening, M. Hofmanové and J. Wichmann

uy € Lf)+8 le’p N szgL)% be Fo-measurable for some ¢ > 0. Then there exists
a unique strong solution u to (2.11). Moreover,

T
E[supnun;lﬁ /0 Idiv S(Vi)13, dl]iE[lluolllv’V!,p}ﬁ-l. (2.16)

tel X

2.5 Regularity of strong solutions

A key ingredient in the error analysis of numerical algorithms are the improved regular-
ity properties of strong solutions in comparison to those of weak solutions. Concerning
time regularity, we prove in [76] that the strong solution enjoys 1/2-time differentia-
bility in an exponential Besov space and even the nonlinear greadient V (Vu) obeys
1/2-time differentiability in a Nikolskii space. The proof uses an assumption on the
boundary condition of the noise coefficient G, i.e. for all x € 90,

3 g 0 =0. 2.17)

jeN

Theorem 9 ([76] Theorem 3.8 & Theorem 3.11) Let the assumptions of Theorem 8 be
satisfied. Additionally, assume (2.17). Let u be the strong solution to (2.11). Then

uweL2By’ L2, (2.182)
V(Vu) € L2B,"2 12, (2.18b)

where &y (t) = e 1.

Spatial regularity is closely connected to the existence of strong solutions. Local
regularity has been obtained in [15].

Theorem 10 ([15], Theorem 4) Let ug € LZ)W,:’Z be Fo-measurable. Let Assumption
1 be satisfied. Additionally, assume (2.15) and denote by u the strong solution of (2.11).
Then,

weLLLEW) ) (2.19)
V(Vu) € LAZLIW, ) . (2.19b)

On sufficiently regular domains, it is possible to relate the divergence of the
nonlinear operator S to the full gradient as presented in [2, 21], i.e.

ldiv S(Va)ll 2 2,2 = VSVl 2272 - (2.20)

Precisely, given some bounded Lipschitz domain O such that 80 € W>!, ie. O is
locally the subgraph of a Lipschitz continuous function of n — 1 variables, which is
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Averaged discretization of stochastic p-Laplace 569

also twice weakly differentiable. Denote by 5 the second fundamental form on 90O,
by |B] its norm and define

Bl dH !
Ko(r) = sup L, (2.21)
ECONB, (x),xed® CaPp, (x)(E)

where B, (x) denotes the ball of radius » around x, cap Bi(x) (E) is the capacity of the
set E relative to the ball By (x) and H"~! is the n — 1 dimensional Hausdorff measure.
The following result follows from [21, Theorem 2.1].

Lemma 11 Assume that O is either

(a) bounded and convex,
(b) or bounded, Lipschitz and 30 € W21 with lim, ¢ Ko@) <c.

Letv € LLLWy'? with div S(Vv) € L2L2L2. Then VS(Vv) € LAL?L? and

E[IVS(V0I2,,, | = E[IdivS(vil2, , ]

In the non-degenerate setting, k > 0, this allows to deduce global spatial regularity.

Corollary 12 ([76], Corollary 2.14) Let the assumptions of Theorem 8 be satisfied and
k > 0. Let u be the strong solution to (2.11). Then,

V(Vu) € L2L?W}2, (2.22)

3 Numerical scheme for the averaged system

In this section we will first present the discrete structures. Afterwards we construct
two algorithms that approximate the solution to (2.11). Finally, we prove convergence
of the approximation towards the analytic solution with optimal rates.

3.1 Space discretization

Let O C R” be a bounded polyhedral domain. By 7, denote a regular partition
(triangulation) of O (no hanging nodes), which consists of closed n-simplices called
elements. For each element (n-simplex) T € 7, we denote by hy the diameter of T,
and by pr the supremum of the diameters of inscribed balls.

We assume that 7;, is shape regular, that is there exists a constant y (the shape
regularity constant) such that

T
max — < y. 3.1
e 14 3.1
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We define the maximal mesh-size by

h:=maxhr.
TeT),

We assume further that our triangulation is quasi-uniform, i.e.
hr <h forall T € 7Ty,. (3.2)
For ¢ € Ny we denote by &2, (O) the polynomials on O of degree less than or equal
N %or fixed r € N we define the vector valued finite element space V}, as
Vii={v e Wyl : vlr € 2.(T) VT € Tp). (3.3)
Moreover, let I : L)% — V}, be the Li-orthogonal projection defined by
Vén € Vi1 (Iav, &p) = (v, &p)
or equivalently

[Mov = argmin [|[v — vy |72 .
v EV) *

We will need some classical results on the stability properties of the L%-projection for
finite elements.

Lemma 13 Letr > 1, Vj, be given by (3.3) and Ty, be quasi-uniform. Then
Voe W2 llv—Thullz + 7 [V —Tv)lz ShIVlL:,

Yoe W22 v = Tavllz +h IV = Maw)l 2 S A% | V2

L3

Due to the nonlinear structure of the p-Laplace system we also need an adapted
stability result.

Proposition 14 ([16], Theorem 7) Let r > 1, Vy, be given by (3.3) and Ty, be quasi-
uniform. Then

IV(Vv) = V(VI2v)ll 2 S hIVV (VU2 .

3.2 Time discretization

Let {0 = 79 < --- < tyy = T} be a uniform partition of [0, 7] with mesh size
T = T/M. For m > 1 define I,,, := [t;y—1, tm]. By |I,] we denote the Lebesgue
measure of I,,. By 1,8 ds we denote the mean value integral over the set I,,. We

also abbreviate (g),, = f 1, 8 ds for the mean value.
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Averaged discretization of stochastic p-Laplace 571

Let us discuss the stability properties of piecewise constant approximations
generated by the mean values in terms of Nikolskii spaces.

Lemma 15 Leta € (0, 1) and r € [1, 00). Additionally, assume u € B¢ L2. Then

r,0ox"

M i
(Z / e — ds) < lulge 2. (3.4)
m=1 Im ! ‘

Proof Due to Jensen’s inequality

M v M
<Z/1 I = (el ds) < Zf, ][nu(s)—u(t)ng% dr ds
m=1%"m I

m=1°%""

A change of variables t = s 4+ h and Fubini’s theorem yield

M
> z][][ lu(s) —u(®)|; drds
I, I,

m=1

M
= Zr—I/ / lu(s) —u(s + )|, dhds
I J In—{s} *

m=1

2t
< T—l/ / llu(s) —u(s + ), dsdh
0 JIini—{n} ’
1 27 por+1
— ar r = ar /
<t /0 B dhlulge 2 = —— Tl o

The proof is finished. O

Remark 16 Lemma 15 is also valid for r = oo. Here we need to substitute the left
hand side in (3.4) by

max sup [lu(s) — (u)mllp2 -
E{l,..,,M SEIm *

Note that BZ, (1) = C*(I) is the space of «-Holder continuous functions.

1/2

In our application the process u only belongs to Li B ;/2 %oo L)zc \LZ) C; L%. Therefore

we need to adjust the stability result in terms of exponentially integrable Nikolskii
spaces.

Lemma 17 Leto € (0, 1) and u € B%,. L% where ®»(t) = e’ — 1. Then

Dy,00"x
max }Ilu(tm) — Wmll2 S t*vIn(1 + r“)[u]Bgzwag- (3.5)

me{l,...M
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Proof Define I,ﬁ = [tm — 27%7, 1,y]. Due to the embedding B%Z’OO — C; for all
o > 0 we find u to be continuous as an Li-valued process. Therefore, it holds

lim (u) e = u(ty).
k— 00 m

Observe, |IX| =27%r and IX7! = [1,, —27% Ve 1, — 271U 1, —27% ¢, 1] A
shift in the integral results in

u(tm) = (uhm = D) g — ) o

w-
I
—

27V uGs) —u(s —27%7) ds.

o

S~

w—
I
-

Jensen’s inequality implies

max u — u(t 2
a1 — ) 12

0
< 21 H —u(s —27* d
—meﬁlf’fmz ][ u(s) —u(s 7) 2 s
k=1 Iylfl
oo
< Zz_lmegl,z,l.).(,M}f u(s) —u(s — 27 %) g ds
k=1 I,’,‘I !
0 - - o ”u(s)—u(s—kat)”Lz q
< A . X
<32, a0 | f 0o ; :

Choose A; by

||u(s) —u(s — Z*kt)Hy
A = inf M>O:/ Dy T )ds<1y;.
INI—{27*7} 1%

In particular, since I,],‘, cini— {2_kt},

”u(s) —u(s — Z_kt)”L2
/ Dy . L ]lds <1
1k k

m
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Thus,
* | . ||u(s)—u(s—2_kr)||L2
22_ Ak max Dy ][952 <] ds
P me(l,...,. M} y
h 1,
0 -1
<Y 27 1x ®;! ‘1") :
DT (
Since u € B, L7 itholds
sup(2_kt)_o‘kk <[ulge ;2.
keN #2007
It follows
° —1
ZZ_lkk max 452_1(‘1/;,‘ )
mefl,..., M}
k=1
0 -1
—k_\—a —1/~—k_\a -1 k
5225((2 7) Ak) ];2 O (‘Im‘ ) (3.6)

<ldgy 12y 27 @7 0" VIn(l+ @7 k).

k=1

Note that
In (1 n (2*’%)*1) —In(z + 25 +In(z™") < In(1 +25) + In(1 + 1.

Therefore,

Z 2712 %) /In(1 + 2-*7)~ 1)
k=1

< 1@ 3 271279 (/In(1 + 25) + v/In(1 + 1)
1; ( ) 3.7

<@ (1 +/In(1 + rl)) 3 22k /in(1 4 26)
k=1
< t*y/In(1 + 1.

The assertion follows by using the estimate (3.7) in (3.6). O
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3.3 The averaged algorithm

Let u be the strong solution of (2.11), i.e. for all # € I and P-a.s.

t

t
u(t) —ug — / div S(Vu,) dv — / G(uy)dw, =0. (3.8)
0 0

Take the average over /1 in (3.8) to get
t t
(u)1 — ug —][ {/ div S(Vu,) dv ~|—/ G(uu)dW,,} dr =0. 3.9
0 0
I

To obtain the general evolution of the time averaged values of the solution we subtract
(3.8) for t and t — 7 and take the average over I,

t t
() m — (U)m—1 —][ {/ div S(Vu,) dv +/ G(uv)dW,,} dt =0. (3.10)
-1 t

-7
Im

We denote by (-, -) the L,zc-inner product. The corresponding weak formulation reads
forall § € L2 N W7

t t
<<u>m—<u>m71,s>+][/ (S(Vuy), VE) dvdr = ][f Guy) AW, dr, &
[m -1 Im 1—T
G11)

Due to the (stochastic) Fubini’s Theorem we can equivalently write

((uy1 —uo, &) + fRao(v) (S(Vuy), V&) dv = (/R ao(V)G(uv)qu,fE) ,
(3.12a)

()m — (Wm—1,8) + fRam—l(V) (S(Vuy), V&) dv = (fR am-1(V)G (uy) dW,, E) ;

(3.12b)

where the weights are given by
a(v) = =1,,), (3.13)
1 (v) = U%MII,M_] )+ — U1, ). (3.13b)
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Averaged discretization of stochastic p-Laplace 575

The above considerations motivate the construction of the following numerical
scheme:

We initialize the algorithm as
vo = ITaug. (3.14a)

In order to accurately reflect the special character of the first step (3.9), we define v;
via

T
(v1 — vo, §n) + 3 (S(Vo), V&) = (G(wo)(W)1, &r) . (3.14b)
Moreover the evolution for m € {2, ..., M} is determinded via

Wm = vm—1,8n) + T (S(Vom), V&) = (G(m—2) (W) — (W)m—1), ) (3.14c)

for all &, € V), and P-a.s.

The need of a special step size in the first step (3.14b) might be undesirable. It
can be overcome by performing a full initial step. We propose the following second
algorithm.

Initialize

wo = ITouyg. (3.15a)
Full initial step
(w1 — wo, &) + T (S(Vw1), V&) = (G(wo)(W)1, r) . (3.15b)
Time stepping, for m > 2,

(Wi — Win—1, 1) + T (SVwy), V&) = (G(wimn—2) (W) — (Whm-1),&n) .
(3.15¢)

The additional difficulties in the error analysis only occur in the estimate of the
initial error.

The next theorem ensures that the numerical schemes are well defined. The argu-
ments are rather standard and we only refer to [40] Section 3 for a detailed analysis
of a more general system.

Theorem 18 Let ug € LLZUL)ZC be Fo-measurable and Assumption 1 be satisfied. Then

for all M € N there exists a unique v = (vg, ..., Vy) € (Vi)M*Y such that vy, is
Fi,,-measurable for all m € {0, ..., M} and v solves (3.14) respectively (3.15).
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3.4 Error analysis

We are ready to state and prove the main result.

Theorem 19 (Convergence of Algorithm (3.14)) Lef ug € LZ)L)% be Fo-measurable

and Assumption 1 be satisfied. Additionally, assume Ty, to be quasi-uniform. Moreover,
let u be the weak solution to (2.11) and v be the numerical solution of (3.14).

(a) Assume
we 2B 212N L2LEW) 2, (3.162)
V(Vu) € L2B, 2 12 n 1212w )2, (3.16b)
Then it holds

M
E [ a1 = ol + 3 [ v = vz, dv}
m= mn

o (3.17)
<t 4K
(b) If additionally
weL2By’ L2, (3.18)
then
E[ max  ||u(ty) — vm||i2i| Stin(l+ o7l +r2 (3.19)
m=1,....M X

Remark 20 The regularity assumption (3.18) is optimal in the sense, that it is the
limiting space of the time regularity of the Wiener process W. Hyt6nen and Veraar
prove in [50] that a Banach space valued Brownian motion has full 1/2-differentiability
only on the Nikolskii-scale. More precisely, they show for all g, r € [1, oo) and P-a.s.

1/2
Dy,00

1/2

W eB and W ¢ B, .

The logarithmic term in (3.19) has already been used in the context of rough
stochastic differential equations [23, 55]. It quantifies the distance of L®? and L.

Theorem 19 can be generalized to cover fractional time and space regularity
assumptions as done for the deterministic p-Laplace system in [16].

Proof Part (a): Fix m € {2, ..., M}, subtract (3.11) from (3.14¢c) and choose &, =
Maep = MU}y — v

t
Hi + Hy := (e — em—1, I2en) +f/ (S(Vuy) — S(Vuy), VIlzey) dvde
-1
I
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t
_ ][ / (G ) — G um_2)]dW, dt, Thae | =: H.
1—T
I”l

Now use the symmetry of the L% -projection and the algebraic identity 2a(a — b) =
a’? — b% + (a — b)? to get

Hy = (I (e — em—1), [aey)

1 2 2 2
= 5 (IM2enlZ; = IMaen—112; + I Malen = en-1ll3: ) -

The second term, due to the V-coercivity (2.8),
t
H> =][/ (S(Vuy) — S(Vup), VIIx(u),, — Vuy) dvdt

T -7

t
:][/ IV (Vuy) = V(Vu) 3, dvdt
t—1 x
In

!
+][/ (S(Vuy) — S(Vuy), VI (u),, — Vu,) dvdz.
[m -7
Summation over m € {2, ..., m*} with m* < M results in

m* m* t
IMTaen 3 + 3 ITalen = entlB+ 3 f [ 1V (Tu0) = ViTun)IE, dvar
! m=2 =t !

m=2 I

m* t
< IMerl?, + Y ][ / (G () — Glun-2)]dW, dr. Thye,,
m=2 1 -1

m

m* '
- Z][/ (S(Vuy) — S(Vup), Vo (u)m — Vu,) dvdr.
-7

m=2 I

Take the maximum over m* € {2, ..., M} and expectation

""" m=2

M
2
E [m*e?%ax M) ||H26m*||i)2[i| +E |:Z ||n2[em - e’”l]”Lﬁ:|

M t
VB Y [ v - vvun i, ave
m=2 t—t x
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,,,,,

m* t
2
SE[IMel}, [+ E| max M}mz_z ][/I_T[G(uv)—c(vm_z)]dwvdt, Maem
=303

M t
+E Z ][/ [(S(Vuy) — S(Vom), Vo (u)m — Vuy)| dvds
m=2 t—T

= J1+ h+ J3. (3.20)

Step 1: We start by estimating the initial error. Similarly as before, we subtract the
weak formulation of (3.9) from (3.14b) and choose &, = I,e

t
(e1 — eq, Trer) +][/ (S(Vuy) — S(Vuy), VIIa(u)y — V) dvdt
0
I

t
= ][/ G(uy) — G(vg) dW, dt, ey |,
I 0
where eg 1= up — vg. By (3.14a) we have [1,eqg = 0. Therefore,

t
E[IMaerl2, ]| +E ][/0 IV (V) = V(To)I2, dvdr
I

t
<E ][/Gu — G(vg) dW, dt, e
S A (uy) (vo) dW, 2e1 (321)
I

t
+E ][/ (S(Vuy) — S(Vvy), Vi, — VIa(u)y) dvdr
_11 °
=:Jia+ J1-

Due to Holder’s and Young’s inequalities and It6 isometry

2
1 ' 1 )
Ja = 5E Gw) = Gy dW,dr| |+ 3E[IMzerl ]
O X
I L%
1 [ [T 2 2 1 2
= SE| [ a0 16) = G, .12 dv | + 3E[ITerl? ].

Absorb the second term to the left hand side. For the first term we use ap < 1 and
the Lipschitz assumption (2.3). Now, since the operator norm of the L%—projection is
bounded by one,
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E [ /O ) 1Gw) - GaI2, .12, dv]

<E UO s = voll? dv] St (IE [lluuim] +E [Iluollig]) . (32

Thanks to the generalized Young’s inequality, cf. Lemma 4,

t
Jip < OE ][/ IV(Vity) — V(Vop) 2, dvdr
0 X
I

t
+cE ][][/ IV (Vuy) — V(VITouy)ll3, dvdrds
O X

I I

Absorb the first term to the left hand side in (3.21). The second is split up into a space
and a time error. Using the nonlinear stability of the L%-projection, cf. Proposition 14,

t
E ][][/ IV (Vuy) — V(VITauy)ll7, dvdrds
0 X

I I

t
S " f][f IV (Vuy) — V(VMS)”iz dvdrds
0 X

I I

t
+E ][][/ IV (Vug) — V(VITauy)ll7, dvdeds
0 X

I I

<E [[V(V”)]Z‘/Z Lz} +h’E [||VV(VM)|Ii,2L§] .

2,007x

Overall, we arrive at the estimate from (3.21)

t
Ji+(1—=8E ][[ IV (Vuy) = V(Vop) 3, dvdr
0 X
I

S 7 (B[1u13 s ]+ E ol ])

tos (IIEI [[V(W)JQ&LJ +h’E [||VV(Vu)||itzL%]) . (3.23)
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Step 2: The stochastic part in (3.20) needs some refined analysis

m* ¢
hH<E max m Z ][/ [G(uy) — G(vm—2)1dW, ds, Tz (e — €m—2)
m=2\ t—1

mrel2,...,

m* ¢
+E max ) Z ][ / [Guy) — G(vm—2)]dW, ds, IT2e—2
m=2 1 -7

=:Da+ D2p.

The first, due to Holder’s and Young’s inequalities and an index shift,

2
M t )
Da<E| Y |ee ][/ [Gy) = Gom—2)]dWyds|  +e | Maem — em—2)| 12
m=2 I ot L2
2
SR ][/ [G(uy) — G(vy—2)]dW, ds
m=2 T =t 5
m L

X

+e|E [Z | Matem - eml)“i}zc:| +E [IMaey ||i§]) :

The second term can be absorbed to the left hand side in (3.20). The third term is
nothing but the initial error J;. For the first term we invoke Itd isometry, the Lipschitz
condition (2.3) and a,, 1 < 1

M , 2

Z ][/ [G(uy) — G(vp—2)]dW, ds

m=2 | =t
M

= Z /t 1<v>IE G (uy) — G(vmfz)niz(uw] dv
M

2
52 /t E [0y = vm-2li2, | dv.
m—
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Decomposition in time and space error, applying Lemmas 13 and 15 and the
estimate (3.22)

YA

2
[ty = vm2l2; ] av
X

Im—2
M
< Z/ [ty — w2l ] vt 7 3" E [l Maoall
fm—2 ! m=3 *
2t
e 3R — vl + [ AR
m=3

M
StE [[u];/z Lz] +WE[1Vul2, | +7 > E[IMen—212 ]
2,007x X

m=3
+ 7 (B[l ]+ E [ luol2, ])
(3.24)

Next, we analyze the second term J3 p in the upper bound for J. Define the discrete
real-valued stochastic process

m* t
K= 2| [ 160 = GnanaWodt Maen 2 | 629

It is convenient to use stochastic Fubini’s theorem to rewrite

m*

Km*:Z<

m=2

tm
/ Am—1WMIG ) — G(vy—2)]dW,, HZem—Z) .
1,

m—2

In the following we abbreviate 7, := F;, . Note, (3.25) does not define a martingale
with respect to F;, . In fact, the discrepancy of not being a martingale can be quantified.
The general strategy is to split up the sum into a martingale and an error term. The
error term is called compensator. To determine how the compensator looks, we first
compute the conditional expectations of Ky, with respect to F,;», i.e.,

M n
E [KM|]:m*] =E |: Z (/ am—1 (WG W) — G(vy—2)]dW,, I—[zemfz) ‘fm*i|
2

m=m*+2 m—2

Tm* 41
+E |:(/ am* (WG (y) — G(px—1)1dWy, HZem*l):| +E [Km* -7:m*]

I —1

=: M|+ My + Msj.

@ Springer



582 L. Diening, M. Hofmanové and J. Wichmann

Due to the tower property of conditional expectation, the measurability of e, with
respect to J;,, together with the martingale property of the stochastic integral

M

[m
> E [IE [(/ am—1(M[G (uy) — G(m—2)1dWy, Hzem—z) ‘fm—Z] ‘f'"}
m=m*+2

Im—2

M,

M

Im
> E[(E[/ am-1IG ) — G(v-2)1dW,
=m*+2

tn—2

fm_z] s Hzem_z) ‘fm*j|

=0.

Again using the F;,-measurability of e,,, we conclude that K+ is JF,,+-measurable.
Thus,

M3z = Kp*.
It remains to compute the conditional expectation in M5. Since #,,,+ is an interior point
of I,,x41 U I+ we split up the stochastic integral into a part that only sees values above

the threshold 7,,+ and into a lower part that only sees values below the threshold #,,+,
i.e.,

L 41
My =E |:</ am*W)[G(uy) — G(vyx—1)]dW,, HZem*—l) |~7:m*]
1

m*

[
+E |:</ am* (WG (Wy) — G(vpmr—1)]dW,, l_[2em*—l> |-7:m*:| .
1,

m*—1

The first vanishes due to the martingale property of the stochastic integral, while the
second is measurable with respect to F,=. Overall,

Iy
My = (/ am (WG () — Gmr—1)]1dW,, HZem*—l) .

[
M is called compensator and quantifies the error of not being a martingale, i.e.,
E Ky |Foe] = Kinr = M. (3.26)

Furthermore, increments of the discrete stochastic process K satisfy

t*
Kinx — Kipx—1 = (/ am—1(V)[G(uy) — G(vmr—2)]dW,, l_[2em*—2) . (3.27)
1,

(3.26) together with (3.27) allow to identify increments of the conditional expectations,
E[Kum|Fne] — E[Kpt|Fme—1]
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Ty
/ am WG y) — Gpr—1)]dW,, l_[2em*—l)
1

m*—1

ty*
+ (/ a1 (WG (uy) — G(Uyx—2)] AWy, n2em*—2) .
t

m*—1

Observe E [K M ]]—' 1] = 0, since [Tep = 0. The Burkholder-Davis-Gundy’s inequality

implies
1
) 2
ey o iz 52 (Z [Kul %] [KM|fm_1])>
1
M . ) :
SE (Z[ am (WG uy) — G(vp—1)]dW, ||1—[2€m_1”22)
m=2 Im—1 L% x
1
2

2
2
||H26m—2||Lz
L2 *

M tlil
+E (Z / a1 WIGWy) — Gun—2)1dW,
1

m=2
Now Young’s inequality, It6 isometry and the Lipschitz condition (2.3) imply

|, mx, 5[Kul7 ]|

.....

+ o [ZZ / ]||G<uu>—G(vmfz)niz(,mg) dv}
m m—
+c.E [Z /, I||G(uv)—G(vm_l)nizwb dv]

2 2
581@[ max ||Hzem*||Lz+||nze1||Lz}
X X

< ¢E max hen |2, + [Tae |
[m*e{z IMaeme 12, + ITaer ]2,

m*e{2,...,

t”l
2
+cE |:§ / lley — vy 2||L2 dv + E / |uv_vm71||L2 dV:|‘
tm—1 tm—1 .

m—

The second term is estimated as in (3.24)

[Z/, = a1 dv+Z

2
”Mv — Um—1 ”L% dvi|
1

Im—
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M
SeE [[u]fg./z Lz] + W[ VUl |+ Y E [IM2en2ll |
2,007x X x

m=3

7 (B[l ] + B [luol2,])

Similarly, due to (3.26), Holder’s inequality, Young’s inequality and £' < ¢

E[ max (Km*—E[KM|fm*])]

2
T
=E max / am (WG (uy) — G(upmr—1)]1dW,, Tlaeyr 1
m*e2,... My \ J; .

m*—1

ty*
<E| max f aps G y) = Gupe-)IAWy | I Taems 1l
m*e{2,..M} |\ J; . L2 '

< ¢E max | GO
- |:m*e{2,‘..,M} IHzem IHLJ

_ - 2

+c.E max / am* (W)[G (uy) — G (V1)1 dW,
m*e{2,...,M} L% _1 L2

2 2
<¢E| max [Taen I3, + [ Maeill3
m*e(2,...,M} x x

r M

+ c.E Z

Lm=2

tlﬂ
/ amW)[G () — G(Vm—-1)]1dW,
t

m—1

2:|
Ly

Together we can estimate

Jrp=E max Km*]
M}

“e[ e, (IRl Bl

<E| max (Km*—]E[KM|Fm*])i|+E|: max IE[KM|]-'m*]]

m*el2, ..., M}

,,,,,

M
<SR [m*el{gax 26" 172 + IM2e; ”2%} +cE [r 22 ITT2em—1 ||i%}
m=.
e (T2, , [+ WE[IVu2, |+ 7B [l | +7E [luol2, ] ).
B, 12 1212 L°L2 L2
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This concludes the bound for J, in (3.20)

m=2

D S ¢E [m*e?%?" ||nzem*||Lz}+8E[Z||nz<em—em 1>||L2}+811

(rE [[u] 2 } WE[1Vul2; |+ 7B [l 2| +TE[|IMolli§]>

OO

M
+c.E |:r > ||n2em||i§} :
m=2

(3.28)

Step 3: In this step we estimate the nonlinear gradient. Jensen’s inequality, the
generalized Young’s inequality (2.9) and the nonlinear stability result Proposition 14

imply

3 =E Z][/ 1(S(Vity) — S(Vum), Vo (u)m — Viey)| dv dr
m= 21m

M '
<E ][][/ |(S(Vuy) = S(Vuw), VIauy, — Vu,)| dvadvdr
m= -1

m m

M
< ¢E Z][/ IV (Vi) = V (Vo) 2, dvds

M
R Z][/ IV (Vi) = V(YT 2, dvdr

- Im

[ t
+cE Z][][/ |V (Vi) = V(Vuy,) |3, dvadvdr
m—2 r—t *

Im I

<¢E Z][/ IV (Vuy) — V(Vu)l? 72 dvds

m21

+ I E [ IVV (V2 , | + e B [[V(wn 2 ]

BZoo
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Step 4: We aim at applying a Gronwall type argument. Collecting all estimates we
get

M
(1 - e)E [m*é%}?.’f,m IT2em ||i§] +(1 ek [ > IMafen — em_l]niﬁ}

m=1

M t
+(1-e)E Z][f IV (Viy) = V(Vun)ll3 dvdr
m=1 t—1Vv0

M
ScE [Z r ||n2em||i%] +eo (rE [[V(wngl/z Lz} +h’E [nvwvmnim])

m=1 2,007x
Yo (t]E [[u]é;/;L%] + i’ [llwuim] +7E [llullim] +IE [||u0||i§]) .

Choosing ¢ sufficiently small and applying Gronwall’s Lemma ensures

E [ max ||n2em*||i2] < et (z + h2> .
m*e{l,...,M} %

This implies

IV(Viy) = V(Yo7 dvdr | < 7 +h%

.....

(3.29)

Step 5: We artificially introduce the desired error quantities and use the stability
of mean-value time projections and the L2-space projection. Let us denote ( f Va, =
f1 i .o fodvdz. A slight modification of Lemma 15 implies

m

M
E [Z/I |V (Vuy) = (V(Vi))a, Hi; dvi| <1E [[V(W)]fgzl/2 Lz]
m:] m ,00 X

Additionally, Jensen’s inequality ensures

M
E |:Z T [(V(Vu))a, — V(va)”ig}
m=1

M t
<E| Y f [ V) - VTl dvar
=1 t—1Vv0 .
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Therefore, invoking (3.29),
M
E[Z/ IV (Vi) = V(o) 2, dv}
m=1 In
U 2
§E|:Z/ |V (Vuy) = (V(Vi))a, | ;2 dv:|
m=1 I !

M
+E [Z © [V (Vi) — VWW”?&]

m=1

2 2
<zE [[V(Vu)]le,/ozoLi} + T+ h
The assertion (3.17) follows by an application of Lemma 13

E[ max ||<u>m—vm||i§}

mefl,....M}

<E Mye, |2 E . 2
< [me{ﬁ"?.’.‘,m” zean4+ [mefﬁf‘.’.‘,m“”)m 2<u>m||L4

ST+ +IPE[IValy ).

/2 2. We apply Lemma 17 to bound

. 2
Part (b): Now, let us assume u € L, By~ L.

,,,,,

S E[ max - |[(u)y — vm”iz] +E [ max  |lu(ty) — (u)m||iz}
M} x mefl,....M} X

mefl,...,

<t+hr+tn(l+1t7h.

This verifies (3.19) and the proof is finished. m]

One can also use time averages on the nonlinear gradient term to measure the error
of the approximation.

Corollary 21 Let the assumptions of Theorem 19(a) be satisfied. Then

M
E [Z T IV (Vi) — wwm)niz} STk (3.30)
m=1
and
M
IE|:ZI 1V (V (u)m) — V(va)||iz} St+hk (3.31)
m=1
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Proof The estimate (3.30) immediately follows by an application of Jensen’s inequality
and the bound (3.17),

M M
E [Z T IV (V) — V<va)||§4 <E [Z[I IV (Vi) = V(Vum)ll72 dv}
m=1""m

m=1

St k2

In order to prove the second estimate (3.31) we use Lemmas 3 and 4

M
E [Z T IV (V{u)m) — V(va>||§%]

m=1

M
~E [2/ / (S(V(U)m) — S(Vum)) : (Vuy — Vuy) dx dv:|
m=1"1Im &
M
< cE[Z/ IV (Vi) = V (V)7 dvi|
m=1 In X

1 M
+5E [Z IV (Vu)m) ~ V<va>||i%} :

m=1

Absorbing the second term to the left hand side and applying the bound (3.17) verifies
the assertion. O

Remark 22 Although both (3.30) and (3.31) enjoy the same convergence rates, it is not
clear whether one dominates the other. In the linear case, p = 2, the terms coincide.

The averaged error quantities (3.30) and (3.31) are equivalent up to oscillation to
the error quantity (3.17).

Lemma23 Letu € L{)W;’p and A € LY. Then

][ IV (Vi) = V(A7 dv
[III

(332)
=][ V(i) = V(T2 dv + [V (Vi) — VAR,
I
and
][ IV(Vi) = VA, dv
fm (3.33)

5][ IV (Vuy) = V(V)m) 72 dv+ 1V )m) = VA -
]m
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Proof The Eq. (3.32) follows by using

][(V(V”v) — (V(Vi))m, (V(Vu))m — V(A)) dv = 0.
1

m

The estimate (3.33) is obtained trivially,

][ IV (Vi) = V(A7 dv
I

z][ IV(Vuy) = V(V)m) = (V(V{u)m) — V(A))H%; dv
I

5][ IV (Viuy) = V(@) 72 dv+ 1V )m) = V(A -
]m

O

Remark 24 1n [28, Lemma 6.2] the authors prove the equivalence (although it is done
purely in space but can be extended to time) of

][ IV (Vi) = V(Y dv = ][ IV (Vi) =V (Vi))ll7; dv.
In I

If V(Vu) € B2 L2, then Lemma 15 implies

2,007 x>

M
> ][ IV (Vi) = (V(Vi)ull}z dv S T [VVIOL e -

2,007 x
m=1 I

Theorem 25 (Convergence of Algorithm 3.15) Let the assumptions of Theorem 19 be
satisfied. Denote by w € (VDML the solution to (3.15) and by u the weak solution
to (2.11). Then

M
E [m max () = w7 + SO IVVu) = V(w7 dv}
o=l ’

=1,. (3.34)

<t+4+h?

and

]E[ max  |u(ty) — wm||i2] <ztln(l+7t7 ") +r% (3.35)
m M X

,,,,,
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Proof The proof proceeds similarly to the proof of Theorem 19. We will only prove
the bound for the initial error. Instead of comparing w; to (u);, we rather choose
(u)run, = f LUl Wy dv. The equation for the latter one reads

t t
() ur, —uo. §) + ][ / (S(Vuy), VE) dvdr = ][ f G(uy)dW, ds, §
LUl 0 1§1934) 0
(3.36)

Subtracting (3.15b) from (3.36) and choosing &, = ITx(u)ur, — wi results in
2
Al + Ay = || Ta(u) ur, — wy ||L§

t
+ ][ /0 (S(Vuy) — S(Vwy), V() o, — wi)) dvde

LUl

t
][ /OG(uu)qudt,Hz<u)11u12—w1

LUl

— (Gwo) (W, Ta(u) yur, — w1)
=: A3 + Ay

Due to Holder’s and Young’s inequalities, It6 isometry and the growth assumption
2.2)

t
E[Aﬂii]E[Al]-i-E ][fG(uv)dedt
0

LUl L)%

= e[ [ () 16wl g0 o
4 1 Jron 2T Uy Ly(U;L%) v

1]E[A]+E/ () 1+ w2, a
4 He nun N2t RAC

The boundedness of u as an L?c valued-process implies

IA

1 2
E[As] < JE[A+ ST+l o r

The forth term is estimated similarly,

1
E[As] < {E[41] +E[|IG(w0)<W)1||2z]

1
< JELA+e37B 11+ Mool .
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Using the L2-stability of the L-projection we obtain

1 1
E[Ad] < JE[A1]+ 371 +uolfy s -

It remains to check the second term. Here we use the same arguments as in step 3
of the proof of Theorem 19 to conclude

Ay = / IV (Vuy) =V (Vw7 dv —c (z[wwn;m L Th ||VV(W>||§2L2) :
I x 2,007x tx
Overall, we have established
2
E[ M2 nur, = w7, ] +E [ IV (Vu,) — V (Vw2 dv}
X ll X
STE| I+ ul2apy + 11+ uolly + VR, , [+ RE[IVVET0I2 ]
~ LLy Ly BZZDCL% L7L2
Lastly, using Lemmas 13 and 15

E [l = w2, ]
5 E [|| (bt)] - (u>I1U12 ||i%i| +E I:H <M)]]U[2 - H2(M>11U12 ||i)2f]

+E [||H2(M>11U12 - wl“ii]

StE [nl ol ooz + 1L+ uollfy + 1l + VIR Lz}
X X 2,00x

2,00"x

+ R [IVul o + 1YV (VI . ]

The bound for the initial error is complete. O

Remark 26 We want to remark, although the first step (3.15b) is announced to be a
full step, it is not a full first step. The deterministic drift is scaled by a full step 7, but
the stochastic term is only scaled by (W)1. In Corollary 33 we find that (W) has only
half the variance of a full stochastic step.

To overcome this problem we can introduce a stochastic dummy variable W, ~
N (0, t/3)! that artificially makes up for the missing randomness. Then (3.15b) needs
to be substituted by

(w1 — wo, &) + T (S(Vw1), V&) = (G (wo)((W)1 + WD), &) - (3.37)

The error analysis of Theorem 25 can be extended to this algorithm.

I denotes equality in distribution.
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4 Discrete stochastic processes

In this section we investigate the law of averaged Wiener processes and propose an
implementable sampling algorithm.

4.1 Wiener process

We introduce the concept of Hilbert space valued Gaussian processes.

Definition 27 A stochastic process Y is called U-valued Gaussian process with mean
operator m : I x U — R and variance operator ¥ : I x U x U — R, if forallt € I
and u € U it holds

oy (u) == E [e—tm,u)u] — im0 = 3 Ty ()

In short, we write Y; ~ N (m;, X;).

It follows that the stochastic forcing W defined by (2.1) is an U-valued Gaussian
process with mean operator m, (1) = 0 and variance operator X, (u, v) := t(u, v)y
forallt € I and u, v € U. Moreover, the series (2.1) converges in the weak topology
of U, due to the hypercontractivity of normally distributed random variables it holds
foranyg > 0,u e U andt,s € I

T\
E (W = Wewp|")7 = | E| X (wj.0), (8] - 8))
jeN
~ V1t = I fully .

In fact, as soon as the index set is infinite we lose the norm convergence, since

1
1

ELwWED = va [t luily | =oe.

jeN

4.2 Averaged Wiener process

In this section we compute the distributions of the random variables ({W) m)%:l and
the joint distribution of the averaged increments.

A key tool in the derivation of the distribution of the averaged Wiener process is the
decomposition of the process W adjusted to the equidistant time partition {Im}f,;’:l
We decompose W|;, into a Brownian bridge 3,, and its nodal values W (t,,—1) and
W(ty),ie., fort € I,

W) = W(ty_1) + B (1) + #Amw, @.1)
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Averaged discretization of stochastic p-Laplace 593

where

By (t) = W(t) — W(ty_1) — #Amw. (4.2)

Brownian bridges have nice independency properties. They do not look into the past
nor future. The following result can be found in [63, Section 1.2].

Proposition 28 Let (Bm)gf:l be given by (4.2). Then forallm € {1, ..., M}
o (Bu(®)|t € L) Lo (W)|t €0, 00)\(tm—1, tm)) 4.3)

i.e. all finite dimensional distributions of the generators of each sigma algebra are
independent of each other.

Corollary 29 Let (lf)’m)n/‘;":1 be given by (4.2). Then By, ..., By, AiW, ..., Ay W are
independent.

Next, we take the time average over the interval 7, in (4.1) and obtain

AW
<W)m = W(tm—l) + <Bm)m + 7 (44)

Now, it is our choice whether we want to compute the distribution of (W), or (5B, ).
The formula (4.4) provides an easy way to compute the remaining one. We choose
to compute the distribution of (W),,. An application of 1t6’s formula for f(s, W) =

s—1, : :
— Wy implies P-a.s.

m t, — 8
Wy =W, + dws. 4.5)

A stochastic integral that is driven by a Wiener process and a deterministic integrand
stays Gaussian.

Lemma 30 ([4] Prop. 7.1) Let f € L>(I). Then

t
t / fs dW;
0
is an U-valued Gaussian process with zero mean and variance
! 2
Zi(u,v) = / [fs]= ds (u, v)y .
0

Corollary 31 (W), is an U-valued Gaussian random variable with zero mean and
. _ 2tm—l'f‘tm
variance % (u, v) = =#5—"(u, V)y.
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594 L. Diening, M. Hofmanové and J. Wichmann

Proof Let us define

m . —§

(W = Wi, | +/ AW, = W, 1 Wy,

Im—1

Note, that W, and W), are independent. Moreover, W, is Gaussian with variance
34U, v) = ty—1 (4, v)y and due to Lemma 30 W}, is also Gaussian. Therefore (W),,
is Gaussian and it suffices to compute the mean and the variance operators.

Letu,v € U. Then E [((W),, u)y] = 0 and

E[((W)m, w)y (W), v)y/]
=E[(Wa, )y Wa, V)] +E[(Wp, )y (Wp, v)y]

ot — s\
= (u,v)y tm_1+/ (’" ) ds
Im—1 T

2l‘m—l + Im
—3 .

= (u,v)y

The assertion is proved. O

Corollary 32 (B,,), is an U-valued Gaussian random variable with zero mean and
variance % (u, v) = {5 (u, v)y.

Proof The distribution of a random variable is uniquely determined by its characteristic
function. Corollary 31 implies

1 2ty —1+tm ”'4”2
§0<W>m (u) =e¢ 2 3 U,

Classically, we find

1 2
oW1, () = e 21 Nl

— 1o ul?
Qapw (u) =e 24U,
2

The characteristic function of ¢, factors due to the independence of the decompo-
sition (4.4), i.e.,

P ) = Py 1Byt 2 (1) = QW (1) () P(B,,),, ()P sy (10).

Rearranging implies

ow)y,, (1)
OBy (M) =
¢W(zm,1)(u)¢% ()

1( 2ty —1+tm
_e—j(%—mq—g)nun@ _

|~

2
llellyy

Il
Q
0=
Sl
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Averaged discretization of stochastic p-Laplace 595

Overall, (B,,),, has the characteristic function of a Gaussian random variable with
zero mean and variance X (i, v) = ﬁ(u, v)y. O

At this point it is a simple task to find the distribution of the increments of the
averaged Wiener process. Let us subtract (4.4) for m and m — 1

ApW 4+ Ay W

AW = (W) — (W1 = )

+ Bn)m — (Bn-1)m-1, (4.0)

where we define (W) := AgW := (By)o := 0.

Corollary33 A,,W is an U-valued Gaussian random variable with zero mean and
variance % (u, v) = (%X{mzz} + %x{mzl}) (u,v)y.

Proof The right hand side of (4.6) is a sum of independent, centered Gaussian random
variables. Thus the left hand side is centered Gaussian. Now, it suffices to compute
the variance operator.

Note, in the case m = 1 we have A{W = (W) and the result follows by
Corollary 31.

Letm > 2 and u, v € U. Due to the independence,

E[(AnW, u)y (AnW, v)y]

(355 (352 (), (05

+E [((Bm)m’ Wy (Bm)m, U)U] +E [((Bm71>m71, Wy (Bm—1)m—1, U)U]

_21( )
—3M,UU.

m}

So far we have identified how each averaged increment A, W is distributed. How-
ever, we also need to know what the joint distribution is, i.e., the distribution of a
random vector.

Lemma 34 The random vector (A,,,YW)”A;":1 is an UM -valued centered Gaussian
random variable with variance operator £ : UM x UM — R given by

M
E(uv V) = Z Gm,l (um’ vl)U )

m,l=1
foru,veUMand
It if l=m=1,
2 .
st if l=m>1,
omi =17 ~ @.7)
oo u-mi=1,
0 if |l—m|>1.
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596 L. Diening, M. Hofmanové and J. Wichmann

Proof The Eq. (4.6) implies, that the random vector (AmW)Z’: | can be constructed
via a linear transformation of independent Gaussian random vectors (A, W)f‘,;[:1 and
((Bm >m),A,;I:1 ,lLe.,

(AW = Ki(Am W)y + Ko ((Bndm)m—i

where K1, K, € RY*M are given by

1 0 0 O 0 1 0 0 0 0

1 1 0 0 -1 1 0 0 0

1 1 1 0 0 o -1 1 0 0
Kl = — B KZZ .
2 :

0 0 1 1 0 0 -1 1 0

0 0 1 1 0 0 0o -1 1

Therefore, (AmW)rA: | is itself a centered Gaussian vector. It remains to compute the

covariance matrix. Letu, v € U andm, [ € {1, ..., M}.If m = [ Corollary 33 implies
2T T
E[(AnW, u) (AW, v)] = 3 Xim=2) + 3 Xim=1) (u, )y .

If [m — 1| > 1, then Eq. (4.6) and the independence imply
E[(AnW, u) (AW, v)] = 0.

It remains to consider the case |m —[| = 1. Without loss of generality ] = m + 1.
Now, using (4.6), the independence and Corollary 32

E [(AmW, u) (Am1 W, U)]
Ay W AW
=E|:< ,Ll) ( 9U>:| _E[((Bm>m:u) (<Bm>m,l))]

2 2
=(3-5) @y =@
—(4—12) M,UU—6 u,v)y .
The proof is finished. O

4.3 Sampling algorithm

On the computer we are forced to approximate the continuous measure induced by
the Wiener process W by an empirical measure. Additionally, if we want to compare
different numerical schemes we need to specify how to sample the random input
needed for the involved algorithms jointly. More specifically, if we want to compare our
algorithms (3.14) and (3.15) and the classical Euler—Maruyama discretization (5.1),
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Averaged discretization of stochastic p-Laplace 597

we need to sample according to the law of the random vector
(AW, .o, AW, AW, Lo Ay W) (4.8)

Based on the decomposition (4.6) we propose the following sampling algorithm.
The time discretization is achieved by the parameter M € N and the series truncation
in (2.1) is done by the parameter J € N.

Given M, J € N.

(a) (Sampling) Compute i.i.d. random variables {,{l, n,j,; ~ N(@©,1) for m €
{1,...,M}and j € {1,..., J}.
(b) (Lift to Hilbert space U) For m € {1, ..., M} define the random variables

J J
L - T -
Zm = \/? E 1uj§r{1’ Zm = E § lujnr]n, (493)
j= j=

where {u/} jen 1s an orthonormal system of U.
(c) (Adjusting correlation) For m € {1, ..., M} define the random variables

_ Zim + Zim—1

5 + Zm — L1, (4.9b)

L -

where Zy = Zo = 0.

Let IT; be the U-orthogonal projection onto Uy := span(uy, ..., uy). The follow-
ing proposition guarantees that the sampling algorithm (4.9) approximates the desired
random variables.

Proposition35 Let Z := (Z1,..., Zy, L1, ..., Zy) € UM be generated by (4.92)
and (4.9b). Then,

Z~ (T ;MW T AW, T AW, o TT AW,

where T1; is the U-orthogonal projection onto span(u', ..., u?).

Proof First, we need to observe that Z,, ~ I1;A,, W and Zm ~ I1;(B;;)m. Then, the
statement follows similarly to the proof of Lemma 34. O

Remark 36 Proposition 35 ensures that we can compare our algorithm to the classical
Euler—-Maruyama discretization (5.1) on an equidistant time grid. It can be adjusted
to also match non-equidistant grids.

5 Simulations

In this section we perform numerical simulations to test our algorithms (3.14)
and (3.15). We denote the solution of (3.14) as vHalf and the solution of (3.15) as
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598 L. Diening, M. Hofmanové and J. Wichmann

vFul - Additionally, we compare our algorithms to the classical Euler-Maruyama dis-
cretization of (2.11). That reads, find v € (Vi)M+1 guch that for all &heVy,m=>1
and P-a.s.

(Um — Vm—1,&n) + T (S(Vup), V&) = (Gm—1)AnW, &) . 5.D

The solution to (5.1) is called vEM,

A plain convergence result for the Euler—Maruyama scheme without any rate has
been obtained in [65]. A more sophisticated analysis has been done in [39]. However,
they only obtain convergence for the L2 L% L2 -error with rate 1/4.

Originally the Euler-Maruyama scheme has been introduced for stochastic ordinary
differential equations. In this context much more is known, see e.g. the book of Kloeden
and Platen [52, Section 9.5]. However, when dropping the Lipschitz assumption on
the coefficients, divergence with positive probability has been obtained in [49].

We are particularly interested in the experimental study of the following questions:

(a) Do the algorithms (3.14) and (3.15) approximate mean-values or point-values?

(b) How does the Euler-Maruyama scheme (5.1) compares to (3.14) and (3.15) in
terms of time and space convergence?

(c) How do the different error quantities (3.17), (3.30) and (3.31) for the gradient
relate to each other?

(d) How sensitive are the algorithms with respect to the parameter p?

All simulations are done with the help of the open source tool for solving partial
differential equations FEniCS [62].

5.1 An explicit solution

In the linear case, p = 2, with a linear right hand side
GW)AW = rv ABL, (5.2)

for some A € R, it is possible to find an explicit solution. If we start the evolution
defined by (2.11) in an eigenfunction of the Laplace operator, the dynamics become
simpler. Let O = (0, 1)2, T = 1 and ug(x) = sin(rrx;) sin(rrx2). Note that ug is an
eigenfunction of the 2-Laplacian with homogeneous Dirichlet data and corresponding
eigenvalue u = 2772, The unique solution to (2.11) is given by

2

u(w, t, x) =exp{— (% +M)t+)\,31(a),t)}uo(x). 5.3)

Similarly, we can give a closed expression for the solution u;, to the space-discrete
equation

d (un, &) + (Vup, VE) di = A (up, &) dB' (). (5.4
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This is equivalent to the system of linear stochastic differential equations

dMu + Sudt = AMudp' (1), (5.5)

where M; ; = (éi{, E;l) and §; ; = (Vé;‘}{, VS;;) is the mass respectively the stiffness

matrix and {E;;} form a basis of V. The eigenpairs of the discretized Laplacian are
related to the linear system

Su=puMu < M~ 'Su=pu. (5.6)

Let (un, up) € (0, 00) x R!Vi! be a solution to (5.6), then the solution to (5.4) started
in uy(0) = uy, - &, is given by

2

up(w, t,x) = exp {— (% + uh) t+ 28 (w, r)} up (0). (5.7)

The main advantage of having an analytic solution of the space discrete equation is,
that it rules out any space discretization errors.

To accurately compare continuous processes and discrete vectors, one needs to
either lift the vector to a process or project the process to a vector. We do the latter
approach and evaluate the continuous process uj, on the equidistant partition of /. This
leads to the definition

uPont s — Gy ()M (5.8)

Since the algorithms (3.14) and (3.15) approximate the mean value of the analytic
solution, we define

uls = ()i, ), - (5.9)

Although we know the exact solution, the time averages of the exact solution are
non-treatable without knowledge of the full trajectory of the Brownian motion .
Numerically, we substitute (u;);, by a Riemann sum approximation, i.e. we fix an
equidistant partition {[#; x—1, tm,k1};_; of I,, with resolution r € N and define

. M
uAver = (% Z Mh(tm,k)> . (5.10)
k=1

m=1

The approximation quality is measured in the error quantities

Emv):=E [m_m?fM et — u,,,||24 , (5.11a)
M

V(u,v) ::]E|:Zr IV (ttm —vm)||§2], (5.11b)
m=1
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Fig.1 Time convergence of vEM (red), yHalf (blue) and yFull (green) towards yPoint (dashed) respectively

uAver (solid) measured in the error terms & (left) and V (right) (color figure online)

where u € {ul:'oint7 uAver} and v € {VEM, VFul]’ vHalf}'

In Fig. 1 we plot the time convergence of the error quantities (5.11a) and (5.11b).
We approximate the expectation by the Monte-Carlo method with 20 samples. Addi-
tionally, we let A = 1 and V}, to be the space of piecewise linear, continuous elements
on a uniform mesh with |Vj| = 121. The average values (5.10) are approximated by
r =10.

The numerical results support that vEM approximates the solution on the grid points,
while vFll and vHaIf approximate the average values of the solution. The gap is due
to the difference

E[ s, —un 7] = ev ol

Initially, we observe a preasymptotic effect. It stabilizes at the time scale 7 ~ 1073,

Afterwards the predicted convergence speed of order 1 is achieved.

5.2 Beyond known solutions

In general, a major obstacle is the absence of an analytic solution to the Eq. (2.11). In
particular, the distance of the numerical solution and the analytic solution as presented
in (3.17), (3.19) respectively (3.34) and (3.35) are non-computable.

To overcome this difficulty we measure the error of a fine reference approxi-
mation vy and a coarse approximation v.. Both, vy and v,, are generated via the
same algorithm (either (3.14), (3.15) or (5.1)) on a fine respectively coarse scale. Let
he = hy > 0 be coarse respectively fine space mesh sizes. Similarly, let M., My € N
be coarse respectively fine time discretization parameters with corresponding timestep
sizes 7, 7. For simplicity, we assume M./My = r € N. Now, the coarse intervals
are generated by the fine ones, i.e.
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,
15 o= [m = Dreomrel = | J 1],y
k=1

The coarse averaging operator can be decomposed into the fine averaging operator
r

1
c = dv = - .
<u)lm ful) r'L'f = 1/ Hy r X;(bnl({:l—l)r-%—k

(11 Dr+k k=
Iy I

To accurately substitute the analytic averaging operator, we define the discrete time
averaging operator

1 r
= — Z ‘Uf
r (m—1)r+k-
k=1

Additionally, we define the error quantities

r o2
disS (Ve ve) _IE[ max |}<v.,»)m—u;,}|L%}, (5.12a)
arem E Ty 5.12b
LooLZ(Vf VC) - _Ta)ch Umr Um 12 ’ ( . )
and
T,
Ao (v v,) = E Z CZHV(V% brar) } (5.13a)
Lm=1
_ML'
i 2
V) =B [ VIV — V(Vv,il)”Lz} , (5.13b)
Lm=1 !
o
. 12
A3y ve) =B e [(V(Vve, — V(van)||L%:|. (5.13¢)
Lm=1

5.3 Joint sampling on fine and coarse scales

It is crucial to use the same stochastic input when computing vy and v.. This can
be done in two different ways. Either one first samples coarse stochastic data and a
posteriori samples the fine data based on the conditional probabilities of the coarse one,
or we can sample the fine stochastic input and try to reconstruct the coarse stochastic
data. The latter approach is more suitable for the averaged increments.
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Lemma37 Let My, M. € N. Assume My = r M, for some r € N. Then

,
. I—1\
ASW = Z <1 - T) AW, (5.14a)
. N N EIAW
ASW = Z AL W Al W, (5.14b)
=0

forjef{2,..., M}

Proof Since My = r M., we have 7. = rty. Thus,

rey 1 < [l
/ st_— Wods = — Z/ W, ds
rty Jors rty =1 J=Dry

1 r Ity 1 r Ity
—Z/ Wy — Wi_q—1)r, ds + —Z/ Ws—@—1yr, ds
rty 1=1 (=Dzy rrf[ 1 =Dty

T+ 11

Due to the discrete Fubini’s theorem

Ity

Wi_ Uty — Wi _ (I'+D1y ds
>

1 S =2 a-ieg
— / Wy — W, _ T ds
T Y 4=y

r r
—ZZA[ I,W:Z<l+lT_I)AIfW.

I=11= =2

The second term is easily computed

M= — / Wods = A]W.
}"L'fll

Overall,

. . AN
AﬁW:Z(l—i—T) [w.

=1
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Let j € {2..... M,}. Since 1€ = trfj, it holds

1< zf.
¢ 1 J 1 rj
AjW = — Wy — Wy_r.ds = — Wy — Wy—res ds
T t‘ rt f
j—1 (J ]

/ ZWs —l'ty — Ws—('+D1y ds

rt
fl =0 Vlrj—q+1) 1/

r—1r—1 (141 r—1r—1
)] +
=D I e T B SR
120 r=07t—avrs "=

The discrete Fubini’s theorem implies

r—1r—

1
ZZA” tan W = Z(1+1)AU 1W+Z(r—(l+1))Ar(l ot W.
=0

I'=0 =0
Therefore,
AN = I+1
f
ACW Z rJ W ( )Ar(J - W
1=0
The claim is proved. O

Remark 38 The reconstruction formula (5.14) is the key ingredient, why it is possible
to compare fine and coarse numerical solutions in an efficient way. If one tries to
establish a corresponding formula for randomized algorithms as proposed in [18], this
task becomes more challenging.

5.4 Simulation: unknown solution

Let © = (0, 1)?>and T = 1. We choose p € {1.5, 3}, ug(x) = sin(rrx;) sin(;rx2) and

GWw)AW = sin(mwxq)xu A,Bl + sin(mwxo)x1u Aﬂz. (5.15)
— —
=:g1 (x,u) =:g2(x,u)

Vi, denotes the space of piece wise linear elements with zero boundary values on a
triangulation 7;, of O. We initialize the coarse triangulation 7, as a uniform triangula-
tion of O such that | Vh, | = 121andh, ~ 1.4%107L. 'Z}lf is generated by three uniform

refinements of 7. Then |Vhf | =0656land hy ~ 1.7 % 10~2. For the time discretiza-

tion we use My = 1280 and M. = 40. Therefore 7y ~ 7.8%10 *and ., ~ 2.5%1072.

We measure the error of the fine numerical solution vy € {VI;M, VI}Ialf Fllll} versus the

EM Hdlf

coarse numerical solution v, € {v;", v vEull} of the same algorithm in the error

c
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10‘2§ ‘ a 102 | | E
10_3? H 10—3é *
104? 4 10—4;: *
1075 1 | < 1 E
10-25 102
102} E |
10—3;
10—4; % a
107° *

Fig. 2 Convergence for p = 3 of VEM (red), V?alf (blue) and vf“” (green) towards vy measured in

aver : point classic : . inner . outer
dLOOLZ (solid, left), dL°°L2 (dashed, left), dLZV (solid, right), dLZV (dashed, right) and dLZV (dash
dotted, right). In the top row we use T ~ h and in the bottom row 7 & hZ (color figure online)

quantities (5.12) and (5.13). The expectation is approximated by the Monte-Carlo
method with 20 samples.

InFig. 2 respectively Fig. 3 we plot the evolution of the error for p = 3 respectively
p = L.5. In both cases we observe linear convergence. This indicates that on the
used discretization scale the space error dominates the time error. We do not see a
substantial difference in the gradient error quantities. Additionally, V™ measured in

int )
poin Half aver perform

[oo2 and v 002

the point distance d
equally well.
If p = 3 then vF"!! behaves similarly in both error terms and performs slightly worse

than vEM and vH2f, Contrary in the case p = 1.5, while still performing slightly worse
Half Full
,V

measured in the averaged distance d

. . . . int .
is better approximated in d ;%] , thanind E fouiz . This
Full

also approximates average values.

compared to vEM and v
indicates that at least in the singular setting v
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E ; 1073 ¢ E
107 1 g
10| | 100
107 10k
10—6 i i E '/ | E

E = F 1
1072 e §
1073 | . i ]
104 | 1
107° % * 3 E
106 | ] 1 L]
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T h?

Fig. 3 Convergence for p = 1.5 of vEM (red), viIl (blue) and vE!' (green) towards v f measured in

aver ; point classic id inner . outer
dLOOLz (solid, left), dLOOLz (dashed, left), dLZV (solid, right), dLQV (dashed, right) and dsz (dash
dotted, right). In the top row we use T ~ & and in the bottom row 7 &~ h? (color figure online)

5.5 Conclusion

Our algorithms achieve optimal linear convergence in space and optimal 1/2-
convergence in time with minimal regularity assumptions. Experimentally, the
Euler—-Maruyama scheme (5.1) and our algorithms (3.14) and (3.15) share the same
computational complexity and accuracy. However, the convergence of the Euler—
Maruyama scheme is only proven with rate 1/4, cf. [39]. The construction of the
random inputs is fast and can be done with the simple sampling algorithm (4.9).
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