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Abstract
In electromagnetism, in the presence of a negative material surrounded by a classical
material, the electric permittivity, and possibly the magnetic permeability, can exhibit
a sign-change at the interface. In this setting, the study of electromagnetic phenomena
is a challenging topic.We focus on the time-harmonicMaxwell equations in a bounded
setΩ ofR3, andmore precisely on the numerical approximation of the electromagnetic
fields by edge finite elements. Special attention is paid to low-regularity solutions, in
terms of the Sobolev scale (Hs(Ω))s>0. With the help of T-coercivity, we address
the case of one sign-changing coefficient, both for the model itself, and for its discrete
version. Optimal a priori error estimates are derived.

Mathematics Subject Classification 65N30 · 35J57 · 78M10

Introduction

We study the numerical approximation by finite elements of electromagnetic fields
governed by the time-harmonic Maxwell equations, in the presence of a negative
material surrounded by a classical material. A negative material can be a metal at
optical frequencies, or a metamaterial, see for instance [2, 49]. So, in this setting, the
electric permittivity, and possibly themagnetic permeability, can exhibit a sign-change
at the interface between the two materials. We consider such a model in a bounded set
of R3, supplemented with a vanishing boundary condition on the tangential trace. To
the author’s knowledge, the first attempt to address this situation theoretically can be
found in [10, 11]; see also [16, 45]. However, little is known regarding the numerical
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approximation of the model. In the present paper, we provide the numerical analysis
for a model with one sign-changing coefficient.
For the numerical approximation, we use (low-order) edge finite elements. We use
some recent results [22, 23, 32] to interpolate low-regularity solutions that can occur
both in a classical setting, that is for a model with fixed-sign, piecewise smooth coef-
ficients [7, 24, 26], and in the presence of an interface between a classical material
and a negative material.

In what follows, we shall assume that the electric permittivity ε has a sign-change,
while the magnetic permeability μ has a fixed sign (when the roles of ε and μ are
reversed, we refer to Sect. 8). Typically, this corresponds to an interfacemodel between
a metal surrounded by a classical material (in some ad hoc frequency range). Clas-
sically [3, §8], for solving the time-harmonic Maxwell equations, one can choose
first-order formulations in both the electric and magnetic fields, or second-order for-
mulations in the electric field only, or in the magnetic field only. Our choice will be a
second-order formulation in the electric field.

The outline is as follows. We begin by introducing some notations, together with a
precise definition of the mathematical framework considered hereafter. Before inves-
tigating the solution of this problem, we propose some comments in Sect. 2 to help
identify the difficulties to be addressed. For that, we rely on some well-known facts
regarding the classical setting (fixed-sign coefficient), that we shall apply to the new
model. We introduce the companion scalar problem and tools, such as the T-coercivity
to realize the inf-sup condition. In Sect. 3, we explain how to solve the time-harmonic
Maxwell equations. Next, in Sect. 4, we recall the numerical approximation via edge
finite elements, and in particular how one can interpolate the electric field, which
can (possibly) be of low-regularity. To prove the results regarding convergence of the
numerical method, we use some results regarding practical discrete T-coercivity (for
the companion scalar problem) which is achieved with the help of T-conform meshes.
These are recalled in the “Appendix A”. As a matter of fact, these results allow us
to prove the uniform discrete inf-sup condition for the time-harmonic Maxwell equa-
tions: this is the object of the next two sections, where we use a result on the div–curl
problem established in “Appendix B”. Then, in Sect. 7, we provide a numerical illus-
tration to check that the expected convergence order is achieved, and how the use of
T-conform meshes may impact the convergence rate. In Sect. 8, we outline how one
can solve theoretically and numerically the case of μ having a sign-change, and ε

having a fixed sign. Finally, we give some concluding remarks in the last section.
We refer to [36] for the theoretical and numerical analyses of the two-dimensional

time-harmonic Maxwell equations, and to [23] for the analyses of the three-
dimensional, div–curl, or div–curlcurl, problem, with one sign-changing coefficient.
Let us comment briefly on some alternative finite elementmethods that have previously
been designed to solve numerically scalar problems with sign-changing coefficients
(diffusion-like, or time-harmonic). As mentioned above, one uses T-conform meshes
when one relies on the T-coercivity theory to prove convergence. On the one hand,
the use of plain meshes is tempting. However, to the author’s knowledge, convergence
theory is incomplete, namely convergence is not guaranteed for all well-posed prob-
lems (see Sect. 7); and, if one adds dissipation to restore well-posedness, convergence
is suboptimal and can only be guaranteed in some special cases (see respectively sec-
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tions 5.1 and 5.2 in [19]). On the other hand, one may ask whether it is possible to
solve subproblems in regions where the sign of the coefficients is constant, coupled
by transmission conditions on the interface. It turns out that an iterative solver based
on optimal control theory (with a control defined on the interface) has been proposed
in [1] to solve diffusion problems. However it requires extra-regularity of the solution.
Finally, let us mention a recent work [25], also relying on optimal control theory (with
a volume control), that allows one to solve iteratively diffusion problems without any
regularity assumption.

1 Setting of the problem

As in [22], we denote constant fields by the symbol cst . Vector-valued (respectively
tensor-valued) function spaces are written in boldface character (resp. blackboard bold
characters). Unless otherwise specified, we consider spaces of real-valued functions.
Given a non-empty open set O of R3, we use the notation (·|·)0,O (respectively ‖ ·
‖0,O) for the L2(O) and the L2(O) := (L2(O))3 inner products (resp. norms). More
generally, (·|·)s,O and ‖ · ‖s,O (respectively | · |s,O) denote the inner product and the
norm (resp. semi-norm) of the Sobolev spaces Hs(O) and Hs(O) := (Hs(O))3 for
s ∈ R (resp. for s > 0). The index zmv indicates zero-mean-value fields. If moreover
the boundary ∂O is Lipschitz, n denotes the unit outward normal vector field to ∂O.
It is assumed that the reader is familiar with function spaces related to Maxwell’s
equations, such as H(curl;O), H0(curl;O), H(div;O), H0(div;O) etc. A priori,
H(curl;O) is endowed with the “natural” norm v �→ (‖v‖20,O + ‖ curl v‖20,O)1/2,
etc. We refer to the monographs [3, 41, 43] for details.

The symbol C is used to denote a generic positive constant which is independent
of the meshsize, the mesh and the fields of interest; C may depend on the geometry, or
on the coefficients defining the model. We use the notation A � B for the inequality
A ≤ CB, where A and B are two scalar fields, and C is a generic constant.

Let Ω be a domain in R3, ie. an open, connected and bounded subset of R3 with a
Lipschitz-continuous boundary ∂Ω . The domain Ω can be simply connected (sc) or
not (nsc) [35]. This means that we assume that one of the two conditions below holds:
– (sc) ‘for all curl-free vector field v ∈ C1(Ω), there exists p ∈ C0(Ω) such that

v = ∇ p in Ω’;
– (nsc) ‘there exist I > 0 non-intersecting, piecewise plane manifolds, (Σ j ) j=1,...,I ,
with boundaries ∂Σi ⊂ ∂Ω , such that, if we let Ω̇ = Ω\ ⋃I

i=1 Σi , for all curl-free
vector field v, there exists ṗ ∈ C0(Ω̇) such that v = ∇ ṗ in Ω̇’.

To simplify the computations (without restricting the scope of the study), we assume
that the boundary ∂Ω is connected.

We letΩ be surrounded by a perfect conductor. We recall that, for a given pulsation
ω > 0, the time-harmonic Maxwell equations set in Ω can be expressed in terms of
the complex-valued electric field e only. They write

⎧
⎨

⎩

Find e ∈ H0(curl;Ω) such that
curl(μ−1 curl e) − ω2εe = ıω j in Ω

div εe = � in Ω.

(1)
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Above, the real-valued coefficient ε is the electric permittivity tensor and the real-
valued coefficient μ is the magnetic permeability tensor. The complex-valued source
terms j and � are respectively the current density and the charge density. They are
related by the charge conservation equation

− ıω� + div j = 0 in Ω. (2)

Classically, in (1), the equation div εe = � is implied by the second-order equation
curl(μ−1 curl e) − ω2εe = ıω j , together with the charge conservation equation (2),
so it is omitted from now on. We fix the a priori regularity of the current density
to j ∈ L2(Ω), which implies that � ∈ H−1(Ω), with dependence ‖�‖−1,Ω =
ω−1‖ div j‖−1,Ω � ‖ j‖0,Ω .

Finally, note that one can split the problem into two parts, where 	(e) ∈
H0(curl;Ω) is related to −
( j) ∈ L2(Ω), resp. 
(e) ∈ H0(curl;Ω) is related
to 	( j) ∈ L2(Ω). So, we carry on with e standing either for 	(e) or 
(e), resp. f
standing for −ω−1
( j) or ω−1	( j), that is with real-valued fields. One can check
that the equivalent variational formulation in H0(curl;Ω) writes

{
Find e ∈ H0(curl;Ω) such that
aω(e, v) = ω2( f |v)0,Ω, ∀v ∈ H0(curl;Ω),

(3)

where

aω(u, v) := (μ−1 curl u| curl v)0,Ω − ω2(εu|v)0,Ω, ∀u, v ∈ H0(curl;Ω).

Note that with these notations, one has div εe = − div f in Ω .
Then, the real-valued coefficient ξ ∈ {ε, μ} fulfills one of the two sets of conditions

below, which we refer to as the classical case and the interface case hereafter.
Classical case:

{
ξ is a real-valued, symmetric, measurable tensor field on Ω,

∃ξ−, ξ+ > 0,∀z ∈ R3, ξ−|z|2 ≤ ξ z · z ≤ ξ+|z|2 a.e. in Ω.
(4)

Interface case: Ω is partitioned into the non-trivial partition P := (Ωp)p=+,−, where
Ω± are domains, and δξ fulfills (4), with δ|Ω+ = +1 and δ|Ω− = −1.

For our studies of the time-harmonic Maxwell equations in the electric field, we
assume from now on that

ε is as in the interface case; μ is as in the classical case.

2 Some comments

Observe that if the electric field is curl-free, ie. curl e = 0, then itmay bewritten as e =
∇ pe for some pe ∈ H1

0 (Ω) (cf. Theorem 3.3.9 in [3], as ∂Ω is connected). Moreover,
pe is such that div ε∇ pe = − div f in H−1(Ω). So to ensure well-posedness, one
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must make an assumption on the companion scalar problem with Dirichlet boundary
condition:

{
Find s ∈ H1

0 (Ω) such that
(ε∇s|∇q)0,Ω = 〈g, q〉H1

0 (Ω), ∀q ∈ H1
0 (Ω),

(5)

namely, that this scalar problem is well-posed. In other words,

∃C
 > 0, ∀g ∈ H−1(Ω), ∃!s solution to (5), with ‖s‖H1
0 (Ω) ≤ C
 ‖g‖−1,Ω . (6)

To measure elements of H1
0 (Ω), we choose the norm q �→ ‖q‖H1

0 (Ω) := ‖∇q‖0,Ω .
If the permittivity εwere to fulfill (4),well-posedness of the scalar problemwouldauto-
matically hold, as an obvious consequence of the fact that (q, q ′) �→ (ε∇q|∇q ′)0,Ω
defines an inner product on H1

0 (Ω), whose associated norm is equivalent to the
‖ · ‖H1

0 (Ω)-norm.
However, in the present setting, since ε is as in the interface case, this is an additional

assumption, which is addressed with the help of T-coercivity [9, 13]. We recall the
abstract framework below, see [19, 21] for details. Let V be a Hilbert space with
norm ‖ · ‖V , and a(·, ·) a symmetric, continuous bilinear form on V × V . Then, the
well-posedness of the problem

Find u ∈ V such that a(u, v) = 〈 f , v〉V , ∀v ∈ V , (7)

which reads

∃C > 0, ∀ f ∈ V ′, ∃!u solution to (7), with ‖u‖V ≤ C ‖ f ‖V ′ , (8)

can be addresssed as follows. One has to prove that the form a is T -coercive, cf.
Theorem 1 and Remark 2 of [19]:

∃α > 0, ∃T ∈ L(V ), ∀v ∈ V , |a(v, T v)| ≥ α ‖v‖2V . (9)

In other words, the operator T realizes the classical inf-sup condition (see eg. [6])
explicitly.

Hence, for the scalar problem (5), and because ε is a symmetric tensor field, well-
posedness is equivalent to (q, q ′) �→ (ε∇q|∇q ′)0,Ω fulfilling an inf-sup condition:

∃γ0 > 0, ∀q ∈ H1
0 (Ω), sup

q ′∈H1
0 (Ω)\{0}

|(ε∇q|∇q ′)0,Ω |
‖q ′‖H1

0 (Ω)

≥ γ0 ‖q‖H1
0 (Ω). (10)

Or, as noted above, this is equivalent to

∃α0 > 0, ∃T0 ∈ L(H1
0 (Ω)),∀q ∈ H1

0 (Ω), |(ε∇q|∇(T0q))0,Ω | ≥ α0 ‖∇q‖20,Ω .
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Note that the absolute value can be removed. Indeed, the quadratic mapping q �→
(ε∇q|∇(T0q))0,Ω is continuous in H1

0 (Ω) and vanishes only for q = 0, so it takes
either positive, or negative, values everywhere in H1

0 (Ω). Thus, (10) is also equivalent
to

∃α0 > 0, ∃T0 ∈ L(H1
0 (Ω)),

∀q ∈ H1
0 (Ω), (ε∇q|∇(T0q))0,Ω ≥ α0 ‖∇q‖20,Ω .

(11)

To recapitulate, we assume from now on that

(10)–(11) holds for the companion scalar problem (5).

When we perform the numerical analysis, and in order to obtain explicit conver-
gence rates between the exact and approximate solution to the time-harmonicMaxwell
equations, we shall make two additional assumptions:

– the coefficients ε, μ are piecewise smooth: there exists a partition {Ωp}p=1,...,P
of Ω , made of disjoint domains (Ωp)p=1,...,P , with Ω = ∪P

p=1Ωp, and such that

ε|Ωp , μ|Ωp ∈ W1,∞(Ωp) for p = 1, . . . , P . In relation to the partition and for
s ≥ 0, we define

PHs(Ω) := {v ∈ L2(Ω) : v|Ωp ∈ Hs(Ωp), 1 ≤ p ≤ P}, (12)

endowed with the “natural” norm ‖v‖PHs(Ω) :=
( ∑

1≤p≤P

‖vp‖2s,Ωp

)1/2
.

– the data f has extra-regularity, in the sense that

div f ∈ H−1+τ0(Ω), with τ0 ∈ (0, 1] given . (13)

For further analysis, let us introduce the scalar problem withmodified right-hand side

{
Find s ∈ H1

0 (Ω) such that
(ε∇s|∇q)0,Ω = 〈g, q〉H1

0 (Ω) + (εg|∇q)0,Ω, ∀q ∈ H1
0 (Ω).

(14)

If ε were as in the classical case [7, 26, 29, 31, 37, 40, 46], one could prove a shift
theorem for the problem (14) when the data (g, g) has extra-regularity like

g ∈ H−1+τ0(Ω), g ∈ H1(Ω), with τ0 ∈ (0, 1] given .

In the interface case, there exist similar results in this direction.We refer to [12, 14, 17,
18, 27] for a piecewise constant coefficient ε. So we introduce τDir ∈ (0, 1] depending
only on the geometry and on ε such that

∀s ∈ [0, τDir )\{1/2}, ∀(g, g) ∈ H−1+s(Ω) × H1(Ω),

the solution s to (14) is such that s ∈ PH1+s(Ω), and
‖s‖PH1+s(Ω) � (‖g‖−1+s,Ω + ‖g‖1,Ω).
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Above, the constant hidden in � may depend on s, but not on g nor on g. By a slight
abuse of vocabulary, we call this result the shift theorem, respectively τDir the limit
regularity exponent. We assume from now on that

a shift theorem holds with τDir ∈ (0, 1] for the modified scalar problem (14).

Remark 1 We shall also need a shift theorem for the scalar problem involving the
magnetic permeability μ with Neumann boundary condition, see (31) below. The
result can be found in the above-mentioned references, because μ is as in the classical
case. ��

So far we focused on curl-free fields. To tackle fields with a non-vanishing curl, we
use an ad hoc splitting of H0(curl;Ω). Define

K N (Ω, ε) := {v ∈ H0(curl;Ω) : div εv = 0}.

An equivalent (variational) definition is

K N (Ω, ε) := {v ∈ H0(curl;Ω) : (εv|∇q)0,Ω = 0, ∀q ∈ H1
0 (Ω)}.

Proposition 1 One has the continuous, direct sum

H0(curl;Ω) = ∇[H1
0 (Ω)] ⊕ K N (Ω, ε). (15)

Proof Obviously, ∇[H1
0 (Ω)] + K N (Ω, ε) is a subset of H0(curl;Ω). Let v ∈

H0(curl;Ω). According to (6), there exists pv ∈ H1
0 (Ω) such that

(ε∇ pv|∇q)0,Ω = (εv|∇q)0,Ω, ∀q ∈ H1
0 (Ω). (16)

Now, let kv = v − ∇ pv , one has kv ∈ K N (Ω, ε) by construction. It follows that
H0(curl;Ω) = ∇[H1

0 (Ω)] + K N (Ω, ε).
Next, let z ∈ ∇[H1

0 (Ω)] ∩ K N (Ω, ε) be given. There exists s ∈ H1
0 (Ω) such that

z = ∇s and, by definition of K N (Ω, ε), s is governed by (5) with zero right-hand
side. By uniqueness of the solution, one has s = 0 and so z = 0: the sum is direct.
Finally, by definition (16) of pv and according to (11), one has α0 ‖∇ pv‖20,Ω ≤
(ε∇ pv|∇(T0 pv))0,Ω = (εv|∇(T0 pv))0,Ω ≤ ‖εv‖0,Ω‖∇(T0 pv)‖0,Ω , so that

‖∇ pv‖H(curl;Ω) = ‖∇ pv‖0,Ω ≤ α−1
0 ε+‖T0‖L(H1

0 (Ω))‖v‖0,Ω,

and ‖kv‖H(curl;Ω) ≤ (1 + α−1
0 ε+‖T0‖L(H1

0 (Ω)))‖v‖H(curl;Ω).

So the sum is continuous. ��
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In other words, we may introduce the operators of L(H0(curl;Ω), H1
0 (Ω)), resp. of

L(H0(curl;Ω))

π1 :
{
H0(curl;Ω) → H1

0 (Ω)

v �→ pv
, π2 :

{
H0(curl;Ω) → K N (Ω, ε)

v �→ kv

and write, for all v ∈ H0(curl;Ω), v = ∇(π1v) + π2v. Note that (π2)
2 = π2.

We finally recall an important result on the measure of elements of K N (Ω, ε). For
its proof, we refer the reader to Corollary 5.2 of [10].

Theorem 1 Elements of K N (Ω, ε) can be measured with the ‖ curl ·‖0,Ω -norm:

∃CW > 0, ∀k ∈ K N (Ω, ε), ‖k‖0,Ω ≤ CW ‖ curl k‖0,Ω, (17)

∃C ′
W > 1, ∀k ∈ K N (Ω, ε), ‖k‖H(curl;Ω) ≤ C ′

W ‖ curl k‖0,Ω . (18)

3 Solving the exact problem

Recall that μ is as in the classical case [cf. (4)], resp. ε is as in the interface case, and
assumption (10)–(11) holds. Using operators π1 andπ2, one can provide an equivalent
reformulation of the variational formulation (3). Its solution e may be split as

e = e0 + ∇φ, with e0 = π2e and φ = π1e. (19)

By using the (variational) definition of K N (Ω, ε) (recall that ε is a symmetric tensor
field), we notice that e0 and φ are respectively governed by

{
Find e0 ∈ K N (Ω, ε) such that
aω(e0, v) = ω2( f |v)0,Ω, ∀v ∈ K N (Ω, ε).

(20)

{
Find φ ∈ H1

0 (Ω) such that
(ε∇φ|∇q)0,Ω = 〈div f , q〉H1

0 (Ω), ∀q ∈ H1
0 (Ω).

(21)

Actually, there is an equivalence result (the proof is left to the reader).

Proposition 2 A field e is a solution to (3) if, and only if, π2e is a solution to (20) and
π1e is a solution to (21).

According to the assumption on ε, we already know that problem (21) is well-posed.
Hence proving the well-posedness of (3) amounts to proving the well-posedness of
(20). We recall Theorem 8.15 of [10].

Theorem 2 The imbedding of K N (Ω, ε) in L2(Ω) is compact.

As a consequence (cf. Theorem 8.16 of [10]), one has the

Corollary 1 The variational formulation (20) with unknown e0 enters the Fredholm
alternative:

123



On the approximation of electromagnetic fields by edge… 231

– either the problem (20) is well-posed, ie. it admits a unique solution e0 in
H0(curl;Ω), which depends continuously on the data f :

‖e0‖H(curl;Ω) � ‖ f ‖0,Ω ;

– or, the problem (20) has solutions if, and only if, the data f satisfies a finite number
of compatibility conditions; in this case, the space of solutions is an affine space
of finite dimension, and the component of the solution which is orthogonal (in the
sense of the H0(curl;Ω) inner product) to the corresponding linear vector space,
depends continuously on f .

Finally, each alternative occurs simultaneously for variational formulation (20), and
variational formulation (3) with unknown e.

From now on, we assume that variational formulation (3) is well-posed:

∀ f ∈ L2(Ω), ∃!e ∈ H0(curl;Ω) soln to (3) and ‖e‖H(curl;Ω) � ‖ f ‖0,Ω . (22)

4 Approximation by Nédélec’s finite elements

For the ease of exposition,1 we assume thatΩ and {Ωp}p=1,...,P are Lipschitz polyhe-
dra.We consider a family of simplicial meshes ofΩ , and we choose the Nédélec’s first
family of edge finite elements [43, 44] to define finite dimensional subspaces (V h)h
of H0(curl;Ω). So Ω is triangulated by a shape regular family of meshes (Th)h ,
made up of (closed) simplices, generically denoted by K . Each mesh is indexed by
h := maxK hK (the meshsize), where hK is the diameter of K . And meshes are con-
forming with respect to the partition {Ωp}p=1,...,P induced by the coefficients ε, μ:
namely, for all h and all K ∈ Th , there exists p ∈ {1, . . . , P} such that K ⊂ Ωp.
Nédélec’s H(curl;Ω)-conforming (first family, first-order) finite element spaces are
then defined by

V h := {vh ∈ H0(curl;Ω) : vh |K ∈ R1(K ), ∀K ∈ Th},

where R1(K ) is the vector space of polynomials on K defined by

R1(K ) := {v ∈ P1(K ) : v(x) = a + b × x, a, b ∈ R3}.

To approximate the curl-free fields, we need to define a suitable approximation of
elements of H1

0 (Ω). So we introduce finite dimensional subspaces (Mh)h of H1
0 (Ω).

Lagrange’s first-order finite element spaces are defined by

1 The results obtained in this paper carry over to curved polyhedra, that is domains with piecewise smooth
boundaries (see eg. p. 81 in [3] for a precise definition). When dealing with the discretization by first-order
edge finite elements in H0(curl;Ω), one may use [28]. Respectively, when dealing with the discretization
by Lagrange’s first-order finite elements in H1

0 (Ω), one may use [34]. In particular, it is proven there that
optimal interpolation properties hold, ie. one may recover up to O(h) accuracy, provided the field to be
interpolated is sufficiently smooth.
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Mh := {qh ∈ H1
0 (Ω) : qh |K ∈ P1(K ), ∀K ∈ Th}.

The discrete companion scalar problems are

{
Find sh ∈ Mh such that
(ε∇sh |∇qh)0,Ω = 〈g, qh〉H1

0 (Ω), ∀qh ∈ Mh .
(23)

For approximation purposes, one can use the Lagrange interpolation operator Π L
h , or

the Scott–Zhang interpolation operator Π SZ
h . The latter allows one to interpolate any

element of H1
0 (Ω), with values in Mh , at the expense of local interpolation operators

that are not localized to each tetraedron, but are localized to the union of the tetrahedron
and its neighbouring tetrahedra.We refer to [33] for details.Unless otherwise specified,
we choose Π

grad
h = Π SZ

h .
For h given, the discrete variational formulation of the time-harmonic problem (3)

is

{
Find eh ∈ V h such that
aω(eh, vh) = ω2( f |vh)0,Ω, ∀vh ∈ V h .

(24)

To obtain explicit error estimates for the time-harmonic Maxwell equations, a natural
idea is to use the interpolation of its solution e. This requires someadditional definitions
and a priori analysis of the regularity of e, and of its curl.

Let Πcurl
h be the classical global Raviart–Thomas–Nédélec interpolant in

H0(curl;Ω) with values in V h [44]. We then denote by Πdiv
h the classical global

Raviart–Thomas–Nédélec interpolation operator in H0(div;Ω) with values in Wh

[44, 48], where (Wh)h are designed with the help of H(div;Ω)-conforming, first-
order finite element spaces:

Wh := {wh ∈ H0(div;Ω) : wh |K ∈ D1(K ), ∀K ∈ Th},

where D1(K ) is the vector space of polynomials on K defined by

D1(K ) := {v ∈ P1(K ) : v(x) = a + bx, a ∈ R3, b ∈ R}.

Let us recall a few useful properties (see Chapter 5 in [43]). To start with,

Proposition 3 For all h, it holds that

∇[Mh] ⊂ V h; (25)

∀vh ∈ V h, Πcurl
h vh = vh; (26)

curl[V h] ⊂ Wh; (27)

∀wh ∈ Wh, Πdiv
h wh = wh; (28)

∀v ∈ H0(curl;Ω) s.t. Πcurl
h v exists , Πdiv

h (curl v) = curl(Πcurl
h v). (29)
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There are useful additional properties regarding Πcurl
h listed next. Below, when we

refer to piecewise-Hs fields, the partition is understood as in (12).

Proposition 4 (discrete exact sequence [44]) Let h be given, and let v ∈ H0(curl;Ω)

that can be written as v = ∇q in Ω , for some q ∈ H1
0 (Ω). Then if Πcurl

h v is well-
defined, there exists qh ∈ Mh such that Πcurl

h v = ∇qh in Ω .

Proposition 5 (classical interpolation results)Assume that v ∈ PHs(Ω) and curl v ∈
PHs′

(Ω) for some s > 1/2, s′ > 0. Then one can define Πcurl
h v and, in addition,

one has the approximation result [5]:

‖v − Πcurl
h v‖H(curl;Ω) � hmin(s,s′,1){‖v‖PHs(Ω) + ‖ curl v‖PHs′

(Ω)
}. (30)

Furthermore, if curl v is piecewise constant onTh, onehas the improvedapproximation
result (cf. Theorem 5.41 in [43]):

‖v − Πcurl
h v‖H(curl;Ω) � hmin(s,1){‖v‖PHs(Ω) + ‖ curl v‖0,Ω }.

Remark 2 When Ω2 is a domain of R2, note that one can define the Raviart–Thomas–
Nédélec interpolant of a field v ∈ H(curl;Ω2) as soon as v ∈ PHs(Ω2) for some
s > 0 (there is no requirement on the regularity of curl v). This result is proven in
[4] for fields in H(div;Ω2), and it obviously carries over to fields in H(curl;Ω2) by
appropriate coordinates transform. Further, one has the approximation result:

‖v − Πcurl
h v‖H(curl;Ω2) � hmin(s,1){‖v‖PHs(Ω2) + ‖ curl v‖0,Ω2}.

��
Our aim is to apply Πcurl

h to the electric field e governed by (3).

First, one must have curl e ∈ PHs′
(Ω) for some s′ > 0. Since f ∈ L2(Ω), we

immediately find that c = μ−1 curl e belongs to

XT (Ω,μ) := {v ∈ H(curl;Ω) : μv ∈ H0(div;Ω)}.

Then, using a shift theorem for the companion scalar problemwithNeumann boundary
condition

{
Find s ∈ H1

zmv(Ω) such that
(μ∇s|∇q)0,Ω = 〈g′, q〉H1

zmv(Ω), ∀q ∈ H1
zmv(Ω),

(31)

and a regular plus gradient decomposition (see eg. [22, 26]),we introduce τNeu ∈ (0, 1]
depending only on the geometry and on μ such that

XT (Ω,μ) ⊂ ∩s′∈[0,τNeu)PHs′
(Ω),
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with continuous imbedding for alls′ ∈ [0, τNeu). Furthermore, using aWeber inequal-
ity (cf. Theorem 6.2.5 in [3]), one has that for all s′ ∈ [0, τNeu),

∀v ∈ XT (Ω,μ),

‖v‖PHs′
(Ω)

� ‖ curl v‖0,Ω + ‖ divμv‖0,Ω +
∑

1≤i≤I

|〈μv · n, 1〉H1/2(Σi )
|. (32)

As a consequence, we note that since μ is piecewise smooth, it also holds that

curl e ∈ ∩s′∈[0,τNeu)PHs′
(Ω). (33)

Then, to guarantee that Πcurl
h can be applied to the electric field e, one must check

whether e ∈ PHs(Ω) for some s > 1/2. To evaluate the exponent s a priori, we use
the following regular plus gradient decomposition (see Lemma 2.4 of [38]).

Proposition 6 There exist operators

P ∈ L(H0(curl;Ω), H1(Ω)), Q ∈ L(H0(curl;Ω), H1
0 (Ω)),

such that

∀v ∈ H0(curl;Ω), v = Pv + ∇(Qv). (34)

This yields some useful results for elements of K N (Ω, ε).

Corollary 2 The a priori regularity of elements of K N (Ω, ε) is governed by the imbed-
ding:

K N (Ω, ε) ⊂ ∩s∈[0,τDir )PHs(Ω).

Moreover, for all s ∈ [0, τDir ),

∀k ∈ K N (Ω, ε), ‖k‖PHs(Ω) � ‖ curl k‖0,Ω . (35)

Proof Let k ∈ K N (Ω, ε). According to Proposition 6, one can write k = k
 + ∇sk
with k
 ∈ H1(Ω), resp. sk ∈ H1

0 (Ω), and it holds that ‖k
‖1,Ω + ‖sk‖H1
0 (Ω) �

‖k‖H(curl;Ω). In particular, div(ε∇sk) = − div εk
 in Ω , so sk solves the modified
scalar problem (14) with data (0,−k
). Thanks to the shift theorem, we know that, for
alls ∈ [0, τDir ), sk belongs to PH1+s(Ω), with the bound ‖sk‖PH1+s(Ω) � ‖k
‖1,Ω .

Using the triangle inequality, we conclude that

∀s ∈ [0, τDir ), k ∈ PHs(Ω), and ‖k‖PHs(Ω) � ‖k‖H(curl;Ω).

This proves the first part of the corollary. Using finally Theorem 1 on the equivalence
of norms in K N (Ω, ε), we conclude that (35) holds. ��
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Hence, it may happen that the field to be interpolated, eg. the electric field e, does
not belong to ∪s>1/2PHs(Ω). In the classical case, the occurence of such a situation
is explained in section 7 of [26]. In the interface case, this can be inferred from the
results obtained in [9, 12].

On the other hand, to interpolate such a low regularity field, one may still choose
the quasi-interpolation operator of [32], or the combined interpolation operator of [22,
23]. We choose the latter. To get a definition for the combined interpolation operator,
denoted by Πcomb

h , one needs to be able to split low regularity fields defined on Ω . To
that end, we apply Proposition 6.

Definition 1 (combined interpolation operator) Let v ∈ H0(curl;Ω), with curl v ∈
Hs′

(Ω) for some s′ > 0. We define

Πcomb
h v := Πcurl

h (Pv) + ∇(Π
grad
h (Qv)).

Then, the approximation results for the combined interpolation are a straightforward
consequence of the available results for Πcurl

h and Π
grad
h .

Proposition 7 (combined interpolation results) Let v ∈ H0(curl;Ω), with Qv ∈
PH1+s(Ω) and curl v ∈ PHs′

(Ω) for some s ≥ 0, s′ > 0. One has the approxi-
mation result:

‖v − Πcomb
h v‖H(curl;Ω) � hmin(s,s′,1) {‖v‖H(curl;Ω)

+‖Qv‖PH1+s(Ω) + ‖ curl v‖PHs′
(Ω)

}
. (36)

Furthermore, if curl v is piecewise constant onTh, onehas the improvedapproximation
result:

‖v − Πcomb
h v‖H(curl;Ω) � hmin(s,1){‖v‖H(curl;Ω) + ‖Qv‖PH1+s(Ω)}.

Togetherwith this definition of the combined interpolation operator,wehave the results
below, to be compared with the well-known results (26) and (29) for the classical
interpolation operator.

Proposition 8 For all h, it holds that

∀vh ∈ V h, ∃qh ∈ Mh, Πcomb
h vh = vh + ∇qh; (37)

∀v ∈ H0(curl;Ω) s.t. curl v ∈ Hs′
(Ω) for some s′ > 0,

Πdiv
h (curl v) = curl(Πcomb

h v). (38)

Proof Let vh ∈ V h . We note that because vh is piecewise smooth on Th , one has
vh, curl vh ∈ PHt(Ω) for all t ∈ [0, 1/2). Hence Πcomb

h vh is well-defined accord-
ing toDefinition 1. Ifwewrite vh = (vh)


+∇svh , with (vh)

 = Pvh , resp. svh = Qvh ,

we have Πcomb
h vh := Πcurl

h (vh)

 + ∇(Π

grad
h svh ).
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On the other hand, ∇svh = vh − (vh)

. Since Πcurl

h (vh − (vh)

) is well-defined,

so is Πcurl
h (∇svh ) and, according to Proposition 4, there exists q ′

h ∈ Mh such that
Πcurl

h (∇svh ) = ∇q ′
h . Applying now Πcurl

h to (vh)

 = vh − ∇svh , it follows that

Πcurl
h (vh)


 = Πcurl
h vh − ∇q ′

h = vh − ∇q ′
h,

where the second equality now follows from (26). One concludes that

Πcomb
h vh := vh + ∇(

Π
grad
h svh − q ′

h

)
,

which is precisely (37) with qh = Π
grad
h svh − q ′

h ∈ Mh .

To check (38), let v be split as v = Pv + ∇(Qv). Since curl(Pv) ∈ Hs′
(Ω),

according to Proposition 5 one may apply (29) to Pv, leading to Πdiv
h (curl(Pv)) =

curl(Πcurl
h (Pv)). On the other hand, because of the Definition 1 of Πcomb

h v =
Πcurl

h (Pv) + ∇(Π
grad
h (Qv)) one has

curl
(
Πcurl

h (Pv)
) = curl

(
Πcomb

h v − ∇(
Π

grad
h (Qv)

)) = curl
(
Πcomb

h v
)
.

Using finally the equality curl v = curl(Pv) leads to the claim. ��
We now have all the required results to bound the interpolation error of the electric
field e.

Proposition 9 Let e be the solution to the time-harmonic Maxwell equations. Let the
extra-regularity of the data f be as in (13) with τ0 > 0 given. One can defineΠcomb

h e,
and moreover one has the approximation result, for all s ∈ [0,min(τ0, τDir , τNeu)),

‖e − Πcomb
h e‖H(curl;Ω) � hs{‖ div f ‖−1+s,Ω + ‖ f ‖0,Ω }.

Proof Let s ∈ [0,min(τ0, τDir , τNeu)); because τDir ≤ 1, one has s < 1.
According to Proposition 6, we may write e = e
 + ∇se with e
 ∈ H1(Ω),
se ∈ H1

0 (Ω), and ‖e
‖1,Ω + ‖se‖H1
0 (Ω) � ‖e‖H(curl;Ω). By construction, se solves

the modified scalar problem (14) with data (div f ,−e
). But s < min(τ0, τDir )

so, thanks to the shift theorem, se ∈ PH1+s(Ω), with the bound ‖se‖PH1+s(Ω) �
‖ div f ‖−1+s,Ω + ‖e
‖1,Ω . Using (22) for the last inequality below, we find

‖se‖PH1+s(Ω) � ‖ div f ‖−1+s,Ω + ‖e‖H(curl;Ω) � ‖ div f ‖−1+s,Ω + ‖ f ‖0,Ω .

On the other hand, one has curl e ∈ PHs(Ω), cf. (33). Then, with the help of the
bound (32) on ‖μ−1 curl e‖PHs(Ω), noting that div curl e = 0 in Ω , and 〈curl e ·
n, 1〉H1/2(Σi )

= 0 for 1 ≤ i ≤ I (see Remark 3.5.2 in [3]), we find

‖ curl e‖PHs(Ω) � ‖μ−1 curl e‖PHs(Ω) � ‖ curl(μ−1 curl e)‖0,Ω
� ‖e‖0,Ω + ‖ f ‖0,Ω,
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where we used the relation curl(μ−1 curl e) = ω2εe+ω2 f in Ω . Therefore, one can
define Πcomb

h e and, using (36) and (22) once more, one finds now

‖e − Πcomb
h e‖H(curl;Ω) � hs{‖e‖H(curl;Ω) + ‖se‖PH1+s(Ω) + ‖ curl e‖PHs(Ω)}

� hs{‖ div f ‖−1+s,Ω + ‖ f ‖0,Ω },

which is the desired estimate. ��

Remark 3 In particular, we note that even when the electric field e does not belong
to ∪s>1/2PHs(Ω), one may use the combined interpolation operator and still obtain
“best” interpolation error. On the other hand, it is well-known by using classical
interpolation that, when τDir = τNeu = 1, and for a regular data f ∈ H(div;Ω), the
interpolation error behaves like O(h). ��

From this point on, to obtain the well-posedness result for the discretized problems,
and finally convergence to the exact solution e, one needs to prove a uniform discrete
inf-sup condition. For that, we mimic in Sect. 5 the two ingredients that were used to
solve the exact variational formulation: uniformly stable discrete decompositions in
the spirit of Proposition 1; uniform equivalence of norms in the spirit of Theorem 1.
The key ingredient is the study of the approximation (23) of the companion scalar
problem (5). And, since it was originally solved with the help of T-coercivity, we
consider two situations regarding its approximation. We refer to the “Appendix A” for
details. Either we have at hand a “full” T-coercivity involution operator T0 to solve
(5), that can also be used to establish to establish the uniform discrete T-coercivity
(60)–(61) of the discrete scalar problems (23). Or, we only have at hand a “weak”
explicit T-coercivity involution operator T , cf. (59). The first situation is addressed in
Sect. 5.1, whereas the second situation is addressed in Sect. 5.2.

5 Uniform estimates

5.1 Case of a“full” T-coercivity operator

We assume in this section that we have at hand a “full” T-coercivity involution operator
T0 to solve the companion scalar problem (5) (see Sect. A.1), and that the meshes are
T-conform, such that (60)–(61) are fulfilled, with consequences listed in Sect. A.2.
Define, for any h,

K h(ε) := {vh ∈ V h : (εvh |∇qh)0,Ω = 0, ∀qh ∈ Mh}. (39)

Proposition 10 Assume that (60) holds. For all h, one has the direct sum

V h = ∇[Mh] ⊕ K h(ε). (40)
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Proof Let h be given. Thanks to (25), we know that∇[Mh]+ K h(ε) is a subset of V h .
Then for vh ∈ V h and because the discrete scalar problem (23) is well-posed, there
exists one, and only one, pvh ∈ Mh such that

(ε∇ pvh |∇qh)0,Ω = (εvh |∇qh)0,Ω, ∀qh ∈ Mh . (41)

And one has

kvh = vh − ∇ pvh ∈ K h(ε), (42)

so V h = ∇[Mh]+ K h(ε). Using (60), the fact that the sum is direct is derived exactly
as in the continuous case (see the proof of Proposition 1). ��
For all h, we can use the splitting (40) and the explicit definitions (41)–(42) to introduce
the operators

π1h :
{
V h → Mh

vh �→ pvh
, π2h :

{
V h → K h(ε)

vh �→ kvh
. (43)

In other words, one may write, for all h, for all vh ∈ V h , vh = ∇(π1hvh) + π2hvh .
Also, one has for all h, (π2h)

2 = π2h . Below, we prove the uniform stability of the
decomposition (40).

Proposition 11 Assume that (60) holds. The continuity moduli of the operators (π1h)h,
(π2h)h are bounded independently of h.

Proof Given h and vh ∈ V h , one has according to (60) and (41)

α′
0 ‖∇(π1hvh)‖20,Ω ≤ (ε∇(π1hvh)|∇(T0(π1hvh)))0,Ω = (εvh |∇(T0(π1hvh)))0,Ω

≤ ‖εvh‖0,Ω‖∇(T0(π1hvh))‖0,Ω
≤ ‖εvh‖0,Ω‖T0‖L(H1

0 (Ω))‖∇(π1hvh)‖0,Ω,

so that

‖∇(π1hvh)‖0,Ω ≤ (α′
0)

−1ε+‖T0‖L(H1
0 (Ω))‖vh‖0,Ω .

And then

‖π2hvh‖H(curl;Ω) ≤ (1 + (α′
0)

−1ε+‖T0‖L(H1
0 (Ω)))‖vh‖H(curl;Ω),

so the claim follows. ��
Next, one has to check that kh �→ ‖ curl kh‖0,Ω defines a norm on K h(ε). And, if the
answer is positive, whether this norm of uniformly equivalent in h (ie. with constants
that are independent of h) to the ‖ · ‖H(curl;Ω)-norm on K h(ε).
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Proposition 12 Assume that (60) holds. For all h, kh �→ ‖ curl kh‖0,Ω defines a norm
on K h(ε).

Proof Let kh ∈ K h(ε) be such that curl kh = 0 in Ω . Since the boundary ∂Ω is
connected, we get from Theorem 3.3.9 of [3] that there exists q ∈ H1

0 (Ω) such that
kh = ∇q in Ω . Since Πcurl

h kh is well-defined (and equal to kh), we know from
Proposition 4 that there exists qh ∈ Mh such that Πcurl

h kh = ∇qh in Ω . In other
words, kh = Πcurl

h kh = ∇qh ∈ ∇[Mh]. So one has kh ∈ ∇[Mh] ∩ K h(ε) which
reduces to {0} according to Proposition 10: this proves the result. ��
Theorem 3 Assume that (60) holds. Then

∃C

W > 0, ∀h, ∀kh ∈ K h(ε), ‖kh‖0,Ω ≤ C


W ‖ curl kh‖0,Ω . (44)

In addition, let s ∈ (0, τDir ):

{∃Cs > 0, ∀h, ∀kh ∈ K h(ε),

infk∈K N (Ω,ε) ‖k − kh‖H(curl;Ω) ≤ Cshs ‖ curl kh‖0,Ω .
(45)

Proof Let

HΣ
0 (div 0;Ω) := {v ∈ H0(div;Ω) : div v = 0 in Ω, 〈v · n, 1〉Σi = 0, 1 ≤ i ≤ I }.

Let kh ∈ K h(ε) be given. According to Theorem 6.1.4 in [3], one has curl kh ∈
HΣ

0 (div 0;Ω). So, using Corollary 3 in “Appendix B”, we find that there exists one,
and only one, solution to the div–curl problem

⎧
⎪⎪⎨

⎪⎪⎩

Find k ∈ L2(Ω) such that
curl k = curl kh in Ω,

div εk = 0 in Ω,

k × n = 0 on ∂Ω,

(46)

with ‖k‖H(curl;Ω) � ‖ curl kh‖0,Ω . By definition, k ∈ K N (Ω, ε), and it holds

‖kh‖0,Ω ≤ ‖kh − k‖0,Ω + ‖k‖0,Ω
≤ ‖kh − k‖0,Ω + CW ‖ curl k‖0,Ω
= ‖kh − k‖0,Ω + CW ‖ curl kh‖0,Ω (47)

thanks to the triangle inequality, (17) and the definition of k. To obtain (44), we bound
‖kh − k‖0,Ω by ‖ curl kh‖0,Ω , uniformly with respect to h.
By definition of k, we know that curl(k− kh) = 0 in Ω so, thanks to Theorem 3.3.9.
in [3], there exists q ∈ H1

0 (Ω) such that k − kh = ∇q in Ω . Thus, using (11), we
have the bound

α0 ‖k − kh‖20,Ω = α0 ‖∇q‖20,Ω ≤ (ε∇q|∇(T0q))0,Ω = (ε(k − kh)|∇(T0q))0,Ω .
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Because k ∈ K N (Ω, ε) and kh ∈ K h(ε), we note that (ε(k − kh)|∇q ′
h)0,Ω = 0, for

all q ′
h ∈ Mh . Or equivalently, if we recall (60) and its consequence T0[Mh] = Mh :

(ε(k − kh)|∇(T0qh))0,Ω = 0, for all qh ∈ Mh . Hence, it holds that, for all qh ∈ Mh :

α0 ‖k − kh‖20,Ω ≤ (ε(k − kh)|∇(T0(q − qh)))0,Ω
≤ ε+ ‖k − kh‖0,Ω ‖∇(T0(q − qh))‖0,Ω
≤ ε+ ‖T0‖L(H1

0 (Ω)) ‖k − kh‖0,Ω ‖∇(q − qh)‖0,Ω .

This implies that

‖k − kh‖0,Ω ≤ ε+
α0

‖T0‖L(H1
0 (Ω)) inf

qh∈Mh
‖∇(q − qh)‖0,Ω .

There remains to choose some ad hoc qh ∈ Mh . For that, we prove next thatΠcomb
h k−

kh belongs to ∇[Mh].
First, we remark that curl(Πcomb

h k) = Πdiv
h (curl k) according to (38). Next,

we express Πdiv
h (curl k) in terms of curl kh . By definition of k, it holds that

Πdiv
h (curl k) = Πdiv

h (curl kh), so using (27)–(28), we get that Πdiv
h (curl k) =

curl kh . In other words, curl(Πcomb
h k − kh) = 0 in Ω . According to Theorem

3.3.9. in [3], there exists q ∈ H1
0 (Ω) such that Πcomb

h k − kh = ∇q in Ω .
Moreover, Πcurl

h (Πcomb
h k − kh) is well-defined and equal to Πcomb

h k − kh [cf.
(26)]. Hence we conclude from Proposition 4 that there exists q0h ∈ Mh such that
∇q0h

( = Πcurl
h (Πcomb

h k − kh)
) = Πcomb

h k − kh .
Now, we find that

∇(
q − q0h

) = (k − kh) − (
Πcomb

h k − kh
) = k − Πcomb

h k,

so choosing qh = q0h yields

‖k − kh‖0,Ω ≤ ε+
α0

‖T0‖L(H1
0 (Ω)) ‖k − Πcomb

h k‖0,Ω .

Thanks to Corollary 2 and Proposition 7, for any s ∈ (0, τDir ) it holds that

‖k − Πcomb
h k‖0,Ω � hs{‖k‖H(curl;Ω) + ‖Qk‖PH1+s(Ω)}.

On the other hand, we know that ‖Qk‖PH1+s(Ω) � ‖k‖H(curl;Ω) (see the proof of
Corollary 2), so using (18) and the definition of k, for any s ∈ (0, τDir ), it actually
holds that

‖k − kh‖0,Ω � ‖k − Πcomb
h k‖0,Ω � hs ‖ curl kh‖0,Ω .

Since by construction curl(k − kh) = 0, we have obtained (45).
Noting finally that h � diam(Ω), using (47) we conclude that (44) holds. ��
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5.2 Case of a“weak” T-coercivity operator

Asusualwe assume in this section that the companion scalar problem (5) iswell-posed.
But that we only have at hand a “weak” explicit T-coercivity involution operator T , cf.
(59) in Section A.1. At the discrete level, one can build “weak” discrete T-coercivity
operators provided themeshes are locallyT-conform (see SectionA.2). This yields uni-
formly bounded discrete operators (Th)h≤h0 , where h0 > 0 is a threshold value, such
that (62)–(63) are fulfilled, with consequences listed in Section A.2. Consequently,
introducing K h(ε) as before [see (39)], one has the...

Proposition 13 In the “weak” T-coercivity framework, for all h ≤ h0, one has the
direct sum

V h = ∇[Mh] ⊕ K h(ε). (48)

In addition, kh �→ ‖ curl kh‖0,Ω defines a norm on K h(ε).
Finally, the operators (π1h)h≤h0 and (π2h)h≤h0 introduced in (43) are well-defined,

and their continuity moduli are bounded independently of h ≤ h0.

To conclude the study, we now prove the result below, whose proof follows closely
the proof of Theorem 3.

Theorem 4 In the “weak” T-coercivity framework, ‖ curl ·‖0,Ω defines a norm that is
uniformly equivalent to the ‖ · ‖H(curl;Ω)-norm on K h(ε), for h small enough, ie.

∃C

W > 0, ∀h ≤ h0, ∀kh ∈ K h(ε), ‖kh‖0,Ω ≤ C


W ‖ curl kh‖0,Ω . (49)

In addition, let s ∈ (0, τDir ):

{∃Cs > 0, ∀h ≤ h0, ∀kh ∈ K h(ε),

infk∈K N (Ω,ε) ‖k − kh‖H(curl;Ω) ≤ Cshs ‖ curl kh‖0,Ω .
(50)

Proof Let kh ∈ K h(ε) be given, and let k be the solution to the div–curl problem (46).
Exactly as in the proof of Theorem 3, we find that there exists q ∈ H1

0 (Ω) such that
k − kh = ∇q in Ω .
Let h ≤ h0. Then, for any q̄h ∈ Mh , we write the triangle inequality

‖k − kh‖0,Ω = ‖∇q‖0,Ω ≤ ‖∇(q − q̄h)‖0,Ω + ‖∇q̄h‖0,Ω .

According to (63), there exists q ′
h ∈ Mh\{0} such that

‖∇q̄h‖0,Ω ≤ (γ
0
)−1 |(ε∇q̄h |∇q ′

h)0,Ω |
‖∇q ′

h‖0,Ω
.
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Since k ∈ K N (Ω, ε) and kh ∈ K h(ε), one has (ε(k − kh)|∇q ′
h)0,Ω = 0 or, in other

words, (ε∇q|∇q ′
h)0,Ω = 0. Hence,

‖∇q̄h‖0,Ω ≤ (γ
0
)−1 |(ε∇(q̄h − q)|∇q ′

h)0,Ω |
‖∇q ′

h‖0,Ω
≤ ε+

γ
0

‖∇(q − q̄h)‖0,Ω .

We find that ‖k − kh‖0,Ω ≤ (1 + ε+/γ
0
)‖∇(q − q̄h)‖0,Ω . Since the result holds for

any q̄h ∈ Mh , we have actually proved that

‖k − kh‖0,Ω � inf
q̄h∈Mh

‖∇(q − q̄h)‖0,Ω .

We conclude the proof as before, by noting that Πcomb
h k − kh ∈ ∇[Mh]. ��

6 Uniform discrete inf-sup condition and convergence

We consider directly the “weak” T-coercivity framework. Assuming (62)–(63) holds,
we remark that (kh, k′

h) �→ (μ−1 curl kh | curl k′
h)0,Ω fulfills a uniform discrete inf-

sup condition on K h(ε)×K h(ε), for h small enough. Indeed, according to Theorem 4,
we have

⎧
⎪⎨

⎪⎩

∃γ̃ > 0, ∀h ≤ h0, ∀kh ∈ K h(ε),

sup
k′
h∈K h(ε)\{0}

|(μ−1 curl kh | curl k′
h)0,Ω |

‖k′
h‖H(curl;Ω)

≥ γ̃ ‖kh‖H(curl;Ω).
(51)

Next, we introduce Aω ∈ L(H0(curl;Ω)) defined by

(Aωv,w)H0(curl;Ω) := aω(v,w), ∀v,w ∈ H0(curl;Ω),

and

|||aω||| := sup
v,w∈H0(curl;Ω)\{0}

|aω(v,w)|
‖v‖H(curl;Ω)‖w‖H(curl;Ω)

< ∞.

Theorem 5 Assume that the variational formulation (3) is well-posed. In the “weak”
T-coercivity framework, the form aω fulfills a uniform discrete inf-sup condition on
V h × V h for h small enough, ie.

⎧
⎪⎨

⎪⎩

∃Cω,hω > 0, ∀h ≤ hω, ∀vh ∈ V h,

sup
v′
h∈V h\{0}

|aω(vh, v
′
h)|

‖v′
h‖H(curl;Ω)

≥ Cω ‖vh‖H(curl;Ω).
(52)

Remark 4 Next, we proceed in the spirit of the proof of Theorem 2.2 in [13].
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Proof We argue by contradiction. Namely, we assume that

⎧
⎪⎨

⎪⎩

∀k ∈ N\{0}, ∃hk ≤ k−1, ∃vhk ∈ V hk ,

‖vhk‖H(curl;Ω) = 1 and sup
v′
hk

∈V hk \{0}

|aω(vhk , v
′
hk

)|
‖v′

hk
‖H(curl;Ω)

≤ k−1. (53)

In particular, limk→∞ hk = 0, so it holds that hk < h0 for k large enough. So fromnow
on, we consider that hk < h0. We write vhk = ∇qhk + khk , where qhk = π1hkvhk and
khk = π2hkvhk . Note that (∇qhk )k and (khk )k are bounded sequences in H0(curl;Ω),
because the continuity moduli of (π1hk )k and (π2hk )k are bounded uniformly with
respect to k (cf. Proposition 13).

Step 1 Let us show that limk→∞ ‖∇qhk‖H(curl;Ω) = 0. This is a simple consequence
of (63). According to (53):

sup
q ′
hk

∈Mhk \{0}

|aω(vhk ,∇q ′
hk

)|
‖∇q ′

hk
‖0,Ω ≤ k−1.

But aω(vhk ,∇q ′
hk

) = −ω2(εvhk |∇q ′
hk

)0,Ω = −ω2(ε∇qhk |∇q ′
hk

)0,Ω . From
(63), we infer that

γ
0
ω2 ‖∇qhk‖0,Ω ≤ k−1 → 0 as k → ∞.

Step 2 Let us show that limk→∞ ‖π2vhk‖0,Ω = 0. Letw ∈ H0(curl;Ω), and whk ∈
V hk :

|aω(vhk ,w)| ≤ |aω(vhk ,w − whk )| + |aω(vhk ,whk )|
≤ |||aω||| ‖w − whk‖H(curl;Ω) + k−1‖whk‖H(curl;Ω).

According to the basic approximability property of (V hk )k in H0(curl;Ω),
one can choose (whk )k such that limk→∞ ‖w − whk‖H(curl;Ω) = 0. In partic-
ular, (whk )k is a bounded sequence in H0(curl;Ω), and one finds that

lim
k→∞ |aω(vhk ,w)| = 0.

This result holds for all w ∈ H0(curl;Ω), so we have proved that Aωvhk⇀0
(weakly) in H0(curl;Ω). On the other hand, the variational formulation (3)
is well-posed, so A−1

ω exists and A−1
ω ∈ L(H0(curl;Ω)). Hence vhk⇀0

(weakly) in H0(curl;Ω). This implies that π2vhk⇀0 (weakly) in K N (Ω, ε).
And because the imbedding of K N (Ω, ε) in L2(Ω) is compact, one finds that
limk→∞ ‖π2vhk‖0,Ω = 0.

Step 3 Let us show that limk→∞ ‖khk‖H(curl;Ω) = 0. According to (51),

‖khk‖H(curl;Ω) ≤ γ̃ −1 sup
k′
hk

∈K hk (ε)\{0}

|(μ−1 curl khk | curl k′
hk )0,Ω |

‖k′
hk‖H(curl;Ω)

.
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Let k′
hk ∈ K hk (ε). By definition of khk , one finds that

(
μ−1 curl khk | curl k′

hk

)
0,Ω = (

μ−1 curl vhk | curl k′
hk

)
0,Ω

= aω

(
vhk , k

′
hk

) + ω2(εvhk |k′
hk

)
0,Ω .

According to (53), one has |aω(vhk , k
′
hk )| ≤ k−1 ‖k′

hk‖H(curl;Ω).
On the other hand, vhk = ∇(π1vhk ) + π2vhk , so

∣
∣
(
εvhk |k′

hk

)
0,Ω

∣
∣ ≤ ∣

∣
(
ε∇(

π1vhk
)|k′

hk

)
0,Ω

∣
∣ + ∣

∣
(
επ2vhk |k′

hk

)
0,Ω

∣
∣.

The last term is bounded by the Cauchy–Schwarz inequality

∣
∣
(
επ2vhk |k′

hk

)
0,Ω

∣
∣ ≤ ε+‖π2vhk‖0,Ω‖k′

hk‖0,Ω .

There remains to evaluate the first term. For all k ∈ K N (Ω, ε), one has

∣
∣
(
ε∇(

π1vhk
)|k′

hk

)
0,Ω

∣
∣ = ∣

∣
(
ε∇(

π1vhk
)|k′

hk − k
)
0,Ω

∣
∣

≤ ε+
∥
∥∇(

π1vhk
)‖0,Ω

∥
∥k′

hk − k‖0,Ω .

Now, let k ∈ K N (Ω, ε) be chosen as in Theorem 4 [see (50)]. Owing to the fact
that ‖vhk‖H(curl;Ω) = 1 [cf. (53)], one gets the bound

∣
∣
(
ε∇(

π1vhk
)|k′

hk

)
0,Ω

∣
∣ � hk

s ‖ curl k′
hk‖0,Ω .

Aggregating the above estimates, one finds that

‖khk‖H(curl;Ω) �
(
k−1 + ‖π2vhk‖0,Ω + hk

s
)

,

thus leading to limk→∞ ‖khk‖H(curl;Ω) = 0 according to Step 2.

Step 4 For all k, one has ‖vhk‖H(curl;Ω) ≤ ‖∇qhk‖H(curl;Ω) + ‖khk‖H(curl;Ω) by the
triangle inequality, so one concludes that limk→∞ ‖vhk‖H(curl;Ω) = 0, which
contradicts (53).

��
One can finally derive the (classical) error estimate.

Theorem 6 Let the assumptions of Theorem 5 be fulfilled, and lethω > 0 be the thresh-
old value introduced there. Then, for all h ≤ hω, the discrete variational formulation
(24) is well-posed.
Without further assumption on the regularity of the data f , one has

lim
h→0

‖e − eh‖H(curl;Ω) = 0. (54)
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Let the extra-regularity of the data f be as in (13) with τ0 > 0 given, then one has
the error estimate, for all s ∈ [0,min(τ0, τDir , τNeu)),

∀h ≤ hω, ‖e − eh‖H(curl;Ω) � hs{‖ div f ‖−1+s,Ω + ‖ f ‖0,Ω }. (55)

Proof Because the form aω fulfills a uniform discrete inf-sup condition for h ≤ hω,
classical error analysis yields

∀h ≤ hω, ‖e − eh‖H(curl;Ω) � inf
vh∈V h

‖e − vh‖H(curl;Ω).

In the absence of extra-regularity of the data, according to the basic approximability
property of (V h)h in H0(curl;Ω), one finds (54). On the other hand, in the case of
extra-regularity of the data f , we then recover (55) by choosing vh = Πcomb

h e (see
Proposition 9). ��

7 Numerical illustrations

In this section, we study numerically a simple model. The domain Ω is (0, 1) ×
(−1, 1) × (0, 1). It is partitioned into Ω+ = (0, 1) × (0, 1) × (0, 1) and Ω− =
(0, 1) × (−1, 0) × (0, 1). Note that this partition is symmetric with respect to the
interface Σ = (0, 1) × {0} × (0, 1). The pulsation and coefficients are respectively
set to

ω = 1; ε|Ω+ = 1, μ|Ω+ = 1; ε|Ω− ∈ {−1.5,−1.1,−1.01}, μ|Ω− = .5.

In this symmetric geometry, it is known that the companion scalar problem is well-
posed as soon as ε|Ω− �= −1; that “full” T-coercivity is achieved with the help of the
symmetry with respect to Σ (cf. [9]); and, as a consequence, that T-conform meshes
are obtained using meshes that are symmetric with respect to Σ (cf. [19]). Below,
we assume that the model set in Ω [cf. (3)] is well-posed for the above values of the
pulsation and the coefficients.
We choose a piecewise smooth solution e, which is consistent with the fact that, in
this symmetric setting, τDir = τNeu = 1 (cf. again [19]). Namely,

e1(x1, x2, x3) = x21 sin
(π

2
(x2 − 1)

)
sin

(
πx23

)
,

e2(x1, x2, x3) = ε−1 sin(πx1) x2 sin(5πx3),

e3(x1, x2, x3) = sin(2πx1) sin
(
πx22

)
x3.

It is easily checked that e ∈ H0(curl;Ω), with curl(μ−1 curl e) ∈ L2(Ω) and
div εe ∈ L2(Ω). Consequently, the data f = ω−2 curl(μ−1 curl e) − εe belongs to
H(div;Ω), so one has τ0 = 1 in (13).

Computations are carried out on two series of meshes. A T-conform series: the
meshes are generated by meshing Ω+ first, and then using the symmetry transform
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Fig. 1 Left: a T-conform mesh; right: a plain mesh

with respect to Σ to build the mesh on Ω− (see Fig. 1, left). And a plain series, where
the meshes can be nonsymmetric with respect to Σ (see Fig. 1, right).

All results have been obtained with the help of the GetDP software [30].
In Fig. 2, the error results in H(curl;Ω)-norm are reported. In abscissa, we choose
the number of degrees of freedom Nh = dim(V h) to the power 1/3, to compare
simulations with similar computational costs. Also, N 1/3

h is known to be equivalent to
h for regular families of meshes.

Overall, results are similar for both series of meshes. However, for the plain series,
there are anomalies/glitches for ε|Ω− ∈ {−1.1,−1.01}, ie. convergence is not mono-
tonic. On the other hand, for the T-conform series, results indicate that the sign-change
has little influence on the convergence.

We then report errors in L2(Ω)-norm (Fig. 3), and also in L2(Ω)-norm of the curl
of the errors (Fig. 4). For the errors on the curl, results are more or less nominal (recall
thatμdoes not change sign).While for the L2(Ω)-norm, results show that convergence
is erratic for the plain series and, more to the point, it seems that ‖e − eh‖0,Ω does
not decrease when ε|Ω− = −1.01. The numerical method is still in a pre-asymptotic
regime regarding convergence, even though the meshsize is as small as one hundredth
of the size (length) of the domain.2 For the T-conform series, convergence is again
nominal.

To conclude the analysis of the numerical results, we draw a parallel with some
results available in the literature for the companion scalar problem set in a symmetric
geometry [19]. Let us isolate the curl-free part of the exact and discrete solutions, that
is ∇φ in (19), governed by (21):

{
Find φ ∈ H1

0 (Ω) such that
(ε∇φ|∇q)0,Ω = (div f |q)0,Ω, ∀q ∈ H1

0 (Ω)
;

resp. ∇φh where φh = π1heh is governed by

{
Find φh ∈ Mh such that
(ε∇φh |∇qh)0,Ω = (div f |qh)0,Ω, ∀qh ∈ Mh .

2 This observation is consistent with the fact that only small glitches are seen in Fig. 2 for the plain series.
This is due to the fact that the values taken by the curl of the chosen exact solution are orders of magnitude
larger than the values of the solution itself.
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Fig. 2 Relative error in H(curl; Ω)-norm obtained for the three values of ε|Ω− , with h varying from 0.1

to 0.01. The line corresponds to the linear scale O(h) = O(N1/3
h )

These are respectively the companion scalar problem, and its discretization. The error
‖∇φ − ∇φh‖0,Ω has been thoroughly investigated in [19]. In particular, numerical
examples are provided in a rectangle (a domain of R2), partitioned into two squares,
and it is observed that the use of nonsymmetric meshes leads to serious numerical
instabilities: we refer the interested reader precisely to Figure 7, page 23 in [19]. In
other words, we get the same behavior, now on the solution of time-harmonicMaxwell
equations in a domain of R3.

8 Case of sign-changingmagnetic permeability

Let us briefly describe how one can proceed if

μ is as in the interface case; ε is as in the classical case.
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Fig. 3 Relative error in L2(Ω)-norm obtained for the three values of ε|Ω− , with h varying from 0.1 to

0.01. The line corresponds to the linear scale O(h) = O(N1/3
h )

To address this situation, one expresses the time-harmonicMaxwell equations in terms
of the magnetic field only

⎧
⎪⎪⎨

⎪⎪⎩

Find h ∈ H(curl,Ω) such that :
curl(ε−1(curl h − j)) − ω2μh = 0 in Ω,

divμh = 0 in Ω;
μh · n = 0 and ε−1(curl h − j) × n = 0 on ∂Ω.

(56)

As before, one can decouple the real and imaginary parts. E.g., if h stands for 	(h)

and g stands for ε−1	( j), then h solves the equivalent variational formulation

{
Find h ∈ H(curl;Ω) such that
a′
ω(h, v) = (g| curl v)0,Ω, ∀v ∈ H(curl;Ω),

(57)

where

a′
ω(u, v) := (ε−1 curl u| curl v)0,Ω − ω2(μu|v)0,Ω, ∀u, v ∈ H(curl;Ω).
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Fig. 4 Relative error in L2(Ω)-norm of the curl obtained for the three values of ε|Ω− , with h varying from

0.1 to 0.01. The line corresponds to the linear scale O(h) = O(N1/3
h )

We observe that one has to study the companion scalar problemwith Neumann bound-
ary condition, as introduced in (31). In the present situation however, one has to
assume that this problem is well-posed, which can again be tackled with the help of
T-coercivity: one finds results that are similar to those of “Appendix A”. Then, the
study of the well-posedness of (57) proceeds as before. Namely, one introduces

K T (Ω,μ) := {v ∈ XT (Ω,μ) : divμv = 0}.

There holds the direct, continuous decomposition

H(curl;Ω) = ∇[H1(Ω)] ⊕ K T (Ω,μ),

together with equivalence of norms in K T (Ω,μ), and the compact imbedding of
K T (Ω,μ) in L2(Ω). We refer to the same bibliographical references as in Sects. 2
and 3.
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One then uses

V+
h := {vh ∈ H(curl;Ω) : vh |K ∈ R1(K ), ∀K ∈ Th},

M+
h := {qh ∈ H1(Ω) : qh |K ∈ P1(K ), ∀K ∈ Th},

to discretize (57), resp. (31). The analysis of the interpolation error on the magnetic
field can again be carried out with the combined interpolation operator. To prove the
uniform discrete inf-sup condition of the form a′

ω on V+
h × V+

h and error estimates,
one has to study the properties of the discrete spaces

K h(μ) := {
vh ∈ V+

h : (μvh |∇qh)0,Ω = 0, ∀qh ∈ M+
h

}
. (58)

Uniform equivalence of norms in K h(μ), resp. uniform discrete inf-sup condition, are
obtained with techniques that are completely similar to those developed in the proofs
of Theorems 3 (“full” T-coercivity) and 4 (“weak” T-coercivity), resp. Theorem 5.

9 Conclusions and extensions

We have studied the time-harmonic Maxwell equations for a model with one sign-
changing coefficient. We have proved optimal convergence rates on the error, when
the numerical approximation is computed with the help of the Nédélec’s first family
of edge finite elements. For low-regularity solutions, those results are achieved with
the help of the combined interpolation operator designed in [22, 23]. All those results
have been obtained with the help of explicit T-coercivity operators for the derivation
of the inf-sup condition.

A possible extension is to have a boundary data, illustrated below for the problem
expressed in the electric field. In this case, let us assume for instance that e has a
non-vanishing tangential trace, namely one replaces e× n = 0 on ∂Ω by e× n = eΓ

on ∂Ω in (1), where the data eΓ defined on ∂Ω is actually equal to the tangential trace
of some field e
 ∈ H(curl;Ω). Introducing e0 = e − e
 ∈ H0(curl;Ω), one finds
that e0 solves the time-harmonic Maxwell equations (1), with modified right-hand
sides. Hence one may study these problems as before. In order to determine explicit
convergence rates, one needs to have some ad hoc extra-regularity assumptions on e
.
Another interesting extension to consider is to address the time-harmonic Maxwell
equations, with two sign-changing coefficients.

Acknowledgements The author thanksThéophileChaumont-Frelet andLucasChesnel formany interesting
discussions and feedbacks, and Axel Modave for producing the numerical results.
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A Practical T-coercivity for the companion scalar problem

A.1 Explicit T-coercivity operators

In practice, how to realize explicitly the T-coercivity for awell-posed companion scalar
problem (5) in the interface case? The concept was originally introduced in [13] (see
Theorem 2.1).
We provide a list à la Prévert to describe a number of situations where explicit T-
coercivity operators are available, taking into account the geometry of the domain Ω ,
and the shape of the interface induced by the partitionP = (Ωp)p=+,−. In some cases
the results are known for domains in R2 (we use the notations Ω2, resp. (Ω2p)p=+,−).
We rely on Refs. [8–10, 15, 17, 19, 47] for the precise results:

– the geometry is symmetric with respect to the interface, cf. §5.1 in [47] or §3.1 in
[9]; this implies that the interface is a subset of a hyperplane;

– the geometry is tubular with respect to the interface, with a smooth interface, cf.
§3.4 in [9];

– the domain Ω2 is a disk or an angular sector in R2, and Ω2+ and Ω2− are angular
subsectors, cf. §3.2 in [9], or the domainΩ2 is the union of self-replicating triangles
inR2, andΩ2+ andΩ2− are union of contiguous triangles, cf. §3 in [8]; this implies
that the interface has exactly one corner inside Ω2. This can be generalized to a
geometry in R3, by taking Ω := Ω2 × (a, b), resp. Ω± := Ω2± × (a, b), cf. §7.2
in [10], for some a < b; this implies that the interface has exactly one edge, and
no vertex, inside Ω .

– Ω is the cube (−a, a)3, Ω+ or Ω− is the sub-cube (0, a)3, cf. §7.3 in [10], for
some a > 0; or §5.2 in [47] for the same setting in a square domain Ω2 in R2.

Then one can build explicitly an operator T0 that fulfills (11). We say that there is a
“full” T-coercivity operator T0 available. In all of the above, the operator T0 is derived
from elementary geometrical transforms, such as symmetries, rotations and angle
dilation. Except for the latter, all those transforms can be used after discretization,
provided the underlying discrete geometrical structures (in our case, the meshes, see
Sect. 4) are conforming with respect to the transforms.
One can check that, thanks to the generic definition of the operators T0 that is used
(cf. p. 1915 in [13] or p. 4274 in [47]), in all instances, one has (T0)2 = IH1

0 (Ω).
On the other hand, inmany other configurations, and even though the scalar problem

(5) iswell-posed, only a “weak”T-coercivity operator T , defined in the following sense
(see Lemma 2 in [8]), can be built explicitly:

{∃α, β > 0, ∃T ∈ L(H1
0 (Ω)) bijective,

∀q ∈ H1
0 (Ω), (ε∇q|∇(Tq))0,Ω ≥ α ‖∇q‖20,Ω − β ‖q‖20,Ω .

(59)

Themain idea (see §4.3 in [9]) to build those operators is to use localization arguments.
For that, the mathematical tool of choice is an ad hoc partition of unity function. First,
one can focus on a neighborhood of the interface. Second, one separates corners and
edges (in R2), or one splits a smooth interface, etc., into elementary blocks that fit
locally the situations described above. We provide another list à la Prévert in which
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such a “weak” T-coercivity operator T can be built. The geometry of the domain Ω ,
and the partition P = (Ωp)p=+,− are such that:

– the geometry is locally symmetric with respect to the interface, cf. §4 in [19] or
§7.4 in [10];

– the interface is smooth, cf. §2.B.1 in [15].
– the partition of the domain Ω2 is such that the interface separating Ω2+ and Ω2−
is polygonal, cf. §4 in [8]; this can be generalized to a geometry in R3, by taking
Ω := Ω2 × (a, b), resp. Ω± := Ω2± × (a, b), for some a < b; in principle, in
R3, it could be generalized to a polyhedral interface.

Again in all instances above, one has T 2 = IH1
0 (Ω), see Lemma 2 in [8].

Remark 5 Notice that (59) also fits the original concept of T-coercivity, cf. §2 in [13].

A.2 Discrete T-coercivity for the companion scalar problem

We assume below that the companion scalar problem (5) is well-posed.
With the help of “full” or “weak” T-coercivity operators for this problem, one may
define discrete T-coercivity operators that help prove well-posedness of the discrete
scalar problems (23). As a matter of fact, this is made possible thanks to the use, in
the definition of the exact operators T0 (“full” T-coercivity operator) and T (“weak”
T-coercivity operator), of elementary geometrical transforms, such as symmetries and
rotations. This happens when the interface is part of a hyperplane, polygonal (in R2)
or polyhedral (in R3). Also, one needs to interpolate the partition of unity function for
the “weak” T-coercivity operator. Then, one can implement the discrete operators: this
amounts to using (locally for the “weak” T-coercivity operator) T-conform meshes.
Namely, themesh is first built inΩ−, and thenmapped toΩ+ via the same geometrical
transforms as the ones that were chosen to design T0 or T , in order to define the mesh
there. Or the other way around, fromΩ+ toΩ−. For the “weak” T-coercivity operator,
the process is localized to a neighborhoodof the interface.We refer to [8, 19] for details.
Consequently, when one has at hand a “full” T-coercivity operator T0, it can also be
used to establish the uniform discrete T-coercivity of the discrete scalar problems (23).
Namely, T0 is such that

{∀h, T0[Mh] ⊂ Mh, and
∃α′

0 > 0, ∀h, ∀qh ∈ Mh, (ε∇qh |∇(T0qh))0,Ω ≥ α′
0 ‖∇qh‖20,Ω .

(60)

As a first consequence of (60), we note that since (T0)2 = IH1
0 (Ω), one has actually

T0[Mh] = Mh for all h. Another by-product of (60) is that (qh, q ′
h) �→ (ε∇qh |∇q ′

h)0,Ω
fulfills a uniform discrete inf-sup condition, ie.

∃γ
0

> 0, ∀h, ∀qh ∈ Mh, sup
q ′
h∈Mh\{0}

|(ε∇qh |∇q ′
h)0,Ω |

‖q ′
h‖H1

0 (Ω)

≥ γ
0
‖qh‖H1

0 (Ω). (61)

So, the discrete scalar problems (23) are well-posed, and the classical error estimate
holds: ‖s − sh‖H1

0 (Ω) � infqh∈Mh ‖s − qh‖H1
0 (Ω). See Theorem 2 in [19] for details.
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On the other hand, when one has at hand a “weak” T-coercivity operator T , because of
the presence of the partition of unity function, one builds “weak” discrete T-coercivity
operators (see Lemma 3 in [8]), that is discrete operators (Th)h such that

∃C,h0 > 0, ∀h ≤ h0, ∃Th ∈ L(Mh), sup
q∈Mh\{0}

‖∇(T − Th)qh‖0,Ω
‖∇qh‖0,Ω ≤ C h.

Obviously, suph ‖Th‖L(Mh) < ∞. We call this situation the “weak” T-coercivity
framework. It follows that one has a “weak” discrete T-coercivity property (pp. 820-
821 in [8]):

∃α, β,h0 > 0, ∀h ≤ h0, ∀qh ∈ Mh,

(ε∇qh |∇(Thqh))0,Ω ≥ α ‖∇qh‖20,Ω − β ‖qh‖20,Ω . (62)

Then, thanks to Proposition 3 in [19] where one argues by contradiction,3 one can
prove that (qh, q ′

h) �→ (ε∇qh |∇q ′
h)0,Ω fulfills a uniform discrete inf-sup condition,

for h small enough, ie.

∃γ
0
,h0 > 0, ∀h ≤ h0, ∀qh ∈ Mh, sup

q ′
h∈Mh\{0}

|(ε∇qh |∇q ′
h)0,Ω |

‖q ′
h‖H1

0 (Ω)

≥ γ
0
‖qh‖H1

0 (Ω).

(63)

So, one can derive results for the discrete scalar problems (23) that are similar to those
that where obtained when a “full” T-coercivity operator was available, now for h small
enough, that is when h ≤ h0.
Finally, when the interface is smooth, the same guidelines apply, see §2.B.1 in [15].
In this case, one needs to have at hand some curvilinear finite elements, such as
isoparametric finite elements (cf. §4.3 in [20]), near the interface. It is known that
optimal interpolation properties hold, ie. one may recover up to O(h) accuracy using
Lagrange’s first-order finite elements for a sufficiently smooth scalar field. Or, one can
choose the approach of [42] to achieve again optimal convergence rate: for that one
needs a family of simplicial meshes which resolve the smooth interface sufficiently
well. Observe that for first-order edge finite elements, the latter approach can also be
used, to yield O(h) interpolation accuracy for a sufficiently smooth vector field of
H(curl;Ω) (see [39]).

B The div–curl problem

The general div–curl problem is expressed as

{
Find u ∈ H0(curl;Ω) such that
curl u = f and div εu = g in Ω.

(64)

3 In Theorem 5 in Sect. 6, we proceed similarly to derive a uniform discrete inf-sup condition for the form
aω . A proof is given there. Note that because we argue by contradiction, bounds are not explicit anymore.
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In the classical case, according to Theorem 6.1.4 in [3] (∂Ω is connected):

v �→ (curl v, div εv)

is a bijective mapping from H0(curl;Ω) to HΣ
0 (div 0;Ω) × H−1(Ω).

Hence, to ensure well-posedness of the div–curl model in the classical case, the source
terms must be chosen such that

f ∈ HΣ
0 (div 0;Ω), g ∈ H−1(Ω). (65)

We keep this choice for the div–curl model in the interface case, and use the operator
T0 introduced in (11) below. Let

V := H0(curl;Ω) × H1
0 (Ω) endowed with ‖(v, q)‖V := (‖v‖2H(curl;Ω)

+‖q‖2
H1
0 (Ω)

)1/2;
a((u, p), (v, q)) := (curl u| curl v)0,Ω + (εu|∇q)0,Ω + (εv|∇ p)0,Ω,

∀(u, p), (v, q) ∈ V.

We check below that the equivalent variational formulation of problem (64) writes

{
Find (u, p) ∈ V such that
a((u, p), (v, q)) = ( f | curl v)0,Ω − 〈g, q〉H1

0 (Ω), ∀(v, q) ∈ V.
(66)

In (66), the left-hand side defines a continuous bilinear form on V, and the right-hand
side defines a continuous linear form on the same function space. The norm of the
right-hand side is bounded from above by ‖ f ‖0,Ω + ‖g‖−1,Ω .

Lemma 1 Let f ∈ HΣ
0 (div 0;Ω) and g ∈ H−1(Ω) be given. Then if (u, p) is a

solution to the variational formulation (66), it holds that p = 0.

Proof Choose the test function (∇(T0 p), 0) in (66). This yields (ε∇(T0 p)|∇ p)0,Ω =
0. Recall that ε is a symmetric tensor field, so one has α0‖∇ p‖20,Ω = 0 according to
(11), and it follows that p = 0. ��
Next, one has the classical result, see eg. §6.1.2 in [3].

Proposition 14 Let f ∈ HΣ
0 (div 0;Ω) and g ∈ H−1(Ω) be given. Then it holds that

u is a solution to the div–curl problem (64) if, and only if, (u, 0) is a solution to the
variational formulation (66).

Theorem 7 The form a is T-coercive.

Proof Let (u, p) ∈ V be given. Let us decompose u using (15): u = ∇ pu + ku with
(pu, ku) := (π1u,π2u) ∈ H1

0 (Ω) × K N (Ω, ε).

(i) Assume first that u = 0. Choosing (v
, q
) = (∇(T0 p), 0) yields

a((0, p), (v
, q
)) = (ε∇(T0 p)|∇ p)0,Ω ≥ α0 ‖∇ p‖20,Ω = α0 ‖(0, p)‖2V.
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(ii) Consider next that p = 0. Because ku ∈ K N (Ω, ε) with curl ku = curl u, one
has

a((u, 0), (v, q)) = (curl ku| curl v)0,Ω + (ε∇ pu|∇q)0,Ω .

One chooses in this case (v
, q
) = (ku, T0 pu). Indeed with the help of (11) and
(18)

a((u, 0), (v
, q
)) = ‖ curl ku‖20,Ω + (ε∇ pu|∇(T0 pu))0,Ω

≥ (C ′
W )−2‖ku‖2H(curl;Ω) + α0 ‖∇ pu‖20,Ω

≥ min((C ′
W )−2, α0)

(
‖ku‖2H(curl;Ω) + ‖∇ pu‖20,Ω

)

≥ γ ‖u‖2H(curl;Ω) = γ ‖(u, 0)‖2V,

where γ := 1
2 min((C ′

W )−2, α0) > 0.

(iii) In the general case, let us consider a “linear combination” of the above, eg.
(v
, q
) = (∇(T0 p) + ku, T0 pu). Then one finds

a((u, p), (v
, q
)) = ‖ curl ku‖20,Ω + (ε∇ pu|∇(T0 pu))0,Ω + (ε∇(T0 p)|∇ p)0,Ω

≥ (C ′
W )−2‖ku‖2H(curl;Ω) + α0 ‖∇ pu‖20,Ω + α0 ‖∇ p‖20,Ω

≥ γ ‖u‖2H(curl;Ω) + α0 ‖∇ p‖20,Ω
≥ γ ‖(u, p)‖2V,

because γ < α0. To conclude the proof, remark that T : (u, p) �→ (∇(T0 p) +
π2u, T0(π1u)) belongs to L(V).

��
Remark 6 In the above proof, T is an involution, when T0 is one too: T2 = IV.

Corollary 3 Let f ∈ HΣ
0 (div 0;Ω), g ∈ H−1(Ω) be given. Then there exists one,

and only one, solution to (u, p) to (66). In addition, p = 0 and ‖u‖H(curl;Ω) �
‖ f ‖0,Ω + ‖g‖−1,Ω .

On can proceed similarly for the div–curlcurl problem, see [23].
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