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Abstract
Fluid configurations in three-dimensions, displaying a plausible decay of regularity in
a finite time, are suitably built and examined.Vortex rings are the primary ingredients in
this study. The full Navier–Stokes system is converted into a 3D scalar problem, where
appropriate numerical methods are implemented in order to figure out the behavior
of the solutions. Further simplifications in 2D and 1D provide interesting toy prob-
lems, that may be used as a starting platform for a better understanding of blowup
phenomena.

Mathematics Subject Classification 35Q30 · 76N10

1 Six collapsing rings

The aim of this paper is to propose a way to build special explicit solutions of the
set of time-dependent incompressible Navier–Stokes equations. The model consists
of the law of momentum conservation, given by the vector equation:

∂v
∂t

− ν�̄v + (v · ∇̄)v = −∇̄ p + f (1.1)

where the velocity field v is required to be divergence-free, i.e.: divv = 0. The last
relation guarantees mass conservation. The time t belongs to the finite interval [0, T ].
As customary, ν > 0 denotes the viscosity parameter. The potential p plays the role
of pressure and f is a given force field. The equations are required to be satisfied in the
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790 D. Funaro

whole three-dimensional space R3. The symbol �̄ denotes the 3D vector Laplacian.
Later, we will introduce another symbol � (with no over bar) with a slightly different
meaning.

Specifically, we will refer to those phenomena known as vortex rings [1, 27]. The
fluid follows a rotatory motion where the stream-lines revolve around the major cir-
cumferences of a doughnut. As a consequence of diffusion, the movement of the
particles is accompanied by a drifting of the ring. At the same time, a progressive
reduction of the energy is expected, depending on the magnitude of ν. We would like
to see what happens when the ring is constrained inside an infinite cone. There, the
sections of the ring that, in normal circumstances, tend to be approximated by circles,
assume unusual shapes during the evolution, also depending on their verse of rotation
(Figs. 3 and 10).

Since we want to avoid boundary conditions and have a solution defined on the
whole space R3, we skip the idea of the cones and we divide instead the space into
six virtual pyramidal regions as suggested by Fig. 1. Each pyramid has an aperture
of 90 degrees, spanned by two independent angles θ and φ. Six identical vortex rings
are assembled along the six Cartesian semi-axes. They progress by maintaining a
global symmetry and exerting reciprocal constraints, without mixing each other. Such
a congestionmay lead to possible singular behaviors that will be better clarified later in
the exposition. For intense initial velocity fields and a very small diffusive parameter,
there are chances that smooth solutions may, at some instant, lose regularity.

To say the whole truth, we will not solve the just mentioned problem. Our rings will
not move autonomously, but they will be subject to external forces. This implies that
f in (1.1) is going to be different from zero. By suitably manipulating the equations,
we transfer part of the nonlinear term on the right-hand side, so obtaining a forcing
term f(v) depending on the solution itself. Assuming that the revised equation admits
a unique solution, the field f(v) (known a posteriori) is interpreted as an external given
force. Note that the new solutionmay not have any physical relevance. These passages,
that look like a trivial escamotage, have however some hope to be useful. In fact, let us
suppose that we are able to check that v loses regularity in a finite time, whereas f(v)
remains smooth (even if its knowledge is implicitly tied to that of v); this would mean
that it is possible to generate singularities from regular data. By ‘singularity’ here we
intend a degeneracy of some partial derivative of v. It is known from the literature
that a minimal degree of regularity for v is always preserved during time. This means
that we do not expect extraordinary explosions. It is important to remark that these
mild forms of deterioration of the regularity might not be clearly detected by standard
numerical simulations. This makes our analysis a bit uncertain.

We translate the full set of Navier–Stokes equations into a 3D nonlinear scalar
differential equation, where the unknown is a potential �. Further simplifications in
2D and 1D, allow us to introduce some toy problems aimed to provide a starting
platform for possible theoretical advances. Some statements will be checked with the
help of numerical experiments. Nevertheless, we believe that the ideas proposed in
the present paper provide a strong foundation in view of more serious studies.

As far as the 3D incompressible fluid dynamics equations are concerned, the
research on the regularity of solutions has produced thousands of papers. A proof
that solutions maintain their smoothness during long-time evolution is at the moment
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How and why non... 791

not available. Indeed, the problem of describing the behavior in three space dimensions
has always been borderline. Due to the viscosity term, smooth data are expected to
produce solutions with an everlasting regular behavior. On the other hand, the lack of
a conclusive theoretical analysis suggests the existence of possible counterexamples.
The community supporting the idea that a blowup may actually happen in a finite time
is growing, and numerous publications, both concerning Euler and Navier–Stokes
equations, are nowadays available. We cite here just a few titles, since an accurate
review would take too much time and effort. From the theoretical side, we mention:[2,
8, 9, 11, 16]. In [5, 12, 19, 22, 26], possible scenarios regarding the development of
singularities are presented. From the numerical viewpoint, we also quote [14] and
[18]. Finally, sophisticated laboratory experiments on vortex rings at critical regimes
are found for instance in [17] and [20].

2 A suitable coordinates environment

It is enough to study the Navier–Stokes problem on a single pyramidal subdomain
and then assemble the six pieces of solution (see Sect. 10). It is wise to work within a
suitable system of coordinates, where the infinitesimal distance ds is recovered by:

(ds)2 = (dr)2 + r2(dθ)2 + r2(dφ)2 (2.1)

with r denoting the radial variable, whereas θ and φ are angles (Fig. 1). Within this
environment, the gradient of a potential p is evaluated in the following way:

∇̄ p =
(

∂ p

∂r
,
1

r

∂ p

∂θ
,
1

r

∂ p

∂φ

)
(2.2)

For a given vector fieldA = (A1, A2, A3), we can compute some of the most classical
differential operators, such as:

divA = ∂A1

∂r
+ 2

r
A1 + 1

r

∂A2

∂θ
+ 1

r

∂A3

∂φ

curlA =
(
1

r

∂A3

∂θ
− 1

r

∂A2

∂φ
, −∂A3

∂r
− A3

r
+ 1

r

∂A1

∂φ
,

∂A2

∂r
+ A2

r
− 1

r

∂A1

∂θ

)

−�̄A = curl(curlA) = −
(

∂2A1

∂r2
+ 4

r

∂A1

∂r
+ 2A1

r2
+ �A1

r2
,

∂2A2

∂r2
+ 2

r

∂A2

∂r
+ �A2

r2
+ 2

r2
∂A1

∂θ
,

∂2A3

∂r2
+ 2

r

∂A3

∂r
+ �A3

r2
+ 2

r2
∂A1

∂φ

)

In the last expression we assumed that divA = 0. The symbol � without the upper
bar denotes the usual Laplacian in the variables θ and φ. Applying � to the scalar
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Fig. 1 The whole three-dimensional space is virtually subdivided into six pyramidal subdomains. These
are separated by 12 triangular interfaces

functions Ak , k = 1, 2, 3, leads us to the equality:

�Ak = ∂2Ak

∂θ2
+ ∂2Ak

∂φ2 (2.3)

Finally, we define the open set:

� = {−π
ω

< θ < π
ω
, −π

ω
< φ < π

ω

}
(2.4)

In practice, we always choose ω = 4. A single pyramidal domain corresponds to the
set: � = {(r , θ, φ)| r > 0, (θ, φ) ∈ �}.

3 Reformulation of the equations

We work in the reference frame (r , θ, φ) introduced in the previous section. Our
functions will be regular enough to allow for the exchange of the order of derivatives.
We start by introducing the vector potential:

A =
(
0, −∂�

∂φ
,

∂�

∂θ

)
(3.1)

satisfyingdivA = 0.This settingwill be useful for the studyof ring typedisplacements.
We then define � and u such that:

� = ∂�

∂r
+ �

r
= 1

r

∂(r�)

∂r
u = �� + r

∂(r�)

∂r
= �� + r

∂2(r�)

∂r2
(3.2)

We recall that the symbols � and ∇ (without the upper bars) do not contain partial
derivatives with respect to r (see (2.3)). Based on these assumptions, the velocity field
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ends up to be:

v = curlA = (v1, v2, v3) =
(
1

r
��, −∂�

∂θ
, −∂�

∂φ

)
=

(u
r
, 0, 0

)
− ∇̄q0 (3.3)

with q0 = r�. Of course, we have: divv = 0. Through the use of standard calculus
we also get:

curlv = 1

r2

(
0,

∂u

∂φ
, −∂u

∂θ

)
(3.4)

− �̄v = curl(curlv) =
(

− 1

r3
�u,

1

r2
∂2u

∂r∂θ
− 1

r3
∂u

∂θ
,

1

r2
∂2u

∂r∂φ
− 1

r3
∂u

∂φ

)

=
(

− 1

r3
�u − ∂2

∂r2

(u
r

)
, 0, 0

)
− ∇̄q1 (3.5)

with q1 = −(∂/∂r)(u/r). Regarding the nonlinear term, a second function q2 =
− 1

2 |v|2 is involved in the vector relation:

(v · ∇̄)v = −∇̄q2 − v × curlv (3.6)

Successively, we have:

v × curlv =
(
1

r2
∂u

∂θ

∂�

∂θ
+ 1

r2
∂u

∂φ

∂�

∂φ
,

1

r3
∂u

∂θ
��,

1

r3
∂u

∂φ
��

)

=
(

1

r2
∂u

∂θ

∂�

∂θ
+ 1

r2
∂u

∂φ

∂�

∂φ
− 1

2

∂

∂r

(
��

r

)2
, − f2, − f3

)
+ ∇̄q3 (3.7)

In the above expression we introduced the following functions:

q3 = 1

2

(
��

r

)2
f2 = −��

r2
∂2(r�)

∂r∂θ
f3 = −��

r2
∂2(r�)

∂r∂φ
(3.8)

In alternative, we can define q3 = 1
2 (u/r)2 and adjust f2 and f3 accordingly.

After having defined the pressure p = (∂q0/∂t) + νq1 + q2 + q3 and the forcing
term f = (0, f2, f3), the first component of the vector momentum equation (1.1) is
synthetically represented by the scalar equation:

1

r

∂u

∂t
− ν

(
1

r3
�u + ∂2

∂r2

(u
r

))
− 1

r2
∂u

∂θ

∂�

∂θ
− 1

r2
∂u

∂φ

∂�

∂φ
+ 1

2

∂

∂r

(
��

r

)2
= 0
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With further little manipulation, we finally arrive at the system of two second-order
equations:

∂u

∂t
− ν

(
�u

r2
+ ∂2u

∂r2
− 2

r

∂u

∂r
+ 2u

r2

)

+1

r

[
−∇u · ∇

(
∂�

∂r
+ �

r

)
+ �� �

(
∂�

∂r
− �

r

)]
= 0 (3.9)

u = �� + r2
∂2�

∂r2
+ 2r

∂�

∂r
(3.10)

For the unknowns � and u, we will require Neumann type boundary conditions on
∂�, for any value r > 0. We first introduce the outward normal vector n̄ = (n2, n3)
to the domain � defined in (2.4). At each one of the four corners, n̄ is taken as the
normalized sum of the limits of the normal vectors along the two concurring sides.
This means that:

∇� · n̄ = 0 ∇u · n̄ = 0 (3.11)

From (3.3), the first relation above implies that v2n2 +v3n3 = 0 on ∂�. This says that
the velocity vector field is flattened on the separation surfaces of the six pyramidal
domains partitioning the whole three-dimensional space. These constraints ensure the
smoothness of the velocity field across the boundaries (see Sect. 10).

We think it is wise to better clarify the above passages.We got a functional equation
of the type G(�) = 0, that can be obtained by replacing u defined in (3.9) into (3.10).
The aim is to solve the Navier–Stokes Eq. (1.1). Therefore, we can write:

0 = ∂v
∂t

− ν�̄v + (v · ∇̄)v + ∇̄ p − f

=
[
(G(�), 0, 0) − ∇̄

(
∂q0
∂t

+ νq1 + q2 + q3

)
+ (0, f2, f3)

]
+ ∇̄ p − f

(3.12)

After setting p = (∂q0/∂t) + νq1 + q2 + q3 and f = (0, f2, f3), we actually arrive
at the relation G(�) = 0. In this way, the pressure is not an unknown of the system,
since it can be built in dependence of v. Similarly, we have a forcing term f which is
not given a priori, but still depends on the unknown. At the end, we are not solving
the autonomous movement of a fluid. Our vortex ring will develop under the action of
forces that depend on its dynamics. This evolution may have not physical interest and
we do not expect the results to be easily interpreted from the fluidmechanics viewpoint.
By the way, our interest here is mainly focused on the analytical viewpoint. Indeed,
let us suppose that the development of v presents some deterioration of smoothness in
a finite time, then two eventualities may happen. If f also loses regularity, we end up
with proving nothing, because it is reasonable to assume that a bad forcing term may
give raise to bad solutions. If we can show instead that f maintains a certain degree of
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regularity (even if it depends on the solution itself), then these results start becoming
interesting.

Before ending this section, wemake some heuristic considerations about the system
(3.9–3.10). First of all, we introduce the two functionals:

L1u = �u

r2
+ ∂2u

∂r2
− 2

r

∂u

∂r
+ 2u

r2
L2� = �� + r2

∂2�

∂r2
+ 2r

∂�

∂r
(3.13)

Afterwards, we take for instance the two low-order eigenmodes:

u0 = −γ 2r2χ(r) cos(ωθ) cos(ωφ) �0 = χ(r) cos(ωθ) cos(ωφ) (3.14)

Here, for a given γ > 0, the function χ is defined, up to a multiplicative constant, as:

χ(r) = 1√
γ r

Jσ+ 1
2
(γ r) (3.15)

where Jσ+ 1
2
is the spherical Bessel’s function of the first kind. This implies that χ

solves the differential equation:

d2χ

dr2
+ 2

r

dχ

dr
− σ(σ + 1)

χ

r2
= −γ 2χ (3.16)

By choosing σ in such a way that σ(σ + 1) = 2ω2, a straightforward computation
passing through (3.16) shows that:

L1u0 = −γ 2u0 L2�0 = −γ 2r2�0 = u0 (3.17)

By using again (3.16), the last expression can be rewritten as:

u0 = L2�0 = ��0 + (L2 − �)�0 = ��0 + (2ω2 − γ 2r2)�0 = ��0 + λ�0

(3.18)

with λ = 2ω2 − γ 2r2. This means that in first approximation, one can suppose that:
u ≈ �� + λ� (although λ depends on r ).
We now proceed with further approximations. When ω = 4, we must have σ(σ +

1) = 16, that provides: σ ≈ 5.18. From classical estimates on Bessel’s functions, χ
in (3.15) behaves like rσ near the origin (up to multiplicative constant). By denoting
with rM > 0 the first nontrivial zero of χ , we can argue that:

χ(r) ≈ rσ (rM − r) for 0 ≤ r ≤ rM (3.19)

The first zero of the Bessel’s function Jσ+ 1
2
for σ ≈ 5.18, is approximately z ≈ 9.56.

Thus, we must have γ = z/rM . We continue this rough analysis by introducing a new
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parameter α ≤ 1. If r̂ is a point such that:

dχ

dr
(r̂) + χ(r̂)

r̂
= α

χ(r̂)

r̂
(3.20)

by making use of χ in (3.19), we obtain:

r̂ ≈ σ + 1 − α

σ + 2 − α
rM ≈ 6.18 − α

7.18 − α
rM < rM (3.21)

Recalling the definition of λ, we also have:

λ(α) = 32 − γ 2r̂2 = 32 − z2
(

r̂

rM

)2
≈ 32 − (9.56)2

(
6.18 − α

7.18 − α

)2
(3.22)

We go back to Eq. (3.10), and use as initial guess u0 = −γ 2r̂2�0. We have:

∂�0

∂r
(r̂) + �0(r̂)

r̂
= α

�0(r̂)

r̂
⇒ ∂�0

∂r
(r̂) − �0(r̂)

r̂
= (α − 2)

�0(r̂)

r̂
(3.23)

Thus, for small times t , the nonlinear term in square brackets of (3.9) changes according
to:

∂u

∂t
− νL1u + 1

r̂2

[
−μ1∇u · ∇� + μ2(��)2

]
= 0 (3.24)

withμ1 = α andμ2 = α−2. As far as the equation (3.9) is concerned, we are induced
to write:

u = �� + λ� (3.25)

with λ depending on α as in (3.22). The simplified versions (3.24–3.25) will be object
of further study later in Sect. 5.

4 Special cases

Before facing the general case (treated starting from Sect. 6), we deal with some
preliminary simplified examples. We start by discussing the case of a scalar potential
� = �(θ, φ) not depending on the variables r and t . We review (3.2) by neglecting�

and setting u = ��. Going through the same computations of the previous section,
we discover that:

ν�u + 2νu + ∇u · ∇� + u2 = 0 (4.1)

The above equation (of fourth-order in the unknown�) summarizes thewholeNavier–
Stokes system (1.1) for an homogeneous right-hand side f = 0. Note that, from (3.3),
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now v turns out to be singular at the origin (r = 0). We then impose Neumann
conditions to both the unknowns � and u.

By integrating the differential Eq. (4.1) in �, we discover the following compati-
bility condition for u:

ν

∫
�

�u dθdφ + 2ν
∫

�

u dθdφ +
∫

�

∇u · ∇� dθdφ +
∫

�

u2 dθdφ

= ν

∫
∂�

∇u · n̄ + 2ν
∫

�

u dθdφ +
∫

∂�

u∇� · n̄ −
∫

�

u2 dθdφ +
∫

�

u2 dθdφ = 0

⇒
∫

�

u dθdφ = 0 (4.2)

The other simplified situation the we would like to discuss is when ν = 0. Within
this new setting, we replace �(t, r , θ, φ) by r2�(t, θ, φ). Equations (3.9) and (3.10)
take respectively the form:

∂u

∂t
− 3∇u · ∇� + (��)2 = 0 u = �� + 6� (4.3)

Note that the term �̄v has been excluded since ν = 0. In fact, here the Laplacian
�u cannot be taken into account because its dependence with respect to r is not
homogeneous with respect to the other terms.

Some preliminary numerical tests can be carried out. In view of more sophisticated
applications,we set up the computationalmachinery starting from the one-dimensional
version of Eq. (4.1) with u = ��. Thus, we consider:

ν(u′′ + 2u) + u′� ′ + u2 = 0 u = � ′′ (4.4)

where u and � now depend exclusively on the variable φ. We then build the Fourier
expansions:

u(φ) = c0 +
∞∑
k=1

ck cos(ωkφ) �(φ) = d0 +
∞∑
k=1

dk cos(ωkφ) (4.5)

where

c0 = ω

2π

∫ π/ω

−π/ω

u(φ) dφ ck = ω

π

∫ π/ω

−π/ω

u(φ) cos(ωkφ) dφ, k ≥ 1 (4.6)

Analogous formulas hold for dk , k ≥ 0. In this way, we are satisfying the boundary
conditions u′ = 0 and� ′ = 0 at the endpoints φ = ±π/ω. As a consequence of (4.4),
for k ≥ 1 the coefficients are connected by the relation:

ck = −ω2k2dk (4.7)
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Moreover, the implication in (4.2) suggests that c0 = 0. Since � is involved in the
equations only through its derivatives, we can also set d0 = 0.

From well-known trigonometric formulas, we get:

u′� ′ =
∞∑
k=1
m=1

kmω2ckdm sin(ωkφ) sin(ωmφ)

= −1

2

∞∑
k=1
m=1

kmω2ckdm
[
cos(ω(k + m)φ) − cos(ω(k − m)φ)

]
(4.8)

u2 =
∞∑
k=1
m=1

ckcm cos(ωkφ) cos(ωmφ)

= 1

2

∞∑
k=1
m=1

ckcm
[
cos(ω(k + m)φ) + cos(ω(k − m)φ)

]
(4.9)

For any fixed integer n ≥ 1, by substituting (4.8) and (4.9) into equation (4.4), we
find out that, relatively to the mode cos(ωnφ), we must have:

ν(2 − n2ω2)cn + 1

2

∑
k+m=n

[
− kmω2ckdm + ckcm

]

+ 1

2

∑
|k−m|=n

[
kmω2ckdm + ckcm

]
= 0 (4.10)

Of course, this problem always admits the trivial solutions u = 0 and � = 0.
However, depending on the choice of ω, another solution is available, that seems to
be unique and rather stable. Numerical tests show that, as far as ω ≤ √

2 (note that
u = cos

√
2φ is the first eigenfunction such that u′′ + 2u = 0) the shape of the couple

of non-vanishing solutions agrees with the one expected. Nevertheless, by increasing
ω (recall that we would like to have ω = 4), the corresponding solutions display a
certain number of oscillations, leading to a velocity field v that does not reflect the
behavior that we are trying to simulate. The analysis of the set of Eq. (4.4) has affinity
with the study of diffusive logistic models, where the existence of non zero solutions
depends on the location of a parameter relatively to the distribution of the eigenvalues
of the diffusive operator. The literature on the subject is rather extensive. Since we did
not find explicit references to our specific case, we limit our citations to the generic
review paper [25].

Some analysis can also be carried out for the one-dimensional version of (4.3). In
this case, we get the two equations:

du

dt
− 3u′� ′ + (� ′′)2 = 0 u = � ′′ + 6� (4.11)
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According to (4.5), from (4.11) a relation is soon established between the Fourier
coefficients for k ≥ 0:

ck = −ω2k2dk + 6dk (4.12)

In particular, the coefficient c0 = 6d0 does not need to be zero. Considering that:

(� ′′)2 =
∑
k=1
m=1

k2m2ω4dkdm cos(ωkφ) cos(ωmφ)

= 1

2

∑
k=1
m=1

k2m2ω4dkdm
[
cos(ω(k + m)φ) + cos(ω(k − m)φ)

]
(4.13)

we can obtain the counterpart of (4.10) for a fixed integer n ≥ 1, i.e.:

dcn
dt

+ 1

2

∑
k+m=n

[
μ1kmω2ckdm + μ2k

2m2ω4dkdm
]

+ 1

2

∑
|k−m|=n

[
− μ1kmω2ckdm + μ2k

2m2ω4dkdm
]

= 0 (4.14)

with μ1 = 3 and μ2 = 1. For n = 0, the first summation in (4.14) disappears. Thus,
we must have:

dc0
dt

− 3

2

∞∑
j=1

j2ω2c j d j + 1

2

∞∑
j=1

j4ω4d2j = 0 (4.15)

By virtue of (4.12), for ω = 4 we come out with the estimate:

dc0
dt

=
∞∑
j=1

j2ω2(9 − 2 j2ω2)d2j =
∞∑
j=1

j2ω2(9 − 2 j2ω2)

( j2ω2 − 6)2
c2j < −2

∞∑
j=1

c2j ≤ 0

(4.16)

Suppose that, for t → t̂ (where t̂ may be finite or infinite), u converges to a limit in
L2(−π/4, π/4). Let us also suppose that

∑∞
j=1 c

2
j tends to a positive constant. Then

(4.16) tells us that limt→t̂ c0(t) does not exist (i.e.: c0 diverges negatively) and this is
against the hypothesis of convergence in L2(−π/4, π/4). The remaining possibility is
that

∑∞
j=1 c

2
j tends to zero, which means that u converges to a constant function (i.e.,

u minus its average tends to zero). As a consequence, in the framework of functions
with zero average, we expect u and � to converge to zero, without producing any
singular behavior.

This first attempt to build specific solutions (the first one stationary and presenting
a singularity at the point r = 0, and the second one valid for ν = 0) has been a failure,
since no interesting displacements seem to exist. Nevertheless, the construction is
useful for further decisive improvements, that are discussed in the following sections.
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5 A simple 1D problem

The results of the previous sections suggest to study more carefully the system in the
single variable φ, involving the two unknowns u and �:

du

dt
− νu′′ +

[
− μ1u

′� ′ + μ2(�
′′)2

]
= 0 u = � ′′ + λ� (5.1)

where Neumann type boundary conditions are assumed at the endpoints, i.e.: u′ = 0
and� ′ = 0 forφ = ±π/ω. In (5.1),λ,μ1 andμ2 are real parameters. After integration
of (5.1) between −π/ω and π/ω, one gets:

d

dt

∫ π/ω

−π/ω

u dφ = −μ1

∫ π/ω

−π/ω

u� ′′ dφ − μ2

∫ π/ω

−π/ω

(� ′′)2 dφ

= −(μ1 + μ2)

∫ π/ω

−π/ω

(� ′′)2 dφ + λμ1

∫ π/ω

−π/ω

(� ′)2 dφ (5.2)

where we used the rule of summation by parts and imposed boundary conditions.
As a special case, (4.11) is recovered by setting ν = 0, λ = 6, μ1 = 3, μ2 = 1. In

the general case, relation (4.16) becomes:

dc0
dt

= 1

2

∞∑
j=1

j2ω2[λμ1 − (μ1 + μ2) j2ω2]
( j2ω2 − λ)2

c2j (5.3)

Note that we are in the peculiar situation where the right-hand side of (5.3) does not
contain the coefficient c0. If c0 does not depend on t , the above formula may allow
for non-vanishing Fourier coefficients c j , j ≥ 1, if suitable compatibility conditions
hold between the parameters λ, μ1 and μ2. Namely, it is necessary that the generic
quantity:

Q = λμ1 − (μ1 + μ2) j
2ω2 (5.4)

assumes both positive and negative values depending on j . For λ = 6, μ1 = 3,
μ2 = 1, ω = 4, we have that Q = 18− 64 j2 is always negative, which confirms that
the projection of the system (4.11) onto the space of zero average functions does not
admit solutions different from zero. If the parameters are chosen differently, interesting
new situations may emerge.

A numerical test has been made by truncating the Fourier sums at a given N and the
results are visible in Fig. 2. The diffusion parameter is ν = .01. The other parameters
are: λ = −3, μ1 = .5, μ2 = −1.5. This choice ensures that Q in (5.4) may attain
both positive and negative values, depending on the frequency mode involved. In
the computation we enforced the condition c0(t) = 0,∀t ∈ [0, T ], basically by not
including the zero mode in the expansion of u and noting that its knowledge is not
requested in the evaluation of the right-hand side of (5.3). The explicit Euler scheme
for 0 ≤ t ≤ T = 1.48 has been implemented with a sufficiently small time-step.
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Fig. 2 Plots of the solutionu at equispaced times (left), forλ = −3,μ1 = .5,μ2 = −1.5,with 0 ≤ t ≤ 1.48.
At time T = 1.486, the approximate solution starts producing oscillations (right)

The coefficients cn and dn are computed for 1 ≤ n ≤ N , with N = 50. For ω = 4,
the initial guess is u0(φ) = cos(ωφ). Note that the sign of u at time t = 0 has a
nontrivial impact on the branch of solution we would like to follow. The coefficients
of � are updated at any iteration according to the relation � ′′ +λ� = u. Very similar
conclusions hold when μ1 = 1, μ2 = −4 and λ is negative. This particular case will
be rediscussed later in Sect. 8. The discrete solution is clearly trying to assume the
shape of a very pronounced cusp at the center of the interval. For times t larger than
T = 1.486, the simulation first produces oscillations and then overflow. Without a
theoretical analysis, we are however unable to decide if there is a real blowup, though
this has actually high chances to occur.

From our rough analysis, what we learned in this section is that, for certain values
of the parameters, the model problem (5.1) only admits the steady state solution which
is identically zero. For other suitable choices of the parameters, non-vanishing stable
solutions emerge. They may effectively display a degeneracy of the regularity after a
certain time.

Nonlinear parabolic equations presenting a blowup of the solution in a finite time,
are widely studied. A classical example is:

∂u

∂t
− ν�u = f (u) (5.5)

with Dirichlet boundary conditions. Assume that f is convex and f (u) > 0, for u > 0.
If for some a > 0, the integral

∫ ∞
a (1/ f (u))du is finite, then the solution of (5.5)

blows-up when the initial datum is sufficiently large. This and similar other questions
are reviewed for instance in [15]. Our system may have affinities with other model
equations deriving from the most disparate applications. A prominent example is the
Cahn-Hilliard equation [7]. The literature on this subject is quite extensive, so that
we just limit ourselves to mention a recent book [21]. In its basic formulation, the
Cahn-Hilliard equation takes the form:

∂u

∂t
= −ν�

(
f (u) − γ�u

)
(5.6)
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where ν > 0 and γ > 0 are suitable parameters. It is often written as a system
after introducing the function μ = f (u) − γ�u. Typical boundary conditions are of
Neumann type, i.e.: ∂u/∂ n̄ = 0 and ∂μ/∂ n̄ = 0. Existence of nontrivial attractors is
proven in several circumstances. A standard choice for the nonlinear term is f (u) =
u3 − u.

In the one-dimensional counterpart of Eqs. (3.24) and (3.25), the quantity in (5.4)
takes the value: Q = αλ(α) − 2(α − 1) j2ω2. For 0 < α < 1, we get λ(α) < 0 and
Q may actually change sign. As an example, we may set α = .5, so that λ(α) ≈ −34
and Q ≈ −17 + 16 j2. Roughly speaking, by fixing r̂ in the interval ]0, rM [, we may
encounter situations similar to those examined in this section, bringing to a (supposed)
degeneracy of the regularity of the solutions. This does not mean that such kind of
troubles must actually manifest in the framework of the real 3D problem, especially
because our preliminary analysis was oversimplified. We will better consolidate our
knowledge in Sect. 9. In the next section, we try some numerical simulations on the
global 3D problem. The aim is to check whether anomalous situations may effectively
occur.

6 Full 3D discretization

In order to discretize the full system (3.9)–(3.10), we consider the series:

u =
∞∑
k=0
i=0

cki cos(ωkθ) cos(ωiφ) � =
∞∑
k=0
i=0

dki cos(ωkθ) cos(ωiφ) (6.1)

where the Fourier coefficients depend on r and t . In this fashion we are respecting
the Neumann boundary constraints as prescribed in (3.11). Here, we decided to set
c00 = d00 = 0. For n ≥ 0 and l ≥ 0, the mode cos(ωnθ) cos(ωlφ) is associated with
the evolution of the corresponding coefficient cnl :

∂cnl
∂t

− ν

(
−(n2 + l2)ω2 cnl

r2
+ ∂2cnl

∂r2
− 2

r

∂cnl
∂r

+ 2cnl
r2

)

+ 1

4r

∑
k+m=n
i+ j=l

[
(km + i j)ω2cki

(
∂dmj

∂r
+ dmj

r

)

+(k2 + i2)(m2 + j2)ω4dki

(
∂dmj

∂r
− dmj

r

)]

+ 1

4r

∑
|k−m|=n
i+ j=l

[
(−km + i j)ω2cki

(
∂dmj

∂r
+ dmj

r

)

+(k2 + i2)(m2 + j2)ω4dki

(
∂dmj

∂r
− dmj

r

)]
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+ 1

4r

∑
k+m=n|i− j |=l

[
(km − i j)ω2cki

(
∂dmj

∂r
+ dmj

r

)

+(k2 + i2)(m2 + j2)ω4dki

(
∂dmj

∂r
− dmj

r

)]

+ 1

4r

∑
|k−m|=n
|i− j |=l

[
(−km − i j)ω2cki

(
∂dmj

∂r
+ dmj

r

)

+(k2 + i2)(m2 + j2)ω4dki

(
∂dmj

∂r
− dmj

r

)]
= 0 (6.2)

where cnl and dnl are related via (3.9) in the following way:

cnl = −(n2 + l2)ω2dnl + r2
∂2dnl
∂r2

+ 2r
∂dnl
∂r

(6.3)

The above formulas, based on simple trigonometric identities, generalize those pro-
posed in the previous sections. The two coefficients c00 and d00 will remain equal
to zero, for all r ≥ 0, as time passes. Therefore, it is necessary to check whether a
suitable integral of the nonlinear term satisfies a compatibility condition (see Sect. 9).

We compute approximate solutions where r belongs to the interval [0, rM ] for some
rM > 0. We impose homogeneous Dirichlet boundary conditions to u and � at r = 0
and r = rM . The final time is T = 0.11. The derivatives with respect to the variable r
are approximated by central finite-differences. The discretization in time is performed
by the explicit Euler scheme with a rather small time-step. This allows us to easily
update the coefficients cnl at each iteration. The coefficients dnl are obtained at each
step by solving an implicit 1D boundary-value problemwhich is recovered by a central
finite-differences discretization of (6.3).

In the experiments that follow, we set ν = .02 and rM = 10. Inspired by (3.14) and
(3.19), at time t = 0 we impose:

u0(r , θ, φ) = r7

r4M
(rM − r)

[
cos(ωθ) cos(ωφ) + cos(ωθ) + cos(ωφ)

]
(6.4)

which means that c00 = 0 and c10 = c01 = c11. We give in Fig. 3 the section for
φ = 0 of the initial velocity field v0 evaluated according to (3.3). We also show the
third component of A as prescribed in (3.1). The level lines of A3 do not exactly
envelope the stream lines, but they give however a reasonable idea of what is going
on. The intensity of u0 in (6.4) has been calibrated to guarantee stability for the time-
advancing scheme, also in relation to the magnitude of ν. The sign of the initial datum
influences the behavior of the evolution. With the sign as in (6.4), the corresponding
v0 has the rotatory aspect visible in Fig. 3. Like in kind of driven cavity problem,
there is the tendency to form an internal layer towards the central axis of the domain
(θ = φ = 0). By switching the sign of v0, the evolution tends to bring the fluid towards
the pyramid vertex (Fig. 10). We will mainly prefer the first situation.
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Fig. 3 Vector representation of the initial field v0 (left), corresponding to u0 in (6.4), together with the level
lines of the third component of A (right). These pictures are referred to the section obtained for φ = 0

We provide in Fig. 4 some snapshots of a section (corresponding to φ = 0) of
the evolving ring. In truth, viewed from top (i.e., lying on the square � of the plane
(θ, φ)), the shape is not exactly that of a classical rounded ring, but the body is a little
elongated in proximity of the four corners.

At time t = 0.1 (a bit earlier than the final time of computation), the section can
be better examined in Fig. 5, where an enlargement is also provided. After that time,
the evolution continues to be stable and the discrete solution remains bounded. The
approximated solution has been obtained by truncating the summations in (6.2)–(6.3)
in correspondence to the indexes greater than N = 11. The interval [0, rM ] = [0, 10]
has been divided into 73 parts. The L2 norm of the velocity field shows very little
variation during the evolution. However, a decay should be normally observed due
to the presence of the viscous term and the numerical diffusion introduced by the
discretization. In Fig. 6 we can see the plot of the velocity component v1 in the
square [0, rM ] × [−π/4, π/4]. Qualitatively, the pictures do not change too much by
increasing the degrees of freedom. That is true up to a critical time approximately
equal to t = 0.1.

The sections develop so that the main vortex moves upwards, trying to create a
layer in proximity of the upper boundary. More insight comes from examining Fig. 7,
where the radial component v1 of the velocity field, as a function of the variable r , is
shown for θ = φ = 0 (the other two components v2 and v3 are zero). The behavior
seems to follow a kind of 1D Burgers equation, where the graph shifts from left to
right. Up to t = .09 everything goes smooth, although the second derivatives tend to
grow up. Between t = .09 and t = .10 there is a change of regime.

According to Fig. 8, the vector field at the center, which is initially smooth, tends
to generate a sort of jump in the flux rate. This change is transmitted laterally, though
one may argue that this is due either to a numerical effect or to a consequence of the
forcing term f(v). Beyond t = .10, the numerical oscillations pollute the outcome
(the anomaly is already visible at the base of the last plot of Fig. 7). Going ahead with
time, we can reach situations as the one shown in Fig. 8, obtained with more accurate
expansions (N = 15). Some strange phenomena are then detectable independently of
the degrees of freedom used.

These computations are not massive, but rather intensive by the way. Thus, it is
quite expensive to perform an accurate analysis of the real behavior. It is also true that,
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Fig. 4 Successive evolution of the ring sections, starting from the initial data of Fig. 3. The pictures are
referred to φ = 0, and the snapshots are taken at times t = 0.044, t = 0.077, t = T = 0.110, respectively

Fig. 5 Section at time t = 0.10 for φ = 0, with an enlargement of the vector field

confirming the presence of a jump of regularity on the first derivative of the flux, may
be very hard from the numerical viewpoint. At the critical time something happens:
the solution reaches a kind of steady state and the computation degenerates. For sure,
we are not in presence of a blowup at infinity or a discontinuity of the field, but maybe
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Fig. 6 Plot of the component v1 at time T = .10, for φ = 0 and (r , θ) ∈ [0, rM ] × [−π/4, π/4]. Some
wiggles are present at the base. We suspect that they are due to the formation of layers at the corner points
(rM , ±π/4)
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Fig. 7 Behavior of the component v1 for θ = φ = 0, at times t = .01, .02, · · · , .11

of a lack of smoothness. We suspect that a reliable verification of the facts is only
achievable with rather large values of N , with an abrupt growth of the costs for the
numerical implementation. We address the reader to Sect. 8 for further results based
on a simplified 2D version of the 3D originating problem.

As pointed out at the end of the previous section, the pictures presented so far do not
reflect the actual physical behavior of an autonomous velocity field v = (v1, v2, v3)

simulating a vortex ring. There is in fact a forcing term f , whose nature depends on
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Fig. 8 Section at time t = .11 for φ = 0. Here the solution begins to be deteriorated, though it has been
calculated with more degrees of freedom than those relative to the previous figures

Fig. 9 Section of the function f2
for φ = 0 at time t = .10

the solution itself. According to (3.8) and (3.3), we have:

f2 = −��

r2
∂2(r�)

∂r∂θ
= v1

(
∂v2

∂r
+ v2

r

)
f3 = −��

r2
∂2(r�)

∂r∂φ
= v1

(
∂v3

∂r
+ v3

r

)

We show in Fig. 9 the plot of f2 restricted to the plane φ = 0. The snapshot is taken at
time t = .10 (the same as in the pictures of Fig. 5). Note that, relatively to the section
θ = 0, f2 is identically zero.

The largest variations for v are manifested not too far from the point (denoted by
P) where |v1| reaches its maximum (Fig. 7). We may assume that P has a distance
equal to r∗ > 0 from the origin. It has to be noticed, that both f2 and f3 are the
results of a multiplication of two terms and that both v2 and v3 are identically zero for
θ = φ = 0. In Fig. 9 there are regions where f undergoes sharp changes, but things do
not seem to be so critical near P , where instead the worst variation for v is expected.
We try to reach some conclusions by assuming that, at the blowup instant, the function
� behaves near P as (r − r∗)α (up to additive and multiplicative constants), for an
appropriate value of α. In this circumstance, by neglecting powers of (r − r∗) with
higher exponents, we have from (3.3) the estimates:
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v1 ≈ (r − r∗)α

r
v2 ≈ (r − r∗)α−1 v3 ≈ (r − r∗)α−1

⇒ f2 ≈ (r − r∗)2α−2

r
f3 ≈ (r − r∗)2α−2

r
(6.5)

If for example we set α = 5/2, the corresponding v2 and v3 belong to H1(�)∩C0(�)

but not to H2(�), where� =]0, rM [×�. Note that the Jacobian related to our system
of coordinates behaves as r2 near the origin, but in order to deduce the integrability
we actually operate within a neighborhood of the point P having r∗ > 0. On the
other hand, we note that f2 ≈ (r − r∗)3 and f3 ≈ (r − r∗)3 are locally smooth
functions. This means that we have room enough to suppose that a regular forcing
term may produce a non regular solution, at least for what concerns the integrability
of certain derivatives. As far as the term �̄v is concerned, we argue that its smoothing
strength at P could be momentarily diminished because is the sum of second order
partial derivatives that tend to cancel each other. The above arguments are however
extremely heuristic.

As it will better discussed at the end of Sect. 8, regarding a modified version of the
system (3.9–3.10),wemay interpret the variable r as a parameter.As done inSect. 4, for
a fixed r we introduce some functions λ(r),μ1(r),μ2(r) and a discriminating quantity
Q(r). Roughly speaking, depending on the behavior of Q, we expect regions where
the set of equations in the variable θ and φ are affected by dominating dissipation, so
they force the velocity field to vanish. For other values of r we are instead in situations
like that of Fig. 2. This push-pull condition may explain why a full blowup at infinity
is not realized, passing however through a (possible) state of lack of regularity.

By looking for some references relative to the regularity ofNavier–Stokes solutions,
we come out for instance with the following papers: [3, 4, 6, 13, 23, 24]. Of course,
much more material is available, as a consequence of an intense research activity.
Most of the results deal with the case f = 0. If a blowup to infinity occurs, the theory
predicts with a rather good reliability in which norms this happens and at what rate.
Our case is a bit different. We have an uncommon forcing term that could produce
irregularities, but at the same time prevents an exaggerated growth of the velocity
field. Therefore it is not easy to find pertinent theoretical results. We leave this kind of
analysis to the experts. We guess that v1, v2, v3 may comfortably stay into the space
H1(R3) during time evolution. The considerations made above suggest a possible
blowup at the interior of the functional space H2(R3), which is just a little more
regular than C0(R3). Nevertheless, at the moment we have neither theoretical nor
practical arguments to confirm this occurrence.

From our experiments it turns out that the role of the viscosity parameter ν is not
really crucial. It is true that, for relatively large values of ν, the solution smooth out very
quickly. Maybe, in those circumstances, it is just a matter of increasing the intensity of
the initial guess to reproduce again the critical behavior. On the other hand, it is also
possible to choose ν = 0, without affecting the stability of the numerical scheme, and
obtaining outputs very similar to those of Fig. 7. Perhaps, future theoretical studies
may decree that our approach is fruitless in the analysis of the possible blowup of the
solutions of the Navier–Stokes equation. However, the idea could still have chances
to be applied successfully to the analysis of the non-viscous Euler equation.

123



How and why non... 809

Fig. 10 Field distribution at time t = 0 and time t = .11 when the initial field v0 corresponds to −u0 in
(6.4)

We spend a few words regarding the possibility of switching the sign of the initial
datum (i.e., by replacing u0 by −u0 in (6.4)). In Fig. 10 we see two moments of
this evolution. We are quite confident of the fact that a sort of singularity is going
to be generated at the origin. For instance, it is reasonable to suppose that v1 decays
as r when approaching the vertex of the pyramid. In the whole space R3 we have
that r = √

x2 + y2 + z2 is not a regular function. On the other hand, by examining
the functions f2 and f3 we find out a posteriori that they are affected by the same
pathology. Thus, we are in the case where a bad forcing term f induces the creation of
a bad field v, and this not an interesting discovery. The conclusion is that a regularity
deterioration at the origin (r∗ = 0) has little chances to occur, within our framework.

As a final remark, we mention the possibility to substitute the pyramid � with
a cone, and use spherical coordinates (r , θ, φ), where θ now denotes the azimuthal
angle. In this fashion we require that the expression of the ring does not involve the
variable φ, so obtaining a 2D problem. After the usual computations, we get:

u = 1

sin θ

∂

∂θ

(
sin θ

∂�

∂θ

)
+ r2

∂2�

∂r2
+ 2r

∂�

∂r
(6.6)

∂u

∂t
− ν

(
1

r2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+ ∂2u

∂r2
− 2

r

∂u

∂r
+ 2u

r2

)

−1

r

∂u

∂θ

∂

∂θ

(
∂�

∂r
+ �

r

)
+ r

2

∂

∂r

[(
1

r sin θ

∂

∂θ

(
sin θ

∂�

∂θ

))2]
= 0 (6.7)

Unfortunately, if we approach the new set of equations by cosinus Fourier expan-
sions (in order to preserve Neumann boundary conditions) the formulas are not neat
as in (6.2), since there are spurious sinus components that cannot be easily handled.
Thus, the computational cost does not decrease significantly. Considered that we are
not solving exactly the original problem and that there are no numerical benefits, we
decided not to proceed in this direction. Nevertheless, in Sect. 8, we examine a sim-
plified version of (6.6)–(6.7). This surrogate problem will be more affordable from
the numerical viewpoint, retaining however some of the main features.
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7 Comparison with the 2D version

It is known that solutions of the 2D Navier–Stokes equation preserve indefinitely
their regularity. The 2D version of the example examined so far, corresponds to four
flattened rings, built on triangular slices forming a partition ofR2. In each single slice,
we work in polar coordinates (r , θ), or more appropriately in cylindrical coordinates
(r , θ, z), where no dependence is assumed with respect to the variable z. In fact, the
z-axis, orthogonal to the plane R2, is only introduced in order to apply the operator
curl. We remind that, in this circumstance, the curl of a vector A = (A1, A2, A3) is
determined as follows:

curlA =
(
1

r

∂A3

∂θ
, −∂A3

∂r
,

∂A2

∂r
+ A2

r
− 1

r

∂A1

∂θ

)
(7.1)

For a scalar potential�, which is function of t , r and θ , we defineA = (0, 0, ∂�/∂θ).
By going through the same passages followed for the 3D version, arrive at:

u = ∂2�

∂θ2
+ r

∂

∂r

(
r
∂�

∂r

)
= ∂2�

∂θ2
+ r2

∂2�

∂r2
+ r

∂�

∂r
(7.2)

∂u

∂t
− ν

(
1

r2
∂2u

∂θ2
+ ∂2u

∂r2
− 3

r

∂u

∂r
+ 4u

r2

)

+1

r

[
−∂u

∂θ

∂

∂θ

(
∂�

∂r

)
+ ∂2�

∂θ2

∂2

∂θ2

(
∂�

∂r
− �

r

)]
= 0 (7.3)

which are similar to (3.9)-(3.10).
Let us remark that the last system has little in common with (6.6) and (6.7). In the

3D version, defined on a cone, the flow comes from all directions and concentrates on
the vertical axis. The section of the cone does not correspond to the slice of the 2D
version, where the fluid only arrives from left or right. This is probably why the 3D
version of the Navier–Stokes equations is more vulnerable to an overcrowding of the
fluid in certain areas, giving rise to an exceptional increase of pressure.

As before, Neumann type boundary conditions are assumed for both u and �, i.e.:
(∂u/∂θ)(±π/ω) = (∂�/∂θ)(±π/ω) = 0, for all r > 0. The two functionals in
(3.13) now become:

L1u = 1

r2
∂2u

∂θ2
+ ∂2u

∂r2
− 3

r

∂u

∂r
+ 4u

r2
L2� = ∂2�

∂θ2
+ r2

∂2�

∂r2
+ r

∂�

∂r

By playing with the lowest order eigenmodes:

u0(r , θ, φ) = −γ 2r2χ(r) cos(ωθ) �0(r , θ, φ) = χ(r) cos(ωθ) (7.4)

this time we discover that:

L1u0 = −γ 2u0 L2�0 = u0 (7.5)
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Fig. 11 Behavior of the component v1 for θ = 0 (left) and θ = π/4 (right), for equispaced time instants in
the interval [0, T ] = [0, .21]

provided χ(r) = Jσ (γ r), with σ = ω. For ω = 4, the first nontrivial zero of the
Bessel’s function J4 is 7.58.

We run some numerical experiments by setting ν = .02, rM = 8 and T = .21. At
time t = 0 we impose u0 = ±(r4/rM )(rM − r) cos(ωθ). The Fourier expansions are
truncated at N = 20. The plots of Fig. 11 show the evolution of v1 along the axes
θ = 0 and θ = π/4. Comparing with Fig. 7, the transition looks smoother and the
effects of dissipation are more prominent. However, it has to be remembered that the
role of the forcing term f (that implicitly depends on the solution itself) may alter
the capability to judge what is really happening. As expected, everything looks pretty
smooth.

8 A simplifiedmodel for the cone

At the end of Sect. 6, we introduced the equations (6.6–6.7). Defined on a three-
dimensional cone, they just make use of the two variables r and θ . In order to develop
a cheapnumerical code for the calculation of their solutions,we introduce the following
approximation:

1

sin θ

∂

∂θ

(
sin θ

∂�

∂θ

)
= ∂2�

∂θ2
+ cos θ

sin θ

∂�

∂θ
≈ 2

∂2�

∂θ2
(8.1)

which is valid for small θ . In this way we concentrate our attention on the central
axis of the cone. Meanwhile, we open the possibility of implementing Fourier cosinus
expansions in an easy fashion.

First of all, the expression of the velocity field takes the form:

v =
(
2

r

∂2�

∂θ2
, − ∂2�

∂r∂θ
− 1

r

∂�

∂θ
, 0

)
(8.2)
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Fig. 12 Sections for θ = 0 at time T = .4. We see an enlargement of the vector field v (left) and the level
lines of the function ∂�/∂θ (right)

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-30

-20

-10

0

10

20

30

40

50

Fig. 13 Behavior of the component v1 at equispaced time instants in the interval [0, T ] = [0, .4]: plots
with respect to r for θ = 0 (left); plots with respect to θ (right) for a value of r in the neighborhood of the
maximum peak of the graphs on the left

Successively, the equations are modified as follows:

u = 2
∂2�

∂θ2
+ r2

∂2�

∂r2
+ r

∂�

∂r
(8.3)

∂u

∂t
− ν

(
2

r2
∂2u

∂θ2
+ ∂2u

∂r2
− 2

r

∂u

∂r
+ 2u

r2

)

+1

r

[
−∂u

∂θ

∂

∂θ

(
∂�

∂r
+ �

r

)
+ 4

∂2�

∂θ2

∂2

∂θ2

(
∂�

∂r
− �

r

)]
= 0 (8.4)

The numerical code is the same as the one taken into account in the previous
section. The results are however rather different. We studied the behavior in the time
interval [0, T ] = [0, .4], with rM = 10, ν = .02 and the initial condition u0 =
(r7/r4M )(rM − r) cosωθ . Regarding the outcome, we refer to Figs. 12, 13, 14, where
the series have been truncated for N > 18 in the experiments.

It is interesting to observe that, at the points where ∂�/∂r = 0, the coefficients of
the nonlinear term in (8.4) correspond to the case μ1 = 1 and μ2 = −4 for the 1D
model problem (5.1) introduced in Sect. 4. This means that we are in the condition
where the quantity Q defined in (5.4) attains different signs depending on the index
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Fig. 14 Plot of the component v1 on the rectangle [0, 10] × [−π/4, π/4] at time T = .4

j . In these circumstances, we guessed that the solution of (5.1) blows up in a finite
time. Here, we do not have an explosion. However, the behavior looks quite weird,
especially if we examine the picture on the right of Fig. 13, in which a plateau is
visible in the central part. Again, we are not in the position to decide whether a break
down of regularity is effectively occurring, or the weirdness is just the consequence
of the small diffusive term ν that allows for the development of sharp layers without
destroying smoothness. We add further comments in the sections to follow.

9 Some theoretical considerations

In the numerical simulations of section 6, we imposed that the functions u and � had
zero average in �, corresponding to the fact that c00 = d00 = 0, for any r and any t .
This property is compatible with (3.9) and (6.3). Moreover, it is inspired by the fact
that the nonlinear term in (3.9) is independent of c00 and d00 (see also (6.2)). Thus,
let us study more in detail this aspect. In order to do this, we integrate equation (3.9)
in the domain � and perform some integration by parts by taking into account the
Neumann boundary constraints, valid for any r . Considering that

∫
�
u dθdφ = 0, for

any r and t , we get:

∫
�

1

r

[(
�� + r2

∂2�

∂r2
+ 2r

∂�

∂r

)
�

(
∂�

∂r
+ �

r

)
+ �� �

(
∂�

∂r
− �

r

)]
dθdφ

=
∫

�

2

r
���

(
∂�

∂r

)
dθdφ −

∫
�

[
r∇

(
∂2�

∂r2

)
· ∇

(
∂�

∂r

)
+ 2

∣∣∣∣∇
(

∂�

∂r

)∣∣∣∣
2
]
dθdφ

−
∫

�

[
∇
(

∂2�

∂r2

)
· ∇� + 2

r
∇� · ∇

(
∂�

∂r

)]
dθdφ = 0 (9.1)
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The next step is to integrate the above expression with respect to r > 0. We denote
by � the cartesian product �×]0, rM [, where rM can be either finite or infinite. At
r = 0 and r = rM we impose vanishing boundary conditions, independently of θ and
φ. By integrating by parts when necessary, we must have:

∫
�

[
1

r2
(��)2 − 1

2

∣∣∣∣∇
(

∂�

∂r

)∣∣∣∣
2

− 1

r2
|∇�|2

]
dθdφdr = 0 (9.2)

The above equality comes from the balance of positive and negative quantities. It does
not say toomuch, except that is admissible with the existence of nontrivial functions�

solving (3.9–3.10) and compatible with the constriction c00 = d00 = 0. If we instead
multiply (9.1) by r before the successive integration, the counterpart of (9.2) becomes
0 = 0. If we finally multiply (9.1) by r2 and integrate, the new version of (9.2) is:

∫
�

[
−(��)2 + r2

2

∣∣∣∣∇
(

∂�

∂r

)∣∣∣∣
2
]
dθdφdr = 0 (9.3)

which also has an ambiguous sign.
The same conclusions can be reached by arguing with the expansions (6.2–6.3).We

can substitute the generic coefficient cnl , explicited in (6.3), into (6.2). Successively,
by setting n = l = 0, the first sum in (6.2) disappears, the second one has i = j = 0
and k = m, the third one has k = m = 0 and i = j , and the fourth one has k = m
and i = j . We can analyze the terms of the summation, after an integration with
respect to the variable r . The conclusions are similar to those of section 6, where,
after introducing a suitable quantity Q, we distinguished between the case in which
Q maintains the same sign (as a function of the indexes of the summation) or attains
different signs. Here we are in the second situation.

Things change ifwe approach the two-dimensionalNavier–Stokes problem. Indeed,
if we transfer the same kind of computations to the system (7.2)-(7.2), we first have:

∫
�

1

r

[(
∂2�

∂θ2
+ r2

∂2�

∂r2
+ r

∂�

∂r

)
∂3�

∂θ2∂r
+ ∂2�

∂θ2

∂2

∂θ2

(
∂�

∂r
− �

r

)]
dθ

=
∫

�

2

r

∂2�

∂θ2

∂3�

∂θ2∂r
dθ −

∫
�

1

r2

(
∂2�

∂θ2

)2
dθ

−
∫

�

[
r

∂3�

∂θ∂r2
∂2�

∂θ∂r
+

(
∂2�

∂θ∂r

)2]
dθ = 0 (9.4)

where � =] − π/4, π/4[. A further integration with respect to r , produces:

− 1

2

∫
�

(
∂2�

∂θ∂r

)2
dθdr = 0 (9.5)

This situation is different from that of the three-dimensional case, since the right-hand
side in (9.5) is negative and the compatibility with c0 = 0 now only happens for
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� = 0. The outcome does not change if we multiply (9.4) by r before integration, so
obtaining:

−
∫

�

1

r

(
∂2�

∂θ2

)2
dθdr = 0 (9.6)

The considerationsmade in Sect. 5were supported by some numerical tests and they
suggested as a rule of thumb that, when Q has constant sign, the evolutive nonlinear
model problem (projected into the subspace of functions with zero average) has a
unique attractor consisting of the zero function. On the other hand, when Q attains
different signs, there are stable singular solutions that are reached in a finite time. Can
we deduce similar conclusions for the set of Navier–Stokes equations? Is the behavior
of some indicator Q the discriminant factor between the two and the three-dimensional
cases? We have no answers at the moment, but we hope that the results here discussed
may serve as starting point to advance in this investigation. We also point out that
the model problem introduced in Sect. 5 might be of interest by itself, both for its
mathematical elegance and for possible applications in other contexts.

10 Discussion

There are a few things still to be fixed before concluding this paper. First of all, we
need to say something about the assemblage of the six pyramidal domains representing
a partition of the whole space R3 (Fig. 1). The Neumann conditions imposed to �

(and consequently to �) guarantee that v is flattened on each triangular boundary,
for any r and t (see (3.3)). Due to the Neumann conditions imposed on u, from an
inspection of (3.7), the above property is also true for the nonlinear term v × curlv.
Thus, the transfer of information between the domains only takes place through the
diffusive term ν�̄v. After integration over �, the Laplacian �u can be expressed
in weak form and the Neumann boundary conditions allow for a good match across
the interfaces, after taking into account all the symmetries involved. As a matter of
fact, each normal derivative cancels out the corresponding normal derivative of the
contiguous domain, since the two normal vectors are opposite. This property is not
only true for the 12 triangles dividing the domains, but also for the 8 straight-lines
constituting the boundary of the boundary. These last are made of the so called cross-
points. A reasonable initial condition, such as for instance the one given in (6.4), may
ensure aC1 matching across the interfaces. Of course, global initial data can be chosen
as smooth as we please. In the event that some loss of regularity occurs during the
evolution, we expect it to happen at some points in the middle of the pyramids. If a
deterioration of the regularity shows up before, at some other places (for instance at
the origin or at the interfaces), it will be anyway a confirmation of the possibility to
generate singularities in a finite time.

We did not talk too much about the pressure p in the whole paper. This is also
strictly depending on v. It is actually defined as the sum of all the potentials than
can be plugged in form of a gradient on the right-hand side of the Navier–Stokes
momentum equation. Whatever the expression of p is, as far as the velocity field
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remains smooth, we expect the same to happen to pressure. Otherwise, as v starts
showing a bad behavior, so it will be for p.

For r = rM , the examples here considered are equivalent to force homogeneous
Dirichlet boundary conditions on the surface of a sphere centered at r = 0. If we
want our problem to be defined in the whole space R3 (i.e.: rM = +∞), we may
require either an appropriatemonotone decay at infinity, or an oscillating behavior. The
Bessel’s function in (3.15) can be an option, since it oscillates remaining bounded for
all r ≥ 0, though it has not a rapid decay at infinity (≈ 1/

√
r ). It is also to be reminded

that the sign of the initial guess influences in differentways the successive development
(compare Figs. 3 and 10). Presumably, without the Dirichlet type constraint at rM , the
vortexes of Fig. 4 would escape outbound. They are however externally bounded by
counter-rotating vortexes. Thus, the adoption of an initial function with alternate signs
looks correct. Unfortunately, our computational capabilities are not enough to handle
these types of experiments.

As a final remark we say that the idea of the six collapsing rings described in
Sect. 1 can be approached as it is, i.e. without resorting to the trick of simplifying the
equations through the help of a fictitious force f . In alternative, an on purpose attractive
radial force (i.e.: f1 �= 0), may be added to speed up the collapsing process. This 3D
fluid dynamics exercise can be tackled by a numerical code with a great amount of
computational effort. It is worthwhile to mention that many commercial codes for the
resolution of the time-dependent Navier–Stokes equations require artificial boundary
conditions on pressure. Such a constraints is unphysical and often leads to different
outcomes depending on the conditions imposed (under the same initial and boundary
conditions for the velocity field). If this might be acceptable for some engineering
applications, the use is instead discouraged in view of a more accurate mathematical
analysis. It would be however interesting to have a try with some special choices of f ;
unforeseen surprises may come out.
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