
Numerische Mathematik (2023) 153:213–248
https://doi.org/10.1007/s00211-022-01335-7

Numerische
Mathematik

Proximal linearization methods for Schatten p-quasi-norm
minimization

Chao Zeng1

Received: 3 January 2022 / Revised: 2 November 2022 / Accepted: 12 November 2022 /
Published online: 2 December 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Schatten p-quasi-norm minimization has advantages over nuclear norm minimization
in recovering low-rank matrices. However, Schatten p-quasi-norm minimization is
much more difficult, especially for generic linear matrix equations. In this paper, we
first extend the lower bound theory of �p minimization to Schatten p-quasi-normmin-
imization. We prove that the positive singular values of local minimizers are bounded
from below by a constant. Motivated by this property, we propose a proximal lin-
earization method, whose subproblems can be solved efficiently by the (linearized)
alternating direction method of multipliers. The convergence analysis of the proposed
method involves the nonsmooth analysis of singular value functions. We give a neces-
sary and sufficient condition for a singular value function to be aKurdyka–Łojasiewicz
function. The subdifferentials of related singular value functions are computed. The
global convergence of the proposed method is established under some assumptions.
Experiments on matrix completion, Sylvester equation and image deblurring show the
effectiveness of the algorithm.

Mathematics Subject Classification 15A15 · 15A24 · 15A60 · 90C26 · 90C30

1 Introduction

Consider the following minimization problem

min
X∈Rm×n

rank(X)

s.t. A(X) = b,
(1)
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214 C. Zeng

where A : R
m×n → R

d is a linear operator and b ∈ R
d . This is called the

affine rank minimization problem [41] and arises in various application areas, such
as control applications [18, 19, 37], stochastic PDEs [30], matrix completion [8,
10], and image processing [22, 23]. This problem is NP-hard. Let the singular val-
ues of X be σ1(X), . . . , σh(X), where h = min{m, n}. The nuclear norm of X is
‖X‖∗ = ∑h

i=1 σi (X). It is proved in [19] that the nuclear norm is the convex envelope
of the rank function over the unit ball under the spectral norm. Using the nuclear norm
to replace the rank function is a common method [7, 8, 10, 40, 41, 50] for finding
low-rank solutions, i.e.,

min
X∈Rm×n

‖X‖∗

s.t. A(X) = b.
(2)

In practice, b is usually contaminated by noise, or we just want to gain a low-rank
approximate solution. In such cases, (2) is often relaxed to the nuclear norm regularized
least squares problem

min
X∈Rm×n

‖X‖∗ + λ

2
‖A(X) − b‖22, (3)

where λ > 0 is the regularization parameter.
For diagonal matrices, the nuclear norm is just the �1 norm of the diagonal ele-

ments. In sparse reconstruction and image recovery, using the �1 norm to replace the
cardinality function (also called the �0 quasi-norm) for finding sparse solutions is a
well-known technique in the literature [9, 16, 43]. So, (3) can be regarded as a gener-
alization of the �1 minimization problem. Compared to the �1 norm ‖x‖1, the power
p of the �p quasi-norm ‖x‖p

p := ∑
i |xi |p, 0 < p < 1, makes a closer approxima-

tion to the cardinality function ‖x‖0. Therefore, the �p quasi-norm is widely used in
sparse reconstruction [11, 15, 27] and image recovery [39, 52]. Specifically, the �p
minimization for sparse reconstruction is

min
x∈Rn

‖x‖p
p + λ

2
‖Ax − b‖22, (4)

where A ∈ R
m×n, b ∈ R

m, λ > 0; and the �p minimization is often used for applica-
tions where x is an image:

min
x∈Rn

n∑

i=1

‖Di x‖p
2 + λ

2
‖Ax − b‖22, (5)

where A ∈ R
m×n, b ∈ R

m, λ > 0, and Di x is the discrete gradient of x at pixel i .
The Schatten p-quasi-norm of X is defined as

‖X‖∗,p :=
(

h∑

i=1

σ
p
i (X)

) 1
p

.
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Similarly, the Schatten p-quasi-norm (0 < p < 1) is also used for finding low-rank
solutions, e.g., [21, 27, 36, 38]. The corresponding Schatten p-quasi-norm regularized
least squares problem is

min
X∈Rm×n

‖X‖p∗,p + λ

2
‖A(X) − b‖22, (6)

where λ > 0 is the regularization parameter. Recently, a sufficient condition stat-
ing when the Schatten p-quasi-norm minimization can be used for low-rank matrix
recovery was established in [26].

To solve (6), most existing methods follow the framework of the iteratively
reweighted least-squares algorithms (IRLS-p) [20]. These methods are motivated by
the following fact

tr
(
(X�X)p/2

)
= ‖X‖p∗,p.

By introducing a smoothing parameter ε > 0, (6) is converted into

min
X∈Rm×n

tr
(
(X�X + ε I )p/2

)
+ λ

2
‖A(X) − b‖22.

The first-order optimality condition of the above problem reads

pX(X�X + ε I )p/2−1 + λA∗(A(X) − b) = 0,

whereA∗ is the adjoint operator ofA. Given Xk at iteration k, Xk+1 can be solved by

pXWk + λA∗(A(X) − b) = 0, (7)

where Wk := (X�
k Xk + ε I )p/2−1. Let the vectorized result of X be x := vec(X) ∈

R
mn . For a generic linear operator A, (7) is a linear system in the form of Cx = d,

whereC ∈ R
mn×mn, d ∈ R

mn . Hence, directly solving (7) is too expensive for general
cases. For example, if A(X) = b is a Sylvester equation, then (7) is a general matrix
equation, which is difficult to solve. See the discussion in Sect. 5.4. In the case of X
being square, Gazzola et al. [21] converts (7) into a Tikhonov-regularized problem

Xk+1 ∈ argmin
X

p

2

∥
∥
∥(Xk X

�
k + ε I )p/4−1/2X

∥
∥
∥
2

F
+ λ

2
‖A(X) − b‖22,

and uses Krylov methods to solve it.
In this paper, we first give some theoretical analysis on (6). Our motivation comes

from the low bound theory of the �p minimization for image recovery and sparse
reconstruction. Suppose x̃ is a (local) minimizer of (5). It is proved in [39, 52] that
there exists a constant θ > 0 such that if Di x̃ �= 0, then

‖Di x̃‖2 ≥ θ.
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216 C. Zeng

Note that ‖Di x̃‖2 represents the contrast between neighboring pixels. This result
suggests that the image restored by (5) has neat edges. Suppose x̃ is a (local) minimizer
of (4). Similarly, it is proved in [15] that there exists a constant θ > 0 such that if
x̃i �= 0, then

|̃xi | ≥ θ.

This explains the advantage of (4) for sparse reconstruction: Each nonzero x̃i plays
a significant role, and we cannot obtain a sparser solution by changing any nonzero
x̃i into zero, without affecting the approximation error greatly. We will give a similar
result for (6), i.e., there is a lower bound for the nonzero singular values of (local)
minimizers of (6).

In solving nonlinear optimization problem, proximal linearization is a common
technique; see, e.g., [5, 35, 54–56]. However, this technique cannot be used directly
on (6), because ‖X‖p∗,p is non-Lipschitz when X is singular. In IRLS-p, introduc-
ing a smoothing parameter ε > 0 is just to tackle the non-Lipschitzian of ‖X‖p∗,p.
After establishing the low bound theory, we will find that the non-Lipschitzian can be
overcome by adding a rank constraint. Then the objective function can be proximally
linearized and the converted subproblem is a weighted nuclear norm minimization
with rank constraints. The subproblem can be solved efficiently by the (linearized)
alternating direction method of multipliers. Unlike the existing methods [20, 21, 27,
36, 38], we do not need to solve the complicated linear system (7).

The Kurdyka–Łojasiewicz (KL) property of objective functions has been widely
used in the proof of convergence of first-order methods, but most of these methods are
aimed at functions whose arguments are vectors. For this work, the objective function
(6) involves a singular value function ‖X‖p∗,p . We give a necessary and sufficient
condition for a singular value function to be a KL function. The subdifferentials of
related singular value functions are computed. In previous works on the convergence
analysis based on the KL property, e.g., [2, 3, 5], Lipschitz gradient is usually a key
assumption. For this work, the function ‖X‖p∗,p does not have Lipschitz gradient. To
tackle this difficulty, we prove the lower bound property of the iterate sequence {Xk},
under the assumption that the nonzero singular values of Xk are strictly decreasing.
In practical applications, this assumption holds generically. See Sect. 4.3 for details.
With all these preparation, we prove the global convergence of the proposed algorithm.

The rest of this paper is organized as follows. In Sect. 2, we establish the low
bound theory of the Schatten p-quasi-norm minimization. The algorithm is proposed
in Sect. 3 and the convergence analysis is given in Sect. 4. Experimental results are
given in Sect. 5. Conclusions are presented in Sect. 6.

Notation

Scalars are denoted by lowercase letters, e.g., a, α. Vectors are denoted by boldface
lowercase letters, e.g., a,α. Matrices are denoted by capital letters, e.g., A, �. The
n-dimensional nonnegative real vector space is denoted byRn+. Given a vector x ∈ R

n ,
|x| = [|x1|, . . . , |xn|]� ∈ R

n+. Given a vector x ∈ R
m , we use diag(x) to denote a

matrix whose main diagonal is x1, . . . , xm . Usually, we do not mention the size of
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Proximal linearization methods for Schatten p-quasi-norm... 217

diag(x), which will be clear from the context. The �2 norm of x is denoted by ‖x‖2.
The Frobenius norm of X is denoted by ‖X‖F . The spectral norm of X is denoted
by ‖X‖2. Let X ∈ R

m×n . The singular value vector of X is denoted by σ (X) :=
[σ1(X), . . . , σh(X)]� ∈ R

h , where h = min{m, n} and σ1(X) ≥ · · · ≥ σh(X) are all
singular values of X . The Stiefel manifold is defined as

Stmt := {Y ∈ R
m×t : Y�Y = I }.

The set of all singular matrices of X is denoted by

Sm(X) :=
{
(U , V ) ∈ Stmm × Stnn : U diag(σ (X))V� = X

}
. (8)

Let S be a subset of Rn . The indicator function of S is defined as

δS (x) =
{
0, if x ∈ S ,

+∞, otherwise.

2 Lower bound of singular values

Theorem 2.1 Let θ =
(

p(1−p)
λ‖A‖22

) 1
2−p

, where ‖A‖2 is the spectral norm ofA. For each

(local) minimizer X̃ of (6), we have

σr (X̃) ≥ θ for all r = 1, . . . , rank(X̃).

Proof Let h = min{m, n} in (6). Each X ∈ R
m×n can be written as

X = U
V�,

where U = [u1 · · · uh] ∈ Stmh , V = [v1 · · · vt ] ∈ Stnh , and 
 = diag(γ1, . . . , γh).
Then |γi |, i = 1, . . . , h are all singular values of X . Define γ := [γ1, . . . , γh]� ∈ R

h .
Problem (6) is equivalent to

min
γ∈Rh

min
U∈Stmh

min
V∈Stnh

‖γ ‖p
p + λ

2
‖A(U
V�) − b‖22.

Suppose (γ̃ , Ũ , Ṽ ) is a local minimizer of the above problem. Then γ̃ is a local
minimizer of

min
γ∈Rh

‖γ ‖p
p + λ

2
‖A(Ũ
Ṽ�) − b‖22. (9)
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218 C. Zeng

Note that A is a linear operator. We have

A(Ũ
Ṽ�) = A
(

h∑

i=1

γi ũi ṽ�
i

)

=
h∑

i=1

γiA
(
ũi ṽ�

i

)
.

Define a matrix C = [c1 · · · ch] ∈ R
d×h with ci = A (

ũi ṽ�
i

) ∈ R
d , i = 1, . . . , h.

Then A(Ũ
Ṽ�) = Cγ and (9) is converted into

min
γ∈Rh

‖γ ‖p
p + λ

2
‖Cγ − b‖22,

which is an �p−�2 minimization problem.Note that ‖vec(ũi ṽ�
i )‖2 = ‖ũi‖2‖̃vi‖2 = 1

and ‖ci‖2 = ‖A (
ũi ṽ�

i

) ‖2 ≤ ‖A‖2. By Chen et al. [15, Theorem 2.1], if γ̃i �= 0, we
have

|γ̃i | ≥
(
p(1 − p)

λ‖ci‖22

) 1
2−p

≥
(
p(1 − p)

λ‖A‖22

) 1
2−p

= θ.

This completes the proof. ��
Like the lower bound theory of (4), the preceding theorem explains the advantage

of (6) for low-rank matrix recovery: Each nonzero singular value plays a significant
role, and we cannot obtain a lower rank solution by changing any nonzero singular
value into zero, without affecting the approximation error greatly. On the other hand,
if the original low-rank matrix has some singular values with very small magnitudes,
using (6) cannot recover the original matrix exactly.

Let

M≤r := {X ∈ R
m×n : rank(X) ≤ r} (10)

denote the set of matrices of rank at most r . We have the following corollary.

Corollary 2.2 Let θ =
(

p(1−p)
λ‖A‖22

) 1
2−p

and X̃ be a local minimizer of (6). Then we have

‖X − X̃‖F ≥ θ ∀X ∈ M≤rank(X̃)−1.

Proof Let h = min{m, n}. By Horn and Johnson [24, Corollary 7.4.1.3], for any
X ∈ M≤rank(X̃)−1, we have

‖X − X̃‖2F ≥
h∑

i=1

(
σi (X) − σi (X̃)

)2 ≥
(
σrank(X̃)(X) − σrank(X̃)(X̃)

)2

= σ 2
rank(X̃)

(X̃) ≥ θ2,

123



Proximal linearization methods for Schatten p-quasi-norm... 219

which completes the proof. ��
With θ defined in the preceding corollary, denote the ball of radius θ around X by

B(X , θ) := {Y ∈ R
m×n : ‖Y − X‖F ≤ θ}.

The preceding corollary is equivalent to say that any minimizer in B(X , θ) has rank
less than rank(X).

3 Algorithm

Suppose we use an iterative algorithm to find a local minimizer X̃ of (6) and the iterate
sequence is {Xk}. By Corollary 2.2, if limk→∞ Xk = X̃ , then there is a k̃ such that
rank(X̃) ≤ rk := rank(Xk) for all k ≥ k̃. Motivated by this phenomenon, we consider
solving Xk+1 by

min
rank(X)≤rk

P(X) := ‖X‖p∗,p + λ

2
‖A(X) − b‖22. (11)

Directly solving (11) is difficult. Usually, the linearization technique, i.e, the first-order
Taylor approximation of some term around Xk , is employed to obtain an approximate
objective function which is easy to solve. In (11), what we need to linearize is the term
‖X‖p∗,p. Generally, the linearization cannot be used because ‖X‖p∗,p is non-Lipschitz
when Xk is singular. However, thanks to the constraint rank(X) ≤ rk , we can still
employ the linearization on (11). Specifically, for X ∈ R

m×n with rank(X) ≤ rk , we
have

‖X‖p∗,p =
rk∑

j=1

σ
p
j (X) ≈

rk∑

j=1

(
σ
p
j (Xk) + pσ p−1

j (Xk) · (
σ j (X) − σ j (Xk)

))
. (12)

For convenience, we define

σk, j = σ j (Xk), σ k = [σk,1, . . . , σk,rk ]� ∈ R
rk ,

wk, j = pσ p−1
k, j , wk = [wk,1, . . . , wk,rk ]� ∈ R

rk . (13)

Since σ1(Xk) ≥ · · · ≥ σrk (Xk) > 0, we have

wk,1 ≤ · · · ≤ wk,rk . (14)

In addition, since the function z �→ z p is concave on [0,+∞), it follows that for all
X ∈ R

m×n with rank(X) ≤ rk ,

‖X‖p∗,p ≤
rk∑

j=1

wk, jσ j (X) +
rk∑

j=1

(σ
p
k, j − wk, jσk, j ). (15)
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220 C. Zeng

Substituting (12) into (11), deleting some constants and adding a proximal term, we
obtain the following proximal linearization version of (11):

min
rank(X)≤rk

Hk(X) :=
rk∑

j=1

wk, jσ j (X) + λ

2
‖A(X) − b‖22 + τ

2
‖X − Xk‖2F . (16)

The proximal term τ
2‖X − Xk‖2F is to increase the robustness of the nonconvex algo-

rithm and is helpful in the global convergence. By (15), we can set τ to be any positive
scalar. Let δM≤r (X) be the indicator function ofM≤r , whereM≤r is defined in (10).
Then (16) is equivalent to

min
X∈Rm×n

Gk(X) := Hk(X) + δM≤rk
(X). (17)

We will use an iterative algorithm to solve (16) or (17). Precisely solving the
subproblem (17) needs infinite iteration steps, which cannot be realized in real com-
putation. Therefore, we consider solving (17) inexactly. The whole procedure of the
proximal linearization method (PLM) is summarized in Algorithm 1. In general, algo-
rithms for nonconvex problems seek only a local solution. Therefore, the initial values
are important for nonconvex optimization. For Algorithm 1, r0 and w0 are determined
by X0. In addition, PLM has used the scheme of proximal linearization, which approx-
imates the original model linearly. If the starting point X0 is far from the final result, a
large number of steps would be required for convergence. Therefore, the initial value
X0 is very crucial for PLM. We will elaborate this issue in Sect. 5.1.

Algorithm 1: proximal linearizationmethod (PLM) for solving Schatten p-quasi-
norm minimization (6)
Input: A, b, p, λ, τ, ρ > 0, initial value X0, r0, w0, k = 0

1 repeat
2 Compute Xk+1 by approximately solving (17): Xk+1 ≈ argminX∈Rm×n Gk (X),
3 such that

Gk (Xk+1) ≤ Gk (Xk ) (18)

and there exists Yk+1 ∈ ∂Gk (Xk+1) satisfying

‖Yk+1‖F < ρ‖Xk+1 − Xk‖F (19)

Update rk+1, wk+1 by (13)
4 k ← k + 1
5 until termination criteria met

Remark 3.1 The problem (17) will be solved by an iterative algorithm, whose starting
point is Xk . Hence, the condition (18) can be satisfied easily.
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Remark 3.2 The inexact optimal condition (19) originates from the algorithmic frame-
work proposed in [3]. Similar inexact optimal conditions can be found in [35, 55, 56].
The rationality of this condition will be elaborated in Remark 4.18.

Before solving (16), we discuss how to solve a simpler problem as follows

min
rank(X)≤r

r∑

i=1

wiσi (X) + 1

2
‖X − Y‖2F ,

which constitutes a core step in solving (16). Let M ∈ R
m×n, h = min{m, n}, and let

w = [w1, . . . , wr ]� ∈ R
r with r ≤ h. We define the following set

Dr
w(M) :=

{

U�r
wV

� : (U , V ) ∈ Sm(M),

�r
w = diag ((σ1(M) − w1)+, . . . , (σr (M) − wr )+, 0, . . . , 0)

}

,

where Sm(M) is defined in (8) and (a)+ = max{a, 0}. We have the following lemma.

Lemma 3.3 Let Y ∈ R
m×n, h = min{m, n}, and w = [w1, . . . , wr ]� ∈ R

r with
r ≤ h. If (σ1(Y ) − w1)+ ≥ · · · ≥ (σr (Y ) − wr )+, then we have

Dr
w(Y ) = arg min

rank(X)≤r

r∑

i=1

wiσi (X) + 1

2
‖X − Y‖2F . (20)

Proof For any X ∈ R
m×n with rank(X) ≤ r , by Horn and Johnson [24, Corollary

7.4.1.3], we have

r∑

i=1

wiσi (X) + 1

2
‖X − Y‖2F

≥
r∑

i=1

wiσi (X) + 1

2

r∑

i=1

(σi (X) − σi (Y ))2 + 1

2

h∑

i=r+1

σ 2
i (Y )

=
r∑

i=1

(
1

2
σ 2
i (X) + (wi − σi (Y ))σi (X)

)

+ 1

2

h∑

i=1

σ 2
i (Y ),

where the equality holds if and only if there are orthogonal matricesU and V such that
X = U�XV� and Y = U�Y V� are SVD’s of X and Y , respectively. Therefore, the
matrix optimization problem (20) is equivalent to the following vector optimization
problem

min
σi (X),1≤i≤r

r∑

i=1

1

2
σ 2
i (X) + (wi − σi (Y ))σi (X)

s.t. σ1(X) ≥ · · · ≥ σr (X) ≥ 0.

(21)
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This problem is a strictly convex quadratic programming and has a unique solution.
If (σ1(Y ) − w1)+ ≥ · · · ≥ (σr (Y ) − wr )+, the minimum of (21) is achieved by
σi (X) = (σi (Y ) − wi )+, i = 1, . . . , r . This completes the proof. ��

The result (20) can be viewed as a combination of the classic Eckart-Young theorem
[17] and the singular value shrinkage [7, Theorem 2.1]. In addition, just like the low-
rank approximation problem [17], (20) has a unique solution if and only if σr (Y ) >

σr+1(Y ).
The problem (16) is a weighted nuclear norm minimization with rank constraints,

and its computation can follow that of the standard nuclear norm minimization (3).
Refer to Yang and Yuan [50, Sect. 5] and references therein for a thorough review on
the computation of (3). As shown in [50], in general, the alternating direction method
of multipliers (ADMM) or linearized ADMM (LADMM) is more efficient than other
methods for solving (3). Therefore, we also use (L)ADMM to solve (16).

3.1 Solving (16) via ADMM

By introducing an auxiliary variable Y ∈ R
m×n , (16) is equivalently transformed into

min
rank(X)≤rk

min
Y∈Rm×n

rk∑

j=1

wk, jσ j (X) + λ

2
‖A(Y ) − b‖22 + τ

2
‖Y − Xk‖2F

s.t. X = Y .

The augmented Lagrangian function of the above problem reads

L(X ,Y , Z , βk) =
rk∑

j=1

wk, jσ j (X) + 〈Z , X − Y 〉 + βk

2
‖X − Y‖2F

+ λ

2
‖A(Y ) − b‖22 + τ

2
‖Y − Xk‖2F ,

where Z is the Lagrange multiplier and βk > 0 is the penalty parameter. The iterative
scheme of ADMM reads

⎧
⎪⎪⎨

⎪⎪⎩

Xt+1 ∈ arg min
rank(X)≤rk

L(X ,Yt , Zt , βk); (22)

Yt+1 ∈ argmin
Y

L(Xt+1,Y , Zt , βk);
Zt+1 = Zt + βk(Xt+1 − Yt+1). (23)

The two subproblems in the above algorithm are calculated as follows.

1. The X -subproblem (22). We can simplify (22) as

Xt+1 ∈ arg min
rank(X)≤rk

rk∑

j=1

wk, jσ j (X) + βk

2

∥
∥
∥
∥X −

(

Yt − 1

βk
Zt

)∥
∥
∥
∥

2

F
. (24)
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Combining (20) and (14) gives one solution of (24):

Xt+1 ∈ Drk
wk/βk

(

Yt − 1

βk
Zt

)

. (25)

2. The Y -subproblem (23). We can simplify (23) as

Yt+1 ∈ arg min
Y∈Rm×n

(

〈Zt , Xt − Y 〉 + βk

2
‖Xt − Y‖2F + λ

2
‖A(Y ) − b‖22 + τ

2
‖Y − Xk‖2F

)

.

This is a least squares problem and the corresponding normal equation is

(

I + λ

βk + τ
A∗A

)

Y = 1

βk + τ

(
Zt + βk Xt + λA∗(b) + τ Xk

)
, (26)

where I represents the identity operator.

We summarize the whole procedure of ADMM in Algorithm 2.

Algorithm 2: ADMM for solving (16)
Input: A, b, p, λ, τ, wk , rk , βk , initial value Y0 = Xk , Z0 = 0

1 repeat

2 Xt+1 ← Drk
wk/βk

(
Yt − 1

βk
Zt

)

3 Solve Yt+1 by (26)
4 Zt+1 ← Zt + βk (Xt+1 − Yt+1)

5 t ← t + 1
6 until termination criteria met

The computation of (25) is just a partial SVD and has a time cost O(mnrk). The
efficiency of Algorithm 2 depends heavily on whether we can solve (26) efficiently
and this is related to the feature of A : Rm×n → R

d . For a generic linear operator
A, the time cost of (26) is as high as O(m3n3). However, if A has special structures
or features, (26) can be solved much faster with specifical methods. For example, if
there exists A ∈ R

s×m such thatA(X) = vec(AX), then (26) is just a matrix equation
in the form of CY = B, where C ∈ R

m×m, B ∈ R
m×n . More generally, if the matrix

representation ofA is block diagonal, (26) can be solved in a low cost. In the following,
we will give two special cases where (26) can be solved efficiently.

3.1.1 The caseAA∗ = I

In the matrix completion problem, A is a sampling operator collecting a fraction of
entries of a matrix, and AA∗ = I. When AA∗ = I, by the Sherman-Morrison-
Woodbury formula, we have

(

I + λ

βk + τ
A∗A

)−1

= I − λ

λ + βk + τ
A∗A. (27)
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By noting (27), (26) has a closed-form solution:

Yt+1 = 1

βk + τ

(

I − λ

λ + βk + τ
A∗A

)
(
Zt + βk Xt + λA∗(b) + τ Xk

)
.

3.1.2 The case whereA is a convolution operator

In signal processing, image processing and many other engineering applications, con-
volution has a wide applications. IfA is a convolution operator, then (26) is a circulant
linear system and can be solved efficiently by the discrete Fourier transform (DFT).
If A is a 2D convolution operator, then the matrix representation of A∗A is a block
circulant matrix with circulant blocks and can be diagonalized by the two-dimensional
DFT.

Specifically, if A is a convolution operator, let y := vec(Y ). Suppose the matrix
representation ofA is a circulant matrix A whose first column is a1 ∈ R

mn . Let e1 be
the first standard basis. Then (26) is transformed into

(
(βk + τ)I + λA�A

)
y = vec (Zt + βk Xt + τ Xk) + λA�b. (28)

Let F be the DFT operator, c̄ be the conjugate of c and “◦” be the Hadamard product.
Applying the DFT on both sides of (28), we obtain

(
(βk + τ)F(e1) + λF(a1) ◦ F(a1)

)
◦ F( y)

= F (vec (Zt + βk Xt + τ Xk)) + λF(a1) ◦ F(b)

⇒ y = F−1

(
F (vec (Zt + βk Xt + τ Xk)) + λF(a1) ◦ F(b)

(βk + τ)F(e1) + λF(a1) ◦ F(a1)

)

. (29)

Note that F(e1) is a vector of all ones and all quantities but Zt + βk Xt + τ Xk are
constant. Hence, computing y from (29) involves one DFT and one inverse DFT, once
the constant quantities are computed.

The case whereA is a 2D convolution operator is similar. Refer to [47, Sect. 2] for
details.

3.2 Solving (16) via LADMM

If (26) is too expensive to solve, we consider using LADMM. By introducing an
auxiliary variable y ∈ R

d , (16) is equivalently transformed into

min
rank(X)≤rk

min
y∈Rd

rk∑

j=1

wk, jσ j (X) + λ

2
‖ y‖22 + τ

2
‖X − Xk‖2F

s.t. A(X) − b = y.
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The augmented Lagrangian function of the above problem reads

L(X , y, z, βk) =
rk∑

j=1

wk, jσ j (X) + 〈z,A(X) − b − y〉 + βk

2
‖A(X) − b − y‖22

+ λ

2
‖ y‖22 + τ

2
‖X − Xk‖2F ,

where z is the Lagrange multiplier and βk > 0 is the penalty parameter. The iterative
scheme of ADMM reads

⎧
⎪⎪⎨

⎪⎪⎩

yt+1 ∈ argmin
y

L (Xt , y, zt , βk); (30)

Xt+1 ∈ arg min
rank(X)≤rk

L (X , yt+1, zt , βk);
zt+1 = zt + βk(A(Xt+1) − b − yt+1). (31)

The y-subproblem (30) can be simplified as

yt+1 ∈ argmin
y

λ

2
‖ y‖22 + β

2

∥
∥
∥
∥ y −

(

A(Xt ) − b + 1

βk
zt

)∥
∥
∥
∥

2

2
,

which has a closed-form solution given by

yt+1 = βk

λ + βk

(

A(Xt ) − b + 1

βk
zt

)

.

The X -subproblem (31) can be simplified as

Xt+1 ∈ arg min
rank(X)≤rk

rk∑

j=1

wk, jσ j (X) + βk

2
‖A(X) − ct‖22 + τ

2
‖X − Xk‖2F , (32)

where ct = b + yt+1 − 1
βk
zt . Like (12), we consider the proximal linearization:

1

2
‖A(X) − ct‖22 ≈ 1

2
‖A(Xt ) − ct‖22 + 〈X − Xt ,Gt 〉 + η

2
‖X − Xt‖2F , (33)

where

Gt = A∗(A(Xt ) − ct ) = A∗
(

A(Xt ) − b − yt+1 + 1

βk
zt

)

(34)

is the gradient of 1
2 ‖A(X) − ct‖22 at Xt and η > 0 is the proximal parameter. We will

choose

η ≥ ‖A∗A‖2 (35)
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to guarantee the right hand of (33) is an upper bound of 1
2 ‖A(X) − ct‖22 near Xt . Sub-

stituting (33) into (32) and deleting some constants, we obtain the following proximal
linearization version of (32)

Xt+1 ∈ arg min
rank(X)≤rk

rk∑

j=1

wk, jσ j (X) + βkη + τ

2

∥
∥
∥
∥X − βkηXt − βkGt + τ Xk

βkη + τ

∥
∥
∥
∥

2

F
,

whose solution is

Xt+1 = Drk
wk/(βkη+τ)

(
βkηXt − βkGt + τ Xk

βkη + τ

)

, (36)

where Gt and η are given in (34) and (35).
We summarize the whole procedure of LADMM in Algorithm 3.

Algorithm 3: LADMM for solving (16)
Input: A, b, p, λ, τ, η, wk , rk , βk , initial value X0 = Xk , z0 = 0

1 repeat

2 yt+1 ← βk
λ+βk

(
A(Xt ) − b + 1

βk
zt

)

3 Xt+1 ← D
rk
wk/(βkη+τ)

(
βkηXt−βkGt+τ Xk

βkη+τ

)
; see (36)

4 zt+1 ← zt + βk (A(Xt+1) − b − yt+1)

5 t ← t + 1
6 until termination criteria met

4 Convergence analysis

We discuss the convergence properties of PLM in Algorithm 1. In Sect. 4.1, we will
establish the convergence properties of {rk} and {P(Xk)}, where P(X) is the objective
function defined in (11). The global convergence of {Xk}will be discussed in Sect. 4.3.

4.1 Basic convergence properties of PLM

Proposition 4.1 Let {Xk} be generated by Algorithm 1. Then,

1. The objective function sequence {P(Xk)} satisfies
τ

2
‖Xk+1 − Xk‖2F ≤ P(Xk) − P(Xk+1) (37)

and converges;
2. The iterate sequence {Xk} is bounded and satisfies

lim
k→∞ ‖Xk − Xk+1‖F = 0. (38)
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Proof For X ∈ R
m×n with rank(X) ≤ rk , it follows from (15) that

P(X) + τ

2
‖X − Xk‖2F ≤ Hk(X) +

rk∑

j=1

(σ
p
k, j − wk, jσk, j ). (39)

Note that δM≤rk
(Xk) = δM≤rk

(Xk+1) = 0. We have

Hk(Xk+1) = Hk(Xk+1) + δM≤rk
(Xk+1)

(18)≤ Hk(Xk) + δM≤rk
(Xk) = Hk(Xk).

(40)

Combining the above results, we have

P(Xk+1) + τ

2
‖Xk+1 − Xk‖2F

(39)≤ Hk(Xk+1) +
rk∑

j=1

(σ
p
k, j − wk, jσk, j )

(40)≤ Hk(Xk) +
rk∑

j=1

(σ
p
k, j − wk, jσk, j )

(16)=
rk∑

j=1

σ
p
k, j + λ

2
‖A(Xk) − b‖22 = P(Xk),

which proves (37).
Combining (37) and the fact that P(Xk) ≥ 0 yields the convergence of {P(Xk)}.

Since P(X) is coercive, it follows that {Xk} is bounded. Let c > 1 be an integer.
Summing (37) from k = 0 to c − 1 we obtain

c−1∑

k=0

‖Xk+1 − Xk‖2F ≤ 2

τ
(P(X0) − P(Xc)) ≤ 2

τ
P(X0).

Taking the limit as c → ∞ gives
∑∞

k=0 ‖Xk+1 − Xk‖2F < +∞, and hence yields
(38). ��

For the convergence of {rk}, we have the following result.

Lemma 4.2 The sequence {rk} satisfies rk+1 ≤ rk and converges within finite steps.

Proof FromAlgorithm 1 we know that rk+1 ≤ rk . Since rk ∈ {0, 1, . . . , r0}, it follows
that {rk} will converge within finite steps. ��

The preceding lemma implies that

∃̃r , k̃ such that rk = r̃ ∀k ≥ k̃. (41)
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Let

Mr := {X ∈ R
m×n : rank(X) = r}

denote the manifold of fixed-rank matrices and let δMr̃ (X) be the indicator function
of Mr̃ . When k ≥ k̃, Gk(X) defined in (17) has the following form:

Gk(X) =
r̃∑

j=1

wk, jσ j (X) + λ

2
‖A(X) − b‖22 + τ

2
‖X − Xk‖2F + δMr̃ (X). (42)

4.2 Singular value functions and KL functions

To prove the global convergence of {Xk}, we need some knowledge on singular value
functions and KL functions.

Definition 4.3 A function f : Rn → [−∞,+∞] is an absolutely symmetric function
if f (x) = f (P|x|) for every x ∈ R

n and every permutation matrix P ∈ R
n×n .

Absolutely symmetric functions are extensions of symmetric gauge functions,
which play a special role in unitarily invariant norms. Refer to Horn and Johnson
[24, Chapter 7.4] and Lewis and Sendov [31, Sect. 5] for details.

Definition 4.4 A function F : Rm×n → [−∞,+∞] is a singular value function if
there is an absolutely symmetric function f such that F(X) = f (σ (X)).

The subdifferential of a singular value function has the following formula.

Theorem 4.5 (See [31, Theorem 7.1]) The subdifferential of a singular value function
F(X) = f (σ (X)) is given by the formula

∂F(X) =
{
U diag( y)V� : (U , V ) ∈ Sm(X), y ∈ ∂ f (σ (X))

}
. (43)

The following lemma gives the subdifferential of the Schatten p-quasi-norm.

Lemma 4.6 Define S(X) : Rm×n → (−∞,+∞) by S(X) = ‖X‖p∗,p(0 < p < 1)
and let h = min{m, n}. For a matrix X̂ ∈ R

m×n with rank(X̂) = r , we have

∂S(X̂) =
{

U

[
D 0
0 diag(a)

]

V� : (U , V ) ∈ Sm(X̂), a ∈ R
h−r ,

D = diag(pσ p−1
1 (X̂), . . . , pσ p−1

r (X̂)) ∈ R
r×r

}

.

(44)

Proof Define f (x) : R
h → R by f (x) = ∑h

i=1 |xi |p. Then f is an absolutely
symmetric function and S(X) = f (σ (X)). Note that

∂|x |p =
{

{p|x |p−1}, if x �= 0

(−∞,+∞), otherwise.
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Then the subdifferential of S(X) at X̂ is obtained by (43). ��
In (16) or (17), there is one term

∑rk
j=1 wk, jσ j (X). For convenience, we define

W(X) : Rm×n → (−∞,+∞) by

W(X) =
r∑

i=1

biσi (X), (45)

where r ≤ min{m, n} and bi > 0, i = 1, . . . , r . The function W(X) can be regarded
as a generalization of Ky Fan r -norms; see [24, Chapter 7.4.8] for details. Generally,
it is difficult to give an explicit formula of ∂W(X). However, when the first r + 1
singular values of X are strictly decreasing, we have the following result.

Lemma 4.7 LetW(X) be defined in (45) and h = min{m, n}. For a matrix X̂ ∈ R
m×n

with σ1(X̂) > · · · > σr (X̂) > σr+1(X̂), where σh+1(X̂) := 0, we have

∂W(X̂) =
{

U

[
D 0
0 0

]

V� : (U , V ) ∈ Sm(X̂), D = diag(b1, . . . , br ) ∈ R
r×r

}

.

(46)

Proof Given x ∈ R
h , we write x for the vector in R

h+ with the same entries as |x|
arranged in nonincreasing order. Define

f (x) =
r∑

i=1

bi xi . (47)

Then f is an absolutely symmetric function and W(X) = f (σ (X)).
Given x̂ ∈ R

h+, suppose x̂1 > · · · > x̂r > x̂d , d = r + 1, . . . , h, where x̂h+1 := 0.
Then, f (x̂) = ∑r

i=1 bi x̂i . There exists ε > 0 such that for each y ∈ R
h with ‖ y‖2 < ε,

z := x̂ + y satisfies zi = zi , i = 1, . . . , r . Hence, f (z) = ∑r
i=1 bi zi . It follows that

f is differentiable at x̂ and

∇ f (x̂) = [b1, . . . , br , 0, . . . , 0]�.

Then the subdifferential ofW(X) at X̂ follows from (43). ��
With the same condition of the preceding lemma, we can give an explicit formula

of the subdifferential of W(X) + δMr (X).

Lemma 4.8 Define R(X) : R
m×n → (−∞,+∞] by R(X) := W(X) + δMr (X),

where W(X) is defined in (45) and let h = min{m, n}. For a matrix X̂ ∈ R
m×n with

rank(X̂) = r and σ1(X̂) > · · · > σr (X̂), we have

∂R(X̂) =
{

U

[
D 0
0 diag(a)

]

V� : (U , V ) ∈ Sm(X̂), a ∈ R
h−r

D = diag(b1, . . . , br ) ∈ R
r×r

}

.

(48)
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Proof First, it is well know that Mr is a smooth manifold; see, e.g., [46, Proposition
2.1] and [25, Theorem 2.1] for the formulae of tangent cone and the normal cone of
Mr , in terms of SVD. Denote by NMr (X) the normal cone of Mr at X̂ . By [42,
Exercise 8.14], we have

∂δMr (X̂) = NMr (X̂) =
{

U

[
0r×r 0
0 diag(a)

]

V� : (U , V ) ∈ Sm(X̂), a ∈ R
h−r

}

.

(49)

Clearly, δMr (X) is regular at X̂ . From the proof of (46), we know that f (x) defined
in (47) is differentiable at σ (X̂) and of course regular at σ (X̂). By Lewis and Sendov
[31, Corollary 7.5],W(X) is regular at X̂ . Consequently, by Rockafellar andWets [42,
Corollary 10.9], R(X) is regular at X̂ and

∂R(X̂) = ∂W(X̂) + ∂δMr (X̂). (50)

Combining (46), (49) and (50) yields (48). ��
We next recall the Kurdyka–Łojasiewicz (KL) property. This property has been

widely used in establishing convergence and analyzing the convergence rate of first-
order methods; see, for example, [1–3, 5, 33, 51] First we introduce some notation and
definitions. We use E to denote a Euclidean space and ‖ · ‖ to denote the Euclidean
norm. For any subset S ⊆ E and any point u ∈ E, the distance from u to S is
defined by dist(u,S ) := inf{‖v − u‖ : v ∈ S }. An extended-real-valued function
f : E → (−∞,+∞] is said to be proper if {x ∈ E : f (x) < +∞} �= ∅. Let
η ∈ (0,∞]. We denote by �η the class of all concave and continuous functions
ϕ : [0, η) → (0,+∞] which satisfy the following conditions

(i) ϕ(0) = 0;
(ii) ϕ is continuous differentiable on (0, η);
(iii) ϕ′ > 0 on (0, η).

Definition 4.9 (KL property and KL functions) A proper and lower semicontinuous
function f : E → (−∞,+∞] is said to have the KL property at x̂ ∈ dom ∂ f :=
{x ∈ E : ∂ f (x) �= ∅} if there exist η ∈ (0,+∞], a neighborhood V of x̂ , and a
function ϕ ∈ �η such that for all x ∈ V ∩ {y ∈ E : f (x̂) < f (y) < f (x̂) + η}, the
KL inequality holds:

ϕ′( f (x) − f (x̂))dist(0, ∂ f (x)) ≥ 1.

If f satisfies the KL property at each point of dom ∂ f , f is called a KL function.

A rich class of KL functions used widely in practice belongs to a special structure
called o-minimal structure. Related facts can be found in [2, 45]. The KL properties
of some related functions are proved in the Appendix.

Proposition 4.10 Let F : R
m×n → (−∞,+∞], h = min{m, n} and f : R

h →
(−∞,+∞] be an absolutely symmetric function. Suppose F(X) = f (σ (X)). Then
F is a KL function if and only if f is a KL function.
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Proof First, we assume that f is a KL function. For any X̂ ∈ dom ∂F, by the sub-
differential formula (43), σ (X̂) ∈ dom ∂ f . Since f is a KL function, there exist
η ∈ (0,+∞], a neighborhood V of σ (X̂), and a function ϕ ∈ �η such that for all

x ∈ V ∩ { y ∈ R
h : F(X̂) < f ( y) < F(X̂) + η},

the KL inequality holds:

ϕ′( f (x) − F(X̂))dist(0, ∂ f (x)) ≥ 1,

where F(X̂) = f (σ (X̂)) has been used. By the continuity of singular values (see [24,
Corollary 7.4.1.3]), there exists a neighborhood U of X̂ such that σ (X) ∈ V for all
X ∈ U . Hence, for any X ∈ U ∩ {Y ∈ R

m×n : F(X̂) < F(Y ) < F(X̂) + η}, we
have σ (X) ∈ V ∩ { y ∈ R

h : F(X̂) < f ( y) < F(X̂) + η} and

ϕ′(F(X) − F(X̂))dist(0, ∂F(X))

= ϕ′( f (σ (X)) − F(X̂))dist(0, ∂ f (σ (X))) ≥ 1,

where dist(0, ∂F(X)) = dist(0, ∂ f (σ (X))) follows from (43). By definition, F is a
KL function.

To show the opposite, we can fix U ∈ Stmm, V ∈ Stnn . Then f (x) =
F(U diag(x)V�) for all x ∈ R

h and theKL property of f can be verified by definition.
��

ByProposition 4.10 andExamples 7.5–7.7,P(X) defined in (11) andGk(X) defined
in (17) are both KL functions.

4.3 Global convergence of PLM and remarks on nonconvex ADMM

Nowwe start to prove the global convergence of {Xk}. We need the following assump-
tion.

Assumption 4.11 The sequence {Xk} generated by Algorithm 1 satisfies

σk,1 > · · · > σk ,̃r ∀k ≥ k̃,

where r̃ , k̃ are defined in (41).

Remark 4.12 In the convergence analysis based on the KL property for proximal lin-
earization methods, the function that is linearized is usually assumed to have Lipschitz
gradient. See, for example, [5, Assumption 2] and [55, Assumption 2.2]. In (12), the
function that is linearized is f (z) = z p, which does not have Lipschitz gradient on
(0,+∞). Our strategy is to prove the lower bound property of the nonzero singular
values of {Xk}; see Lemma 4.13. Then, f (z) also has Lipschitz gradient in the domain
where the nonzero singular values lie; see (55). To prove Lemma 4.13 and obtain a
subdifferential lower bound for the iterates gap (Lemma 4.14), we need the explicit
formula of ∂Gk(X), which is ensured by Assumption 4.11.
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In Theorem 2.1, we obtain a lower bound property for the original problem (6).
Since {Xk} is generated by approximately solving the proximal linearization (17),
Theorem 2.1 does not hold for {Xk}. In the following, we give a similar result with
respect to {Xk} .
Lemma 4.13 Suppose that Assumption 4.11 holds. Let {Xk} be generated byAlgorithm
1 and k ≥ k̃. Then, there is a constant ϑ > 0 such that

σr (Xk) ≥ ϑ for all r = 1, . . . , r̃ .

Proof Define Dk := diag(wk,1, . . . , wk ,̃r ). By noting (42) and (48), the subdifferential
of Gk(X) at Xk+1 is

∂Gk(Xk+1) =
{

U

[
Dk 0
0 diag(a)

]

V� + λA∗(A(Xk+1) − b) + τ(Xk+1 − Xk) :

(U , V ) ∈ Sm(Xk+1), a ∈ R
h−r̃

}

.

(51)

There exist Yk+1 ∈ ∂Gk(Xk+1) and (U , V ) ∈ Sm(Xk+1) such that

U

[
Dk 0
0 diag(a)

]

V� = Yk+1 − λA∗(A(Xk+1) − b) − τ(Xk+1 − Xk).

By noting the condition (19), we have

pσ p−1
r̃ (Xk) = wk ,̃r ≤ ‖wk‖2 = ‖Dk‖F ≤

∥
∥
∥
∥

[
Dk 0
0 diag(a)

]∥
∥
∥
∥
F

≤‖Yk+1‖F + λ‖A∗(A(Xk+1) − b)‖F + τ‖Xk+1 − Xk‖F
≤(ρ + τ)‖Xk+1 − Xk‖F + λ‖A∗(A(Xk+1) − b)‖F .

Since {Xk} is bounded (see Proposition 4.1), there is a constant α such that

pσ p−1
r̃ (Xk) ≤ α ⇒ σ̃r (Xk) ≥

( p

α

) 1
1−p =: ϑ,

which completes the proof. ��
Lemma 4.14 Suppose that Assumption 4.11 holds. Let {Xk} be generated by Algo-
rithm 1 and k ≥ k̃. Define Dk := diag(wk,1, . . . , wk ,̃r ). Then there exist Yk+1 ∈
∂Gk(Xk+1), (U , V ) ∈ Sm(Xk+1) and μ > 0 such that

Bk+1 := Yk+1 +U

[
Dk+1 − Dk 0

0 0

]

V� + τ(Xk − Xk+1) ∈ ∂P(Xk+1) (52)

and

‖Bk+1‖F ≤ μ‖Xk+1 − Xk‖F .
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Proof Note that rank(Xk) = r̃ for all k ≥ k̃. By using (44), we have

∂P(Xk+1) =
{

U

[
Dk+1 0
0 diag(a)

]

V� + λA∗(A(Xk+1) − b) :

(U , V ) ∈ Sm(Xk+1), a ∈ R
h−r̃

}

.

(53)

By noting (51), there exist Yk+1 ∈ ∂Gk(Xk+1) and (U , V ) ∈ Sm(Xk+1) such that

λA∗(A(Xk+1) − b) = Yk+1 + τ(Xk − Xk+1) −U

[
Dk 0
0 0

]

V�. (54)

Combining (53) and (54) yields (52).
Now we estimate the norm of Bk+1. First, by the condition (19), we have

‖Bk+1‖F ≤ ‖Dk+1 − Dk‖F + (ρ + τ)‖Xk+1 − Xk‖F .

By Lemma 4.13, σk,r ≥ ϑ for all k ≥ k̃ and r = 1, . . . , r̃ . Consider the function
[ϑ,+∞) → R defined by z �→ z p−1. For any z2 > z1 ≥ ϑ , by the mean value
theorem, there exists z0 ∈ (z1, z2) such that

|z p−1
1 − z p−1

2 | = (1 − p)z p−2
0 |z1 − z2| ≤ (1 − p)ϑ p−2|z1 − z2|. (55)

With this fact, we have

‖Dk+1 − Dk‖2F = ‖wk+1 − wk‖22 = p2
r̃∑

r=1

∣
∣
∣σ

p−1
k,r − σ

p−1
k+1,r

∣
∣
∣
2

≤p2(1 − p)2ϑ2p−4
r̃∑

r=1

∣
∣σk,r − σk+1,r

∣
∣2 ≤ p2(1 − p)2ϑ2p−4‖Xk+1 − Xk‖2F ,

where the last inequality follows from Horn and Johnson [24, Corollary 7.4.1.3].
Therefore, we have

‖Bk+1‖F ≤ p(1 − p)ϑ p−2‖Xk+1 − Xk‖F
+ (ρ + τ)‖Xk+1 − Xk‖F =: μ‖Xk+1 − Xk‖F ,

which completes the proof. ��
Nowwe can use the framework in [3] to establish the global convergence. To match

the theme of this paper, we present the framework of Attouch et al. [3] in the form
matrix functions as follows.

Lemma 4.15 (See [3, Theorem 2.9]) Suppose F(X) : Rm×n → (−∞,+∞] is a KL
function. Let {Xk} be a sequence of Rm×n. Suppose there exist a > 0, b > 0 such that

H1. F(Xk) − F(Xk+1) ≥ a‖Xk − Xk+1‖2 for all k.
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H2. There exists Yk+1 ∈ ∂F(Xk+1) such that

‖Yk+1‖F ≤ b‖Xk − Xk+1‖F .

H3. There exists a subsequence {Xk j } and X̃ such that

Xk j → X̃ and F(Xk j ) → F(X̃), as j → ∞.

Then limk→∞ Xk = X̃ , and X̃ is a critical point of F(X).

Theorem 4.16 Suppose that Assumption 4.11 holds. Let {Xk} be a sequence generated
by PLM. Then {Xk} converges to a critical point of P(X).

Proof Proposition 4.1 and Lemma 4.14 show that conditionsH1 andH2 are satisfied.
Combining the fact that {Xk} is bounded (see Proposition 4.1) and the fact that P(X)

is continuous gives that H3 is satisfied. In addition, P(X) is a KL function. These
together with Lemma 4.15 demonstrate the assertion. ��

The convergence analysis of nonconvex (L)ADMMcan also be established by using
the KL property; see [6, 32, 48]. Note that Gk(X) is a KL function. Algorithm 2 is in
the framework of Li and Pong [32], Wang et al. [48] and Boţ and Nguyen [6], while
Algorithm 3 is only in the framework of Wang et al. [48]. We summarize the results
in the following proposition.

Proposition 4.17 Let {Xt } be the sequence in Algorithm 2 or Algorithm 3. Then for
any sufficiently large βk , {Xt } converges globally to a critical point of Gk(X) defined
in (17).

The lower bounds of βk have been given in all these three references. Note that
these bounds are only for sufficient conditions of convergence, and computing them
is not very easy. In practice, setting βk empirically is more efficient.

Remark 4.18 Proposition 4.17 implies that, after a sufficiently large number of iter-
ations of (L)ADMM, the condition (19) will be satisfied. However, checking (19) is
not easy. Like [35, 55, 56], in practical computation, we adopt the relative change as
stopping criterion in the inner loop; see the next section. It turns out numerically that
PLM shows good convergence behaviour with this stopping criterion.

5 Experiments

We evaluate the performance of PLM in this section. All experiments are performed
on MATLAB R2016a on a laptop (Intel Core i5-6300HQ CPU @ 2.30GHz, 8.00G
RAM). We measure the quality of a solution X by its relative error (RErr) to the true
low-rank matrix X̂ :

RErr := ‖X − X̂‖F
‖X̂‖F

.
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It turns out that the performance of a low-rank matrix recovery algorithm is related
to the distribution of singular values; see [28, 49]. We will test low-rank matrices
with singular values in different distributions. To obtain a matrix Z ∈ R

m×n with
rank(Z) = rtrue, firstly we generate ML ∈ Stmrtrue and MR ∈ Stnrtrue . Then we generate
a vector s ∈ R

rtrue with a given distribution, which will be specified later. The yielded
low-rank matrix is

Z = cML diag(s)M�
R ,

where c is a random scalar. We consider two types of distributions of singular values:

1. Uniform distribution in [a, b]: s is generated by the Matlab command “a + (b −
a)∗rand(rtrue,1)”.

2. Power-law distribution with power a: s has entries si = ia, i = 1, . . . , rtrue.

5.1 Implementation details

As mentioned before, the initial value X0 is crucial for PLM. The ideal choice would
be a matrix not far from the solution of (6). Note that (3) and (6) are both approximate
models of the original problem (1), meaning that the solution of (3) is not very far from
that of (6). Therefore, we use the solution of the convex problem (3), which can be
solved efficiently by (L)ADMM [50], as the initialization X0. We call the algorithm
[50] nuclear-(L)ADMM. An important advantage of nuclear-(L)ADMM is that the
yielded solutions have low-rank. Because the subproblem (25) or (36) is solved by
partial SVD, a smaller r0 results in a lower time cost. We will use this initialization in
all tests.

The magnitudes of different datasets may differ greatly, which brings difficulties
in the settings of parameters. This issue can be tackled by scaling. Specifically, we set
the scaling value c = ‖X0‖2. The scaled model corresponding to (11) is

min
rank(X)≤rk

‖X‖p∗,p + λ

2
‖A(X) − b/c‖22, (56)

and the scaled initialization is X0/c. After obtaining the solution X̃ of (56) by PLM,
the solution of the original problem is cX̃ . Similar scaling can be used in nuclear-
(L)ADMM: we set c = ‖b‖2 and the scaled model corresponding to (3) is

min
X

‖X‖∗ + λ

2
‖A(X) − b/c‖22. (57)

In the remainder of this section, PLM is discussed based on the scaled model (56), and
P(X) and {Xk} are the scaled objective function and the scaled sequence, respectively.

In our implementation, the partial SVD is realized by the optPROPACK package1

[34]. By our test, this package outperforms the influential PROPACK package [29].

1 The code is available at https://zhouchenlin.github.io/.
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As discussed in [27] and based our own test, p = 0.5 performs better than other
choice of p generally. For simplicity, we fix p = 0.5 for all tests. As mentioned
before, τ can be any positive scalar. To approximate the original model well, we set τ
as small as 10−5. As with Yang and Yuan [50], we set η = ‖A∗A‖2 for LADMM. The
performance of PLM depends heavily on whether the (L)ADMM in the inner loops
converges well. Hence, the stopping tolerance for the inner loops cannot be too loose.
In our tests, as suggested by Remark 4.18, the stopping tolerance of the inner loops is
set as

‖Xt+1 − Xt‖F
max(‖Xt‖F , 1)

≤ 10−6;

and the stopping tolerance of the outer loops is set as

‖Xk+1 − Xk‖F
max(‖Xk‖F , 1)

≤ 10−5.

5.2 Convergence behaviour of PLM

We show the convergence behaviour of PLM on the matrix completion problem. First,
we generate a low-rank matrix Z ∈ R

500×500 with rank(Z) = 10 and singular values
in power-law distribution, where the power is set to be−3. Then, we select 30% entries
of Z randomly (i.e, the sample ratio is 30%) and use b′ to denote the vector formed by
these entries. At last, we impose some Gaussian noise on b′ and obtain the observed
vector b by

b = b′ + ε
‖b′‖2
‖n‖2 n,

where the entries of n are drawn from a standard normal distribution and ε is the noise
level.We set ε = 10−3 in this test. Besides using the solution of (3) as the initialization,
we use two other initializations to show the convergence behaviour of PLM:

1. the initialization X (1)
0 is the solution of (3) solved by nuclear-ADMM;

2. the initialization X (2)
0 is a random generated matrix with rank(X (2)

0 ) = 10;

3. the initialization X (3)
0 is the best rank-7 approximation of X (1)

0 , obtained by the

truncated SVD of X (1)
0 .

We run PLM to 8 outer loops, ignoring the stopping tolerance of outer loops, with
different initializations.

As shown in Fig. 1, the sequence {P(Xk)} is monotonically decreasing. For the
initializations X (1)

0 and X (3)
0 , rank(Xk) is unchanged for all k, and for the initialization

X (2)
0 , rank(Xk) is unchangedwhen k ≥ 3. PLMconverges very fast: the relative change

between X3 and X4 is less than 10−5 for all initializations. For the initialization X (2)
0 ,

the change between P(X0) and P(X1) and the relative change between X0 and X1 are
both very large, implying that X (2)

0 is far from a critical point.
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Fig. 1 The valuesP(Xk ), rank(Xk ) and ‖Xk+1−Xk‖F/‖Xk‖F versus the outer iteration number in PLM,

where all values are with respect to the scaled model (56). The first row is with the initialization X (1)
0 , the

second row is with the initialization X (2)
0 , and the third row is with the initialization X (3)

0

The iteration number of nuclear-ADMM for generating X (1)
0 is 81, and we show the

iteration numbers of inner loops of PLM in Table 1. We can find that these numbers
are relatively small for X (1)

0 and X (3)
0 , while for X (2)

0 the iteration number of inner
loops for the first step is as high as 5448. The iteration numbers are consistent with
the results shown in Fig. 1.

5.3 Matrix completion

In this subsection, we compare PLM with nuclear-ADMM and t-IRucLq-M [27] on
the matrix completion problem. We choose these two methods to compare due to their
significant superiorities to many other existing methods. See the numerical results in
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Table 1 Iteration numbers of
inner loops of each step, with
different initializations

Initialization Iteration numbers of inner loops

X (1)
0 35, 3, 1, 1, 1, 1, 1, 1

X (2)
0 5448, 15, 7, 1, 1, 1, 1, 1

X (3)
0 24, 2, 1, 1, 1, 1, 1, 1

For example, the iteration numbers corresponding to X (1)
0 is 35, 3, . . .,

meaning that when the initialization is X (1)
0 , the iteration numbers of

ADMM for generating X1, X2, . . . are 35, 3, . . .

[13, 27, 50]. We test matrices with singular values uniformly distributed in [0.1, 1]
and matrices with singular values in power-law distribution, where the power is set to
be −3. We consider three levels of noise ε = 10−3, 10−4, 10−5.

nuclear-ADMM is run based on the scaled model (57), whose parameters are rela-
tively stable. We set λ = 103/ε and the stopping tolerance to be 10−5. For PLM (56),
we set λ = 103/ε and βk = 105 for all k. t-IRucLq-M solves (6) by (7). Its model
parameters p and λ are set to be the same as those of PLM for the original model
(6). The rank estimate of t-IRucLq-M is set to be r0 and the stopping tolerance is set
to be 10−3. The comparison results are shown in Tables 2 and 3, where the running
time of PLM has included the time for generating the initialization. For matrices with
singular values in power-law distribution, we only test rtrue = 10, because σrtrue/σ1 is
too small for greater rtrue, resulting in difficulties in recovering the original matrices.
All results are averaged over 10 trials for each case.

We consider the relative error. For matrices with uniformly distributed singular
values, as shown in Table 2, when the noise level is as high as 10−3, the results of
different methods are close; as the noise level decreases, the advantage of Schatten p-
quasi-norm minimizations becomes obvious: both t-IRucLq-M and PLM outperform
nuclear-ADMM and PLM has the best performance. For matrices with singular values
in power-law distribution, as shown in Table 3, nuclear-ADMM performs worse than
it does on the former type of matrices; both t-IRucLq-M and PLMoutperform nuclear-
ADMM and PLM has the best performance.

Now,we focus on the running time.We can see that the time cost of nuclear-ADMM
is very cheap, which has also been demonstrated in previous works. PLM converges
very fast: the numbers of outer loops of PLM are at most 2 for all cases. The gap
between the running time of nuclear-ADMM and PLM is not very big, and PLM is
much faster than t-IRucLq-M.

5.4 Sylvester equation

In this subsection, we consider solving a low-rank solution of a Sylvester equation

AX + XB ≈ C,
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Table 2 Comparison results of different methods onmatrix completion: matrices with uniformly distributed
singular values

Noise level (m, n, rtrue) SR (%) Nuclear-ADMM t-IRucLq-M PLM

Time RErr Time RErr Time RErr Iter

10−3 (500, 500, 10) 20 5.0 4.95e−4 12.8 4.99e−4 5.3 4.94e−4 2

40 1.5 3.43e−4 8.7 3.45e−4 1.7 3.26e−4 2

60 0.8 2.63e−4 3.9 2.63e−4 1.0 2.62e−4 1

(800, 1200, 20) 20 15.8 5.03e−4 33.1 5.13e−4 17.4 5.02e−4 2

40 6.6 3.33e−4 14.0 3.35e−4 7.7 3.32e−4 2

60 2.9 2.66e−4 5.8 2.71e−4 3.7 2.66e−4 1

(1500, 1500, 30) 20 26.2 4.89e−4 53.7 4.92e−4 31.4 4.88e−4 2

40 13.9 3.27e−4 30.3 3.35e−4 17.7 3.26e−4 2

60 9.4 2.61e−4 23.8 2.67e−4 12.3 2.60e−4 1

10−4 (500, 500, 10) 20 4.9 5.70e−5 13.1 5.33e−5 5.7 4.93e−5 2

40 1.6 3.54e−5 8.0 3.45e−5 1.8 3.27e−5 1.6

60 0.9 2.72e−5 3.8 2.71e−5 1.1 2.61e−5 1

(800, 1200, 20) 20 15.8 5.61e−5 32.2 5.48e−5 18.7 5.02e−5 2

40 5.9 3.56e−5 15.4 3.55e−5 7.2 3.34e−5 1.8

60 3.0 2.75e−5 6.1 2.76e−5 3.9 2.66e−5 1

(1500, 1500, 30) 20 25.8 5.37e−5 61.1 5.30e−5 34.5 4.89e−5 2

40 13.2 3.45e−5 29.6 3.40e−5 17.5 3.25e−5 1.9

60 9.1 2.74e−5 22.9 2.71e−5 12.1 2.61e−5 1

10−5 (500, 500, 10) 20 5.4 3.01e−5 13.7 2.03e−5 6.0 6.94e−6 2

40 1.6 1.48e−5 8.3 1.11e−5 1.8 4.04e−6 1.9

60 0.9 8.39e−6 3.9 6.85e−6 1.1 2.90e−6 1

(800, 1200, 20) 20 15.1 2.67e−5 35.5 1.12e−5 18.2 6.79e−6 2

40 6.2 1.24e−5 14.7 8.35e−6 7.6 3.63e−6 2

60 2.8 7.18e−6 5.9 5.71e−6 3.7 2.86e−6 1

(1500, 1500, 30) 20 24.5 2.38e−5 57.7 1.83e−5 33.8 6.00e−6 2

40 14.0 1.25e−5 28.3 9.11e−6 18.5 3.63e−6 2

60 8.7 8.44e−6 21.6 5.85e−6 11.8 2.87e−6 1

Here “SR” is sample ratio, “iter” is the number of outer loops, and the running time is measured in seconds

where A ∈ R
m×m, B ∈ R

n×n,C ∈ R
m×n . This problem is mentioned in [44]. In this

case,

A(X) = vec(AX + XB) = (Im ⊗ A + B� ⊗ In)vec(X), (58)

where ⊗ is the Kronecker product, and Is ∈ R
s×s is an identity matrix, s = m, n.

We define B : Rm×n → R
m×n by B(X) = AX + XB. Equation (58) implies that the

representing matrix of B is (Im ⊗ A + B� ⊗ In) and hence B∗(Y ) = A�Y + Y B�.
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Table 3 Comparison results of different methods on matrix completion: matrices with singular values in
power-law distribution

Noise level (m, n, rtrue) SR (%) Nuclear-ADMM t-IRucLq-M PLM

Time RErr Time RErr Time RErr Iter

10−3 (500, 500, 10) 20 4.1 7.80e−4 15.6 6.99e−4 4.7 5.18e−4 2

40 1.8 4.89e−4 9.4 4.63e−4 2.2 3.32e−4 2

60 1.0 3.75e−4 4.9 3.12e−4 1.3 2.64e−4 2

(800, 1200, 10) 20 9.3 5.95e−4 25.1 5.88e−4 12.3 3.71e−4 2

40 4.5 3.90e−4 12.4 3.16e−4 5.8 2.41e−4 2

60 3.4 2.83e−4 5.8 2.62e−4 4.3 1.92e−4 2

(1500, 1500, 10) 20 20.3 4.75e−4 42.4 4.37e−4 25.3 3.04e−4 2

40 12.4 3.01e−4 22.3 2.75e−4 16.1 1.97e−4 2

60 9.1 2.30e−4 18.9 2.01e−4 12.3 1.56e−4 2

10−4 (500, 500, 10) 20 4.6 4.64e−4 14.2 8.73e−5 5.6 5.33e−5 2

40 2.3 2.92e−4 8.6 6.46e−5 2.7 3.32e−5 2

60 1.1 2.15e−4 3.9 4.77e−5 1.4 2.64e−5 2

(800, 1200, 10) 20 10.9 3.35e−4 26.3 7.58e−5 14.1 3.80e−5 2

40 5.3 2.54e−4 13.2 5.15e−5 6.9 2.39e−5 2

60 3.4 1.92e−4 6.2 3.81e−5 4.5 1.93e−5 2

(1500, 1500, 10) 20 27.6 2.93e−4 45.1 6.32e−5 34.2 2.97e−5 2

40 12.7 2.28e−4 21.6 3.96e−5 16.8 1.93e−5 2

60 9.0 1.77e−4 17.9 2.88e−5 12.1 1.56e−5 2

10−5 (500, 500, 10) 20 4.6 4.62e−4 14.1 2.01e−5 5.8 6.55e−6 2

40 2.2 2.93e−4 8.4 1.35e−5 2.7 4.32e−6 2

60 1.2 2.13e−4 3.8 1.01e−5 1.5 2.83e−6 1

(800, 1200, 10) 20 11.2 3.36e−4 25.7 1.65e−5 14.8 5.21e−6 2

40 5.5 2.54e−4 12.7 9.83e−6 7.2 3.30e−6 2

60 3.7 1.90e−4 6.6 6.77e−6 4.9 2.04e−6 2

(1500, 1500, 10) 20 28.5 2.81e−4 62.6 1.43e−5 36.2 4.12e−6 2

40 13.0 2.31e−4 29.2 8.22e−6 17.3 2.61e−6 2

60 9.6 1.74e−4 18.6 5.72e−6 12.9 1.64e−6 2

Here “SR” is sample ratio, “iter” is the number of outer loops, and the running time is measured in seconds

Therefore,

A∗A(X) = A�AX + A�XB + AXB� + XBB�,

and (7) is a difficult linear matrix equation; see the discussion for Simoncini
[44, Eq. (2)]. We compare PLM with nuclear-LADMM and the Matlab function
“sylvester".

We test matrices with singular values uniformly distributed in [0.1, 1] and matrices
with singular values in power-lawdistribution,where the power is set to be−2.Wegen-
erate A and B by the Matlab commands “randn(m)" and “randn(n)", respectively.
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Table 4 Comparison results of different methods on solving Sylvester equations: matrices with uniformly
distributed singular values

(m, n, rtrue) Noise level sylvester Nuclear-LADMM PLM

Time RErr Time RErr Time RErr Iter

(300, 300, 5) 10−3 0.2 1.16e+0 1.4 2.30e−4 1.7 2.08e−4 2

10−4 0.2 2.70e−1 1.5 1.00e−4 1.8 2.12e−5 2

10−5 0.2 2.92e−2 1.4 1.06e−4 2.2 7.07e−6 2

(500, 600, 10) 10−3 0.7 1.91e+0 4.9 2.52e−4 6.6 2.18e−4 2

10−4 0.7 3.70e−1 5.0 1.25e−4 6.7 2.23e−5 2

10−5 0.7 2.17e−2 5.0 1.26e−4 9.6 6.88e−6 2

(1000, 1000, 20) 10−3 4.2 2.89e+0 25.4 2.71e−4 35.5 2.27e−4 2

10−4 4.2 2.75e−1 25.9 1.58e−4 36.1 2.33e−5 2

10−5 4.2 3.83e−2 25.2 1.57e−4 51.2 6.60e−6 2

Here “iter” is the number of outer loops, and the running time is measured in seconds

Table 5 Comparison results of different methods on solving Sylvester equations: matrices with singular
values in power-law distribution

(m, n, rtrue) Noise level sylvester Nuclear-LADMM PLM

Time RErr Time RErr Time RErr Iter

(300, 300, 5) 10−3 0.2 1.90e+0 1.9 2.49e−4 2.3 2.14e−4 2

10−4 0.2 1.65e−1 1.8 1.56e−4 2.2 2.16e−5 2

10−5 0.2 1.16e−2 1.8 1.48e−4 2.7 6.92e−6 2

(500, 600, 10) 10−3 0.7 2.34e+0 7.0 6.40e−4 10.4 2.23e−4 2

10−4 0.7 2.31e−1 7.1 5.62e−4 9.6 2.29e−5 2

10−5 0.7 3.08e−2 7.1 5.24e−4 9.6 6.76e−6 2

(1000, 1000, 10) 10−3 4.2 2.60e+0 35.1 4.64e−4 48.8 1.58e−4 2

10−4 4.2 4.63e−1 33.9 4.71e−4 46.1 1.69e−5 2

10−5 4.2 2.63e−2 34.5 3.80e−4 64.3 5.51e−6 2

Here “iter” is the number of outer loops, and the running time is measured in seconds

Then we generate a low-rank matrix X with singular values in specified distributions.
After gettingC byC = AX+XB, we impose someGaussian noise onC .We consider
three levels of noise ε = 10−3, 10−4, 10−5.

For nuclear-LADMM(57), we set λ = 103/ε and the stopping tolerance to be 10−6.
For PLM (56), we set λ = 103/ε and βk = 106 for all k. The comparison results are
shown in Tables 4 and 5, where the running time of PLM has included the time for
generating the initialization. All results are averaged over 10 trials for each case.

We consider the relative error.sylvester performs badly. For all caseswith noise
level 10−3, its RErr is greater than 1, meaning the failure in recovering X . nuclear-
LADMM performs well, but its performance is affected by the distribution of singular
values. Like the results for matrix completion, nuclear-LADMM performs worse on
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matrices with singular values in power-law distribution than it does on matrices with
uniformly distributed singular values. PLM outperforms nuclear-LADMM in all cases
and its performance is independent of the distribution of singular values. The advantage
of PLM over nuclear-LADMM is very obvious in the cases where the noise level is
lower or singular values are with power-law distributions.

Now we look at the running time. sylvester is a direct method and consumes
the least running time. The running time of nuclear-LADMM depends on the size
of the matrix and the distribution of singular values. PLM converges fast: only two
outer loops are needed in all cases. PLM consumes much longer time than nuclear-
LADMM, but less than twice the consumed time of nuclear-LADMM in almost all
cases.

5.5 Image deblurring

In this subsection, we consider a grayscale image deblurring problem. The original
image is the Greek flag shown in Fig. 2, whose size is 256× 384 and numerical rank2

is 4. The original image is corrupted by a 9 × 9 Gaussian blurring kernel with stan-
dard deviation 5 (fspecial (’gaussian’,[9,9],5)) and Gaussian noise.
We consider three levels of noise ε = 10−3, 10−4, 10−5.

Suppose the original image is X , the blurring kernel isA (a convolution operator),
and the noise is N . Then the observed image is

B = A(X) + N .

Image deblurring is estimating X from the observed image B, where A is known
and N is unknown. This problem is ill-conditioned. Deblurring by solving the linear
systemA(X) = B directly cannot obtain a good image restoration. To overcome this
difficulty, regularization methods are required to stabilize the solution. Besides (3) and
(6), we also consider the Tikhonov regularization method:

min
X∈Rm×n

‖X‖2F + λ

2
‖A(X) − B‖2F .

We compare PLM with the Tikhonov method and nuclear-ADMM, where the feature
ofAwill be considered (see Sect. 3.1.2). For nuclear-ADMM (57), we set λ = 103/ε;
for PLM (56), we set λ = 104/ε.

The comparison results are shown in Table 6, where the running time of PLM has
included the time for generating the initialization.All results are averaged over 10 trials
for each case. nuclear-ADMM and PLM obtain the same numerical rank as that of
the original image, while the Tikhonov method yields a much higher numerical rank.
This illustrates the advantage of nuclear-ADMM and PLM in recovering low-rank
matrix. In terms of relative error, the Tikhonov method is the worst, nuclear-ADMM
yields an acceptable result, and PLM outperforms nuclear-ADMM. In terms of the

2 Given a matrix X , we set the numerical rank as the number of singular values σr (X) satisfying
σr (X)/‖X‖F ≥ 10−4.
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Table 6 Comparison results of different methods on image deblurring

Noise level Tikhonov method Nuclear-ADMM PLM

Rank RErr Time Rank RErr Time Rank RErr Time Iter

10−3 254 5.24e−2 7.2e−3 4 1.17e−2 1.7 4 1.10e−2 9.0 2

10−4 230 2.28e−2 6.9e−3 4 3.00e−3 0.6 4 2.65e−3 2.5 2

10−5 121 7.13e−3 5.6e−3 4 7.40e−4 0.5 4 4.87e−4 0.8 2

Here “rank” is the numerical rank, “iter” is the number of outer loops, and the running time is measured in
seconds

Fig. 2 Restorations of different methods, where the noise level is 10−5

running time, the Tikhonov method is very fast; the running time of nuclear-ADMM
depends on the noise level; PLM converges very fast and consumes much longer time
than nuclear-ADMM; the gap between PLM time and nuclear-ADMM time becomes
smaller as the noise level decreases. The visual comparison of some restorations is
shown in Fig. 2.

6 Conclusion

We have proved the lower bound theory for Schatten p-quasi-norm minimization: the
positive singular values of local minimizers are bounded from below by a constant.
This property explains the advantage of the Schatten p-quasi-norm minimization in
recovering low-rank matrices. Using this property, we have proposed a proximal lin-
earization method to solve the Schatten p-quasi-norm minimization problem. After
studying singular value functions, we proved the global convergence of the proposed
algorithm by using the KL property of the objective function. In the experiments,
we considered matrix completion, Sylvester equation and image deblurring. The pro-
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posed method outperforms existing methods in terms of approximation error, and has
acceptable running time.

Experiments show that PLM converges very fast. The convergence rate can be
analysed based on the use of the KL exponent. See [33, 51] and references therein.
The convergence rate of PLM will be discussed in the future.

In many applications, the entries of X lie in a certain range: l ≤ xi j ≤ u, where
−∞ ≤ l ≤ u ≤ +∞. For example, in imaging applications, we usually have non-
negativity constraints, i.e., l = 0, u = +∞. To fit this situation, we can consider the
following model:

min
X∈Rm×n

‖X‖p∗,p + λ

2
‖A(X) − b‖22 + δD (X), (59)

where D is a convex closed set. Models with similar constraints corresponding to (5)
have been studied in many papers, e.g., [4, 12, 14, 53]. Theories and algorithms related
to (59) will be considered in the future.
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7 Appendix

This appendix summarizes some important results on KL theory and gives some
examples. The following definition is adopted from Attouch et al. [2, Definition 4.1].

Definition 7.1 (o-minimal structure on R) Let O = {On}n∈N such that each On is a
collection of subsets ofRn . The familyO is an o-minimal structure onR, if it satisfies
the following axioms:

(i) EachOn is a boolean algebra. Namely ∅ ∈ On and for eachA ,B inOn ,A ∪B,
A ∩ B, and R

n \ A belong to On .
(ii) For all A in On , A × R and R × A belong to On+1.
(iii) For all A in On+1, {(x1, . . . , xn) ∈ R

n : (x1, . . . , xn, xn+1) ∈ A } belongs to
On .

(iv) For all i �= j in {1, 2, . . . , n}, {(x1, . . . , xn) ∈ R
n : xi = x j } belongs to On .

(v) The set {(x1, x2) ∈ R
2 : x1 < x2} belongs to O2.

(vi) The elements of O1 are exactly finite unions of intervals.

Let O be an o-minimal structure on R. We say that a set A ⊆ R
n is definable

(on O) if A ∈ On . A function f : R
n → (−∞,+∞] is definable if its graph

{(x, y) ∈ R
n × (−∞,+∞] : y ∈ f (x)} is definable on O . We list some known

elementary properties of definable functions below.

Property 7.2 (See [2])Finite sums of definable functions are definable; indicator func-
tions of definable sets are definable; compositions of definable functions or mappings
are definable.
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It is known that any proper lower semicontinuous function that is definable is a KL
function; see [2, Theorem 4.1].

Example 7.3 A class of o-minimal structure is the log-exp structure [45, Example 2.5].
By this structure, the following functions are all definable:

1. semi-algebraic functions; see Definition 7.4 below.
2. the function R → R given by

x �→
{
xr , x > 0

0, x ≤ 0,

where r ∈ R.
3. the exponential function: R → R given by x �→ ex and the logarithm function:

(0,∞) → R given by x �→ log(x).

Definition 7.4 (See [5, Definition 5]) A subsetS of Rd is a real semi-algebraic set if
there exists a finite number of real polynomial functions fi j , gi j : Rd → R such that

S =
s⋃

j=1

t⋂

i=1

{
x ∈ R

d : fi j (x) = 0 and gi j (x) < 0
}

A function f : Rd → (−∞,+∞] is called semi-algebraic if its graph

{
(x, y) ∈ R

d+1 : f (x) = y
}

is a semi-algebraic subset of Rd+1.

The class of semi-algebraic sets is stable under the following operations: finite
unions, finite intersections, complementation and Cartesian products.

Example 7.5 [5, Example 2] There is broad class of semi-algebraic sets and functions
arising in optimization.

1. Real polynomial functions.
2. Indicator functions of semi-algebraic sets.
3. Finite sums and product of semi-algebraic functions.
4. Composition of semi-algebraic functions.
5. Inmatrix theory, all the following are semi-algebraic sets: cone of positive semidef-

inite matrices, Stiefel manifolds and constant rank matrices.

Example 7.6 Define f (x) : R
n → R by f (x) = ∑n

i=1 |xi |p. We prove that f is
definable. First, consider the function g(t) = |t |. The graph of g(t) is

{(t, y) ∈ R
2 : y = t, t > 0} ∪ {(t, y) ∈ R

2 : y = −t, t > 0}
∪{(t, y) ∈ R

2 : y = t, t = 0}.
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Hence, g(t) is a semi-algebraic function. From Property 7.2 and Example 7.3, we
know that f (x) is definable.

Example 7.7 We prove that the function f (x) defined in (47) is a semi-algebraic
function. From Example 7.5, we see that it suffices to prove that the function
fi (x) := bi xi , i = 1, . . . , r is semi-algebraic. We only prove that f1(x) = b1x1
is semi-algebraic, and the other cases are similar. Define

T j := {x ∈ R
h : x j = x1}, j = 1, . . . , h.

By the definition of x, we have

T j =
h⋂

k=1

{x ∈ R
h : |x j | ≥ |xk |}

and {x ∈ R
h : |x j | ≥ |xk |} can be written as a union of some semi-algebraic sets.

Hence, T j is semi-algebraic. The graph of f1(x) is

h⋃

j=1

({
(x, y) ∈ R

h+1 : y = b1|x j |
}

∩ (T j × R)
)

,

which is a semi-algebraic set.
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6. Boţ, R.I., Nguyen, D.-K.: The proximal alternating direction method of multipliers in the nonconvex
setting: convergence analysis and rates. Math. Oper. Res. 45(2), 682–712 (2020)

7. Cai, J.-F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm formatrix completion. SIAM
J. Optim. 20(4), 1956–1982 (2010)

8. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9(6),
717 (2009)

9. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from
highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

10. Candès, E.J., Tao, T.: The power of convex relaxation: near-optimal matrix completion. IEEE Trans.
Inf. Theory 56(5), 2053–2080 (2010)

11. Candès, E.J., Wakin, M.B., Boyd, S.P.: Enhancing sparsity by reweighted �1 minimization. J. Four.
Anal. Appl. 14(5), 877–905 (2008)

123



Proximal linearization methods for Schatten p-quasi-norm... 247

12. Chan, R.H., Tao,M., Yuan, X.: Constrained total variation deblurring models and fast algorithms based
on alternating direction method of multipliers. SIAM J. Imag. Sci. 6(1), 680–697 (2013)

13. Chen, C., He, B., Yuan, X.: Matrix completion via an alternating direction method. IMA J. Numer.
Anal. 32(1), 227–245 (2012)

14. Chen, X., Ng, M.K., Zhang, C.: Non-Lipschitz-regularization and box constrained model for image
restoration. IEEE Trans. Image Process. 21(12), 4709–4721 (2012)

15. Chen, X., Xu, F., Ye, Y.: Lower bound theory of nonzero entries in solutions of �2-�p minimization.
SIAM J. Sci. Comput. 32(5), 2832–2852 (2011)

16. Donoho, D.L.: For most large underdetermined systems of linear equations the minimal �1-norm
solution is also the sparsest solution. Commun. Pure Appl. Math. 59(6), 797–829 (2006)

17. Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychometrika 1(3),
211–218 (1936)

18. El Ghaoui, L., Gahinet, P.: Rankminimization under LMI constraints: a framework for output feedback
problems. In: European Control Conf., pp. 1176–1179 (1993)

19. Fazel, M., Hindi, H., Boyd, S.P.: A rankminimization heuristic with application to minimum order sys-
tem approximation. In: Proceedings of the 2001 American Control Conference (Cat. No. 01CH37148),
vol. 6, pp. 4734–4739. IEEE (2001)

20. Fornasier, M., Rauhut, H., Ward, R.: Low-rank matrix recovery via iteratively reweighted least squares
minimization. SIAM J. Optim. 21(4), 1614–1640 (2011)

21. Gazzola, S., Meng, C., Nagy, J.G.: Krylov methods for low-rank regularization. SIAM J. Matrix Anal.
Appl. 41(4), 1477–1504 (2020)

22. Gu, S., Xie, Q., Meng, D., Zuo, W., Feng, X., Zhang, L.: Weighted nuclear norm minimization and its
applications to low level vision. Int. J. Comput. Vis. 121(2), 183–208 (2017)

23. Gu, S., Zhang, L., Zuo, W., Feng, X.: Weighted nuclear norm minimization with application to image
denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
2862–2869 (2014)

24. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2012)
25. Hosseini, S., Luke, D.R., Uschmajew, A.: Tangent and normal cones for low-rank matrices. In: Nons-

mooth Optimization and its Applications, pp. 45–53 (2019)
26. Lai, M.-J., Liu, Y., Li, S., Wang, H.: On the Schatten p-quasi-norm minimization for low-rank matrix

recovery. Appl. Comput. Harmon. Anal. 51, 157–170 (2021)
27. Lai, M.-J., Xu, Y., Yin, W.: Improved iteratively reweighted least squares for unconstrained smoothed

�q minimization. SIAM J. Numer. Anal. 51(2), 927–957 (2013)
28. Lai, M.-J., Yin, W.: Augmented �1 and nuclear-norm models with a globally linearly convergent

algorithm. SIAM J. Imag. Sci. 6(2), 1059–1091 (2013)
29. Larsen, R.M.: PROPACK-software for large and sparse SVD calculations. http://sun.stanford.edu/

~rmunk/PROPACK/
30. Lee, K., Elman, H.C.: A preconditioned low-rank projection method with a rank-reduction scheme for

stochastic partial differential equations. SIAM J. Sci. Comput. 39(5), S828–S850 (2017)
31. Lewis, A.S., Sendov, H.S.: Nonsmooth analysis of singular values. Part I: theory. Set-Valued Anal.

13(3), 213–241 (2005)
32. Li, G., Pong, T.K.: Global convergence of splitting methods for nonconvex composite optimization.

SIAM J. Optim. 25(4), 2434–2460 (2015)
33. Li, G., Pong, T.K.: Calculus of the exponent of Kurdyka–Łojasiewicz inequality and its applications

to linear convergence of first-order methods. Found. Comput. Math. 18(5), 1199–1232 (2018)
34. Lin, Z.: Some software packages for partial SVD computation. arXiv preprint arXiv:1108.1548 (2011)
35. Liu, Z.,Wu,C., Zhao,Y.: A newglobally convergent algorithm for non-Lipschitz �p−�q minimization.

Adv. Comput. Math. 45(3), 1369–1399 (2019)
36. Lu, C., Lin, Z., Yan, S.: Smoothed low rank and sparse matrix recovery by iteratively reweighted least

squares minimization. IEEE Trans. Image Process. 24(2), 646–654 (2014)
37. Markovsky, I.: Structured low-rank approximation and its applications. Automatica 44(4), 891–909

(2008)
38. Mohan, K., Fazel, M.: Iterative reweighted algorithms for matrix rank minimization. J. Mach. Learn.

Res. 13(1), 3441–3473 (2012)
39. Nikolova, M.: Analysis of the recovery of edges in images and signals by minimizing nonconvex

regularized least-squares. Multiscale Model. Simul. 4(3), 960–991 (2005)

123

http://sun.stanford.edu/~rmunk/PROPACK/
http://sun.stanford.edu/~rmunk/PROPACK/
http://arxiv.org/abs/1108.1548


248 C. Zeng

40. Pong, T.K., Tseng, P., Ji, S., Ye, J.: Trace norm regularization: reformulations, algorithms, and multi-
task learning. SIAM J. Optim. 20(6), 3465–3489 (2010)

41. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via
nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010)

42. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis, vol. 317. Springer (2009)
43. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica

D 60(1–4), 259–268 (1992)
44. Simoncini, V.: Computational methods for linear matrix equations. SIAM Rev. 58(3), 377–441 (2016)
45. Van den Dries, L., Miller, C., et al.: Geometric categories and o-minimal structures. Duke Math. J.

84(2), 497–540 (1996)
46. Vandereycken, B.: Low-rank matrix completion by Riemannian optimization. SIAM J. Optim. 23(2),

1214–1236 (2013)
47. Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation

image reconstruction. SIAM J. Imag. Sci. 1(3), 248–272 (2008)
48. Wang, Y., Yin, W., Zeng, J.: Global convergence of ADMM in nonconvex nonsmooth optimization. J.

Sci. Comput. 78(1), 29–63 (2019)
49. Wen, Z., Yin, W., Zhang, Y.: Solving a low-rank factorization model for matrix completion by a

nonlinear successive over-relaxation algorithm. Math. Program. Comput. 4(4), 333–361 (2012)
50. Yang, J., Yuan, X.: Linearized augmented Lagrangian and alternating direction methods for nuclear

norm minimization. Math. Comput. 82(281), 301–329 (2013)
51. Yu, P., Li, G., Pong, T.K.: Kurdyka–Łojasiewicz exponent via INF-projection. Found. Comput. Math.

22, 1–47 (2021)
52. Zeng, C., Wu, C.: On the edge recovery property of noncovex nonsmooth regularization in image

restoration. SIAM J. Numer. Anal. 56(2), 1168–1182 (2018)
53. Zeng, C., Wu, C.: On the discontinuity of images recovered by noncovex nonsmooth regularized

isotropic models with box constraints. Adv. Comput. Math. 45(2), 589–610 (2019)
54. Zeng, C., Wu, C., Jia, R.: Non-Lipschitz models for image restoration with impulse noise removal.

SIAM J. Imag. Sci. 12(1), 420–458 (2019)
55. Zhang, X., Bai, M., Ng, M.K.: Nonconvex-TV based image restoration with impulse noise removal.

SIAM J. Imag. Sci. 10(3), 1627–1667 (2017)
56. Zheng, Z., Ng, M., Wu, C.: A globally convergent algorithm for a class of gradient compounded

non-Lipschitz models applied to non-additive noise removal. Inverse Prob. 36(12), 125017 (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	Proximal linearization methods for Schatten p-quasi-norm minimization
	Abstract
	1 Introduction
	Notation

	2 Lower bound of singular values
	3 Algorithm
	3.1 Solving (16) via ADMM
	3.1.1 The case mathcalAmathcalA*=mathcalI
	3.1.2 The case where mathcalA is a convolution operator

	3.2 Solving (16) via LADMM

	4 Convergence analysis
	4.1 Basic convergence properties of PLM
	4.2 Singular value functions and KL functions
	4.3 Global convergence of PLM and remarks on nonconvex ADMM

	5 Experiments
	5.1 Implementation details
	5.2 Convergence behaviour of PLM
	5.3 Matrix completion
	5.4 Sylvester equation
	5.5 Image deblurring

	6 Conclusion
	Acknowledgements
	7 Appendix
	References




