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Abstract
Recent quasi-optimal error estimates for the finite element approximation of total-
variation regularized minimization problems using the Crouzeix–Raviart element
require the existence of a Lipschitz continuous dual solution, which is not gener-
ally given. We provide analytic proofs showing that the Lipschitz continuity of a
dual solution is not necessary, in general. Using the Lipschitz truncation technique,
we, in addition, derive error estimates that depend directly on the Sobolev regular-
ity of a given dual solution.

Mathematics Subject Classification 26A45 · 65N15 · 65N30 · 68U10

1 Introduction

In this article, we examine the finite element discretization of the Rudin–Osher–Fatemi
(ROF) model from [33], which serves as a model problem for general convex and non-
smooth minimization problems. This image processing model determines a function
u ∈ BV (�) ∩ L2(�) via minimizing I : BV (�) ∩ L2(�) → R, defined by

I (v) := |Dv|(�) + α

2
‖v − g‖2L2(�)

(1.1)

for all v ∈ BV (�) ∩ L2(�), where |Dv|(�) denotes the total variation, g ∈ L2(�)

is the input data, e.g., a noisy image, and ‖v − g‖2
L2(�)

is the so-called fidelity term.
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In addition, the fidelity parameter α > 0 is a given constant, which determines the
balance between de-noising and preserving the input image. For a more in-depth
analysis of this model, concerning its analytical properties, explicit solutions, and
numerical methods, we refer to [4, 5, 7, 10, 12, 13, 17–21, 26, 27, 29, 34]. Since this
model allows for and preserves discontinuities of the input data g, cf. [17], continu-
ous finite element methods are known to perform sub-optimally, cf. [10, 12]. Recent
contributions, cf. [9, 10, 21], reveal that the quasi-optimal convergence rateO(h

1
2 ) for

discontinuous solutions on quasi-uniform triangulations can be obtained using the dis-
continuous, lower-order Crouzeix–Raviart element introduced in [22].More precisely,
these error estimates yield a bound for the error for the approximation ofminimizers of
I : BV (�)∩ L2(�) → R via minimizing the discrete functional Ih : S1,cr(Th) → R,
defined by

Ih(vh) := ‖∇hvh‖L1(�;Rd ) + α

2
‖�h(vh − g)‖2L2(�)

for all vh ∈ S1,cr(Th), where S1,cr(Th) is the Crouzeix–Raviart finite element space,
i.e., the space of element-wise affine functions that are continuous at the midpoints of
element sides, ∇h :S1,cr(Th)→L0(Th)d denotes the element-wise gradient, and �h :
L2(�)→L0(Th) is the L2 –projection operator onto element-wise constant functions.
Note that the family of discrete functionals Ih : S1,cr(Th) → R, h > 0, defines a non-
conforming approximation of the functional I : BV (�)∩ L2(�) → R, as, e.g., jump
terms of uh across inter-element sides are not included. For this family recently a
�–convergence result with respect to strong convergence in L1(�) or distributional
convergence has been established under general assumptions, i.e., that g ∈ L2(�), cf.
[21, Propositon 3.1]. However, the quasi-optimal rate O(h

1
2 ) till now only holds if

the dual problem given via maximizing D : W 2
N (div;�)∩ L∞(�;Rd) → R∪{−∞},

defined by

D(y) := − 1

2α
‖div(y) + αg‖2L2(�)

+ α

2
‖g‖2L2(�)

− IK1(0)(y) (1.2)

for all y ∈ W 2
N (div;�)∩L∞(�;Rd), where IK1(0) : L∞(�;Rd) → R ∪ {+∞} is for

y ∈ L∞(�;Rd) defined by IK1(0)(y) := 0 if ‖y‖L∞(�;Rd ) ≤ 1 and IK1(0)(y) := +∞
else, admits a Lipschitz continuous solution. Unfortunately, the Lipschitz continuity of
a maximum of D : W 2

N (div;�)∩ L∞(�;Rd) → R∪{−∞} is not generally given, as
[13, Section 3] clarified. Without the assumption that a Lipschitz continuous solution
to (1.2) exists, but that g ∈ BV (�) ∩ L∞(�), in [21, Section 5.2], the sub-optimal
convergence rate O(h

1
4 ) has been established. The approach of [21, Section 5.2]

consists in a convolution of a maximum z ∈ W ∞
N (div;�) of (1.2) in order to com-

ply with the crucial Lipschitz continuity property at least in an approximate sense.
We use an alternative regularization approach, which operates highly at a local level,
the celebrated Lipschitz truncation technique. Its basic purpose is to approximate
Sobolev functions u ∈ W 1,p(�) by λ–Lipschitz functions uλ ∈ W 1,∞(�), λ > 0.
The original approach of this technique traces back to Acerbi and Fusco, cf. [1–3].
Since then, the Lipschitz truncation technique is used in various areas of analysis: In
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the calculus of variations, in the existence theory of partial differential equations,
and in regularity theory. For a longer list of references, we refer the reader to [23].
To the best of the authors knowledge, this article provides the first deployment of the
Lipschitz truncation technique in the field of image processing. To be more precise,
for the application in this article, the main advantage of the Lipschitz truncation tech-
nique in comparison to convolution is that not only u and uλ coincide up to a set
of small measure, but equally ∇u and ∇uλ do. By deploying the Lipschitz trunca-
tion technique, we arrive at error estimates whose resulting rates directly depend on
the respective Sobolev regularity of a given maximum z ∈W 1,p(�;Rd) of (1.2). If
only g ∈ L∞(�) and one, in addition, has that, e.g., z ∈ W 1,p(�;Rd) for p ≥ 3,
then the results of this article yield the sub-optimal rate O(h

1
4 ). In this manner,

we intend to fill the gap between the optimal rate O(h
1
2 ) for z ∈ W 1,∞(�;Rd)

and g ∈ L∞(�) and the rate O(h
1
4 ) for z ∈ W ∞

N (div;�) and g ∈ L∞(�) ∩ BV (�).
As a maximum of (1.2) is not necessarily in a Sobolev space, but in W 2

N (div;�)

∩L∞(�;Rd), we also study the case of a non-existence of Sobolev solutions to (1.2).
It turns out that if a maximum z ∈W 2

N (div;�) ∩ L∞(�;Rd) of (1.2) is element-wise
Lipschitz continuous, i.e., the discontinuity set Jz is resolved by the triangulations,
or at least in an approximate sense with the rate O(h), cf. Remark 4.8, then the
optimal rateO(h

1
2 ) can be expected. Beyond that, we find that the optimal rateO(h

1
2 )

is attained if a dual solution fulfills |z| < 1 along its discontinuity set Jz while,
simultaneously, its jump [[z]] over its discontinuity set Jz remains small. Some of
these conditions apply, e.g., to the setting described in [13, Section 3] with a suitable
triangulation Th , h > 0, of the domain �, for which the optimal rate O(h

1
2 ) could be

reported without giving an analytical explanation. This article’s purpose is to give—at
least for special cases—a missing analytical explanation.

This article is organized as follows: In Sect. 2, we introduce the employed nota-
tion, define the relevant finite element spaces and give a brief review of the continuous
and discretized ROF model. In Sect. 3, using the Lipschitz truncation technique, we
establish error estimates that depend directly on the Sobolev regularity of a maximum
of (1.2). In Sect. 4, we prove quasi-optimal error estimates without explicitly assum-
ing that a Lipschitz continuous maximum of (1.2) exists. In Sect. 5, we confirm our
theoretical findings via numerical experiments.

2 Preliminaries

Throughout the article, if not otherwise specified, we denote by � ⊆ R
d , d ∈ N, a

bounded polyhedral Lipschitz domain, whose boundary is disjointly divided into a
Dirichlet part �D and a Neumann part �N , i.e., ∂� = �D ∪ �N and ∅ = �D ∩ �N .

2.1 Function spaces

For p ∈ [1,∞] and l ∈ N, we employ the standard notations1

1 Here, W− 1
p ,p(�N ) := (W 1− 1

p′ ,p′
(�N ))∗ and W− 1

p ,p(�) := (W 1− 1
p′ ,p′

(�))∗.
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W 1,p
D (�;Rl) :=

{
v ∈ L p(�;Rl) | ∇v ∈ L p(�;Rl×d), tr(v) = 0 in L p(�D;Rl)

}
,

W p
N (div;�) :=

{
y ∈ L p(�;Rd) | div(y) ∈ L p(�), tr(y) · n = 0 in W − 1

p ,p
(�N )

}
,

W 1,p(�;Rl) := W 1,p
D (�;Rl) if�D = ∅, andW p(div;�) := W p

N (div;�) if�N = ∅,
where tr :W 1,p(�;Rl)→ L p(∂�;Rl) and tr(·)·n :W p(div;�)→W − 1

p ,p
(∂�)denote

the trace and normal trace operator. In particular, we predominantlyomit tr(·) in
this context. We fall back on the abbreviations L p(�) := L p(�;R1), W 1,p(�) :=
W 1,p(�;R1) and W 1,p

D (�) := W 1,p
D (�;R1). Let |D(·)|(�) : L1

loc(�)→R ∪ {+∞},
defined by2

|Dv|(�) := sup
φ∈C∞

c (�;Rd ),‖φ‖L∞(�;Rd )≤1

−
ˆ

�

v div(φ) dx

for all v ∈ L1
loc(�), denote the total variation. Then, the space of functions of bounded

variation is defined by BV (�) := {
v ∈ L1(�) | |Dv|(�) < ∞}

.

2.2 Triangulations

In what follows, we let (Th)h>0 be a sequence of regular, i.e., uniformly shape regular
and conforming, triangulations of � ⊆ R

d , d ∈ N, cf. [15]. The sets Sh and Nh

contain the sides and vertices (nodes), resp., of the elements. The parameter h > 0
refers to the maximal mesh-size of Th . More precisely, if we define hT := diam(T )

for all T ∈ Th , then we have that h = maxT ∈Th hT . For any k ∈ N and T ∈ Th , we let
Pk(T ) denote the set of polynomials of maximal total degree k on T . Then, the set of
element-wise polynomial functions or vector fields, resp., is defined by

Lk(Th)l :=
{
vh ∈ L∞(�;Rl) | vh |T ∈ Pk(T )l for all T ∈ Th

}
.

For any T ∈ Th and S ∈ Sh , we let xT := 1
d+1

∑
z∈Nh∩T z and xS := 1

d

∑
z∈Nh∩S z

denote the midpoints (barycenters) of T and S, resp. The L2–projection operator onto
element-wise constant functions or vector fields, resp., is denoted by

�h : L1(�;Rl) → L0(Th)l .

For vh ∈ L1(Th)l , it holds�hvh |T = vh(xT ) for all T ∈ Th .Moreover, for p ∈ [1,∞],
there exists a constant c� > 0 such that for all v ∈ L p(�;Rl), cf. [24], we have that

(L0.1) ‖�hv‖L p(�;Rl ) ≤ ‖v‖L p(�;Rl ),
(L0.2) ‖v − �hv‖L p(�;Rl ) ≤ c�h‖∇v‖L p(�;Rl×d ) if v ∈ W 1,p(�;Rl).

2 Here, C∞
c (�;Rd ) denotes the space of smooth and in � compactly supported vector fields.
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2.3 Crouzeix–Raviart element

A particular instance of a larger class of non-conforming finite element spaces, intro-
duced in [22], is the Crouzeix–Raviart finite element space, consisting of element-wise
affine functions that are continuous at the midpoints of element sides, i.e.,3

S1,cr(Th) :=
{
vh ∈ L1(Th)

∣∣∣
ˆ

S
�vh�S ds = 0 for all S ∈ Sh \ ∂�

}
.

The element-wise application of the gradient to vh ∈ S1,cr(Th) defines an element-
wise constant vector field ∇hvh ∈ L0(Th)d via ∇hvh |T := ∇(vh |T ) for all T ∈ Th .
Crouzeix–Raviart finite element functions that vanish at midpoints of boundary ele-
ment sides that correspond to the Dirichlet boundary �D are contained in the space

S1,cr
D (Th) :=

{
vh ∈ S1,cr(Th) | vh(xS) = 0 for all S ∈ Sh ∩ �D

}
.

In particular, we have that S1,cr
D (Th) = S1,cr(Th) if �D = ∅. A basis of S1,cr(Th)

is given by the functions ϕS ∈ S1,cr(Th), S ∈ Sh , satisfying the Kronecker property
ϕS(xS′) = δS,S′ for all S, S′ ∈ Sh . A basis of S1,cr

D (Th) is given by (ϕS)S∈Sh ;S��D
.

For any p ∈ [1,∞], the quasi-interpolation operator Icr : W 1,p
D (�) → S1,cr

D (Th), for
every v ∈ W 1,p

D (�) defined by

Icrv :=
∑
S∈Sh

vSϕS, vS :=
 

S
v ds (2.1)

preserves averages of gradients, i.e.,∇h(Icrv)=�h(∇v) inL0(Th)d for v∈W 1,p
D (�).

Moreover, for p ∈ [1,∞], there exits a constant ccr > 0 such that for all v ∈ W 1,p
D (�),

cf. [14], we have that

(CR.1) ‖∇h(Icrv)‖L p(�;Rd ) ≤ ‖∇v‖L p(�;Rd ),
(CR.2) ‖v − Icrv‖L p(�) ≤ ccr h‖∇v‖L p(�;Rd ),
(CR.3) ‖Icrv‖L∞(�) ≤ cd‖v‖L∞(�), where cd := (d + 1)(d − 1), if v ∈ L∞(�).

2.4 Raviart–Thomas element

The lowest order Raviart–Thomas finite element space, introduced in [32], consists
of element-wise affine vector fields that have continuous constant normal components
on inner element sides, i.e.,4

3 Here, for every S ∈ Sh \∂�, �vh�S := vh |T+ −vh |T− on S, where T+, T− ∈ Th satisfy ∂T+∩∂T− = S,
and for every S ∈ Sh ∩ ∂�, �vh�S := vh |T on S, where T ∈ Th satisfies S ⊆ ∂T .
4 Here, for every S ∈ Sh\∂�, �yh · n�S := yh |T+ · nT+ + yh |T− · nT− on S, where T+, T− ∈ Th sat-
isfy ∂T+ ∩ ∂T− = S and for every T ∈ Th , nT : ∂T → S

d−1 denotes the outward unit normal vector
field to T , and for every S ∈ Sh ∩ ∂�, �yh · n�S := yh |T · n on S, where T ∈ Th satisfies S ⊆ ∂T and
n : ∂� → S

d−1 denotes the outward unit normal vector field to �.
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RT 0(Th) := {
yh ∈ L1(Th)d | yh |T · nT = const in ∂T for all T ∈ Th,

�yh · n�S = 0 on S for all S ∈ Sh \ ∂�
}
.

Raviart–Thomas finite element functions that have vanishing normal components
on the Neumann boundary �N are contained in the space

RT 0
N (Th) :=

{
yh ∈ RT 0(Th) | yh · n = 0 on �N

}
.

In particular, we have that RT 0
N (Th) = RT 0(Th) if �N = ∅. A basis of RT 0(Th) is

given by the vector fields ψS ∈ RT 0(Th), S ∈ Sh , satisfying the Kronecker property
ψS|S′ · nS′ = δS,S′ on S′ for all S ∈ Sh , where nS for all S ∈ Sh denotes the unit
normal vector on S that points from T− to T+ if S = ∂T− ∩ ∂T+ ∈ Sh . A basis of
RT 0

N (Th) is given by ψS ∈ RT 0
N (Th), S ∈Sh\�N . The quasi-interpolation operator

Irt : V div(�) := {y ∈ L p(�;Rd) | div(y) ∈ Lq(�)} → RT 0
N (Th), where p > 2

and q > 2d
d+2 , for every y ∈ V div(�) defined by

Irt y :=
∑
S∈Sh

ySψS, yS :=
 

S
y · nS ds (2.2)

preserves averages of divergences, i.e., div(Irt y) = �h(div(y)) in L0(Th) for all
y ∈ V div(�). Moreover, for p ∈ [1,∞], there exists a constant crt > 0 such that for
all y ∈ V div(�), cf. [25], we have that

(RT.1) ‖y − Irt y‖L p(�;Rd ) ≤ crt h‖∇ y‖L p(�;Rd×d ) if y ∈ W 1,p(�;Rd),
(RT.2) ‖Irt y‖L∞(�;Rd ) ≤ crt‖y‖L∞(�;Rd ) if y ∈ L∞(�;Rd).

For p∈[1,∞), due to thedensity ofC∞(�;Rd)∩W p
N (div;�) inW p

N (div;�), the oper-
ator and (RT.2) can be extended to y ∈W p

N (div;�), losing the representation (2.2).

2.5 The continuous Rudin–Osher–Fatemi (ROF) model

Given g ∈ L2(�) and α > 0, the Rudin–Osher–Fatemi (ROF) model, cf. [33], deter-
mines a function u ∈ BV (�) ∩ L2(�) that is minimal for I : BV (�) ∩ L2(�)→R,
defined by

I (v) := |Dv|(�) + α

2
‖v − g‖2L2(�)

(2.3)

for all v ∈ BV (�) ∩ L2(�). In [8, Theorems 10.5 & 10.6], it is proved that
for every g ∈ L2(�), there exists a unique minimizer u ∈ BV (�) ∩ L2(�) of
I : BV (�) ∩ L2(�) → R. If g ∈ L∞(�), thenu ∈ L∞(�)with‖u‖L∞(�) ≤‖g‖L∞(�)

(cf. [8, Proposition 10.2]). In [27, Theorem 2.2], it is shown that the corresponding
dual problem to (2.3) determines a vector field z ∈W 2

N (div;�) ∩ L∞(�;Rd), where
�N =∂�, that ismaximal for D :W 2

N (div;�) ∩ L∞(�;Rd)→R ∪ {−∞}, defined by

D(y) := − 1

2α
‖div(y) + g‖2L2(�)

+ α

2
‖g‖2L2(�)

− IK1(0)(y) (2.4)
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for all y ∈W 2
N (div;�) ∩ L∞(�;Rd),where IK1(0) : L∞(�;Rd)→R ∪ {∞} is defined

by IK1(0)(y) := 0 if y ∈ L∞(�;Rd)with ‖y‖L∞(�;Rd ) ≤ 1 and IK1(0)(y) := ∞ else.
Apart from that, in [27, Theorem 2.2], it is shown that (2.4) possesses a maximizer
z ∈ W 2

N (div;�) ∩ L∞(�;Rd), which satisfies the strong duality principle

I (u) = D(z). (2.5)

The strong duality principle (2.5), appealing to [8,Proposition10.4] and referring to
standard convex optimization arguments, is equivalent to the optimality relations

div(z) = α(u − g) in L2(�), |Du|(�) = −(u, div(z)). (2.6)

2.6 The discretized Rudin–Osher–Fatemi (ROF) model

Given some g ∈ L2(�) and α > 0, setting gh := �h g ∈ L0(Th), the discretized
ROF model proposed by [21] determines a Crouzeix–Raviart function uh ∈S1,cr(Th)

that is minimal for Ih : S1,cr(Th) → R, defined by

Ih(vh) := ‖∇hvh‖L1(�;Rd ) + α

2
‖�hvh − gh‖2L2(�)

(2.7)

for all vh ∈ S1,cr(Th). In [21] and [10], it has been shown that the corresponding dual
problem to (2.7) determines a Raviart–Thomas vector field zh ∈ RT 0

N (Th), where
�N = ∂�, that is maximal for Dh : RT 0

N (Th) → R ∪ {−∞}, defined by

Dh(yh) := − 1

2α
‖div(yh) + gh‖2L2(�)

+ α

2
‖gh‖2L2(�)

− IK1(0)(�h yh) (2.8)

for all yh ∈RT 0
N (Th). Apart from that, in [21] and [10], it has been established that a

discrete weak duality principle holds, i.e., it holds

inf
vh∈S1,cr(Th)

Ih(vh) ≥ sup
yh∈RT 0

N (Th)

Dh(yh), (2.9)

which is a cornerstone of the error analysis for (2.7). In particular, note that for the
validity of (2.9) the L2–projection operator �h in (2.7) and (2.8) plays a key role.

2.7 Piece-wise Lipschitz, but not globally Lipschitz, continuous solution to (2.4)

In [13, Section 3], the construction of an input data g ∈ BV (�)∩ L∞(�) that leads to
a solution z ∈ W ∞

N (div;�) to (2.4) such that z /∈ W 1,∞(�;R2), in essence, is based
on the asymmetry of the function

g := χB2
r (re1) − χB2

r (−re1) ∈ BV (�) ∩ L∞(�) (2.10)
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888 S. Bartels, A. Kaltenbach

defined on a domain that is symmetric with respect to the Re2–axis.5 More precisely,
using this asymmetry property, it is possible to reduce the minimization problem (2.3)
on � into two independent minimization problems on �+ := � ∩ (R>0 × R) and
�− := � ∩ (R<0 ×R) for which explicit solutions u± ∈ BV (�±) ∩ L∞(�±) exist.
In this way, the following result could be derived.

Proposition 2.1 Let � ⊆ R
2 be symmetric with respect to the Re2–axis and let

r > 0 be such that B2
r (±re1) ⊂⊂ �. Then, for (2.10) and α > 0, the minimizer of

I : A → R, where A := {u ∈ BV (�) ∩ L∞(�) | tr(u) = 0 in L1(∂�)}, is given via

u = max

{
0, 1 − 2

αr

}
g ∈ A. (2.11)

Proof See [13, Proposition 3.1]. ��
Combining the representation formula (2.11) and the optimality conditions (2.6), it

turns out that there exists no Lipschitz continuous dual solution to the setting described
in Proposition 2.1.

Corollary 2.2 Let the assumptions of Proposition 2.1 be satisfied with αr > 2. Then,
any dual solution z ∈W ∞(div;�) to (2.11) is not θ–Hölder continuous if θ > 1

2 .

Proof See [13, Corollary 3.2]. ��
Remark 2.3 If one carefully follows the proof in [13, Corollary 3.2], then one finds
that the existence of non–Lipschitz continuous dual solutions is a consequence of the
fact that the data g ∈ BV (�)∩L∞(�) is set-wise constant on B2

r (re1) and B2
r (−re1),

respectively, and anti-symmetric with respect to theRe2–axis as well as that B2
r (re1)∪

B2
r (re2) has no θ–Hölder continuous boundary if θ > 1

2 . Overall, here, the existence of
a non–Lipschitz continuous dual solution traces back to the data g ∈ BV (�)∩L∞(�)

and not, e.g., to the regularity of the domains �+ and �−.

An example of a not–Lipschitz continuous dual solution to (2.11) is the following,
which is separately Lipschitz continuous on �+ and �−, resp., and jumps over the
Re2–axis. We will resort to this dual solution to derive optimal error estimates for the
setting described in Proposition 2.1, as already reported in [13, Example 6.1].

Proposition 2.4 Let � ⊆ R
2 and r > 0 be such as in Proposition 2.1. Moreover, let

α > 0 be such that αr > 2. Then, the vector field z : � ⊆ R
2 → R

2, defined by

z(x) :=
{

∓ 1
r (x ∓ re1) if |x ∓ re1| < r

∓ r
|x∓re1|2 (x ∓ re1) if |x ∓ re1| ≥ r

for all x ∈�, satisfies z ∈W ∞(div;�), ‖z‖L∞(�;Rd ) ≤1, |Du|(�)=−(u, div(z))L2(�)

and div(z) = α(u − g) in L∞(�), where u ∈A is defined by (2.11), i.e.,
z ∈ W ∞(div;�) is a dual solution to (2.11).

5 For every i = 1, . . . , d, we denote by ei ∈ S
d−1, the i–th. unit vector.
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Proof Apparently, we have that z ∈ L∞(�;Rd) with ‖z‖L∞(�;Rd ) ≤ 1. In addition,
it is not difficult to see that z|�± ∈ W 1,∞(�±;Rd). Since z|�+ · n�+ = −z|�− · n�−
on Re2 ∩ �, we find that z ∈W 2(div;�). It is well-known, cf. [8, Example10.4], that

|Du|(�±) = −(u, div(z))L2(�±), div(z) = α(u − g) in L∞(�±).

Thus, we have that div(z) = α(u − g) in L∞(�), which implies that z ∈W ∞(div;�).
Apart from that, using that u = 0 continuously in Re2 ∩ �, we finally conclude that
|Du|(�) = −(u, div(z))L2(�), i.e., z ∈ W ∞(div;�) is a dual solution to (2.11). ��

3 Error estimates depending on Sobolev regularity

The validity of quasi-optimal error estimates for the finite element approximation
of total-variation regularized minimization problems by means of the Crouzeix–
Raviart element in the case of an existing Lipschitz continuous solution to (2.4) in
[10, 21], in essence, is based on four results: The discrete weak duality princi-
ple (2.9), the discrete strong coercivity of Ih : S1,cr(Th) → R, i.e.,

α

2
‖�h(vh − uh)‖2L2(�)

≤ Ih(vh) − Ih(uh) (3.1)

for all vh ∈ S1,cr(Th), where uh ∈ S1,cr(Th) is the minimum of Ih : S1,cr(Th) → R,
the strong duality principle (2.5), and the existence of appropriate primal and dual
quasi-interpolants, guaranteed through the following two lemmas:

For the benefit of readability and without loss of generality, we assume for the
remainder of this article, if not otherwise specified, that α = 1.

Lemma 3.1 (Primal quasi-interpolant) For every u ∈ BV (�) ∩ L∞(�), there exists
a Crouzeix–Raviart function ũh ∈ S1,cr(Th) with the following properties:

(P.1) ‖∇hũh‖L1(�;Rd ) ≤ |Du|(�),
(P.2) ‖u − ũh‖L1(�) ≤ ccr h|Du|(�),
(P.3) ‖ũh‖L∞(�) ≤ cd‖u‖L∞(�),
(P.4) Ih(ũh) ≤ I (u) + 2cdccr‖u‖L∞(�)|Du|(�)h − 1

2‖g − gh‖2
L2(�)

.

Proof See [10, Lemma 4.4] or [21, Section 5]. ��
Lemma 3.2 (Dual quasi–interpolant)For every z ∈ W 1,∞(�;Rd) ∩ W 2

N (div;�) such
that ‖z‖L∞(�;Rd ) ≤ 1, there exists a Raviart–Thomas vector field z̃h ∈RT 0

N (Th) with
the following properties:

(D.1) ‖�h z̃h‖L∞(�;Rd ) ≤ 1,

(D.2) Dh(z̃h)≥ D(z)−crt‖∇z‖L∞(�;Rd×d )‖g‖L2(�)‖div(z)‖L2(�)h−1
2‖g−gh‖2

L2(�)
.

Proof See [10, Lemma 4.5] or [21, Section 5]. ��
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While Lemma 3.1 does not impose restrictive assumptions on the minimum u ∈
BV (�)∩ L2(�), since already u ∈ L∞(�) if g ∈ L∞(�) (cf. [8, Proposition 10.2]),
the requiredLipschitz continuity of a solution z ∈W ∞

N (div;�) to (2.4) inLemma 3.2 is
often not fulfilled, cf. [13] or Sect. 2.7. We resort to the Lipschitz truncation technique
to fulfill the Lipschitz continuity requirement on a solution to (2.4) in Lemma 3.2
at least in an approximate sense and, in this way, derive error estimates that depend
directly on the Sobolev regularity of a solution z ∈W 1,p(�;Rd) to (2.4). The main
advantage of this approach is that the Lipschitz truncation technique is based on local
arguments, while regularization by convolution as in [21,Section5.2], for example,
operates highly non-local and, therefore, wipes out point-wise and/or local properties
of a solution to (2.4) that potentially could have been incorporated. To bemore precise,
in [21, Section 5.2], the requirement g ∈ BV (�) ∩ L∞(�) was needed to estimate
‖div(z) − div(zε)‖L1(�), where zε := z ◦ ωε ∈ C∞(Rd;Rd), ε > 0, denotes the
convolution with a suitably scaled kernel ωε ∈ C∞

0 (Rd), by ε|Dg|(�). In contrast
to that, if zλ ∈ W 1,∞(Rd ;Rd), λ > 0, denotes the Lipschitz truncation of a suitable
extension z ∈ W 1,p(Rd ;Rd) of z ∈ W 1,p(�;Rd), then we can exploit the particular
properties ∇zλ =∇z in {zλ = z} and |{zλ �= z}|≤|{M(∇z) > λ}|6, to conclude that
‖div(z)−div(zλ)‖L1(�) ≤ cλ1−p‖∇z‖L p(�;Rd×d ). In this way, we obtain the same rate
O(h

1
4 ) in [21, Section 5.2] without the assumption g ∈ BV (�) but need to assume

z ∈ W 1,3(�;Rd) ∩ L∞(�;Rd) instead of only z ∈ W ∞
N (div;�).

Theorem 3.3 (Lipschitz truncation technique) Let z ∈W 1,p(Rd;Rd), p∈ [1,∞), and
θ, λ> 0. Then, there is a Lipschitz continuous vector field zθ,λ ∈W 1,∞(Rd ;Rd) and
a constant cLT > 0, which does not depend on p ∈ [1,∞) and θ, λ > 0, such that the
following statements apply:

(LT.1) ‖zθ,λ‖L∞(Rd ;Rd ) ≤ θ ,
(LT.2) ‖∇zθ,λ‖L∞(Rd ;Rd×d ) ≤ cLTλ,
(LT.3) |{zθ,λ �= z}| ≤ |{M(z) > θ}| + |{M(∇z) > λ}|,
(LT.4) ∇zθ,λ = ∇z in {zθ,λ = z}.
Proof See the first part of the proof of [23, Theorem 2.3] or [31, Section 1.3.3]. ��

A crucial property of the Lipschitz truncation technique for this article is that,
similar to regularization by convolution, it does not increase the maximal length of a
vector field.

Remark 3.4 (Maximal length preservation of the Lipschitz truncation technique) If
z ∈ W 1,p(Rd ;Rd) ∩ L∞(Rd ;Rd), p ∈ [1,∞), for some θ > 0 has the property
‖z‖L∞(Rd ;Rd ) ≤ θ , then

M(z)(x) = sup
r>0

 
Bd

r (x)

|z(y)| dy ≤ ‖z‖L∞(Rd ;Rd ) ≤ θ for a.e. x ∈ R
d ,

6 Here, M : L p(Rd ;Rl ) → L p(Rd ;Rl ), d, l ∈ N, defined by M( f )(x) :=supr>0
ffl

Bd
r (x)

| f (y)| dy for
a.e. x ∈ R

d and all f ∈ L p(Rd ;Rl ), denotes the Hardy–Littlewood–Maximal operator.
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i.e., |{M(z) > θ}| = 0, which (cf. Theorem 3.3, (LT.3) for arbitrary λ > 0 yields

∣∣{zθ,λ �= z
}∣∣ ≤ |{M(∇z) > λ}| . (3.2)

Through the combination of both the p–type Tschebyscheff–Markoff–inequality, i.e.,
|{M(∇z)>λ}|≤λ−p‖M(∇z)‖p

L p(Rd ;Rd×d )
, and the strong type (p, p)–estimate of

the Hardy–Littlewood–Maximal operator (cf. [31, Theorem1.22]), i.e., for cM>07,
‖M(∇z)‖p

L p(Rd ;Rd×d )
≤ cM‖∇z‖p

L p(Rd ;Rd×d )
, we deduce from (3.2) that

∣∣{zθ,λ �= z
}∣∣ ≤ cMλ−p‖∇z‖p

L p(Rd ;Rd×d )
. (3.3)

By means of (3.3), also using Theorem 3.3, (LT.2) & (LT.4), we, then, deduce that

‖∇zθ,λ‖L p(Rd ;Rd×d ) = ‖∇zχ{zθ,λ=z}‖L p(Rd ;Rd×d ) + ‖∇zθ,λχ{zθ,λ �=z}‖L p(Rd ;Rd×d )

≤ ‖∇z‖L p(Rd ;Rd×d ) + cLTλ|{zθ,λ �= z}| 1p (3.4)

≤ (
1 + cM

1
p cLT

)‖∇z‖L p(Rd ;Rd×d ).

Through the combination of Lemma 3.2, Theorem 3.3 and Remark 3.4, we arrive at
the following result providing an admissible dual quasi-interpolant whose particular
properties depend directly on the Sobolev regularity of a solution to (2.4).

Lemma 3.5 (Dual quasi–interpolant depending on Sobolev regularity for �N = ∅)
Let g ∈ L∞(�) and let z ∈ W 1,p(�;Rd) ∩ W ∞(div;�), p ∈ [2,∞), be such that
‖z‖L∞(�;Rd ) ≤ 1. Then, there exists a Raviart–Thomas vector field z̃h ∈ RT 0(Th)

with the following properties:

(Dp.1) ‖�h z̃h‖L∞(�;Rd ) ≤ 1.
(Dp.2) Dh(z̃h) ≥ D(z) − cp(z)h

p−2
p−1 − 1

2‖g − gh‖2
L2(�)

, where

cp(z) := 2crt‖g‖L2(�)d
1
2
(
1 + cM

1
2 cLT

)
cE‖∇z‖L2(�;Rd×d )cLT

+ 8dc2LTcMcp
E‖∇z‖p

L p(�;Rd×d )
.

(3.5)

Here, cE > 0 is the Lipschitz constant of the lower-order extension opera-
tor P : W 1,q(�;Rl) → W 1,q(Rd ;Rl), q ∈ [1,∞], constructed in [16,
Section 9.2], which does not depend on q ∈ [1,∞].

Remark 3.6 (i) The arguments remain valid for �D �= ∂� if for z ∈ W 1,p(�;Rd)

∩W ∞
N (div;�), p ∈ [2,∞), such that ‖z‖L∞(�;Rd ) ≤ 1, there exists an extension

z ∈ W 1,p(Rd;Rd)with z|� = z and ‖z‖L∞(Rd ;Rd ) ≤1 and if for this extension, the
Lipschitz truncation z1,λ ∈ W 1,∞(Rd;Rd) from Theorem 3.3 satisfies z1,λ ·n = 0
in �N .

(ii) In general, the constant cp(z) deteriorates as p→∞, i.e., cp(z)→∞ (p→∞).

7 More precisely, one has cM=2
( p

p−1
) 1

p 5
d
p , implying the limit behavior cM→2 for (p→∞).
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Proof (of Lemma 3.5) Resorting to a lower-order extension operator, as, e.g., in [16,
Theorem 9.7], we get some z ∈W 1,p(Rd;Rd) with z|� = z and ‖z‖L∞(Rd ;Rd ) ≤1.
Denote by zλ := z1,λ ∈ W 1,∞(Rd ;Rd), i.e., for θ = 1, the Lipschitz truncation of
z ∈ W 1,p(Rd ;Rd) in the sense of Theorem 3.3. Then, also using Remark 3.4, we get:

(α) ‖zλ‖L∞(Rd ;Rd ) ≤ 1,
(β) ‖∇zλ‖L∞(Rd ;Rd×d ) ≤ cLTλ,
(γ ) |{zλ �= z}| ≤ |{M(∇z) > λ}|,
(δ) ∇zλ = ∇z in {zλ = z}.
For zλ|� ∈ W 1,∞(�;Rd) we obtain, in analogy with Lemma 3.2, i.e., introducing
zλ

h := (γ λ
h )−1 Irt zλ ∈ RT 0(Th), where we define γ λ

h := 1 + crt‖∇zλ‖L∞(�;Rd×d )h, a
dual quasi-interpolant zλ

h ∈ RT 0(Th) such that both ‖�hzλ
h‖L∞(�;Rd ) ≤ 1 and

Dh(zλ
h) ≥ D(zλ) − crt‖g‖L2(�)‖div(zλ)‖L2(�)‖∇zλ‖L∞(�;Rd×d )h

− 1
2‖g − gh‖2L2(�)

.
(3.6)

Then, on the basis of (β) and (3.4), we find that

‖div(zλ)‖L2(�)‖∇zλ‖L∞(�;Rd×d ) ≤ d
1
2 ‖∇zλ‖L2(Rd ;Rd×d )‖∇zλ‖L∞(Rd ;Rd×d )

≤ d
1
2 (1 + cM

1
2 cLT) ‖∇z‖L2(Rd ;Rd×d )cLTλ

≤ d
1
2 (1 + cM

1
2 cLT) cE‖∇z‖L2(�;Rd×d )cLTλ.

(3.7)

Using (β), (δ) and (3.3), also assuming that d
1
2 cLTλ > ‖div(z)‖L∞(�) + 2‖g‖L∞(�),

we further deduce that

|D(z)−D(zλ)| ≤ ‖(div(zλ) − div(z))χ{zλ �=z}∩�‖L1(�)‖div(zλ) + div(z) − 2g‖L∞(�)

≤ (d
1
2 cLTλ + ‖div(z)‖L∞(�) + 2‖g‖L∞(�))

2|{zλ �= z}|
≤ 4dc2LTλ2cMλ−p‖∇z‖p

L p(Rd ;Rd×d )

≤ 4dc2LTcMcp
E‖∇z‖p

L p(�;Rd×d )
λ2−p. (3.8)

Therefore, on combining (3.6)–(3.8), we observe that

Dh(zλ
h) ≥ D(z) − 4dc2LTcMcp

E‖∇z‖p
L p(�;Rd×d )

λ2−p − 1
2‖g − gh‖2L2(�)

(3.9)

− crt‖g‖L2(�)d
1
2
(
1 + cM

1
2 cLT

)
cE‖∇z‖L2(�;Rd×d )cLTλh.

For cp(z) > 0 defined as in (3.5) and λ = h−s , where s > 0 is arbitrary, (3.9) yields

Dh(zλ
h) ≥ D(z) − cp(z)

2 (hs(p−2) + h1−s) − 1
2‖g − gh‖2L2(�)

. (3.10)

Wehave that s(p−2) = 1−s if and only if s = 1
p−1 = p′

p . Thus, forλ = h−s , s = 1
p−1

and z̃h := zλ
h ∈ RT 0(Th), from (3.10), it follows that both (Dp.1) and (Dp.2) hold. ��
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Theorem 3.7 (Error estimate depending on the Sobolev regularity for �N = ∅) Let
g ∈ L∞(�), let z ∈ W 1,p(�;Rd)∩ W ∞(div;�), p ∈ [2,∞), with ‖z‖L∞(�;Rd ) ≤ 1
be maximal for D : W ∞(div;�) → R ∪ {−∞}, let u ∈ A := {v ∈ BV (�) ∩ L∞(�) |
v = 0 in L1(∂�)} be minimal for I : A → R, and let uh ∈ S1,cr(Th) be minimal for
Ih : S1,cr

D (Th) → R. Then, there holds

‖u − �huh‖L2(�) ≤ ch
p−2

2(p−1) ,

where c > 0 depends only on the quantities ccr , cd , cp(z), ‖u‖L∞(�) and |Du|(�).

Proof Combining the discrete strong coercivity of Ih :S1,cr
D (Th)→R, i.e., (3.1), and

the discrete weak duality principle Ih(uh) ≥ Dh(z̃h) for all z̃h ∈ RT 0(Th) (cf. (2.9)),
we obtain for all ũh ∈ S1,cr

D (Th) and z̃h ∈ RT 0(Th)

1

2
‖�h(ũh − uh)‖2L2(�)

≤ Ih(ũh) − Ih(uh) ≤ Ih(ũh) − Dh(z̃h). (3.11)

Resorting to Lemma 3.1, we obtain a function ũh ∈ S1,cr
D (T ) satisfying (P.1)–(P.4).

In addition, Lemma 3.5 yields a vector field z̃h ∈ RT 0(Th) with (Dp.1) and (Dp.2).
Combining (P.4), (Dp.2) and the strong duality principle I (u) = D(z) (cf. (2.5)), we
deduce from (3.11) that

1

2
‖�h(ũh − uh)‖2L2(�)

≤ 2cdccr‖u‖L∞(�)|Du|(�)h + cp(z)h
p−2
p−1 , (3.12)

where cp >0 is as in Lemma 3.5.Since ũh −�hũh =∇hũh ·(idRd −�h idRd ) inL1(Th),
using (P.1), (P.3) and ‖idRd − �h idRd ‖L∞(�;Rd ) ≤ h, we find that

‖ũh − �hũh‖2L2(�)
≤ 2‖ũh‖L∞(�)‖∇hũh‖L1(�;Rd )‖idRd − �h idRd ‖L∞(�;Rd )

≤ 2cd‖u‖L∞(�)|Du|(�)h. (3.13)

Using (P.2), (P.3), (L0.1) and proceeding as for (3.13), we further obtain that

‖u − �hũh‖2L2(�)
≤ ‖u − �hũh‖L∞(�)

(‖u − ũh‖L1(�) + ‖ũh − �hũh‖L1(�)

)

≤ (1 + cd)‖u‖L∞(�)(ccr + 1)|Du|(�)h. (3.14)

Eventually, combining (3.12)–(3.14), we conclude the claimed error bound. ��

4 Error estimates for discontinuous dual solutions

In this section, we establish error estimates for the ROF model without explicitly
assuming that the dual solution possesses Sobolev regularity. Recall that, in general,
a solution of the dual ROF model only needs to satisfy z ∈W 2

N (div;�)∩L∞(�;Rd)

with ‖z‖L∞(�;Rd ) ≤ 1. The following lemma gives general assumptions on the dual
solution for which it is still possible to construct a suitable dual quasi-interpolant.
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Lemma 4.1 (Dual quasi-interpolant for non–Sobolev vector fields) Let g ∈ L2(�) and
z ∈ W 2

N (div;�) ∩ L∞(�;Rd). If ‖�h Irt z‖L∞(�;Rd ) ≤ 1 + κ(h) for κ(h) ≥ 0, then
the re-scaled vector field z̃h := 1

γh
Irt z ∈ RT 0

N (Th), where γh := 1 + κ(h) > 0, has
the following properties:

(D.1*) ‖�h z̃h‖L∞(�;Rd ) ≤ 1.

(D.2*) Dh(z̃h) ≥ D(z) − κ(h)‖g‖L2(�)‖div(z)‖L2(�) − 1
2‖g − gh‖2

L2(�)
.

Proof Claim (D.1*) is evident. Resorting to div(Irt z) = �h(div(z)) in L0(Th), we
deduce that div(z̃h) + gh = �h( 1

γh
div(z) + g) in L0(Th) and, hence, also using ‖g −

gh‖2
L2(�)

=‖g‖2
L2(�)

−‖gh‖2
L2(�)

, IK1(0)(�h z̃h)=0 and Jensen’s inequality, that

Dh(z̃h) = − 1
2

∥∥�h( 1
γh
div(z) + g)

∥∥2
L2(�)

− 1
2‖gh‖2L2(�)

≥ − 1
2

∥∥ 1
γh
div(z) + g

∥∥2
L2(�)

+ 1
2‖g‖2L2(�)

− 1
2‖g − gh‖2L2(�)

≥ − 1
2

1
γ 2

h
‖div(z)‖2L2(�)

+ 1
γh

(g, div(z))L2(�) − 1
2‖g − gh‖2L2(�)

≥ D(z) − (1 − 1
γh

)(g, div(z))L2(�) − 1
2‖g − gh‖2L2(�)

.

Eventually, using 1
γ 2

h
≤ 1 and 1 − 1

γh
≤ κ(h), we conclude that (D.2*) holds. ��

Theorem 4.2 (Error estimate for discontinuous dual solution) Let g ∈ L∞(�), let z ∈
W ∞

N (div;�) be maximal for D : W ∞
N (div;�) → R∪{−∞} with the same properties

as in Lemma 4.1, let u ∈ BV (�) ∩ L∞(�) minimal for I : BV (�) ∩ L2(�) → R,
and let uh ∈ S1,cr(Th) minimal for Ih : S1,cr(Th) → R. Then, we have that

‖u − �huh‖L2(�) ≤ cmax
{
κ(h)

1
2 , h

1
2
}
.

where c > 0 depends only on the quantities ccr , cd , ‖u‖L∞(�), and |Du|(�).

Proof Using the discrete strong coercivity of Ih : S1,cr(Th) → R, i.e., (3.1), and the
discrete weak duality principle Ih(uh) ≥ Dh(z̃h) for all z̃h ∈ RT 0

N (Th) (cf. (2.9)), we
obtain for all ũh ∈ S1,cr(Th) and z̃h ∈ RT 0

N (Th)

1

2
‖�h(ũh − uh)‖2L2(�)

≤ Ih(ũh) − Ih(uh) ≤ Ih(ũh) − Dh(z̃h). (4.1)

Resorting to Lemma 3.1, we obtain a function ũh ∈ S1,cr(T ) satisfying (P.1)–(P.4).
In addition, Lemma 4.1 yields a vector field z̃h ∈ RT 0

N (Th) with (D.1*) and (D.2*).
Then, using (P.4), (D.2*) and the strong duality principle I (u)= D(z) (cf. (2.5)), we
deduce from (4.1) that

1

2
‖�h(ũh − uh)‖2L2(�)

≤ 2cdccr‖u‖L∞(�)|Du|(�)h + κ(h)‖g‖L2(�)‖div(z)‖L2(�).

Hence, incorporating (3.13) and (3.14), we conclude the claimed error bound. ��
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A sufficient condition for a solution to (2.4) to guarantee the quasi-optimal rate
O(h

1
2 ) is element-wise Lipschitz continuity. In addition, if a solution to (2.4) is only

element-wise α–Hölder continuous, it is, however, possible to derive the rate O(h
α
2 ).

Lemma 4.3 (Dual quasi-interpolant for element-wise α–Hölder vector fields) Let
g ∈ L2(�) and let z ∈ W 2

N (div;�) ∩ L∞(�;Rd) be such that ‖z‖L∞(�;Rd ) ≤ 1.
Furthermore, assume that there exist constants α ∈ [0, 1] and cα > 0 such that for
every T ∈ Th, it holds z|T ∈ C0,α(T ;Rd) with

|z(x) − z(y)| ≤ cα|x − y|α (4.2)

for all x, y ∈T . Then, the assumptions in Lemma 4.1 are satisfied with κ(h)=O(hα).

Remark 4.4 Lemma 4.3 is of particular interest if the discontinuity set Jz of a piece-
wise regular (piece-wise Lipschitz or piece-wise α–Hölder continuous) vector field
z ∈W 2

N (div;�) ∩ L∞(�;Rd) is resolved by the triangulation, i.e., Jz ⊆⋃
S∈Sh

S.

Proof (of Lemma 4.3) We need to check that ‖�h Irt z‖L∞(�;Rd ) ≤1+ κ(h) for some
κ(h) ≥ 0with κ(h) = O(hα). Note that Irt (z(xT )) = z(xT ) in T for all T ∈ Th , which
results from div(Irt (z(xT ))) = �h(div(z(xT ))) = 0 in T for all T ∈ Th . Using this,
(RT.2), (4.2) and that ‖z‖L∞(�;Rd ) ≤ 1, we deduce that for all T ∈ Th

|(Irt z)(xT )| ≤ |Irt (z − z(xT ))(xT )| + |z(xT )|
≤ ‖Irt (z − z(xT ))‖L∞(T ;Rd ) + 1

≤ crt‖z − z(xT )‖L∞(T ;Rd ) + 1

≤ crt supx∈T |x − xT |α + 1

≤ crt cαhα
T + 1,

(4.3)

i.e., setting κ(h) := crt cαhα , we conclude that ‖�h Irt z‖L∞(�;Rd ) ≤ 1 + κ(h). ��
Theorem 4.5 (Error estimate for element-wise α–Hölder dual solution) Let z ∈
W 2

N (div;�)∩L∞(�;Rd) be maximal for D:W 2
N (div;�)∩L∞(�;Rd) → R∪{−∞}

with the same properties as in Lemma 4.3, let u ∈ BV (�) ∩ L∞(�) minimal for
I : BV (�) ∩ L2(�) → R and let uh ∈ S1,cr(Th) minimal for Ih : S1,cr(Th) → R.
Then, we have that

‖u − �huh‖L2(�) ≤ ch
α
2 .

where c>0 depends only on the quantities ccr , cd , cα , ‖u‖L∞(�), and |Du|(�).

Proof Follows from Theorem 4.2 by resorting to Lemma 4.3. ��
Remark 4.6 (Comparison of Theorem 3.7 and Theorem 4.5)

(i) If α = 1, then Theorem 4.5 extends the results [10, Proposition 4.2] and [21,
Sectioin 5.1.1] to the case of an existing element-wise Lipschitz continuous
solution to (2.4).
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(ii) If p > d in Theorem 3.7, then z ∈ W 1,p(�;Rd) satisfies z ∈ C0,α(�;Rd) for
α = 1 − d

p by Sobolev’s embedding theorem [16, Corollary 9.14]. As a result,
Theorem4.5 in the particular case�N =∅ is applicable and yields the rateO(h

α
2 ).

On the other hand, Theorem 3.7 yields the slightly improved rate O(h
p−2

2(p−1) ),
which gives the impression that Theorem 3.7 is utterly superior to Theorem4.5.
Nevertheless, the major strength of Theorem 4.5—and equally of Lemma 4.3—
is that it is also applicable when it is unclear whether a solution to (2.4) with
Sobolev regularity is available. This allows us to justify analytically the quasi-
optimal rateO(h

1
2 ) for the setting in Sect. 2.7 at least for the particular case that

the discontinuity set Jz is resolved by the triangulation, i.e., Jz ⊆⋃
S∈Sh

S, cf.
Examples 5.2 and 5.3.

If the discontinuity set of a solution to (2.4) is not resolved by the triangulation,
then, apparently, Theorem 4.5 does not apply. In this case, however, the following
argument applies, which exploits that for g ∈ L∞(�), we have that div(z) ∈ L∞(�),
which to some extent can serve as a substitute for ∇z ∈ L∞(�;Rd×d).

Remark 4.7 (Optimal dual quasi-interpolant for non–Lipschitz vector fields) Let z ∈
W ∞

N (div;�) be such that ‖z‖L∞(�;Rd ) ≤ 1. Furthermore, assume that there exists a
constant c̃z > 0 such that for all T ∈ Th , there exists some x̃T ∈ T such that

|(Irt z)(̃xT )| ≤ 1 + c̃zh, (4.4)

For each T ∈ Th , since Irt z ∈ RT 0
N (Th) ⊆ L1(Th)d , we have that

(Irt z)(x) = (Irt z)(xT ) + d−1div(Irt z)(x − xT ) (4.5)

for all x ∈T . Thus, resorting to div(Irt z)=�h(div(z)) in L0(Th), also using (4.4) and
(L0.1) in (4.5) at x = x̃T ∈ T , we conclude that

‖�h Irt z‖L∞(T ;Rd ) ≤ |(Irt z)(x̃T )| + d−1‖�h(div(z))‖L∞(T )|x̃T − xT |
≤ 1 + c̃zh + d−1‖div(z)‖L∞(T )hT ,

i.e., we have that ‖�h Irt z‖L∞(T ;Rd ) ≤ 1 + (
c̃z + d−1‖div(z)‖L∞(�)

)
h.

The following remark discusses particular sufficient conditions for (4.4) on a vector
field z ∈ W ∞

N (div;�) that is piece-wise Lipschitz continuous, such as, e.g., that its
discontinuity set Jz is approximated by Th , h > 0, with rate O(h) or that |z| < 1
along Jz while, simultaneously, its jump [[z]] over Jz remains small. On the other hand,
this remark finds that (4.4) cannot be expected, in general, for piece-wise Lipschitz
continuous vector fields, even in generic situations.

Remark 4.8 (Sufficient conditions for (4.4)) Let d = 2 and z ∈ W ∞
N (div;�) with

‖z‖L∞(�;R2) ≤ 1 be piece-wise Lipschitz continuous, i.e., there exist open �i ⊆ �,
i =1, . . . , m, m ∈N, with z|�i ∈W 1,∞(�i ;R2) for all i =1, . . . , m and�=⋃m

i=1 �i .
Next, we fix an arbitrary T ∈ Th . Then, we need to distinguish two cases:
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Fig. 1 Sketch of the construction as described in Remark 4.8 with a discontinu-ity set JzT intersecting an
element T . Part (α) depicts the setting of Remark 4.8, while part (β) and part (γ ) illustrate the cases (ii.a)
and (ii.b) in Remark 4.8

(i) Assume that T ⊆ �i for some i = 1, . . . , m. Then, we deduce along the lines of
the proof of (4.3) that

|(Irt z)(xT )| ≤ 1 + crt‖∇z‖L∞(�i ;R2×2)hT ,

i.e., |(Irt z)(xT )|≤1 + czcrt hT , where cz :=maxi=1,...,m‖∇(z|�i )‖L∞(�i ;R2×2).
(ii) Assume that there exists an interface γ = ∂�a ∩ ∂�b for some a, b = 1, . . . , m

such that int(T ) ∩ γ �= ∅.8 As z|�a ∈ W 1,∞(�a;R2) and z|�b ∈ W 1,∞(�b;R2),
without loss of generality, we may assume that γ ⊆ bγ + Rtγ for some bγ ∈ R

2

and tγ ∈ S
1. Next, fix xγ ∈ γ and set za := (z|�a )(xγ ), zb := (z|�b)(xγ ) ∈ R

2.
Then, for i ∈ {a, b}, it holds

|zi − (z|�i )(x)| ≤ ‖∇(z|�i )‖L∞(�i ;R2×2)|xγ − x | ≤ czhT for all x ∈ T ∩ �i .

Furthermore, if nγ ∈ S
1 denotes a unit normal vector to tγ ∈ S

1, i.e., nγ · tγ = 0,
then, taking into account that z ∈ W ∞

N (div;�), we find that za · nγ = zb · nγ .
Thus, if we define zT (x) := za for x ∈ T ∩ �a and zT (x) := zb for x ∈ T ∩ �b,
cf. Fig. 1, (α), then zT ∈ W ∞(div; T ) and, owing to (RT.2),

‖Irt zT − Irt z‖L∞(T ;R2) ≤ crt‖zT − z‖L∞(T ;R2) ≤ crt czhT ,

i.e., we have that

‖Irt z‖L∞(T ;R2) ≤ ‖Irt zT ‖L∞(T ;R2) + crt czhT . (4.6)

8 Apparently, we should also take into account the case in which T ∈ Th is intersected by two or more
interfaces. However, for the benefit of readability, we limit ourselves to this simplified case.
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As a result of (4.6), it is sufficient to prove ‖Irt zT ‖L∞(T ;R2) ≤ 1 + O(h) to con-
clude that ‖Irt z‖L∞(T ;R2) ≤ 1 + O(h). Because, owing to Lemma 4.1 (ii), it
holds

div(Irt zT ) = �h(div(zT )) = 0 in T ,

where Irt zT := ∑
S∈Sh;S⊆∂T zT · nSψS , it even holds Irt zT ≡ const in T . Next,

we denote by S1 ∈ Sh a side of T ∈ Th such that S1 ∩ γ �= ∅ and by S2 ∈ Sh the
side of T ∈ Th such that S2 ∩ γ = ∅. Let n1, n2 ∈ S

1 denote the corresponding
unit normal vectors to S1, S2 ∈ Th , resp., cf. Fig. 1, (α). Then, it holds

Irt zT · n1 =
ˆ

S1
zT · n1 ds = |S1 ∩ �b|

|S1| zb · n1 + |S1 ∩ �a |
|S1| za · n1,

Irt zT · n2 =
ˆ

S2
zT · n2 ds = zb · n2.

⎫⎪⎪⎬
⎪⎪⎭

(4.7)

Introducing ρ := |S1 ∩ �b|/|S1| ∈ [0, 1] as well as MT := (n1, n2) ∈ R
2×2, also

exploiting that za = zb + ((za − zb) · tγ )tγ , where we used that za · nγ = zb · nγ ,
the system (4.7) can be rewritten as

M�
T Irt zT = M�

T zb + (1 − ρ)((za − zb) · tγ )(tγ · n1)e1,

i.e., since M�
T ∈ R

2×2 is a regular matrix, we find that

Irt zT = zb + (1 − ρ)((za − zb) · tγ )(tγ · n1)M−�
T e1. (4.8)

Resorting to the formula (4.8), we can derive special cases that imply (4.4):

(ii.a) If tγ · n1 = O(h), i.e., (bγ + Rtγ ) ∩ T approximates S1 with rate O(h),
cf. Fig. 1, (β), then |Irt zT | ≤ |zb| + O(h) ≤ 1 + O(h).

(ii.b) If 1− ρ = O(h), i.e., S1 ∩�b approximates S1 with rateO(h), cf. Fig. 1, (γ ),
then |Irt zT | ≤ |zb| + O(h) ≤ 1 + O(h).

Apparently, (ii.a) and (ii.b) describe the particular case in which the discontinuity set
Jz is not resolved by the triangulation but approximated with rate O(h).

(ii.c) If we have that both |zb| < 1 and (za − zb) · tγ is sufficiently small, i.e.,
such that |(1 − ρ)((za − zb) · tγ )M−�

T (tγ · n1)e1| ≤ 1 − |zb| + O(h), then
|Irt zT | ≤ |zb| + 1 − |zb| + O(h) = 1 + O(h).

(ii.d) If T is nearly right-angled, so that MT is approximately an orthogonal matrix,
i.e., M−�

T = MT + O(h), and tγ = ±n1 + O(h), then, using that za · n2 =
zb · n2 +O(h) because nγ = ±n2 +O(h), we deduce that zb = (zb · n1)n1 +
(1 − ρ)(za · n2)n2 + ρ(zb · n2)n2 + O(h) and, thus, that
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Irt zT = zb + (1 − ρ)((za − zb) · n1)n1 + O(h)

= ρ((zb · n1)n1 + ρ(zb · n2)n2)

+ (1 − ρ)((za · n1)n1 + (za · n2)n2) + O(h)

= (1 − ρ)za + ρzb + O(h),

which implies that |Irt zT | ≤ (1 − ρ)|za | + ρ|zb| + O(h) ≤ 1 + O(h).

More generally, the sub-cases (ii.a)–(ii.d) can occur in combination so that the con-
clusion holds under significantly weaker conditions on the individual factors. On the
other hand, the formula (4.8), simultaneously, demonstrates that ‖Irt zT ‖L∞(T ;R2) ≤
1+O(h) and, therefore, also ‖Irt z‖L∞(T ;R2) ≤ 1 + O(h) cannot be expected in gen-
eral, even in generic situations.

5 Numerical experiments

In this section, we verify the theoretical findings of Sect. 4 via numerical experiments.
To compare approximations to an exact solution, we impose Dirichlet boundary con-
ditions on �D = ∂�, though an existence theory is difficult to establish, in general.
However, the error estimates derived in Sect. 4 carry over verbatimly with �N = ∅
provided that a minimizer exists.

All experiments were conducted using the finite element software FEniCS, cf. [30].
All graphics are generated using the Matplotlib library, cf. [28].

5.1 Experimental convergence rates

All computations are based on using the regularized discrete ROF functional, i.e., for
ε > 0 and g ∈ L2(�), the functional I ε

h : S1,cr
D (Th) → R, defined by

I ε
h (vh) := ‖|∇vh |ε‖L1(�) + α

2
‖�h(vh − g)‖2L2(�)

(5.1)

for all vh ∈ S1,cr
D (Th), where | · |ε ∈ C1(Rd) is the regularized modulus, defined by

|a|ε := (|a|2+ε2)
1
2 for all a ∈ R

d and ε > 0. Based on 0 ≤ |a|ε −|a| ≤ ε for all
a ∈R

d and ε > 0, for the minima uh, uε
h ∈ S1,cr

D (Th) of Ih, I ε
h : S1,cr

D (Th) → R, resp.,
it holds

α

2
‖�h(uh − uε

h)‖2L2(�)
≤ ε|�|. (5.2)

Thus, in order to bound the error ‖u − �huh‖L2(�), it suffices to determine the error
‖u − �huε

h‖L2(�), e.g., for ε = h. The iterative minimization of I h
h : S1,cr

D (Th) → R,
i.e., for ε=h, is realized using a semi-implicit discretized L2–gradient flow from [11],
see also [9, Section 5].
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Algorithm 5.1 (Semi-implicit discretized L2–gradient flow) Let gh ∈ L0(Th) and
choose τ, εh

stop > 0. Moreover, let u0
h ∈ S1,cr

D (Th) and set k = 1. Then, for k ≥ 1:

(i) Compute the iterate uk
h ∈ S1,cr

D (Th) such that for every vh ∈ S1,cr
D (Th), it holds

(
dt u

k
h, vh

)
L2(�)

+
⎛
⎜⎝ ∇huk

h∣∣∣∇huk−1
h

∣∣∣
h

,∇hvh

⎞
⎟⎠

L2(�;Rd )

+ α
(
�huk

h − gh,�hvh

)
L2(�)

= 0,

where dt uk
h := 1

τ
(uk

h − uk−1
h ) denotes the backward difference quotient.

(ii) Compute the residual rk
h ∈ S1,cr

D (Th) such that for every vh ∈ S1,cr
D (Th), it holds

(
rk

h , vh

)
L2(�)

=
(

∇huk
h∣∣∇huk

h

∣∣
h

,∇hvh

)

L2(�;Rd )

+ α
(
�huk

h − gh,�hvh

)
L2(�)

,

Stop if ‖rk
h‖L2(�) ≤ εh

stop; otherwise, increase k →k + 1 and continue with (i).

Appealing to [10, Remark 5.5], the iterates uk
h ∈ S1,cr

D (Th), k ∈ N, and residuals

rk
h ∈S1,cr

D (Th), k ∈N, generated by Algorithm 5.1, and the minimizer uh
h ∈S1,cr

D (Th)

of (5.1) for ε = h satisfy

‖uh
h − uk

h‖L2(�) ≤ 2‖rk
h‖L2(�). (5.3)

As a consequence, if we choose as a stopping criteria that ‖rk
h‖L2(�) ≤ εh

stop := h
1
2 ,

then, owing to (5.2), ‖�h(uh − uk
h)‖L2(�) ≤(2+ 2

α
|�|)h 1

2 . Thus, to bound the error
‖u − �huh‖L2(�) experimentally, it is sufficient to compute ‖u − �huk

h‖L2(�).
The energy stability of the semi-implicit scheme established in [10, 11] shows that

dt uk
h → 0 in L2(�) (k → ∞), which, in turn, implies rk

h → 0 in L2(�) (k → ∞)

and, hence, that Algorithm 5.1 terminates within a finite number of iterations, so that
employing the h–independent step-size τ = 1 is reasonable.

Example 5.2 (Two disks problem) Let � = (−1, 1)2 ⊆ R
2, r = 0.4, α = 10, and

g̃ := g ◦� ∈ BV (�)∩ L∞(�), where g := χB2
r (re1) −χB2

r (−re1) ∈ BV (�)∩ L∞(�)

and for some angle φ ∈ [0, 2π ] and some vector bγ = (b1, b2)� ∈ R
2,

�(x) :=
[
cos(φ)(x1 − b1) + sin(φ)(x2 − b2)
cos(φ)(x2 − b2) − sin(φ)(x1 − b1)

]
(5.4)

for all x = (x1, x2)�∈ R
2, i.e.,� : R2→R

2 performs a rotation by φ and a shift by b.
The same argumentation as in the proof of Proposition 2.1 demonstrates that the
corresponding primal solution is given via ũ := u◦� = (1− 2

αr )g̃ ∈ BV (�)∩L∞(�),
where u := (1 − 2

αr )g ∈ BV (�) ∩ L∞(�), cf. Proposition 2.1.
For z ∈ W ∞(div;�) defined as in Proposition 2.4, we define the vector field z̃ :=

det(D�)(D�)−1z ◦� = (D�)−1z ◦� ∈ W ∞(div;�). Then, resorting to properties
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of the contra-variant Piola transform, cf. [14, (2.1.71)], we find that

div(z̃) = α(ũ − g̃) in �. (5.5)

We define the decomposition �+
� := � ∩ �(R>0 ×R) and �−

� := � ∩ �(R<0 ×R).
Then, using that ũ = 0 continuously on bγ +Rtγ ∩�, where tγ = (− sin(φ), cos(φ))�,
and the transformation theorem, we further obtain that

|Dũ|(�) = (ũ, div(z̃))L2(�), (5.6)

where we used in the last equality sign that supp(ũ) ⊆ �−1(�) ∩ �. Consequently,
if we combine (5.5) and (5.6) and refer to the optimality conditions (2.6), then we
find that z̃ ∈ W ∞(div;�) is a dual solution to ũ ∈ BV (�) ∩ L∞(�). Apparently,
z̃ ∈ W ∞(div;�) is piece-wise Lipschitz continuous in the sense of Remark 4.8 and
its jump set is given via Jz̃ = bγ +Rtγ . As a consequence, if for every T ∈ Th , either
of the cases (ii.a)–(ii.d) in Remark 4.8 is satisfied, then the quasi-optimal rate O(h

1
2 )

is guaranteed by Remark 4.8, Lemma 4.7, Lemma 4.1 and Theorem 4.2.

Example 5.3 (Four disks problem) Let � = (−1, 1)2 ⊆ R
2, r = 0.4, α = 10, and

g := χB2
r (r ,r) + χB2

r (−r ,−r) − χB2
r (r ,−r) − χB2

r (−r ,r) ∈ BV (�) ∩ L∞(�).

The same argumentation as for the proof of Proposition 2.1 shows that a minimum of
(2.3) is given via u := (1 − 2

rα
)g ∈ BV (�) ∩ L∞(�). A straightforward adaption of

the proof of Corollary 2.2 implies that any dual solution z ∈ W ∞(div;�) is not θ–
Hölder continuous at x = ±re1 and x = ±re2 if θ > 1

2 . Apart from that, arguing as in
the proof of Proposition 2.4,wefind that an example of a dual solution z ∈ W ∞(div;�)

is given via z(x) := ±z(x ∓ re2) if ±x2 ≥ 0 for all x = (x1, x2)� ∈ �, where z ∈
W ∞(div;�) is defined as in Proposition 2.4. In addition, if� : R2 → R

2 is defined as
in Example 5.2, then for g̃ := g ◦ � ∈ BV (�) ∩ L∞(�), the primal solution is given
via ũ := u ◦ � ∈ BV (�) ∩ L∞(�) and a dual solution is given via z̃ := (D�)−1z ◦
� ∈ W ∞(div;�). Apparently, z̃ ∈ W ∞(div;�) is piece-wise Lipschitz continuous
in the sense of Remark 4.8 and its jump set is given via Jz̃ =bγ +Rtγ +Rnγ , where
tγ =(−sin(φ), cos(φ))�and nγ =(cos(φ), sin(φ))�. As a consequence, if for every
T ∈Th , either of the cases (ii.a)–(ii.d) in Remark 4.8 is satisfied, then the quasi-optimal
rate O(h

1
2 ) is guaranteed by Remark 4.8, Lemma 4.7, Lemma 4.1 and Theorem 4.2.

The experimental convergence rates in Fig. 2 are obtained on k–times red-refined
triangulations Thk , k = 1, . . . , 9, of an initial triangulation Th0 with two elements, i.e.,
hk = h02−k and ε

hk
stop = h

1
2
k for every k = 1, . . . , 9. In addition, for a simple imple-

mentation, we employ g̃hk ∈ L0(Thk ), defined by g̃hk := g̃(xThk
), where xThk

|T := xT

for all T ∈ Thk , instead of ghk := �hk g̃ ∈ L0(Thk ). However, since for each input data
g̃ ∈ BV (�)∩L∞(�) considered in this section, it holds‖g̃−g̃hk ‖L1(�) ≤chk |∂ B2

r (0)|,
the error estimate remains valid. The linear systemsmerging in each iterations ofAlgo-
rithm 5.1 are solved using PETSc’s preconditioned conjugate gradient method with an
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Fig. 2 Logarithmic plots for the experimental convergence rates of the error quantities (5.7) in Example
5.2 and in Example 5.3. The rate O(h

1
2 ) is observed

incomplete LU factorization, cf. [6]. Figure2 contains logarithmic plots for the exper-
imental convergence rates of

∥∥u(xThk
) − �hk uhk

∥∥
L2(�)

, k = 3, . . . , 9, (5.7)

versus the total number of vertices Nk = (2k + 1)2 ∼ h−2
k for k = 3, . . . , 9. We find

that the errors (5.7) converge at the quasi-optimal convergence rate O(h
1
2 ). This

behavior is reported for both examples, i.e., Examples 5.2 and 5.3, for φ = 0.0
and bγ = (0.0, 0.0)� as well as for φ = 7π

18 and bγ = (0.1, 0.0)�. Recall that for
φ = 0.0 and bγ = (0.0, 0.0)�, the quasi-optimal rate O(h

1
2 ) is analytically guaran-

teed in both examples (cf. Examples 5.2 and 5.3). Apart from that, we also could report
the quasi-optimal rateO(h

1
2 ) for d = 3, a uniform triangulation of � = (−1, 1)3 and

g ∈ L∞(�) ∩ BV (�) given via two or four touching balls, with several rotations and
shifts, for which no Lipschitz continuous dual solution exists.

In Fig. 3, the numerical solution uh5 ∈ S1,cr(Th5) obtained in Example 5.3
and its L2–projection�h5uh5 ∈L0(Th5) are displayed forφ=0.0 and bγ =(0.0, 0.0)�.
Large gradients occur near the contact points of the disks, the midpoint values do
not, however, show artifacts. In Fig. 4, the L2–projection �h5 zh5 ∈ L0(Th5)

2 of
the discrete dual solution zh5 :=∇h5uh5 |∇h5uh5 |−1

h5
+ α

2�h5(uh5 − g)(idR2−�h5 idR2)

∈RT 0(Th5)with respect to the regularized ROF functional (5.1) (cf. [13, Section 5])
is displayed for φ = 0.0 and bγ = (0.0, 0.0)�.
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Fig. 3 Numerical solution uh5 ∈ S1,cr(Th5 ) in Example 5.3 displayed as piece-wise affine function (left)

and via its L2–projection �h5uh5 ∈ L0(Th5 ) (right) for r = 0.4, α = 10, φ = 0.0 and bγ = (0.0, 0.0)�.
Large discrete gradients occur near ±re1 and ±re2, where no dual solution is θ–Hölder continuous for
θ > 1

2

Fig. 4 L2–projection �h5 zh5 ∈ L0(Th5 )
2 of the discrete dual solution zh5 ∈ RT 0(Th5 ) with respect

to the regularized ROF functional (5.1) (cf. [13, Section 5]) displayed for φ = 0.0 and bγ = (0.0, 0.0)�.
The red and blue arrows represent the values of zh5 ∈ RT 0(Th5 ) at the midpoints of element sides
along the Re2–axis, i.e., limε→0 zh5 (xS − εe1) (blue arrows) and limε→0 zh5 (xS + εe1) (red arrows).

Here, the different orientations of the arrows indicate that zh5 ∈ RT 0(Th5 ) approximates a discontinuous
vector field—empirically z ∈ W∞(div; �) defined in Proposition 2.4. Moreover, the red circles display the
discontinuity set Ju of the minimizer u ∈ BV (�) ∩ L∞(�) defined in Proposition 2.1

5.2 Experimental verification of condition (4.4)

In this section, we examine whether the dual solutions given in Example 5.2 for every
φ ∈ [0, 2π ] and bγ ∈ R

2 comply with condition (4.4) in Lemma 4.7, which, in view
of Lemma 4.1 and Theorem 4.2 yields a guarantee for the quasi-optimal convergence
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Fig. 5 Logarithmic plots of the quantities (5.8) in Example 5.2

rate O(h
1
2 ). If we compute the quantities

‖�hk Irt z̃‖L∞(�;Rd ), k = 1, . . . , 8, (5.8)

where z̃ ∈ W ∞(div;�) is defined as in Example 5.2, then we find that for φ = 0.0
and bγ = (0.0, 0.0)�, φ = π

2 and bγ = (0.0, 0.1)�, φ = 0.0 and bγ = (0.1, 0.0)�,
and φ = −π

4 and bγ = (0.0, 0.0)�, there exists a constant cz > 0—presumably, one
has that cz = 1—such that for k = 1, . . . , 8, there holds

‖�hk Irt z̃‖L∞(�;Rd ) ≤ 1 + czhk . (5.9)

These results confirm the findings in Remark 4.8 as they fall within one of the cases
(ii.a)–(ii.d). Apart from that, for φ = π

4 and bγ = (0.0, 0.0)� as well as for φ = 7π
18

and bγ = (0.0, 0.0)�, we cannot report the existence of a constant cz > 0 such that
(5.9) holds. This behavior can also be easily predicted analytically by resorting to the
formula (4.8). All results can be found in Fig. 5, which displays the quantities (5.8)
versus the total number of vertices Nk =(2k + 1)2∼h−2

k for k =1, . . . , 8.
Possible explanations for the observed quasi-optimal rate O(h

1
2 ) for φ = π

4 and
bγ = (0.0, 0.0)� as well as for φ = 7π

18 and bγ = (0.0, 0.0)�, even though (5.9) could
not be reported, might be that this violation is merely pre-asymptotic or occurs only
along the interface (bγ + Rtγ ) ∩ � (the latter, we observed experimentally), that the
proofs presented are still sub-optimal, or that there exists an alternative dual solution
for which (5.9) can be reported.
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