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Abstract
An evolving surface finite element discretisation is analysed for the evolution of a
closed two-dimensional surface governed by a system coupling a generalised forced
mean curvature flow and a reaction–diffusion process on the surface, inspired by
a gradient flow of a coupled energy. Two algorithms are proposed, both based on a
system coupling the diffusion equation to evolution equations for geometric quantities
in the velocity law for the surface. One of the numerical methods is proved to be
convergent in the H1 norm with optimal-order for finite elements of degree at least
two. We present numerical experiments illustrating the convergence behaviour and
demonstrating the qualitative properties of the flow: preservation of mean convexity,
loss of convexity, weak maximum principles, and the occurrence of self-intersections.

Mathematics Subject Classification 35R01 · 53C44 · 65M60 · 65M15 · 65M12

1 Introduction

In this paper we propose and analyse an evolving surface finite element semi-
discretisation of a geometric partial differential equation (PDE) system that couples a
forced mean curvature flow to a diffusion equation on the surface. The unknowns are
a time dependent two-dimensional closed, orientable, immersed surface Γ ⊂ R

3, and
a time and spatially varying surface concentration u.
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The coupled mean curvature–diffusion flow system is

v = −F(u, H)ν, (1.1a)

∂•u = −(∇Γ · v)u + ∇Γ · (
D(u)∇Γ u

)
, (1.1b)

where F and D are given sufficiently smooth functions. Associated with the surface
Γ are the geometric quantities the mean curvature H , the oriented continuous unit
normal field of the surface ν, and v the velocity of the evolving surface Γ , where
V = v ·ν denotes the normal velocity. In the case that Γ encloses a domain we always
choose the unit outward pointing normal field.

A special case, inspiring this work, with F(u, H) = g(u)H ,D(u) = G ′′(u) where
g(u) = G(u)− G ′(u)u and G(·) is given arises as the (L2, H−1)-gradient flow of the
coupled energy, [1, 2, 15],

E = E(Γ , u) =
∫

Γ

G(u), (1.2)

yielding

v = −g(u)Hν, (1.3a)

∂•u = −(∇Γ · v)u + ∇Γ · (
G ′′(u)∇Γ u

)
. (1.3b)

It is important to note that (1.1) contains not only the gradient flow of [1, 2, 15]
as a special case, but numerous other geometric flows as well. Examples are pure
mean curvature flow [34], the generalised mean curvature flows v = −V (H)ν, see,
e.g., [33], examples in [12] and [11], additively forced mean curvature flow [9, 16],
and [38] (see also the references therein). Also it arises as a sub-system in coupled
bulk–surface models such as that for tumour growth considered in [30].

1.1 Notation for evolving hypersurfaces

We adopt commonly used notation for surface and geometric partial differential equa-
tions. Our setting is that the evolution takes an initialCk hypersurfaceΓ 0 ⊂ R

3 and an
initial distribution u0 : Γ 0 → R and evolves the surface so that Γ (t) ≡ Γ [X ] ⊂ R

3

is the image

Γ [X ] ≡ Γ [X(·, t)] = {X(p, t) | p ∈ Γ 0}, X(·, 0) = IdΓ 0

of a smooth mapping X : Γ 0 × [0, T ] → R
3 such that X(·, t) is the parametrisation

of an orientable, immersed hypersurface for every t . We denote by v(x, t) ∈ R
3 at a

point x = X(p, t) ∈ Γ [X(·, t)] the velocity defined by

v(X(p, t), t) = ∂t X(p, t). (1.4)
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For a function η(x, t) (x ∈ Γ [X ], 0 ≤ t ≤ T ) we denote the material derivative (with
respect to the parametrization X ) as

∂•η(x, t) = d

dt
η(X(p, t), t) for x = X(p, t).

On any regular surface Γ ⊂ R
3, we denote by ∇Γ η : Γ → R

3 the tangential
gradient of a function η : Γ → R, and in the case of a vector-valued function
η = (η1, η2, η3)

T : Γ → R
3, we let ∇Γ η = (∇Γ η1,∇Γ η2,∇Γ η3). We thus use

the convention that the gradient of η has the gradient of the components as column
vectors, (in agreement with gradient of a scalar function is a column vector). We
denote by ∇Γ · η = tr(∇Γ η) the surface divergence of a vector field η on Γ , and
by ΔΓ η = ∇Γ · ∇Γ η the Laplace–Beltrami operator applied to η : Γ → R; see the
review [17] or [27,Appendix A], or any textbook on differential geometry for these
notions.

We suppose that Γ (t) is an orientable, immersed hypersurface for all t . In the case
that Γ is the boundary of a bounded open set Ω ⊂ R

3 we orient the unit normal
vector field ν : Γ → R

3 to point out of Ω . The surface gradient of the normal field
contains the (extrinsic) curvature data of the surface Γ . At every x ∈ Γ , the matrix of
the extended Weingarten map,

A(x) = ∇Γ ν(x),

is symmetric andof size 3×3 (see, e.g., [50,Proposition20]).Apart from the eigenvalue
0 (with eigenvector ν), its other two eigenvalues are the principal curvatures κ1 and
κ2. They determine the fundamental quantities

H := tr(A) = ∇Γ · ν = κ1 + κ2, |A|2 = κ2
1 + κ2

2 , (1.5)

where |A| denotes the Frobenius norm of the matrix A. Here, the mean curvature H
is, as in most of the literature, taken without the factor 1/2. In this setting, the mean
curvature of a sphere is positive.

For an evolving surface Γ with normal velocity v = V ν, using that ∇Γ f · ν = 0
for any function f , we have the fundamental equation

∇Γ · v = ∇Γ · (V ν) = ∇Γ V · ν + V ∇Γ · ν = V H . (1.6)

The following geometric identities hold for any sufficiently smooth evolving surface
Γ (t), (see for example [11, 27, 34]):

∇Γ H = ΔΓ ν + |A|2ν, (1.7)

∂•ν = −∇Γ V , (1.8)

∂•H = −ΔΓ V − |A|2V . (1.9)

They are fundamental in the derivation of the system of evolution equations discretised
in this paper.
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1.2 Our approach

The key idea of our approach is that it is based on a system of evolution equations
coupling the two Eqs. (1.1a) and (1.1b) to parabolic equations for geometric variables
in the velocity law. This approach was first used for mean curvature flow [37]. The sys-
tem is derived using the geometric identities (1.7), (1.8) and (1.9). Using the notation
∂i ·, i = 1, 2 for appropriate partial derivatives, we prove the following lemma.

Lemma 1.1 Let Γ [X ] and u be sufficiently smooth solutions of the Eqs. (1.1a)–(1.1b).
Suppose that F, K : R2 → R are sufficiently smooth, satisfy

r = −F(s, q) ⇐⇒ q = −K (s, r), ∀r , s, q ∈ R, (1.10)

and in addition assume that ∂2F(u, H) is positive. Then the normal vector ν, the mean
curvature H and the normal velocity V satisfy the two following systems of non-linear
parabolic evolution equations:

∂• H = ΔΓ [X ]
(
F(u, H)

) + |A|2F(u, H), (1.11)

1

∂2F(u, H)
∂•ν = ΔΓ [X ]ν + |A|2ν + ∂1F(u, H)

∂2F(u, H)
∇Γ [X ]u, (1.12)

and

∂2K (u, V ) ∂•V = ΔΓ [X ]V + |A|2V − ∂1K (u, V ) ∂•u, (1.13)

∂2K (u, V ) ∂•ν = ΔΓ [X ]ν + |A|2ν + ∂1K (u, V )∇Γ [X ]u. (1.14)

Proof These two sets of equations are an easy consequence of the geometric identities
(1.5), (1.7)–(1.9), and the following calculations

∂•ν = −∇Γ [X ]V = ∇Γ [X ]
(
F(u, H)

)

= ∂1F(u, H)∇Γ [X ]u + ∂2F(u, H)∇Γ [X ] H ,

as well as

∇Γ H = −∇Γ [X ]
(
K (u, V )

)

= −∂2K (u, V )∇Γ [X ]V − ∂1K (u, V )∇Γ [X ]u.

�
Employing the lemma above we see that a sufficiently smooth solution of the

original initial value problem (1.1) also satisfies two other different problems involving
parabolic PDE systems in which the dependent variables are a parametrised surface
Γ [X ], the velocity v of Γ , a surface concentration field u, and either the variables
ν and V or ν and H . In these problems the variables ν, V or ν, H are considered to
be independently evolving unknowns, rather than being determined by the associated
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Numerical analysis for the interaction of mean curvature… 877

geometric quantities of the surface Γ [X ] (in contrast to the methods of Dziuk [26] or
Barrett, Garcke, and Nürnberg [10], etc.).

Problem 1.1 Given {Γ 0, u0, ν0, V 0}, find for t ∈ (0, T ] functions {X(·, t) : Γ 0 →
R
3, v(·, t) : Γ [X(·, t)] → R

3, u : Γ [X(·, t)] → R, ν(·, t) : Γ [X(·, t)] → R
3,

V (·, t) : Γ [X(·, t)] → R} such that

∂t X = v ◦ X , (1.15a)

v = V ν, (1.15b)

∂2K (u, V ) ∂•ν = ΔΓ [X ]ν + |A|2ν + ∂1K (u, V )∇Γ [X ]u, (1.15c)

∂2K (u, V ) ∂•V = ΔΓ [X ]V + |A|2V − ∂1K (u, V ) ∂•u, (1.15d)

∂•u + u ∇Γ [X ] · v = ∇Γ [X ] · (
D(u)∇Γ [X ]u

)
, (1.15e)

with initial data

X(·, 0) = IdΓ 0 , ν(·, 0) = ν0,

V (·, 0) = V 0, u(·, 0) = u0,

where ν0 is the unit normal to Γ 0 and V 0 = −F(u0, H0) with H0 being the mean
curvature of Γ 0.

Problem 1.2 Given {Γ 0, u0, ν0, H0}, find for t ∈ (0, T ] the functions {X(·, t) : Γ 0 →
R
3, u : Γ [X(·, t)] → R, v(·, t) : Γ [X(·, t)] → R

3, ν(·, t) : Γ [X(·, t)] → R
3,

V (·, t) : Γ [X(·, t)] → R} such that

∂t X = v ◦ X , (1.16a)

v = −F(u, H)ν, (1.16b)

1

∂2F(u, H)
∂•ν = ΔΓ [X ]ν + |A|2ν + ∂1F(u, H)

∂2F(u, H)
∇Γ [X ]u, (1.16c)

∂•H = ΔΓ [X ]
(
F(u, H)

) + |A|2F(u, H), (1.16d)

∂•u + u ∇Γ [X ] · v = ∇Γ [X ] · (
D(u)∇Γ [X ]u

)
, (1.16e)

with initial data

X(·, 0) = IdΓ 0 , ν(·, 0) = ν0,

H(·, 0) = H0, u(·, 0) = u0,

where ν0 and H0 are, respectively, the unit normal to and mean curvature of Γ 0.

The idea is to discretise these systems using the evolving surface finite element
method, see, e.g., [18], and also [21, 41]. The same approach was successfully used
previously formean curvatureflow [37], alsowith additive forcing [38], and in arbitrary
codimension [13], for Willmore flow [39], and for generalised mean curvature flows
[12].
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1.3 Main results

In Theorem 7.1, we state and prove optimal-order time-uniform H1 norm error esti-
mates for the spatial semi-discretisation, with finite elements of degree at least 2, in all
variables of Problem 1.1, over time intervals on which the solution remain sufficiently
regular. This excludes the formation of singularities, but not self-intersections. We
expect that an analogous proof would suffice for the other system Problem 1.2 but due
to length this is not presented here. The convergence proof separates the questions
of consistency and stability. Stability is proved via energy estimates, testing with the
errors and also with their time derivatives. Similarly to previous works, the energy esti-
mates are performed in the matrix–vector formulation, and they use technical lemmas
comparing different quantities on different surfaces, cf. [37, 40]. Due to the non-linear
structure of the evolution equations in the coupled system we will also need similar
but new lemmas estimating differences of solution-dependent matrices, cf. [12]. A key
issue in the stability proof is to establish a W 1,∞ norm error bounds for all variables.
These are obtained from the time-uniform H1 norm error estimates via an inverse
inequality.

In [15,Chapter 5] Bürger proved qualitative properties for the continuous coupled
flow (1.3) with energy (1.2), for example the preservation of mean convexity, the pos-
sible loss of convexity, the existence of a weak maximum principle for the diffusion
equation, the decay of energy, and the existence of self-intersections. These proper-
ties are enjoyed by our evolving surface finite element method as illustrated in the
numerical simulations in Sect. 10.

1.4 Related numerical analysis

Numerical methods for related problems have been proposed and studied in many
papers. We first restrict our literature overview for numerical methods for at least
two-dimensional surface evolutions.

Algorithms for mean curvature flow were proposed, e.g., by Dziuk in [26], in
[10], and in [29] based on the DeTurck trick. The first provably convergent algorithm
was proposed and analysed in [37], while [38] extends these convergence results to
additively forced mean curvature flow coupled to a semi-linear diffusion equation
on the surface. Recently, Li [43] proved convergence of Dziuk’s algorithm, for two-
dimensional surfaces requiring surface finite elements of degree k ≥ 6.

Evolving surface finite element based algorithms for diffusion equations on evolv-
ing surface were analysed, for example, in [18, 20], in particular non-linear equations
were studied in [36, 42]. On the numerical analysis of both problems we also refer to
the comprehensive survey articles [17, 19], and [11]. For curve shortening flow cou-
pled to a diffusion on a closed curve optimal-order finite element semi-discrete error
estimates were shown in [47], while [8] have proved convergence of the corresponding
backward Euler full discretisation. The case of open curves with a fix boundary was
analysed in [49]. For forced-elastic flow of curves semi-discrete error estimates were
proved in [48]. For mean curvature flow coupled to a diffusion process on a graph
optimal-order fully discrete error bounds were recently shown in [24].
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1.5 Outline

The paper is organised as follows. Section 1 introduces basic notation and geomet-
ric quantities, and it is mainly devoted to the derivation of the two coupled systems.
In Sect. 2 we present the weak formulations of the coupled problems, and explore
the properties of the coupled flow. In Sect. 3 we briefly recap the evolving surface
finite element method, define interpolation operators and Ritz maps. Sect. 4 presents
important technical results relating different surfaces. In Sect. 5 we present the semi-
discrete systems, while Sect. 6 presents their matrix–vector formulations, and the error
equations. Section 7 contains the most important results of the paper: consistency and
stability analysis, as well as our main result which proves optimal-order semi-discrete
error estimates. Sections 8 and 9 are devoted to the proofs of the results presented in
Sect. 7. Finally, in Sect. 10 we describe an efficient fully discrete scheme, based on
linearly implicit backward differentiation formulae. Then we present numerical exper-
iments which illustrate and complement our theoretical results. We present numerical
experiments testing convergence, and others which preserve mean convexity, but lose
convexity, report on weak maximum principles, energy decay, and on an experiment
with self-intersection.

2 Weak formulation, its properties, and examples

Throughout the paper we will assume the following properties of the nonlinear func-
tions:

1. ∂1F
∂2F is locally Lipschitz continuous,

2. 1
∂2F is positive and locally Lipschitz continuous,

3. ∂1K and ∂2K are locally Lipschitz continuous,
4. ∂2K (u, V ) is positive,
5. D satisfies 0 < D0 ≤ D(·) ≤ D1 and D′ is locally Lipschitz continuous.

The domain of definitions of the above nonlinearities are depending on the particular
problem at hand. These properties hold on a compact neighbourhood of the exact
smooth solution, on which ∂2K (u, V ) and 1/∂2F(u, H) are bounded from above and
below by positive constants, and all functions are Lipschitz continuous.

2.1 Weak formulations

Weak formulation of Problem 1.1

The weak formulation of Problem 1.1 reads: Find X : Γ 0 → R
3 defining the

(sufficiently smooth) surface Γ [X ] with velocity v, and ν ∈ L2
H1(Γ [X ])3 with

∂•ν ∈ L2
L2(Γ [X ])3 , V ∈ L2

H1(Γ [X ]) with ∂•V ∈ L2
L2(Γ [X ]), and u ∈ L2

H1(Γ [X ]) with
∂•u ∈ L2

L2(Γ [X ]) such that, denoting A = ∇Γ [X ]ν and | · | the Frobenius norm,
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v = V ν, (2.1a)
∫

Γ [X ]
∂2K (u, V ) ∂•ν · ϕν +

∫

Γ [X ]
∇Γ [X ]ν · ∇Γ [X ]ϕν

=
∫

Γ [X ]
|A|2ν · ϕν +

∫

Γ [X ]
∂1K (u, V )∇Γ [X ]u · ϕν, (2.1b)

∫

Γ [X ]
∂2K (u, V ) ∂•V ϕV +

∫

Γ [X ]
∇Γ [X ]V · ∇Γ [X ]ϕV

=
∫

Γ [X ]
|A|2V ϕV −

∫

Γ [X ]
∂1K (u, V ) ∂•u ϕV , (2.1c)

d

dt

( ∫

Γ [X ]
u ϕu

)
+

∫

Γ [X ]
D(u)∇Γ [X ]u · ∇Γ [X ]ϕu =

∫

Γ [X ]
u ∂•ϕu, (2.1d)

holds for all test functions ϕν ∈ L2
H1(Γ [X ])3 , ϕV ∈ L2

H1(Γ [X ]), and ϕu ∈ L2
H1(Γ [X ])

with ∂•ϕu ∈ L2
L2(Γ [X ]), together with the ODE for the positions (1.4). The coupled

weak system is endowed with initial data Γ 0, ν0, V 0, and u0. For the definition of
the Bochner-type spaces L2

L2(Γ [X ]) and L2
H1(Γ [X ]), which consist of time-dependent

functions spatially defined on an evolving hypersurface, we refer to [4].

Weak formulation of Problem 1.2

The weak formulation of Problem 1.2 reads: Find X : Γ 0 → R
3 defining the

(sufficiently smooth) surface Γ [X ] with velocity v, and ν ∈ L2
H1(Γ [X ])3 with

∂•ν ∈ L2
L2(Γ [X ])3 , H ∈ L2

L2(Γ [X ]) with ∂• H ∈ L2
L2(Γ [X ]), V ∈ L2

H1(Γ [X ]), and
u ∈ L2

H1(Γ [X ]) with ∂•u ∈ L2
L2(Γ [X ]) such that, denoting A = ∇Γ [X ]ν and | · | the

Frobenius norm,

v = V ν, (2.2a)
∫

Γ [X ]
1

∂2F(u, H)
∂•ν · ϕν +

∫

Γ [X ]
∇Γ [X ]ν · ∇Γ [X ]ϕν

=
∫

Γ [X ]
|A|2ν · ϕν +

∫

Γ [X ]
∂1F(u, H)

∂2F(u, H)
∇Γ [X ]u · ϕν, (2.2b)

∫

Γ [X ]
∂• H ϕH −

∫

Γ [X ]
∇Γ [X ]V · ∇Γ [X ]ϕH = −

∫

Γ [X ]
|A|2V ϕH , (2.2c)

∫

Γ [X ]
V ϕV +

∫

Γ [X ]
F(u, H) ϕV = 0, (2.2d)

d

dt

( ∫

Γ [X ]
u ϕu

)
+

∫

Γ [X ]
D(u)∇Γ [X ]u · ∇Γ [X ]ϕu =

∫

Γ [X ]
u ∂•ϕu, (2.2e)

holds for all test functions ϕν ∈ L2
H1(Γ [X ])3 , ϕ

H ∈ L2
H1(Γ [X ]), ϕ

V ∈ L2
L2(Γ [X ]), and

ϕu ∈ L2
H1(Γ [X ]) with ∂•ϕu ∈ L2

L2(Γ [X ]), together with the ODE for the positions (1.4).

The coupled weak system is endowed with initial data Γ 0, ν0, H0, and u0.
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2.2 Properties of the weak solution

1. Conservation of mass: This is easily seen by testing the weak formulation (2.1d)
with ϕu ≡ 1.

2. Weak maximum principle: By testing the diffusion equation with min (u, 0) and
assuming that

0 ≤ u0 ≤ M0, a.e. on Γ 0,

we find, cf. [15,Sect. 5.4],

0 ≤ u(·, t), a.e. on Γ [X ]. (2.3)

3. Energy bounds:LetG be any convex function, forwhich g(u) = G(u)−G ′(u)u ≥
0. Taking the time derivative of the energy

∫
Γ [X ] G(u), and using the diffusion

equation (1.1b) and (1.6), we obtain,

d

dt

( ∫

Γ [X ]
G(u)

)

=
∫

Γ [X ]
G ′(u)∂•u +

∫

Γ [X ]
(∇Γ [X ] · v)G(u)

=
∫

Γ [X ]
G ′(u)

(
∇Γ [X ] · (D(u)∇Γ [X ]u

) − u(∇Γ [X ] · v)
)

+
∫

Γ [X ]
(∇Γ [X ] · v)G(u)

=
∫

Γ [X ]
G ′(u)

(
∇Γ [X ] · (D(u)∇Γ [X ]u

) − uV H
)

+
∫

Γ [X ]
V H G(u)

=
∫

Γ [X ]
G ′(u)∇Γ [X ] · (D(u)∇Γ [X ]u

) +
∫

Γ [X ]
(
G(u) − G ′(u)u)

)
V H

= −
∫

Γ [X ]
D(u)G ′′(u)|∇Γ [X ]u|2 +

∫

Γ [X ]
g(u)V H

yielding

d

dt

( ∫

Γ [X ]
G(u)

)
+

∫

Γ [X ]
D(u)G ′′(u)|∇Γ [X ]u|2 =

∫

Γ [X ]
g(u)V H . (2.4)

Energy decrease and a priori estimates follow provided that V H ≤ 0, (note that
D(u)G ′′(u) ≥ 0, g(u) = G(u)−G ′(u)u ≥ 0 are already assumed).This inequality
holds assuming K (u, V )V ≥ 0 and F(u, H)H ≥ 0, respectively, for Problem 1.1
and Problem 1.2. For system (1.3) the energy identity (2.4) leads to the natural
energy decrease for the gradient flow [15,Sects. 3.3–3.4], [1].
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3 Finite element discretisation

3.1 Evolving surface finite elements

For the spatial semi-discretisation of the weak coupled systems (2.1) and (2.2) we
will use the evolving surface finite element method (ESFEM) [18, 25]. We use curved
simplicial finite elements and basis functions defined by continuous piecewise poly-
nomial basis functions of degree k on triangulations, as defined in [21,Sect. 2], [41]
and [31].

3.1.1 Surface finite elements

The given smooth initial surface Γ 0 is triangulated by an admissible family of triangu-
lations Th of degree k [21,Sect. 2], consisting of curved simplices of maximal element
diameter h; see [18] and [31] for the notion of an admissible triangulation, which
includes quasi-uniformity and shape regularity. Associated with the triangulation is a
collection of unisolvent nodes p j ( j = 1, . . . , N ) for which nodal variables define
the piecewise polynomial basis functions {φ j }N

j=1.

Throughout we consider triangulations Γh[y] isomorphic to Γ 0
h with respect to the

labelling of the vertices, faces, edges and nodes. We use the notation y ∈ R
3N to

denote the positions y j = y| j , of nodes mapped to p j so that

Γh[y] :=
{

q =
N∑

j=1

y jφ j (p)

∣
∣∣ p ∈ Γ 0

h

}
.

That is we assume there is a unique pullback p̃ ∈ Γ 0
h such that for each q ∈ Γh[y] it

holds q = ∑N
j=1 y jφ j ( p̃).

We define globally continuous finite element basis functions using the pushforward

φi [y] : Γh[y] → R, i = 1, . . . , N

such that

φi [y](q) = φi ( p̃), q ∈ Γh[y].

Thus they have the property that on every curved triangle their pullback to the reference
triangle is polynomial of degree k, which satisfy at the nodes φi [y](y j ) = δi j for all
i, j = 1, . . . , N . These basis functions define a finite element space on Γh[y]

Sh[y] = Sh(Γh[y]) = span
{
φ1[y], φ2[y], . . . , φN [y]}.
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We associate with a vector z = {z j }N
j=1 ∈ R

N a finite element function zh ∈ Sh[y]
by

zh(q) =
N∑

j=1

z jφ j [y](q), q ∈ Γh[y].

For a finite element function zh ∈ Sh[y], the tangential gradient ∇Γh [y]zh is defined
piecewise on each curved element.

3.1.2 Evolving surface finite elements

We set Γ 0
h to be an admissible initial triangulation that interpolates Γ 0 at the nodes p j

and we denote by x0 the vector in R
3N that collects all nodes so x0j = p j . Evolving

the j th node p j in time by a velocity v j (t) ∈ C([0, T ]), yields a collection of surface
nodes denoted by x(t) ∈ R

3N , with x j (t) = x(t)| j at time t and x(0) = x0. Given
such a collection of surface nodes we may define an evolving discrete surface by

Γh[x(t)] :=
{

Xh(p, t) :=
N∑

j=1

x j (t)φ j (p)

∣∣∣ p ∈ Γ 0
h

}
.

That is, the discrete surface at time t is parametrized by the initial discrete surface via
the map Xh(·, t) : Γ 0

h → Γh[x(t)]
which has the properties that Xh(p j , t) = x j (t) for j = 1, . . . , N , Xh(ph, 0) = ph

for all ph ∈ Γ 0
h and for each q ∈ Γh[x(t)] there exists a unique pullback p(q, t) ∈ Γ 0

h

such that q = ∑N
j=1 x j (t)φ j (p(q, t)). We assume that the discrete surface remains

admissible, which – in view of the H1 norm error bounds of our main theorem – will
hold provided the flow map X is sufficiently regular, see Remark 7.4.

We define globally continuous finite element basis functions using the pushforward

φi [x(t)] : Γh[x(t)] → R, i = 1, . . . , N

such that

φi [x(t)](q) = φi (p(q, t)), q ∈ Γh[x(t)].

Thus they have the property that on every curved evolving triangle their pullback
to the reference triangle is polynomial of degree k, and which satisfy at the nodes
φi [x(t)](x j ) = δi j for all i, j = 1, . . . , N . These basis functions define an evolving
finite element space on Γh[x(t)]

Sh[x(t)] = Sh(Γh[x(t)]) = span
{
φ1[x(t)], φ2[x(t)], . . . , φN [x(t)]}.

We define a material derivative, ∂•
h ·, on the time dependent finite element space

as the push forward of the time derivative of the pullback function. Thus the basis
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functions satisfy the transport property [18]:

∂•
hφ j [x(t)] = 0. (3.1)

It follows that for ηh(·, t) ∈ Sh[x(t)], (with nodal values (η j (t))N
j=1), we have

∂•
hηh =

N∑

j=1

η̇ j (t)φ j [x(t)],

where the dot denotes the time derivative d/dt . The discrete velocity vh(q, t) ∈ R
3 at

a point q = Xh(p, t) ∈ Γ [Xh(·, t)] is given by

∂t Xh(p, t) = vh(Xh(p, t), t) =
N∑

j=1

ẋ j (t)φ j (p), p ∈ Γ 0
h .

Definition 3.1 (Interpolated-surface) Let x∗(t) ∈ R
3N and v∗(t) ∈ R

3N be the
vectors with components x∗

j (t) = X(p j , t), v∗
j (t) := Ẋ(p j , t) where X(·, t) solves

Problem 1.1 and 1.2. The evolving triangulated surface Γh[x∗(t)] associated with
X∗

h(·, t) is called the interpolating surface, with interpolating velocity v∗
h(t).

The interpolating surface Γh[x∗(t)] associated with X∗
h(·, t) is assumed to be admis-

sible for all t ∈ [0, T ], which indeed holds provided the flow map X is sufficiently
regular, see Remark 7.4.

3.2 Lifts

Any finite element function ηh on the discrete surface Γh[x(t)], with nodal values
(η j )

N
j=1, is associated with a finite element function η̂h on the interpolated surface

Γh[x∗(t)] with the exact same nodal values. This can be further lifted to a function on
the exact surface by using the lift operator �, mapping a function on the interpolated
surface Γh[x∗(t)] to a function on the exact surface Γ [X(·, t)], via the identity, for
x ∈ Γh[x∗(t)],

x� = x − d(x, t)νΓ [X ](x�, t), and setting η̂�
h(x�) = η̂h(x),

using a signed distance function d, provided that the two surfaces are sufficiently
close. For more details on the lift �, see [19, 21, 25]. The inverse lift is denoted by
η−� : Γh[x∗(t)] → R such that (η−�)� = η.

Then the composed lift operator L maps finite element functions on the discrete sur-
faceΓh[x(t)] to functions on the exact surfaceΓ [X(·, t)], see [37], via the interpolated
surface Γh[x∗(t)], by

ηL
h = (̂ηh)�.
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We introduce the notation

x L
h (x, t) = X L

h (p, t) ∈ Γh[x(t)] for x = X(p, t) ∈ Γ [X(·, t)],

where, for ph ∈ Γ 0
h , from the nodal vector x(t) we obtain the function Xh(ph, t) =

∑N
j=1 x j (t)φ j [x(0)](ph), while from u(t), with xh ∈ Γh[x(t)], we obtain uh(xh, t) =

∑N
j=1 u j (t)φ j [x(t)](xh), and similarly for any other nodal vectors.

3.3 Surfacemass and stiffness matrices and discrete norms

For a triangulation Γh[y] associated with the nodal vector y ∈ R
3N , we define the

surface-dependent positive definitemassmatrixM(y) ∈ R
N×N and surface-dependent

positive semi-definite stiffness matrix A(y) ∈ R
N×N :

M(y)|i j =
∫

Γh [y]
φi [y] φ j [y], and A(y)|i j =

∫

Γh [y]
∇Γh [y]φi [y] · ∇Γh [y]φ j [y],

and then set

K(y) = M(y) + A(y).

For a pair of finite element functions zh, wh ∈ Sh[y] with nodal vectors z,w we have

(zh, wh)L2(Γh [y]) = zTM(y)w and (∇Γh [y]zh,∇Γh [y]wh)L2(Γh [y]) = zTA(y)w.

These finite element matrices induce discrete versions of Sobolev norms on the
discrete surface Γh[y]. For any nodal vector z ∈ R

N , with the corresponding finite
element function zh ∈ Sh[y], we define the following (semi-)norms:

‖z‖2M(y) = zTM(y)z = ‖zh‖2L2(Γh [y]),

‖z‖2A(y) = zTA(y)z = ‖∇Γh [y]zh‖2L2(Γh [y]),

‖z‖2K(y) = zTK(y)z = ‖zh‖2H1(Γh [y]).

(3.2)

3.4 Ritz maps

Let the nodal vectors x∗(t) ∈ R
3N and v∗(t) ∈ R

3N , collect the nodal values of the
exact solution X(·, t) and v(·, t). RecallingDefinition 3.1, the corresponding finite ele-
ment functions X∗

h(·, t) and v∗
h(·, t) in Sh[x∗(t)]3 are the finite element interpolations

of the exact solutions.
The two Ritz maps below are defined following [41,Definition 6.1] (which is

slightly different from [20,Definition 6.1] or [31,Definition 3.6]) and – for the quasi-
linear Ritz map – following [42,Definition 3.1].
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Definition 3.2 For any w ∈ H1(Γ [X ]) the generalised Ritz map R̃hw ∈ Sh[x∗]
uniquely solves, for all ϕh ∈ Sh[x∗],

∫

Γh [x∗]
R̃hw ϕh +

∫

Γh [x∗]
∇Γh [x∗] R̃hw · ∇Γh [x∗]ϕh

=
∫

Γ [X ]
w ϕ�

h +
∫

Γ [X ]
∇Γ [X ]w · ∇Γ [X ]ϕ�

h .

(3.3)

Definition 3.3 For any u ∈ H1(Γ [X ]) and an arbitrary (sufficiently smooth)
ξ : Γ [X ] → R the ξ -dependent Ritz map R̃ξ

h u ∈ Sh[x∗] uniquely solves, for all
ϕh ∈ Sh[x∗],

∫

Γh [x∗]
R̃ξ

h u ϕh +
∫

Γh [x∗]
D(ξ−�)∇Γh [x∗] R̃ξ

h u · ∇Γh [x∗]ϕh

=
∫

Γ [X ]
uϕ�

h +
∫

Γ [X ]
D(ξ)∇Γ [X ]u · ∇Γ [X ]ϕ�

h,

(3.4)

where −� denotes the inverse lift operator, cf. Sect. 3.2.

Wewill also refer to R̃ξ
h as quasi-linear Ritz map, since it is associated to a quasi-linear

elliptic operator.

Definition 3.4 The Ritz maps Rh and Rξ
h are then defined as the lifts of R̃h and R̃ξ

h ,

i.e. Rhu = (R̃hu)� ∈ Sh[x∗]� and Rξ
h u = (R̃ξ

h u)� ∈ Sh[x∗]�.

4 Relating different surfaces

In this section from [37, 40] we recall useful inequalities relating norms and semi-
norms on differing surfaces. First recalling results in a general evolving surface setting,
and then proving new results for the present problem.

Given a pair of triangulated surfacesΓh[x] andΓh[y]with nodal vectors x, y ∈ R
3N ,

we may view Γh[x] as an evolution of Γh[y] with a constant velocity e = (e j )
N
j=1 =

x − y ∈ R
3N yielding a family of intermediate surfaces.

Definition 4.1 For θ ∈ [0, 1] the intermediate surface Γ θ
h is defined by

Γ θ
h = Γh[y + θe].

For the vectors x = e + y,w, z ∈ R
N , we define the corresponding finite element

functions on Γ θ
h :

eθ
h =

N∑

j=1

e jφ j [y + θe], wθ
h =

N∑

j=1

w jφ j [y + θe], and zθ
h =

N∑

j=1

z jφ j [y + θe].
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Fig. 1 The construction of the
intermediate surfaces Γ θ

h for
quadratic elements

Figure 1 illustrates the described construction.
It follows from the evolving surface transport theorems for the L2 and Dirichlet

inner products, [19], that for arbitrary vectors w, z ∈ R
N :

wT (M(x) − M(y))z =
∫ 1

0

∫

Γ θ
h

wθ
h(∇Γ θ

h
· eθ

h)zθ
h dθ, (4.1)

wT (A(x) − A(y))z =
∫ 1

0

∫

Γ θ
h

∇Γ θ
h
wθ

h · (DΓ θ
h

eθ
h)∇Γ θ

h
zθ

h dθ, (4.2)

where DΓ θ
h

eθ
h = tr(Eθ )I3 − (Eθ + (Eθ )T ) with Eθ = ∇Γ θ

h
eθ

h ∈ R
3×3.

The following results relate the mass and stiffness matrices for the discrete surfaces
Γh[x] and Γh[y], they follow by the Leibniz rule, and are given in [40,Lemma 4.1],
[37,Lemma 7.2].

Lemma 4.1 In the above setting, if

ε := ‖∇Γh [y]e0h‖L∞(Γh [y]) ≤ 1
4 , (4.3)

then the following hold:

1. For 0 ≤ θ ≤ 1 and 1 ≤ p ≤ ∞ with a constant cp > 0 independent of h and θ :

‖wθ
h‖L p(Γ θ

h ) ≤ cp ‖w0
h‖L p(Γ 0

h ), ‖∇Γ θ
h
wθ

h‖L p(Γ θ
h ) ≤ cp ‖∇Γ 0

h
w0

h‖L p(Γ 0
h ).

(4.4)

2.

The norms ‖ · ‖M(y+θe) and the norms ‖ · ‖A(y+θe)

are h-uniformly equivalent for 0 ≤ θ ≤ 1.
(4.5)

3. For any w, z ∈ R
N , with an h-independent constant c > 0, we have the estimates

wT (M(x) − M(y))z ≤ c ε ‖w‖M(y)‖z‖M(y),

wT (A(x) − A(y))z ≤ c ε ‖w‖A(y)‖z‖A(y).
(4.6)
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4. If zh ∈ W 1,∞(Γh[y]) then, for any w, z ∈ R
N , with an h-independent constant

c > 0, we have

wT (M(x) − M(y))z ≤ c ‖w‖M(y)‖e‖A(y)‖zh‖L∞(Γh [y]),
wT (A(x) − A(y))z ≤ c ‖w‖A(y)‖e‖A(y)‖zh‖W 1,∞(Γh [y]).

(4.7)

4.1 Time evolving surfaces

• Let x : [0, T ] → R
3N be a continuously differentiable vector defining a triangu-

lated surface Γh[x(t)] for every t ∈ [0, T ] with time derivative v(t) = ẋ(t) whose
finite element function vh(·, t) satisfies

‖∇Γh [x(t)]vh(·, t)‖L∞(Γh [x(t)]) ≤ Kv, 0 ≤ t ≤ T . (4.8)

With e = x(t) − x(s) = ∫ t
s v(r)dr , the bounds (4.6) then yield the following

bounds, which were first shown in Lemma 4.1 of [23]: for 0 ≤ s, t ≤ T with
Kv|t − s| ≤ 1

4 , for arbitrary vectors w, z ∈ R
N , we have with C = cKv

wT (
M(x(t)) − M(x(s))

)
z ≤ C |t − s| ‖w‖M(x(t))‖z‖M(x(t)),

wT (
A(x(t)) − A(x(s))

)
z ≤ C |t − s| ‖w‖A(x(t))‖z‖A(x(t)).

(4.9)

Letting s → t , this implies the bounds stated in Lemma 4.6 of [40]:

wT d

dt

(
M(x(t))

)
z ≤ C ‖w‖M(x(t))‖z‖M(x(t)),

wT d

dt

(
A(x(t))

)
z ≤ C ‖w‖A(x(t))‖z‖A(x(t)).

(4.10)

Moreover, by patching together finitely many intervals over which Kv|t − s| ≤ 1
4 ,

we obtain that

the norms ‖ · ‖M(x(t)) and the norms ‖ · ‖A(x(t))

are h-uniformly equivalent for 0 ≤ t ≤ T .
(4.11)

4.2 Variable coefficient matrices

Given u,V ∈ R
N with associated finite element functions uh, Vh we define variable

coefficient positive definite mass matrix M(x,u,V) ∈ R
N×N and positive semi-

definite stiffness matrix A(x,u) ∈ R
N×N :

M(x,u,V)|i j =
∫

Γh [x]
∂2K (uh, Vh) φi [x] φ j [x], (4.12)

A(x,u)|i j =
∫

Γh [x]
D(uh)∇Γh [x]φi [x] · ∇Γh [x]φ j [x], (4.13)
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for i, j = 1, . . . , N .
The following lemma is a variable coefficient variant of the estimates above relating

mass matrices, i.e. (4.6) and (4.7).

Lemma 4.1 Let u,u∗ ∈ R
N and V,V∗ ∈ R

N be such that the corresponding finite
element functions uh, u∗

h and Vh, V ∗
h have L∞ norms bounded independently of h. Let

(4.3) hold. Then the following bounds hold, for arbitrary vectors w, z ∈ R
N :

wT (
M(x,u,V) − M(y,u,V)

)
z ≤ C ‖∇Γh [y]e0h‖L∞(Γh [y]) ‖w‖M(y) ‖z‖M(y), (i)

wT (
M(x,u,V) − M(y,u,V)

)
z ≤ C ‖e‖A(y)‖w‖M(y) ‖zh‖L∞(Γh [y]), (ii)

and

wT (
M(x,u,V) − M(x,u∗,V∗)

)
z (iii)

≤ C
(‖uh − u∗

h‖L∞(Γh [y]) + ‖Vh − V ∗
h ‖L∞(Γh [y])

) ‖w‖M(x) ‖z‖M(x),

wT (
M(x,u,V) − M(x,u∗,V∗)

)
z (iv)

≤ C
(‖u − u∗‖M(x) + ‖V − V∗‖M(x)

) ‖w‖M(x) ‖zh‖L∞(Γh [x]).

The constant C > 0 is independent of h and t, but depends on ∂2K (uh, Vh) for (i)–(ii)
and on ∂2K (u∗

h, V ∗
h ) for (iii)–(iv).

Proof The proof is an adaptation of the proof in [12,Lemma 6.1], and it uses similar
techniques as the proof of Lemma 4.2 below. �

We will also need the stiffness matrix analogue of Lemma 4.1.

Lemma 4.2 Let u ∈ R
N and u∗ ∈ R

N be such that the corresponding finite element
functions uh and u∗

h have bounded L∞ norms. Let (4.3) hold. Then the following
bounds hold:

wT (
A(x,u∗) − A(y,u∗)

)
z ≤ C ‖e‖A(x)‖w‖A(x) ‖∇Γh [y]zh‖L∞(Γh [y]), (i)

and

wT (
A(x,u) − A(x,u∗)

)
z ≤ C ‖u − u∗‖M(x) ‖w‖A(x) ‖∇Γh [x]zh‖L∞(Γh [x]). (ii)

The constant C > 0 is independent of h and t.

Proof The proof is similar to the proof of [12,Lemma 6.1].
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(i) Using the fundamental theorem of calculus and the Leibniz formula
[18,Lemma 2.2], and recalling (4.2), we obtain

wT (
A(x,u∗) − A(y,u∗)

)
z

=
∫

Γ 1
h

D(u∗,1
h )∇Γ 1

h
w1

h · ∇Γ 1
h

z1h −
∫

Γ 0
h

D(u∗,0
h )∇Γ 0

h
w0

h · ∇Γ 0
h

z0h

=
∫ 1

0

d

dθ

∫

Γ θ
h

D(u∗,θ
h )∇Γ θ

h
wθ

h · ∇Γ θ
h

zθ
hdθ

=
∫ 1

0

∫

Γ θ
h

D(u∗,θ
h ) ∂•

Γ θ
h
(∇Γ θ

h
wθ

h) · ∇Γ θ
h

zθ
hdθ

+
∫ 1

0

∫

Γ θ
h

D(u∗,θ
h )∇Γ θ

h
wθ

h · ∂•
Γ θ

h
(∇Γ θ

h
zθ

h)dθ

+
∫ 1

0

∫

Γ θ
h

D(u∗,θ
h )∇Γ θ

h
wθ

h · (
DΓ θ

h
eθ

h

)∇Γ θ
h

zθ
hdθ,

(4.14)

where we used that the due to the θ -independence of u∗,θ
h we have ∂•

Γ θ
h

u∗,θ
h = 0, and

hence ∂•
Γ θ

h
(D(u∗,θ

h )) = 0.

For the first two terms we use the interchange formula [22,Lemma 2.6], for any
wh : Γh → R:

∂•
Γ θ

h
(∇Γ θ

h
wθ

h) = ∇Γ θ
h
∂•
Γ θ

h
wθ

h − (∇Γ θ
h

eθ
h − νΓ θ

h
(νΓ θ

h
)T (∇Γ θ

h
eθ

h)T )∇Γ θ
h
wθ

h , (4.15)

where eθ
h is the velocity and νΓ θ

h
is the normal vector of the surface Γ θ

h , the material

derivative associated to eθ
h is denoted by ∂•

Γ θ
h
.

Using (4.15) and recalling ∂•
Γ θ

h
wθ

h = ∂•
Γ θ

h
zθ

h = 0, for (4.14) we obtain the estimate

wT (
A(x,u∗) − A(y,u∗)

)
z

≤ c
∫ 1

0
‖D(u∗,θ

h )‖L∞(Γ θ
h )‖∇Γ θ

h
wθ

h‖L2(Γ θ
h )‖∇Γ θ

h
eθ

h‖L2(Γ θ
h )‖∇Γ θ

h
zθ

h‖L∞(Γ θ
h )dθ

≤ C ‖w‖A(x)‖e‖A(x)‖∇Γh [y]zh‖L∞(Γh [y]),

where for the last estimate we used the norm equivalences (4.4), and the assumed L∞
bound on u∗

h .
(ii) The second estimate is proved using a similar idea, now working only on the

surface Γh[x]:

wT (
A(x, u) − A(x, u∗)

)
z =

∫

Γh [x]
(D(u∗

h) − D(uh)
)∇Γh [x]wh · ∇Γh [x]zh

≤ C ‖u∗
h − uh‖L2(Γh [x])‖∇Γh [x]wh‖L2(Γh [x])‖∇Γh [x]zh‖L∞(Γh [x]),

123



Numerical analysis for the interaction of mean curvature… 891

using the L∞ boundedness of uh and u∗
h together with the local Lipschitz continuity

of D. �

As a consequence of the boundedness below of the nonlinear functions ∂2K (·, ·)
and D(·), we note here that the matrices M(x,u,V) and A(x,u) (for any u and V,
with corresponding uh and Vh in Sh[x]) generate solution-dependent (semi-)norms:

‖z‖2M(x,u,V) = zTM(x,u,V)z =
∫

Γh [x]
∂2K (uh, Vh) |zh |2,

‖z‖2A(x,u) = zTA(x,u)z =
∫

Γh [x]
D(uh) |∇Γh zh |2,

equivalent (independently of h and t) to ‖ · ‖M(x) and ‖ · ‖A(x), respectively. The
following h-independent equivalence between theA(x) andA(x,u) norms follows by
Assumption 5 on D(·): for any z ∈ R

N

c0‖z‖2A(x) ≤ ‖z‖2A(x,u) ≤ c1‖z‖2A(x). (4.16)

The equivalence for theM(x) and M(x,u,V) norms will be proved later on.

4.3 Variable coefficient matrices for time evolving surfaces

Similarly to (4.9), we will need a result comparing the matrices A(x,u∗) at different
times. Particularly important will be the A(x,u∗) variant of (4.10).

Lemma 4.3 Let u∗ : [0, T ] → R
N be such that for all t the corresponding finite

element function u∗
h satisfies ‖∂•

h u∗
h‖L∞(Γh [x]) ≤ R and ‖D′(u∗

h)‖L∞(Γh [x]) ≤ R for
0 ≤ t ≤ T . Then the following bounds hold, for 0 ≤ s, t ≤ T with Kv|t − s| ≤ 1

4 ,

wT (
A(x(t),u∗(t)) − A(x(s),u∗(s))

)
z ≤ C |t − s| ‖w‖A(x(t))‖z‖A(x(t)),

(4.17)

wT d

dt

(
A(x(t),u∗(t))

)
z ≤ C ‖w‖A(x(t))‖z‖A(x(t)).

(4.18)

where the constant C > 0 is independent of h and t, but depends on R2.

Proof We follow the ideas of the proofs of [23,Lemma 4.1] and [40,Lemma 4.1].
Similarly to the proof of Lemma 4.1 (see [37]), by the fundamental theorem of calculus
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and the Leibniz formula, and recalling that ∂•
hwh = ∂•

h zh = 0, we obtain

wT (
A(x(t),u∗(t)) − A(x(s),u∗(s))

)
z

=
∫ t

s

d

dr

∫

Γh [x(r)]
D(u∗

h)∇Γh [x(r)]wh · ∇Γh [x(r)]zh dr

=
∫ t

s

∫

Γh [x(r)]
d

dr

(
D(u∗

h)
)
∇Γh [x(r)]wh · ∇Γh [x(r)]zh dr

+
∫ t

s

∫

Γh [x(r)]
D(u∗

h)∇Γh [x(r)]wh · (
DΓh [x(r)]vh

)∇Γh [x(r)]zh dr ,

(4.19)

where the first order differential operator DΓh [x] is given after (4.2).
Similarly as for (4.9), using the bound (4.8) we obtain that

‖DΓh [x(r)]vh(·, r)‖L∞(Γh [x(r)]) ≤ c‖∇Γh [x(r)]vh(·, r)‖L∞(Γh [x(r)]) ≤ c Kv.

On the other hand, using the uniform upper bound on the growth of the diffusion
coefficient D (Assumption 5) and the assumed L∞ bound ‖∂•

h u∗
h‖L∞(Γh [x]) ≤ R, we

have the bound

∥∥∥
d

dr

(
D(u∗

h(·, r))
)∥∥∥

L∞(Γh [x(r)]) = ‖D′(u∗
h(·, r)) ∂•

h u∗
h(·, r)‖L∞(Γh [x(r)]) ≤ R2.

By applying the Hölder inequality to (4.19), and combining it with the above esti-
mates, we obtain

wT (
A(x(t),u∗(t)) − A(x(s),u∗(s))

)
z

≤ c
∫ t

s
‖∇Γh [x(r)]wh‖L2Γh [x(r)]‖∇Γh [x(r)]zh‖L2Γh [x(r)] dr .

The proof of (4.17) is then finished using the h-uniform norm equivalence in time
(4.11).

Dividing (4.17) by t − s and letting s → t yields (4.18). �

5 Finite element semi-discretisations of the coupled problem

We present two evolving surface finite element discretisations of Problems 1.1, 1.2.
In the following we use the notation Ah = 1

2 (∇Γh [x]νh + (∇Γh [x]νh)T ) for the sym-
metric part of ∇Γh [x]νh , | · | for the Frobenius norm and the abbreviations ∂ j Kh :=
∂ j K (uh, Vh), ∂ j Fh := ∂ j F(uh, Vh) ( j = 1, 2). We set Ĩh = Ĩh[x] : C(Γh[x]) →
Sh(Γh[x]) to be the finite element interpolation operator on the discrete surface Γh[x].
Problem 5.1 Find the finite element functions Xh(·, t) ∈ Sh[x0]3, νh(·, t) ∈ Sh[x(t)]3,
Vh(·, t) ∈ Sh[x(t)] and uh(·, t) ∈ Sh[x(t)] such that for t > 0 and for all ϕν

h (·, t) ∈
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Sh[x(t)]3,ϕV
h (·, t) ∈ Sh[x(t)], andϕu

h (·, t) ∈ Sh[x(t)]with discretematerial derivative
∂•

hϕu
h (·, t) ∈ Sh[x(t)]:

vh = Ĩh(Vhνh), (5.1a)
∫

Γh [x]
∂2Kh ∂•

hνh · ϕν
h +

∫

Γh [x]
∇Γh [x]νh · ∇Γh [x]ϕν

h

=
∫

Γh [x]
|Ah |2νh · ϕν

h +
∫

Γh [x]
∂1Kh∇Γh [x]uh · ϕν

h , (5.1b)

∫

Γh [x]
∂2Kh ∂•

h Vh ϕV
h +

∫

Γh [x]
∇Γh [x]Vh · ∇Γh [x]ϕV

h

=
∫

Γh [x]
|Ah |2VhϕV

h −
∫

Γh [x]
∂1Kh ∂•

h uh ϕV
h , (5.1c)

d

dt

( ∫

Γh [x]
uh ϕu

h

)
+

∫

Γh [x]
D(uh)∇Γh [x]uh · ∇Γh [x]ϕu

h =
∫

Γh [x]
uh ∂•

hϕu
h , (5.1d)

∂t Xh(ph, t) = vh . (5.1e)

The initial values for the finite element functions solving this system are chosen to
be the Lagrange interpolations on the initial surface of the corresponding data for the
PDE, X0, ν0, V 0 and u0. The initial data is assumed consistent to be with the equation
V 0 = −F(u0, H0).

Problem 5.2 Find the finite element functions Xh(·, t) ∈ Sh[x0]3, νh(·, t) ∈ Sh[x(t)]3,
Hh(·, t) ∈ Sh[x(t)] and uh(·, t) ∈ Sh[x(t)] such that for t > 0 and for all
ϕν

h (·, t) ∈ Sh[x(t)]3, ϕH
h (·, t) ∈ Sh[x(t)], and ϕu

h (·, t) ∈ Sh[x(t)] with discrete mate-
rial derivative ∂•

hϕu
h (·, t) ∈ Sh[x(t)]:

vh = Ĩh(Vhνh), (5.2a)
∫

Γh [x]
1

∂2Fh
∂•

hνh · ϕν
h +

∫

Γh [x]
∇Γh [x]νh · ∇Γh [x]ϕν

h

=
∫

Γh [x]
|Ah |2νh · ϕν

h +
∫

Γh [x]
∂1Fh

∂2Fh
∇Γh [x]uh · ϕν

h , (5.2b)

∫

Γh [x]
∂•Hh ϕH

h −
∫

Γh [x]
∇Γh [x]Vh · ∇Γh [x]ϕH

h = −
∫

Γh [x]
|Ah |2VhϕH

h , (5.2c)

d

dt

( ∫

Γh [x]
uh ϕu

h

)
+

∫

Γh [x]
D(uh)∇Γh [x]uh · ∇Γh [x]ϕu

h =
∫

Γh [x]
uh ∂•

hϕu
h , (5.2d)

∫

Γh [x]
VhϕV

h +
∫

Γh [x]
F(uh, Hh) ϕV

h = 0, (5.2e)

∂t Xh(ph, t) = vh . (5.2f)

The initial values for the finite element functions solving this system are chosen to
be the Lagrange interpolations on the initial surface of the corresponding data for the
PDE, X0, ν0, H0 and u0.
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Remark 5.1 – We note that, in view of the discrete transport property (3.1), the last
term in each of (5.1d) and (5.2d) vanishes for all basis functions ϕu

h = φ j [x].
– Also by testing (5.1d) and (5.2d) by ϕu

h ≡ 1 ∈ Sh[x] we observe that both
semi-discrete systems preserve the mass conservation property of the continuous flow,
cf. Sect. 2.2.

Remark 5.2 Note that the approximate normal vector νh and the approximate mean
curvature Hh are finite element functions νh(·, t) = ∑N

j=1 ν j (t) φ j [x(t)] ∈ Sh[x]3
and Hh(·, t) = ∑N

j=1 Hj (t) φ j [x(t)] ∈ Sh[x]3, respectively, and are not the normal
vector and the mean curvature of the discrete surface Γh[x(t)]. Similarly Vh(·, t) =∑N

j=1 Vj (t) φ j [x(t)] ∈ Sh[x] is not the normal velocity of Γh[x(t)].

6 Matrix–vector formulations

Thefinite element nodal values of the unknown semi-discrete functionsvh(·, t), νh(·, t)
and Vh(·, t), uh(·, t), and (if needed) Hh(·, t) are collected, respectively, into column
vectors v(t) = (v j (t)) ∈ R

3N , n(t) = (ν j (t)) ∈ R
3N , V(t) = (Vj (t)) ∈ R

N ,
u(t) = (u j (t)) ∈ R

N , and H(t) = (Hj (t)) ∈ R
N . If it is clear from the context, the

time dependencies will be often omitted.

6.1 Matrix vector evolution equations

Recalling the notation Ah = 1
2 (∇Γh [x]νh + (∇Γh [x]νh)T ), ∂ j Kh = ∂ j K (uh, Vh), and

∂ j Fh = ∂ j F(uh, Vh) from the previous section, it is convenient to introduce the
following non-linear maps:

f1(x,n,V,u)| j+(�−1)N =
∫

Γh [x]
|Ah |2 (νh)� φ j [x] +

∫

Γh [x]
∂1Kh (∇Γh [x]uh)� φ j [x],

(6.1)

f2(x,n,V,u; u̇)| j =
∫

Γh [x]
|Ah |2Vh φ j [x] −

∫

Γh [x]
∂1Kh ∂•

h uh φ j [x], (6.2)

for j = 1, . . . , N and � = 1, 2, 3. Since f2 is linear in u̇, we highlight this by the use
of a semi-colon in the list of arguments.

For convenience we introduce the following notation. For d ∈ N (with the identity
matrices Id ∈ R

d×d ), we define by the Kronecker products:

M[d](x) = Id ⊗ M(x), A[d](x) = Id ⊗ A(x).

When no confusion can arise, we will writeM(x) forM[d](x),M(x,u) forM[d](x,u),
and A(x) for A[d](x). We will use both concepts for other matrices as well. Moreover,
we use • to denote the coordinate-wise multiplication for vectors y ∈ R

N , z ∈ R
3N

(y • z)| j = y j z j ∈ R
3 for j = 1, . . . , N .
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Problem 6.1 (Matrix–vector formulation of Problem 5.1) Using these definitions, and
the transport property (3.1) for (5.1d), the semi-discrete Problem 5.1 can be written in
the matrix–vector form:

v = V • n, (6.3a)

M[3](x,u,V)ṅ + A[3](x)n = f1(x,n,V,u), (6.3b)

M(x,u,V)V̇ + A(x)V = f2(x,n,V,u; u̇), (6.3c)

d

dt

(
M(x)u

)
+ A(x,u)u = 0, (6.3d)

ẋ = v. (6.3e)

Problem 6.2 (Matrix–vector formulation of Problem 5.2) The semi-discrete Problem
5.2 can be written in the matrix–vector form (with non-linear matrix F and vectors
f3, f4, defined according to (5.2)):

v = V • n, (6.4a)

M[3](x,u,H)ṅ + A[3](x)n = f3(x,n,H,u), (6.4b)

M(x)Ḣ − A(x)V = f4(x,n,V), (6.4c)

M(x)V + F(x,u,H) = 0, (6.4d)

d

dt

(
M(x)u

)
+ A(x,u)u = 0, (6.4e)

ẋ = v. (6.4f)

Remark 6.1 Upon noticing that the equations for n and V in Problem 6.1 are almost
identical, we collect

w :=
(
n
V

)
∈ R

4N .

Motivated by this abbreviation, we set M(x,u,w) := M(x,u,V) (using these two
notations interchangeably, if no confusion can arise), we then rewrite the system into

Problem 6.3 (Equivalent matrix–vector formulation of Problem 5.1)

v = V • n, (6.5a)

M[4](x,u,w)ẇ + A[4](x)w = f(x,w,u; u̇), (6.5b)

d

dt

(
M(x)u

)
+ A(x,u)u = 0, (6.5c)

ẋ = v. (6.5d)

We remind that f = (f1, f2)T is linear in u̇.
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Remark 6.2 We compare the above matrix–vector formulation (6.5) to the same for-
mulas for forced mean curvature flow [38], with velocity law v = −Hν + g(u)ν, here
w collects w = (n,H)T :

v = −H • n, (6.6a)

M[4](x)ẇ + A[4](x)w = f(x,w,u; u̇), (6.6b)

M(x)u̇ + A(x)u = g(x,w,u), (6.6c)

ẋ = v, (6.6d)

and to generalised mean curvature flow [12,Eq. (3.4)], with velocity law v =
−V (H)ν, here w collects w = (n,V)T :

v = V • n, (6.7a)

M[4](x,w)ẇ + A[4](x)w = f(x,w), (6.7b)

ẋ = v. (6.7c)

The coupled system (6.5) has a similar structure to those of (6.6) and (6.7). Due to
these similarities, in the stability proof we will use similar arguments to [38] and [12]
as wells as those in [37].

Compared to previous works, the concentration dependency in the mass matrix
M(x,u,w) and in the stiffness matrix A(x,u) requires extra care in estimating the
corresponding terms in the stability analysis. For which the results of Sect. 4.2 will
play a key role.

6.2 Defect and error equations

We set u∗ to be the nodal vector of the Ritz projection R̃u
h u defined by (3.4) on the

interpolated surface Γh[x∗(t)]. The vectors n∗ ∈ R
3N and V∗ ∈ R

N are the nodal
vectors associated with the Ritz projections R̃hν and R̃h V defined by (3.3) of the
normal and the normal velocity of the surface solving the PDE system. We set

w∗ :=
(
n∗
V∗

)
∈ R

4N .

It is convenient to introduce the following equations that define defect quantities
dv,dw,du which occur when surface finite element interpolations andRitz projections
of the exact solution (i.e. x∗, v∗ and w∗, u∗) are substituted into the matrix–vector
equations defining the numerical approximations (6.5).

Definition 6.1 (Defect equations) The defects dv,dw,du are defined by the following
coupled system:

v∗ = V∗ • n∗ + dv, (6.8a)

M(x∗,u∗,w∗)ẇ∗ + A(x∗)w∗ = f(x∗,w∗,u∗; u̇∗) + M(x∗)dw, (6.8b)
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d

dt

(
M(x∗)u∗) + A(x∗,u∗)u∗ = M(x∗)du, (6.8c)

ẋ∗ = v∗. (6.8d)

The following error equations for the nodal values of the errors between the exact
and numerical solutions are obtained by subtracting (6.8) from (6.5) where the errors
are set to be

ex = x − x∗, ev = v − v∗, ew = w − w∗, and eu = u − u∗,

with corresponding finite element functions, respectively,

ex , ev, ew, and eu .

Definition 6.2 (Error equations) The error equations are defined by the following
system:

ev = (
V • n − V∗ • n∗) − dv, (6.9a)

M(x,u,w)ėw + A(x)ew = −(
M(x,u,w) − M(x,u∗,w∗)

)
ẇ∗

− (
M(x,u∗,w∗) − M(x∗,u∗,w∗)

)
ẇ∗

− (
A(x) − A(x∗)

)
w∗

+ (
f(x,w,u; u̇) − f(x∗,w∗,u∗; u̇∗)

)

− M(x∗)dw, (6.9b)

d

dt

(
M(x)eu

)
+ A(x,u∗)eu = − d

dt

((
M(x) − M(x∗)

)
u∗)

− (
A(x,u) − A(x,u∗)

)
eu

− (
A(x,u) − A(x,u∗)

)
u∗

− (
A(x,u∗) − A(x∗,u∗)

)
u∗

− M(x∗)du, (6.9c)

ėx = ev. (6.9d)

Note that by definition the initial data ex(0) = 0 and ev(0) = 0 whereas eu(0) �= 0
and ew(0) �= 0 in general.

7 Consistency, stability, and convergence

In this section we prove themain results of this paper.We begin in Sect. 7.1.1 by noting
the uniform boundedness of some coefficients as a consequence of the approximation
properties of the Ritz projections. In Sect. 7.2.1 we address the consistency of the
finite element approximation by bounding the L2 norms of the defects.
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7.1 Uniform bounds

7.1.1 Boundedness of the Ritz projections

We start by proving h- and t-uniform W 1,∞(Γh[x∗(t)]) norm bounds for the finite
element projections of the exact solutions (see Sect. 6.2).

Lemma 7.1 The finite element interpolations x∗
h and v∗

h and the Ritz maps w∗
h, and u∗

h
of the exact solutions satisfy

‖x∗
h‖W 1,∞(Γh [x∗(t)]) + ‖v∗

h‖W 1,∞(Γh [x∗(t)])
+ ‖w∗

h‖W 1,∞(Γh [x∗(t)]) + ‖u∗
h‖W 1,∞(Γh [x∗(t)]) ≤ C for 0 ≤ t ≤ T ,

(7.1)

uniformly in h.

Proof The W 1,∞ bounds for the interpolations, Ĩh X = x∗
h and Ĩhv = v∗

h , follow from
the error estimates in [21,Sect. 2.5].

On the other hand, the W 1,∞ bounds on the Ritz maps (R̃hw = w∗
h and R̃u

h u = u∗
h)

are obtain, using an inverse estimate [14,Theorem 4.5.11], above interpolation error
estimates of [21], and the Ritz map error bounds [41] and [42], by

‖R̃hu‖W 1,∞(Γ ∗
h ) ≤ ‖R̃hu − Ĩhu‖W 1,∞(Γ ∗

h ) + c‖Ihu‖W 1,∞(Γ )

≤ ch−d/2‖R̃hu − Ĩhu‖H1(Γ ∗
h )) + ‖Ihu‖W 1,∞(Γ )

≤ ch−d/2(‖Rhu − u‖H1(Γ ) + ‖u − Ihu‖H1(Γ )

)

+ ‖Ihu − u‖W 1,∞(Γ )+ ‖u‖W 1,∞(Γ )

≤ chk−d/2‖u‖Hk+1(Γ ) + (ch + 1)‖u‖W 2,∞(Γ ),

(7.2)

with k − d/2 ≥ 0, in dimension d = 3 here. Where for the last term we used the
(sub-optimal) interpolation error estimate of [21,Proposition 2.7] (with p = ∞). �

7.1.2 A priori boundedness of numerical solution

We note here that, by Assumption 4, along the exact solutions u, V in the bounded
time interval [0, T ] the factor ∂2K (u, V ) is uniformly bounded from above and below
by constants K1 ≥ K0 > 0.

For the estimates of the non-linear terms we establish some W 1,∞ norm bounds.

Lemma 7.2 Let κ > 1. There exists a maximal T ∗ ∈ (0, T ] such that the following
inequalities hold:

‖ex (·, t)‖W 1,∞(Γh [x∗(t)]) ≤ h(κ−1)/2,

‖ev(·, t)‖W 1,∞(Γh [x∗(t)]) ≤ h(κ−1)/2,

‖ew(·, t)‖W 1,∞(Γh [x∗(t)]) ≤ h(κ−1)/2,

‖eu(·, t)‖W 1,∞(Γh [x∗(t)]) ≤ h(κ−1)/2,

for t ∈ [0, T ∗]. (7.3)
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Then for h sufficiently small and for 0 ≤ t ≤ T ∗,

xh, vh, wh, uh are uniformly bounded in W 1,∞(Γh[x∗(t)]). (7.4)

Furthermore, the functions ∂2K ∗
h = ∂2K (u∗

h, V ∗
h ) and ∂2Kh = ∂2K (uh, Vh) satisfy

the following bounds

0 < 2
3 K0 ≤ ‖∂2K ∗

h ‖L∞(Γh [x∗(t)]) ≤ 3
2 K1 h-uniformly for 0 ≤ t ≤ T , (7.5)

0 < 1
2 K0 ≤ ‖∂2Kh‖L∞(Γh [x∗(t)]) ≤ 2K1 h-uniformly for 0 ≤ t ≤ T ∗. (7.6)

Then these h- and time-uniform upper and lower bounds imply that the norms
‖ · ‖M(x) and ‖ · ‖M(x,u,w) are indeed h- and t-uniformly equivalent, for any z ∈ R

N :

1
2 K0 ‖z‖2M(x) ≤ ‖z‖2M(x,u,w) ≤ 2K1 ‖z‖2M(x). (7.7)

Proof (a) Sincewe have assumed κ > 1we obtain that T ∗ exists and is indeed positive.
This is a consequence of the initial errors ex (·, 0) = 0, ev(·, 0) = 0, and, by an inverse
inequality [14,Theorem 4.5.11],

‖ew(·, 0)‖W 1,∞(Γh [x∗(0)]) ≤ ch−1‖ew(·, 0)‖H1(Γh [x∗(0)]) ≤ chκ−1,

‖eu(·, 0)‖W 1,∞(Γh [x∗(0)]) ≤ ch−1‖eu(·, 0)‖H1(Γh [x∗(0)]) ≤ chκ−1,

and for the last inequalities using the error estimates for the Ritz maps Rhw and
Ru

h u, [41,Theorem 6.3 and 6.4] and the generalisations of [42,Theorem 3.1 and 3.2],
respectively.

The uniform bounds on numerical solutions over [0, T ∗] (7.4) is directly seen using
(7.3), (7.1), and a triangle inequality.

(b) We now show the h- and t-uniform upper- and lower-bounds for the coefficient
functions ∂2K ∗

h = ∂2K (u∗
h, V ∗

h ) and ∂2Kh = ∂2K (uh, Vh). We use a few ideas from
[12], where similar estimates were shown.

As a first step, it follows from applying inverse inequalities (see, e.g.,
[14,Theorem 4.5.11]) on the finite element spaces and H1 norm error bounds on
the Ritz maps Rh and Ru

h and H1 and L∞ error bounds for interpolants (e.g. [21, 31,
41] and [42]) that the following L∞ norm error bounds hold in dimension d = 2 (but
stated for a general d for future reference):

‖(V ∗
h )� − V ‖L∞(Γ [X ]) ≤ ch2−d/2‖V ‖H2(Γ [X ]) + ch2‖V ‖W 2,∞(Γ [X ]),

and ‖(u∗
h)� − u‖L∞(Γ [X ]) ≤ ch2−d/2‖u‖H2(Γ [X ]) + ch2‖u‖W 2,∞(Γ [X ]).

(7.8)

By the definition of the lift mapwe have the equality η∗
h(x, t) = (η∗

h)�(x�, t) for any
function η∗

h : Γh[x∗] → R, and then by the triangle and reversed triangle inequalities
and using the local Lipschitz continuity of ∂2K in both variables and its uniform
upper and lower bounds, in combination with (7.1), we obtain (with the abbreviations
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∂2K = ∂2K (u, V ) and ∂2K ∗
h = ∂2K (u∗

h, V ∗
h )), written here for a d dimensional

surface (we will use d = 2),

|∂2K ∗
h | ≤ |∂2K | + |∂2K − (∂2K ∗

h )�|
≤ |∂2K | + ‖∂2K − (∂2K ∗

h )�‖L∞(Γ [X(·,t)])
≤ K1 + c‖V − (V ∗

h )�‖L∞(Γ [X(·,t)]) + c‖u − (u∗
h)�‖L∞(Γ [X(·,t)])

≤ K1 + ch2−d/2,

and

|∂2K ∗
h | ≥ |∂2K | − |∂2K − (∂2K ∗

h )�|
≥ |∂2K | − ‖∂2K − (∂2K ∗

h )�‖L∞(Γ [X(·,t)])
≥ K0 − c‖V − (V ∗

h )�‖L∞(Γ [X(·,t)]) − c‖u − (u∗
h)�‖L∞(Γ [X(·,t)])

≥ K0 − ch2−d/2,

which proves (7.5) on [0, T ], independently of (7.3).
A similar argument comparing ∂2Kh with ∂2K ∗

h now, using (7.3) (which only hold
for 0 ≤ t ≤ T ∗) instead of (7.8), together with (7.5), yields the bounds (7.6).

In view of (7.6) the norm equivalence (7.7) is straightforward. �

7.2 Consistency and stability

7.2.1 Consistency

For evolving surface finite elements of polynomial degree k, the defects satisfy the
following consistency bounds:

Proposition 7.1 For t ∈ [0, T ], it holds that

‖dv(·, t)‖H1(Γh [x∗(t)]) = ‖dv(t)‖K(x∗(t)) ≤ chk, (7.9)

‖dw(·, t)‖L2(Γh [x∗(t)]) = ‖dw(t)‖M(x∗(t)) ≤ chk, (7.10)

‖du(·, t)‖L2(Γh [x∗(t)]) = ‖du(t)‖M(x∗(t)) ≤ chk . (7.11)

Proof The consistency analysis is heavily relying on [12, 37, 39, 42], and the high-
order error estimates of [41].

For the defect in the velocity v, using the O(hk) error estimates of the finite element
interpolation operator in the H1 norm [21, 41], similarly as they were employed in
[39,Sect. 6], we obtain the estimate ‖dv(·, t)‖H1(Γh [x∗(t)]) = ‖dv(t)‖K(x∗(t)) ≤ chk .

Regarding the geometric part, (1.15c)–(1.15d), the additional terms on the right-
hand side compared to those in the evolution equations of pure mean curvature flow
in [37] do not present additional difficulties in the consistency error analysis, while
the non-linear weights on the left-hand side are treated exactly as in [12]. Therefore,
by combining the techniques and results of [37,Lemma 8.1] and [12,Lemma 8.1] we
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directly obtain for dw = (dν, dV )T the consistency estimate ‖dw(·, t)‖L2(Γh [x∗(t)]) =
‖dw(t)‖M(x∗(t)) ≤ chk .

For the nonlinear diffusion equation on the surface, (1.15e), consistency is shown
by the techniques of [42,Theorem 5.1], and yields the bound ‖du(·, t)‖L2(Γh [x∗(t)]) =
‖du(t)‖M(x∗(t)) ≤ chk . �

7.2.2 Stability

The stability proof is based on the following three key estimates for the surface,
concentration, and velocity-law, whose clever combination is the key to our stability
proof. These results are energy estimates proved by testing the error equations with
the time derivatives of the error, cf. [37]. The first two stability bounds may formally
look similar to those in [12, 37, 38], yet their proofs are different and are based on the
new results of Sect. 4.2. The proofs are postponed to Sect. 8.

Lemma 7.3 For the time interval [0, T ∗], where Lemma 7.2 holds, there exist constants
c0 > 0 and c > 0 independent of h and T ∗ such that the following bounds hold:

1. Surface estimate:

c0
2

‖ėw‖2M + 1

2

d

dt
‖ew‖2A

≤ c1‖ėu‖2M + c
(‖ex‖2K+‖ev‖2K+‖ew‖2K+‖eu‖2K

)+ c ‖dw‖2M∗

− d

dt

(
eT
w
(
A(x) − A(x∗)

)
w∗).

(7.12)

2. Concentration estimate:

1

4
‖ėu‖2M + 1

2

d

dt
‖eu‖2A(x,u∗) ≤ c

(‖ex‖2K + ‖ev‖2K + ‖eu‖2K
) + c ‖du‖2M∗

− 1

2

d

dt

(
eT
u
(
A(x,u) − A(x,u∗)

)
eu

)

− d

dt

(
eT
u
(
A(x,u) − A(x,u∗)

)
u∗)

− d

dt

(
eT
u
(
A(x,u∗) − A(x∗,u∗)

)
u∗).

(7.13)

3. Velocity-law estimate:

‖ev‖K ≤ c‖eu‖K + c‖dv‖K∗ . (7.14)

Remark 7.1 Regarding notational conventions: By c and C we will denote generic
h-independent constants, which might take different values on different occurrences.
In the norms the matrices M(x) and M(x∗) will be abbreviated to M and M∗, i.e. we
will write ‖ · ‖M for ‖ · ‖M(x) and ‖ · ‖M∗ for ‖ · ‖M(x∗), and similarly for the other
norms.
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The following result provides the key stability estimate.

Proposition 7.2 (Stability) Assume that, for some κ with 1 < κ ≤ k, the defects are
bounded, for 0 ≤ t ≤ T , by

‖dv(t)‖K(x∗(t)) ≤ chκ , ‖dw(t)‖M(x∗(t)) ≤ chκ , ‖du(t)‖M(x∗(t)) ≤ chκ ,

(7.15)

and that also the errors in the initial errors satisfy

‖ew(0)‖K(x∗(0)) ≤ chκ , and ‖eu(0)‖K(x∗(0)) ≤ chκ . (7.16)

Then, there exists h0 > 0 such that the following stability estimate holds for all h ≤ h0
and 0 ≤ t ≤ T :

‖ex(t)‖2K(x∗(t)) + ‖ev(t)‖2K(x∗(t)) + ‖ew(t)‖2K(x∗(t)) + ‖eu(t)‖2K(x∗(t))

≤ C
(‖ew(0)‖2K(x∗(0)) + ‖eu(0)‖2K(x∗(0))

)

+ C max
0≤s≤t

‖dv(s)‖2K(x∗(s)) + C
∫ t

0

(‖dw(s)‖2M(x∗(s)) + ‖du(t)‖2M(x∗(s))
)
ds,

(7.17)

where C is independent of h and t, but depends exponentially on the final time T .

The proof to this result is obtained by an adept combination of the three estimates
of Lemma 7.3 and a Gronwall argument, and is postponed to Sect. 9. We also note
that by the consistency result, Proposition 7.1, the estimates (7.15) hold with κ = k.

7.3 Convergence

We are now in the position to state the main result of the paper, which provide optimal-
order error bounds for the finite element semi-discretisation (5.1a), for finite elements
of polynomial degree k ≥ 2.

Theorem 7.1 Suppose Problem 1.1 admits a sufficiently regular exact solution
(X , v, ν, V , u) on the time interval t ∈ [0, T ] for which the flow map X(·, t) is non-
degenerate so that Γ [X(·, t)] is a regular orientable immersed hypersurface. Then
there exists a constant h0 > 0 such that for all mesh sizes h ≤ h0 the following error
bounds, for finite elements of polynomial degree k ≥ 2, for the lifts of the discrete
position, velocity, normal vector, normal velocity and concentration over the exact
surface Γ [X(·, t)] for 0 ≤ t ≤ T :

‖x L
h (·, t) − IdΓ [X(·,t)]‖H1(Γ [X(·,t)])3 ≤ Chk,

‖vL
h (·, t) − v(·, t)‖H1(Γ [X(·,t)])3 ≤ Chk,

‖νL
h (·, t) − ν(·, t)‖H1(Γ [X(·,t)])3 ≤ Chk,

‖V L
h (·, t) − V (·, t)‖H1(Γ [X(·,t)]) ≤ Chk,
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‖uL
h (·, t) − u(·, t)‖H1(Γ [X(·,t)]) ≤ Chk,

and ‖X�
h(·, t) − X(·, t)‖H1(Γ 0)3 ≤ Chk,

furthermore, by (1.10) and the smoothness of K , for the mean curvature we also have

‖H L
h (·, t) − H(·, t)‖H1(Γ [X(·,t)]) ≤ Chk .

The constant C is independent of h and t, but depends on bounds of higher derivatives
of the solution (X , v, ν, V , u) of the coupled problem, and exponentially on the length
T of the time interval.

Proof The errors are decomposed using the interpolation Ih for X and v, using the
Ritz map Rh (3.3) for w = (ν, V )T , and using the quasi-linear Ritz map Ru

h (3.4) for
u. For a variable z ∈ {X , v, w, u} and the appropriate ESFEM projection operator Ph

(with Ph = (P̃h)�), we rewrite the error as

zL
h − z = (

ẑh − P̃hz
)� + (

Phz − z
)
.

In each case, the second terms are bounded as chk by the error estimates for the
above three operators, [21, 31, 41, 42]. By the same arguments, the initial values satisfy
the O(hk) bounds of (7.16).

The first terms on the right-hand side are bounded using the stability estimate
Proposition 7.2 together with the defect bounds of Proposition 7.1 (and the above
error estimates in the initial values), to obtain

‖ex(t)‖K(x∗(t)) + ‖ev(t)‖K(x∗(t)) + ‖ew(t)‖K(x∗(t)) + ‖eu(t)‖K(x∗(t)) ≤ chk .

Combining the two estimates completes the proof. �

Sufficient regularity assumptions are the following: with bounds that are uniform
in t ∈ [0, T ], we assume X(·, t) ∈ Hk+1(Γ 0)3, v(·, t) ∈ Hk+1(Γ [X(·, t)])3, and for
w = (ν, V , u) we assume w(·, t), ∂•w(·, t) ∈ W k+1,∞(Γ [X(·, t)])5.
Remark 7.2 Under these regularity conditions on the solution, for the numerical
analysis we only require local Lipschitz continuity of the non-linear functions in
Problem 1.1. These local-Lipschitz conditions are, of course, not sufficient to ensure
the existence of even just a weak solution. For regularity results we refer to [15] and
[2]. Here we restrict our attention to cases where a sufficiently regular solution exists,
excluding the formation of singularities but not self-intersections, which we can then
approximate with optimal-order under weak conditions on the nonlinearities.

Remark 7.3 We note here that the above theorem remains true if we add a non-linear
term f (u,∇Γ u) (locally Lipschitz in both variables) to the diffusion equation (1.1b).
This is due to the fact that we already control the W 1,∞ norm of both the exact
and numerical solutions (see (7.1) and (7.4)). Hence the corresponding terms in the
stability analysis can be estimated analogously to the non-linear terms in the geometric
evolution equations, see Sect. 8.1.
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Remark 7.4 The remarks made after the convergence result in [37,Theorem 4.1] apply
also here, which we briefly recap here.

– A key issue in the proof is to ensure that the W 1,∞ norm of the position error
of the surfaces remains small. The H1 error bound and an inverse estimate yield an
O(hk−1) error bound in the W 1,∞ norm. For two-dimensional surfaces, this is small
only for k ≥ 2, which is why we impose the condition k ≥ 2 in the above result. For
higher-dimensional surfaces a larger polynomial degree is required.

– Provided the flow map X parametrises sufficiently regular surfaces Γ [X ], the
admissibility of the numerical triangulation over the whole time interval [0, T ] is
preserved for sufficiently fine grids.

8 Proof of Lemma 7.3

The proof Lemma 7.3 is separated into three subsections for the three estimates.
The proofs extend the main ideas of the proof of Proposition 7.1 of [37] to the cou-

pled mean curvature flow and diffusion system. Together they form the main technical
part of the stability analysis. The first two estimates are based on energy estimates test-
ing the error Eqs. (6.9b) and (6.9c) with the time-derivative of the corresponding error.
The third bound for the error in the velocity is shown using Lemma 5.3 of [39]. The
proofs combines the approach of [37,Proposition 7.1] with those of [38,Theorem 4.1]
on handling the time-derivative term in f in (6.9b), of [12,Proposition 7.1] on dealing
with the solution-dependent mass matrixM(x,u,w) in (6.9b).

The estimates for the terms with u-dependent stiffness matrices in (6.9c) require
new and more elaborate techniques, which are developed here, slightly inspired by the
estimates for the stiffness-matrix differences in [40].

Due to these reasons, a certain degree of familiarity with these papers (but at least
[37]) is required for a concise presentation of this proof.

Remark 8.1 In addition to Remark 7.1, throughout the present proof we will use the
following conventions: References to the proof Proposition 7.1 in [37] are abbreviated
to [37], unless a specific reference therein is given. For example, (i) in part (A) of the
proof of Proposition 7.1 of [37] is referenced as [37, (A.i)].

8.1 Proof of (7.12)

Proof We test (6.9b) with ėw and obtain:

ėT
wM(x,u,w)ėw + ėT

wA(x)ew = −ėT
w
(
M(x,u,w) − M(x,u∗,w∗)

)
ẇ∗

− ėT
w
(
M(x,u∗,w∗) − M(x∗,u∗,w∗)

)
ẇ∗

− ėT
w
(
A(x) − A(x∗)

)
w∗

+ ėT
w
(
f(x,w,u; u̇) − f(x∗,w∗,u∗; u̇∗)

)

− ėT
wM(x∗)dw.

(8.1)
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(i) For the first term on the left-hand side, by the definition of M(x,u,w) =
M(x,u,V) and the h-uniform lower bound from (7.6), we have

ėT
wM(x,u,w)ėw = ėT

wM(x,u,V)ėw

=
∫

Γh [x]
∂2K (uh, Vh) |∂•

h ew|2 ≥ 1
2 K0

∫

Γh [x]
|∂•

h ew|2 = c0‖ėw‖2M,

with the constant c0 = 1
2 K0, see Lemma 7.2.

(ii) By the symmetry of A and (4.10) we obtain

ėT
wA(x)ew = −1

2
eT
w
d

dt

(
A(x)

)
ew + 1

2

d

dt

(
eT
wA(x)ew

)

≥ −c‖ew‖2A + 1

2

d

dt
‖ew‖2A.

(iii) On the right-hand side the two termswith differences of the solution-dependent
mass matrix (recall the notation M(x,u,w) = M(x,u,V)) are estimated using
Lemma 4.1, together with (7.3) and (7.1), (7.4).

For the first term, by Lemma 4.1 (iv) (with ėw, ẇ∗, and u, u∗ in the role of w, z,
and u, u∗, respectively), together with (7.3), the uniform bounds (7.1) and (7.4), and
the W 1,∞ bound on ∂•

h u∗
h , proved in [37, (A.iii)]. Using the norm equivalence (4.5),

we altogether obtain

−ėw
(
M(x,u,V) − M(x,u∗,V∗)

)
ẇ∗ ≤ c

(‖eu‖M + ‖eV‖M
) ‖ėw‖M

≤ c
(‖eu‖M + ‖ew‖M

) ‖ėw‖M.

For the other term we apply Lemma 4.1 (ii) (with ėw, ẇ∗, and u∗ in the role of w,
z, and u, respectively), and obtain

−ėT
w
(
M(x,u∗,V∗) − M(x∗,u∗,V∗)

)
ẇ∗ ≤ c‖ex‖A ‖ėw‖M,

where we again used the norm equivalence (4.5).
(iv) The third term on the right-hand side is estimated exactly as in [37, (A.iv)] by

(recalling K = M + A)

−ėT
w
(
A(x) − A(x∗)

)
w∗ ≤ − d

dt

(
eT
w
(
A(x) − A(x∗)

)
w∗)

+ c‖ew‖A
(‖ev‖K + ‖ex‖K

)
.

(v) Before estimating the non-linear terms f , let us split off the part which depends
linearly on u̇, cf. (6.2):

f(x,w,u; u̇) = f̃(x,w,u) + F(x,w,u)u̇.

Since the estimates for the non-linear term [37, (A.v)] were shown for a general
locally Lipschitz function, they apply for the estimates for the difference f̃ − f̃∗ as
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well (note, however, that f defined in [37,Sect. 3.3] is different from the one here),
and yield

ėT
w
(̃
f(x,w,u) − f̃(x∗,w∗,u∗)

) ≤ c‖ėw‖M
(‖ex‖K + ‖ew‖A + ‖eu‖A

)
.

The remaining difference is bounded

ėT
w
(
F(x,w,u)u̇ − F(x∗,w∗,u∗)u̇∗)

≤ ėT
wF(x,w,u)ėu + ėT

w
(
F(x,w,u) − F(x∗,w∗,u∗)

)
u̇∗

≤ c‖ėw‖M‖ėu‖M + c‖ėw‖M
(‖ex‖K + ‖ew‖A + ‖eu‖A

)
,

where for the first termwe have used (6.2) and the W 1,∞ boundedness of the numerical
solutions (7.4), while the second term is bounded by the same arguments used for the
previous estimate.

(vi) The defect term is simply bounded by the Cauchy–Schwarz inequality and a
norm equivalence (4.5):

−ėT
wM(x∗)dw ≤ c‖ėw‖M‖dw‖M∗ .

Altogether, collecting the estimates in (i)–(vi), and using Young’s inequality and
absorptions to the left-hand side, we obtain the desired estimate (7.12). �

8.2 Proof of (7.13)

Proof We test (6.9c) with ėu, and obtain:

ėT
u
d

dt

(
M(x)eu

)
+ ėT

u A(x,u∗)eu = −ėT
u
d

dt

((
M(x) − M(x∗)

)
u∗)

− ėT
u
(
A(x,u) − A(x,u∗)

)
eu

− ėT
u
(
A(x,u) − A(x,u∗)

)
u∗

− ėT
u
(
A(x,u∗) − A(x∗,u∗)

)
u∗

− ėT
uM(x∗)du.

(8.2)

To estimate these terms we again use the same techniques as in Sect. 8.1.
(i) For the first term on the left-hand side, using (4.10) and the Cauchy–Schwarz

inequality, we obtain

ėT
u
d

dt

(
M(x)eu

)
= ėT

u
d

dt

(
M(x)

)
eu + ‖ėu‖2M

≥ ‖ėu‖2M − c‖ėu‖M‖eu‖M.
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Then Young’s inequality yields

ėT
u
d

dt

(
M(x)eu

)
≥ 1

2
‖ėu‖2M − c‖eu‖2M. (8.3)

(ii) The second term on the left-hand side is bounded, using the symmetry of
A(x,u∗) and (4.18), (via a similar argument as in (A.ii)), by

ėT
u A(x,u∗)eu = 1

2

d

dt

(
eT
u A(x,u∗)eu

)
− 1

2
eT
u
d

dt

(
A(x,u∗)

)
eu

≥ 1

2

d

dt
‖eu‖2A(x,u∗) − c‖eu‖2A.

For the estimate (4.18), which follows from Lemma 4.3, the latter requires the bounds

‖∂•
h u∗

h‖L∞(Γ ∗
h ) ≤ R,

‖D′(u∗
h)‖L∞(Γ ∗

h ) ≤ R.
(8.4)

The first estimate is proved exactly as in [37, (A.iii)], while the second one is shown
(by a similar idea) using the local Lipschitz continuity of D′ (Assumption 5) and the
bounds (7.1), for sufficiently small h:

‖D′(u∗
h)‖L∞ ≤ ‖D′(u∗

h) − D′(u)‖L∞ + ‖D′(u)‖L∞ ≤ 2R.

(iii) The time-differentiated mass matrix difference, the first term on the right-hand
side of (8.2), is bounded, by the techniques for the analogous term in (A.iii) of the
proof of [40,Proposition 6.1], by

− ėT
u
d

dt

((
M(x) − M(x∗)

)
u∗)

≤ c‖∂•
h eu‖L2(Γh [x])‖∇Γh [x]ex‖L2(Γh [x])‖∂•

h u∗
h‖L∞(Γh [x])

+ c‖∂•
h eu‖L2(Γh [x])

(‖∇Γh [x]ex‖L2(Γh [x]) + ‖∇Γh [x]ev‖L2(Γh [x])
)‖∂•

h u∗
h‖L∞(Γh [x])

≤ c‖ėu‖M‖ex‖A + c‖ėu‖M
(‖ex‖A + ‖ev‖A

)
.

For the last inequality we use (8.4).
(iv) By the symmetry of the matrices A(x,u) and A(x,u∗), and the product rule,

we obtain

−ėT
u
(
A(x,u) − A(x,u∗)

)
eu = −1

2

d

dt

(
eT
u
(
A(x,u) − A(x,u∗)

)
eu

)

+ eT
u
d

dt

(
A(x,u) − A(x,u∗)

)
eu.

(8.5)

The first term will be estimated later after an integration in time, while the second
term is bounded similarly to [37, (A.iv)].
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Lemma 4.3 and the Leibniz formula yields, for any vectors w, z ∈ R
N (which

satisfy ∂•
hwh = ∂•

h zh = 0),

wT d

dt

(
A(x,u) − A(x,u∗)

)
z

= d

dt

∫

Γh [x]
(
D(uh) − D(u∗

h)
) ∇Γh [x]wh · ∇Γh [x]zh

=
∫

Γh [x]
∂•

h

(
D(uh) − D(u∗

h)
)∇Γh [x]wh · ∇Γh [x]zh

+
∫

Γh [x]
(
D(uh) − D(u∗

h)
)
∂•

h (∇Γh [x]wh) · ∇Γh [x]zh

+
∫

Γh [x]
(
D(uh) − D(u∗

h)
) ∇Γh [x]wh · ∂•

h (∇Γh [x]zh)

+
∫

Γh [x]
(
D(uh) − D(u∗

h)
) ∇Γh [x]wh · ∇Γh [x]zh

(∇Γh [x] · vh
)

=: J1 + J2 + J3 + J4.

(8.6)

Here vh is the velocity of the discrete surface Γh[x] with nodal values v.
We now estimate the four terms separately. For the first term in J1, we compute

∣∣∂•
h

(
D(uh) − D(u∗

h)
)∣∣ = ∣∣D′(uh)(∂•

h uh − ∂•
h u∗

h) + (D′(uh) − D′(u∗
h))∂•

h u∗
h

∣∣

≤ |D′(uh)||∂•
h eu | + |D′(uh) − D′(u∗

h)||∂•
h u∗

h |.

The local Lipschitz continuity of D′ and (8.4), together with a Hölder inequality then
yields

J1 ≤ c
(‖∂•

h eu‖L2(Γh [x]) + ‖eu‖L2(Γh [x])
)‖∇Γh [x]wh‖L2(Γh [x])‖zh‖W 1,∞(Γh [x]).

The two middle terms are estimated by first interchanging ∂•
h and ∇Γh [x] via the

formula (4.15). Using (4.15) together with ∂•
hwh = ∂•

h zh = 0 and the boundedness of
νΓh [x] and vh (7.4), we obtain the estimate

J2 + J3 ≤ c‖eu‖L2(Γh [x])‖∇Γh [x]wh‖L2(Γh [x])‖zh‖W 1,∞(Γh [x]).

The last term J4 is estimated by a similar argument as the first, now using the local
Lipschitz continuity of D′ and the h-uniform W 1,∞ boundedness of vh (7.4):

J4 ≤ c‖eu‖L2(Γh [x])‖∇Γh [x]wh‖L2(Γh [x])‖zh‖W 1,∞(Γh [x]).

By combining these bounds, and recalling the W 1,∞ norm bounds (7.3) and (7.4),
we obtain
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eT
u
d

dt

(
A(x,u) − A(x,u∗)

)
eu

≤ c
(‖∂•

h eu‖L2(Γh [x]) + ‖eu‖L2(Γh [x])
)‖∇Γh [x]eu‖L2(Γh [x])‖eu‖W 1,∞(Γh [x])

≤ c
(‖ėu‖M + ‖eu‖M

)‖eu‖A.

Altogether we obtain

−ėT
u
(
A(x,u) − A(x,u∗)

)
eu ≤ −1

2

d

dt

(
eT
u
(
A(x,u) − A(x,u∗)

)
eu

)

+ c
(‖ėu‖M + ‖eu‖M

)‖eu‖A,

which does not contain a critical term ‖ėu‖A.
(v) Almost verbatim as the argument in (iv) we rewrite and estimate the third term

on the right-hand side of (8.2) as

− ėT
u
(
A(x,u) − A(x,u∗)

)
u∗

= − d

dt

(
eT
u
(
A(x,u) − A(x,u∗)

)
u∗)

+ eT
u
d

dt

(
A(x,u) − A(x,u∗)

)
u∗ + eT

u
(
A(x,u) − A(x,u∗)

)
u̇∗

≤ − d

dt

(
eT
u
(
A(x,u) − A(x,u∗)

)
u∗)

+ c
(‖ėu‖M + ‖eu‖M

)‖eu‖A + c‖eu‖M‖eu‖A.

For the non-differentiated term here we used Lemma 4.2 (ii) (together with (7.1) and
(7.4)) and the W 1,∞ variant of (8.4). The latter is shown (omitting the argument t) by

‖∂•
h u∗

h‖W 1,∞(Γ ∗
h ) ≤ c‖(∂•

h u∗
h)�‖W 1,∞(Γ [X ])

≤ c‖(∂•
h u∗

h)� − Ih∂•u‖W 1,∞(Γ [X ])
+ c‖Ih∂•u − ∂•u‖W 1,∞(Γ [X ]) + c‖∂•u‖W 1,∞(Γ [X ])

≤ c

h
‖(∂•

h u∗
h)� − Ih∂•u‖H1(Γ [X ])

+ c‖Ih∂•u − ∂•u‖W 1,∞(Γ [X ]) + c‖∂•u‖W 1,∞(Γ [X ])
≤ c

h
‖(∂•

h u∗
h)� − ∂•u‖H1(Γ [X ]) + c

h
‖∂•u − Ih∂•u‖H1(Γ [X ])

+ c‖Ih∂•u − ∂•u‖W 1,∞(Γ [X ]) + c‖∂•u‖W 1,∞(Γ [X ])
≤ Chk−1 + Chk−1 + Chk + C .

(8.7)

Here we subsequently used the norm equivalence for the lift operator (see [21, (2.15)–
(2.16)]) in the first inequality, an inverse inequality [14,Theorem 4.5.11] in the second
inequality, and the known error bounds for interpolation (see [21,Proposition 2]) and
for the Ritz map u∗

h = R̃u
h u (a direct modification of [42,Theorem 3.1]) in the last

inequality.
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(vi) The argument for the fourth term on the right-hand side of (8.2) is slightly
more complicated since it compares stiffness matrices on different surfaces. We will
estimate this term by a D-weighted extension of the argument of [37, (A.iv)].

We start by rewriting this term as a total derivative

− ėT
u
(
A(x,u∗) − A(x∗,u∗)

)
u∗

= − d

dt

(
eT
u
(
A(x,u∗) − A(x∗,u∗)

)
u∗)

+ eT
u
d

dt

(
A(x,u∗) − A(x∗,u∗)

)
u∗ + eT

u
(
A(x,u∗) − A(x∗,u∗)

)
u̇∗

≤ − d

dt

(
eT
u
(
A(x,u∗) − A(x∗,u∗)

)
u∗)

+ eT
u
d

dt

(
A(x,u∗) − A(x∗,u∗)

)
u∗ + c‖eu‖A‖ex‖A,

where we now used Lemma 4.2 (i) (together with (7.1) and (7.4)).
The remaining term is bounded similarly to (8.6). In the setting of Sect. 4, analo-

gously to Lemma 4.1, using Leibniz formula we obtain, for any vectors w, z ∈ R
N ,

but for a fixed u∗ ∈ R
N in both matrices,

wT
( d

dt

(
A(x,u∗) − A(x∗,u∗)

))
z

= d

dt

∫ 1

0

∫

Γ θ
h

D(u∗,θ
h )∇Γ θ

h
wθ

h · (DΓ θ
h

eθ
x )∇Γ θ

h
zθ

h dθ

=
∫ 1

0

∫

Γ θ
h

∂•
Γ θ

h

(
D(u∗,θ

h )
)∇Γ θ

h
wθ

h · (DΓ θ
h

eθ
x )∇Γ θ

h
zθ

h dθ

+
∫ 1

0

∫

Γ θ
h

D(u∗,θ
h ) ∂•

Γ θ
h

(∇Γ θ
h
wθ

h

) · (DΓ θ
h

eθ
x )∇Γ θ

h
zθ

h dθ

+
∫ 1

0

∫

Γ θ
h

D(u∗,θ
h )∇Γ θ

h
wθ

h · ∂•
Γ θ

h

(
DΓ θ

h
eθ

x

)∇Γ θ
h

zθ
h dθ

+
∫ 1

0

∫

Γ θ
h

D(u∗,θ
h )∇Γ θ

h
wθ

h · (DΓ θ
h

eθ
x )∂

•
Γ θ

h

(∇Γ θ
h

zθ
h

)
dθ

+
∫ 1

0

∫

Γ θ
h

D(u∗,θ
h )∇Γ θ

h
wθ

h · (DΓ θ
h

eθ
x )∇Γ θ

h
zθ

h (∇Γ θ
h

· vΓ θ
h
)dθ

=:
∫ 1

0

(
J θ
0 + J θ

1 + J θ
2 + J θ

3 + J θ
4

)
dθ.

(8.8)

We recall from Sect. 4 that Γ θ
h (t) is the discrete surface with nodes x∗(t) + θex(t)

(with unit normal field νθ
h := νΓ θ

h
), and with finite element space Sh[x∗(t) + θex(t)].

The function u∗,θ
h = u∗,θ

h (·, t) ∈ Sh[x∗(t) + θex(t)] with θ -independent nodal values
u∗(t).
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We denote bywθ
h(·, t) and zθ

h(·, t) the finite element functions in Sh[x∗(t)+θex(t)]
with the time- and θ -independent nodal vectors w and z, respectively. The velocity
of Γ θ

h (t) is vΓ θ
h
(·, t) (as a function of t), which is the finite element function in

Sh[x∗(t) + θex(t)] with nodal vector ẋ∗(t) + θ ėx(t) = v∗(t) + θev(t). Related to this
velocity, ∂•

Γ θ
h
denotes the corresponding material derivative on Γ θ

h . We thus have

vΓ θ
h

= v
∗,θ
h + θeθ

v . (8.9)

The various time- and θ -independencies imply

∂•
Γ θ

h
wθ

h = 0, ∂•
Γ θ

h
zθ

h = 0, (8.10)

and since for the nodal vectors we have ėx = ev (6.9d) we also have

∂•
Γ θ

h
eθ

x = eθ
v . (8.11)

The terms J θ
k for k = 0, . . . , 4 are bounded almost exactly as the analogous terms

in [37, (A.iv)].
For the first term we have ∂•

Γ θ
h

(
D(u∗,θ

h )
) = D′(u∗,θ

h ) ∂•
Γ θ

h
u∗,θ

h , this together with

(8.4) and recalling that u∗,θ
h is θ -independent yields ‖D′(u∗,θ

h ) ∂•
Γ θ

h
u∗,θ

h ‖L∞(Γ θ
h ) ≤ R2,

cf. the proof of Lemma 4.3. We then obtain bound

J θ
0 ≤ c‖∇Γ θ

h
wh‖L2(Γ θ

h )‖∇Γ θ
h

eθ
x‖L2(Γ θ

h )‖zθ
h‖W 1,∞(Γ θ

h ).

The identities in (8.10) in combination with the interchange formula (4.15) yield

J θ
1 + J θ

3 ≤ c‖∇Γ θ
h
wh‖L2(Γ θ

h )‖∇Γ θ
h

eθ
x‖L2(Γ θ

h )‖zθ
h‖W 1,∞(Γ θ

h ),

where we have used the uniform boundedness of K (5).
The interchange formula for ∂•

Γ θ
h
and DΓ θ

h
, cf. [37,Eq. (7.27)], analogous to (4.15),

and reads

∂•
Γ θ

h
(DΓ θ

h
eθ

x ) = ∂•
Γ θ

h

(
tr(∇Γ θ

h
eθ

x ) − (∇Γ θ
h

eθ
x + (∇Γ θ

h
eθ

x )
T ))

= DΓ θ
h
(∂•

Γ θ
h

eθ
x ) + tr(Ēθ ) − (Ēθ + (Ēθ )T ),

(8.12)

with Ēθ = −(∇Γ θ
h
vΓ θ

h
−νθ

h (νθ
h )T (∇Γ θ

h
vΓ θ

h
)T

)∇Γ θ
h

eθ
x , as follows from [22,Lemma2.6]

and the definition of the first order linear differential operator DΓ θ
h
.

The interchange identity (8.12) and (8.11) (together with (5)) then yields

J θ
2 ≤ c‖∇Γ θ

h
wθ

h‖L2(Γ θ
h )

(‖∇Γ θ
h

eθ
x‖L2(Γ θ

h ) + ‖∇Γ θ
h

eθ
v‖L2(Γ θ

h )

)‖zθ
h‖W 1,∞(Γ θ

h ).

123



912 C. M. Elliott et al.

The last term is directly bounded, using the W 1,∞ boundedness of vh , as

J θ
4 ≤ c‖∇Γ θ

h
wh‖L2(Γ θ

h )‖∇Γ θ
h

eθ
x‖L2(Γ θ

h )‖zθ
h‖W 1,∞(Γ θ

h ).

Using the norm equivalences (4.4) for the bounds of (J θ
k )4k=0 we obtain

wT
( d

dt

(
A(x,u∗) − A(x∗,u∗)

))
z

≤ c‖∇Γh [x]wh‖L2(Γh [x])
(‖∇Γh [x]ex‖L2(Γh [x]) + ‖∇Γh [x]ev‖L2(Γh [x])

)‖zh‖W 1,∞(Γh [x]).

Altogether, using the bound (8.7), we obtain

−ėT
u
(
A(x,u∗) − A(x∗,u∗)

)
u∗ ≤ − d

dt

(
eT
u
(
A(x,u∗) − A(x∗,u∗)

)
u∗)

+ c‖eu‖A
(‖ex‖A + ‖ev‖A

) + c‖eu‖A‖ex‖A.

(vii) Finally, the defect terms are bounded by

−ėT
uM(x∗)du ≤ c‖ėu‖M‖du‖M∗ .

Altogether, collecting the above estimates in (i)–(vii), and using Young’s inequality
and absorptions to the left-hand side, we obtain the desired estimate (recalling K =
M + A). �

8.3 Proof of (7.14)

Proof The error equation for the velocity law is estimated exactly as the velocity error
equation for Willmore flow [39, (B)] (based on Lemma 5.3 therein), and recalling
u = (n,V)T ∈ R

4N , we obtain

‖ev‖K ≤ c
(‖eV‖K + ‖en‖K

) + ‖dv‖K
≤ c‖eu‖K + c‖dv‖K∗ ,

(8.13)

where for the last inequality we used a norm equivalence (4.5). �

9 Proof of Proposition 7.2

Proof The aim is to to combine the three estimates of Lemma 7.3, following the main
ideas of [37].
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First we use the differential equation ėx = ev (6.9d), using (4.10), to show the
bound

‖ex(t)‖2K(x∗(t)) =
∫ t

0

d

ds
‖ex(s)‖2K(x∗(s))ds

≤ c
∫ t

0
‖ev(s)‖2K(x∗(s))ds + c

∫ t

0
‖ex(s)‖2K(x∗(s))ds.

(9.1)

We first take the weighted linear combination of (7.12) and (7.13) with weights 1
and 8c1, respectively, to absorb the term c1‖ėu‖2M from (7.12). We then obtain

c0
2

‖ėw‖2M + 1

2

d

dt
‖ew‖2A + c1 ‖ėu‖2M + 4c1

d

dt
‖eu‖2A(x,u∗)

≤ c
(‖ex‖2K + ‖ev‖2K + ‖ew‖2K + ‖eu‖2K

)

+ c
(‖du‖2M∗ + ‖dw‖2M∗

)

− d

dt

(
eT
w
(
A(x) − A(x∗)

)
w∗)

− c
1

2

d

dt

(
eT
u
(
A(x,u) − A(x,u∗)

)
eu

)

− c
d

dt

(
eT
u
(
A(x,u) − A(x,u∗)

)
u∗)

− c
d

dt

(
eT
u
(
A(x,u∗) − A(x∗,u∗)

)
u∗).

(9.2)

We now connect ‖ė‖2M with d/dt ‖e‖2M, and will use the result either for ex or for
eu in place of e. We estimate, using (4.10), by

d

dt
‖e‖2M = 2eTM(x)ė + eT d

dt

(
M(x)

)
eT

≤ c‖ė‖M‖e‖M + c‖e‖2M
≤ �‖ė‖2M + �−1c‖e‖2M,

(9.3)

where for the last step we used Young’s inequality with an arbitrary number � > 0, to
be chosen later on independently of h. We will also use its time-integrated version:

‖e(t)‖2M(t) ≤ �

∫ t

0
‖ė(s)‖2M(s)ds + �−1c

∫ t

0
‖e(s)‖2M(s)ds + ‖e(0)‖2M(0). (9.4)

Using (9.3) for e = ew with � = 1, the left-hand side of (9.2) simplifies to

c0
2

d

dt
‖ew‖2M + 1

2

d

dt
‖ew‖2A + c1 ‖ėu‖2M + 4c1

d

dt
‖eu‖2A(x,u∗),

with additional terms on the right-hand side which already appeared before.
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914 C. M. Elliott et al.

In order to estimate the remaining time derivatives on the left-hand side of (9.2)
we integrate both sides form 0 to t and use the norm equivalence (4.16), recalling
K = M + A we obtain (after factoring out a constant and dividing through):

‖ew(t)‖2K(t) + c1

∫ t

0
‖ėu(s)‖2M(s)ds + ‖eu(t)‖2A(t)

≤ c
∫ t

0

(‖ex(s)‖2K(s) + ‖ev(s)‖2K(s) + ‖ew(s)‖2K(s) + ‖eu(s)‖2K(s)

)
ds

+ c
∫ t

0

(‖dw(s)‖2M∗(s) + ‖du(s)‖2M∗(s)
)
ds

+ ‖ew(0)‖2K(0) + ‖eu(0)‖2M(0) + ‖eu(0)‖2A(x(0),u∗(0))
+ c ‖ew(t)‖K(t)‖ex(t)‖K(t)

+ c ‖eu(t)‖A(t)‖eu(t)‖M(t) + c ‖eu(0)‖A(0)‖eu(0)‖M(0)

+ c ‖eu(t)‖K(t)‖ex(t)‖K(t),

(9.5)

where for the four time-differentiated terms on the right-hand side (cf. (9.2)), we used,
in order, (4.7), Lemma 4.2 (ii) twice, and Lemma 4.2 (i), in combination with the
uniform W 1,∞ norm bounds (7.3) and (7.1), (7.4).

UsingYoung’s inequality and absorptions to the left-hand side yields (after factoring
out a constant and dividing through)

‖ew(t)‖2K(t) + c1

∫ t

0
‖ėu(s)‖2M(s)ds + ‖eu(t)‖2A(t)

≤ c
∫ t

0

(‖ex(s)‖2K(s) + ‖ev(s)‖2K(s) + ‖ew(s)‖2K(s) + ‖eu(s)‖2K(s)

)
ds

+ c
∫ t

0

(‖dw(s)‖2M∗(s) + ‖du(s)‖2M∗(s)
)
ds

+ c
(‖eu(0)‖2K(0) + ‖eu(0)‖2K(0)

)

+ c ‖ex(t)‖2K(t) + c2 ‖eu(t)‖2M(t).

(9.6)

In order to apply Gronwall’s inequality we need to estimate the last two terms of
(9.6): The first of which is bounded by (9.1). The second is estimated using (9.4) for
e = eu with a factor � > 0 such that c2� < c1/2, allowing an absorption to the left-
hand side. This, and using (9.4) for e = eu with a factor � = 1 now on the left-hand
side, yields

‖ew(t)‖2K(t) + ‖eu(t)‖2K(t)

≤ c
∫ t

0

(‖ex(s)‖2K(s) + ‖ev(s)‖2K(s) + ‖ew(s)‖2K(s) + ‖eu(s)‖2K(s)

)
ds

+ c
∫ t

0

(‖dw(s)‖2M∗(s) + ‖du(s)‖2M∗(s)
)
ds

+ c
(‖ew(0)‖2K(0) + ‖eu(0)‖2K(0) + ‖eu(0)‖2A(x(0),u∗(0))

)
.

(9.7)
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Substituting (9.7) into the right-hand side of (7.14), and then summing up the
resulting estimate with (9.7) with (9.1) (analogously as in [37, (C)]), and using the
norm equivalence (4.5), and then finally using Gronwall’s inequality we obtain the
stated stability estimate (7.17) for all 0 ≤ t ≤ T ∗.

Finally, it remains to show that in fact T ∗ = T for h sufficiently small, i.e. that
Lemma 7.2 holds for thw whole time interval [0, T ]. Upon noting that by the assumed
defect bounds (7.15) and (7.16), combined with the obtained stability bound (7.17),
yields

‖ex(t)‖K(x∗(t)) + ‖ev(t)‖K(x∗(t)) + ‖ew(t)‖K(x∗(t)) + ‖eu(t)‖K(x∗(t)) ≤ Chκ ,

and therefore by an inverse inequality [14,Theorem 4.5.11] we obtain, for t ∈ [0, T ∗],

‖ex (·, t)‖W 1,∞(Γh [x∗(t)]) + ‖ev(·, t)‖W 1,∞(Γh [x∗(t)])
+ ‖ew(·, t)‖W 1,∞(Γh [x∗(t)]) + ‖eu(·, t)‖W 1,∞(Γh [x∗(t)])

≤ c

h

(
‖ex(t)‖K(x∗(t)) + ‖ev(t)‖K(x∗(t)) + ‖ew(t)‖K(x∗(t)) + ‖eu(t)‖K(x∗(t))

)

≤ c C hκ−1 ≤ 1

2
h(κ−1)/2,

(9.8)

for sufficiently small h. Thismeans that the bounds (7.3), (and hence all other estimates
in Lemma7.2), can be extended beyond T ∗, contradicting themaximality of T ∗, unless
T ∗ = T already. Therefore we have show the stability bound (7.17) over the whole
time interval [0, T ]. �

10 Numerical experiments

We performed numerical simulations and experiments for the flow (1.1) formulated
as Problem 1.1 in which:

– The rate of convergence in an example involving a radially symmetric exact solu-
tion is studied in order to illustrate the theoretical results of Theorem 7.1.

– Flows decreasing the energy E(Γ , u) = ∫
Γ

G(u) and their qualitative properties,
see Sect. 2.2, are investigated in several simulations.

– Numerical experiments exhibiting loss of convexity and self-intersection are pre-
sented. This is in contrast to mean curvature flow which preserves convexity, and
for which self-intersections are not possible.

– The preservation under discretisation of mass conservation and the existence of
a weak maximum principle together with the energy decay, and mean convexity
properties enjoyed by the underlying PDE system are studied.

The numerical experiments use quadratic evolving surface finite elements. Quadra-
tures of sufficiently high order are employed to compute the finite element vectors and
matrices so that the resulting quadrature error does not feature in the discussion of
the accuracies of the schemes. Similarly, sufficiently high-order linearly implicit BDF
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916 C. M. Elliott et al.

time discretisations, see the next Sect. 10.1, with small time steps were employed for
the solution of the time dependent ODE system. The parametrisation of the quadratic
elements was inspired by [7]. The initial meshes were all generated using DistMesh
[46], without taking advantage of any symmetry of the surface.

10.1 Linearly implicit backward difference full discretisation

For the time discretisation of the system of ordinary differential equations (6.5) we
use a q-step linearly implicit backward difference formula (BDF method). For a step
size τ > 0, and with tn = nτ ≤ T , we determine the approximations to all variables
xn to x(tn), vn to v(tn), wn = (nn,Vn)T to w(tn) = (n(tn),V(tn))T , and un to u(tn)

by the fully discrete system of linear equations, for n ≥ q,

vn = Vn • nn, (10.1a)

M[4](̃xn, ũn; w̃n)ẇn + A[4](̃xn)wn = f (̃xn, w̃n, ũn; u̇n), (10.1b)
(
M(̃xn)un

)· + A(̃x, ũn)un = 0, (10.1c)

ẋn = vn, (10.1d)

where we denote the discretised time derivatives

ẋn = 1

τ

q∑

j=0

δ jxn− j , n ≥ q, (10.2)

while by x̃n we denote the extrapolated values

x̃n =
q−1∑

j=0

γ jxn−1− j , n ≥ q. (10.3)

Both notations are used for all other variables, in particular note the BDF time deriva-
tive of the the product (M(̃xn)un)·.

The starting values xi and ui (i = 0, . . . , q − 1) are assumed to be given. Fur-
thermore, we set x̃i = xi and ũi = ui (i = 0, . . . , q − 1). The initial values can be
precomputed using either a lower order method with smaller step sizes or an implicit
Runge–Kutta method.

The method is determined by its coefficients, given by

δ(ζ ) =
q∑

j=0

δ jζ
j =

q∑

�=1

1

�
(1 − ζ )� and γ (ζ ) =

q−1∑

j=0

γ jζ
j = (1 − (1 − ζ )q)/ζ.

The classical BDFmethod is known to be zero-stable for q ≤ 6 and to have order q; see
[35,Chapter V]. This order is retained, for q ≤ 5 see [44], also by the linearly implicit
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variant using the above coefficients γ j ; cf. [5, 6]. In [3], the multiplier techniques of
[45] have been recently extended, via a new approach, to the six-step BDF method.

We again point out that the fully discrete system (10.1) is extremely similar to
the fully discrete system for the mean curvature flow [37,Eqs. (5.1)–(5.4)], and The-
orem 6.1 in [37] proves optimal-order error bounds for the combined ESFEM–BDF
full discretisation of the mean curvature flow system, for finite elements of polynomial
degree k ≥ 2 and BDF methods of order 2 ≤ q ≤ 5.

We note that in each time step themethod decouples and hence only requires solving
a few linear systems (with symmetric positive definite matrices): first (10.1c) is solved
with δ0M(̃xn) + τA(̃xn, ũn), then, since u̇n is already known for f , (10.1b) is solved
with δ0M(̃xn, ũn, w̃n) + τA(̃xn), and finally (10.1d) with (10.1a) is computed.

10.2 Convergence experiment

We will construct a radially symmetric solution to Problem 1.1 of the form u(·, t) ≡
u(t) on Γ [X(·, t)], where the surface Γ [X(·, t)] ⊂ R

m+1 is a sphere of radius R(t)
with R(0) = R0. We choose D(u) ≡ 1 and F(u, H) = −g(u)H , so that K (u, V ) =
−V /g(u). The positive function g here will be chosen later on.

Since the flow preserves the radial symmetry of Γ [X ], it remains a sphere of radius
R(t), and inspection of the diffusion equation yields that u(·, t) remains spatially
constant. For more details on this example we refer to [15,Sect. 3.4].

The velocity and mean curvature of the evolving sphere in R
m of radius R(t) are

V = Ṙ, and H = m/R(t) so that

v = V ν = −g(u)Hν

yields

Ṙ(t) = −g(u(t))
m

R(t)
. (10.4)

On the other hand, by mass conservation, see Sect. 2.2, we have

u(t) = u0

( R0

R(t)

)m
(10.5)

and together with (10.4) this yields

Ṙ(t) = −g

(
u0

( R0

R(t)

)m
)

m

R(t)
. (10.6)

We set, with α ∈ R to be chosen later on,

g(r) = (1 + α)r−α, (10.7)
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which corresponds to the energy density

G(r) = r−α, (10.8)

recalling that g(r) = G(r)− G ′(r)r for the gradient flow (1.3). With these coefficient
functions this problem satisfies our assumptions from Sect. 2.

By choosing (10.7) in the ODE (10.6), we obtain

Ṙ(t) = −(1 + α)

(
u0

( R0

R(t)

)m
)−α m

R(t)

= −m (1 + α)
(

u0 Rm
0

)−α

R(t)αm−1

= −b R(t)αm−1,

(10.9)

where the constant b collects all time-independent factors. Note that for α = 0 we
recover the classical mean curvature flow (b = m). The solution of the above separable
ODE, with initial value R(0) = R0, is

R(t) =
(

R2−αm
0 − tb(2 − αm)

) 1
2−αm

, (10.10)

on the time interval [0, Tmax]. In the m-dimensional case, if 2 − αm ≥ 0 the sphere
Γ [X ] shrinks to a point in finite time, Tmax = R2−αm

0 (b(2−αm))−1,while if 2−αm <

0 a solution exists for all times.
For the convergence experiment we chose the following initial values and parame-

ters: The initial surface Γ 0 is a two-dimensional sphere of radius R0 = 1, the initial
concentration is u0(x, 0) = 1 for all x ∈ Γ 0. The parameter α in (10.8)–(10.7) is
chosen to be α = 2. That is we are in a situation where a solution exists on [0,∞).
The exact solutions for Γ [X ] and u(·, t) are given in (10.10) and (10.5), respectively.
We started the algorithms from the nodal interpolations of the exact initial values
Γ [X(·, ti )], ν(·, ti ), V (·, ti ) = −g(u(·, ti ))H(·, ti ), and u(·, ti ), for i = 0, . . . , q − 1.
In order to illustrate the convergence results of Theorem 7.1, we have computed the
errors between the numerical solution (10.1) and (the nodal interpolation of the) exact
solutions of Problem1.1 for the above radially symmetric geometric solution in dimen-
sion m = 2. The solutions are plotted in Fig. 2.

In Figs. 3 and 4 we report the errors between the numerical solution and the inter-
polation of the exact solution until the final time T = 1, for a sequence of meshes
(see plots) and for a sequence of time steps τk+1 = τk/2. The logarithmic plots report
on the L∞(H1) norm of the errors against the mesh width h in Fig. 3, and against
the time step size τ in Fig. 4. The lines marked with different symbols and different
colours correspond to different time step sizes and to different mesh refinements in
Figs. 3 and 4, respectively.

In Fig. 3 we can observe two regions: a region where the spatial discretisation
error dominates, matching the O(h2) order of convergence of Theorem 7.1 (see the
reference lines), and a region, with small mesh size, where the temporal discretisation
error dominates (the error curves flatten out). For Fig. 4, the same description applies,
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Fig. 2 Solutions (Γh [x] and uh ) of the radially symmetric flowwithα = 2 computed usingBDF2 / quadratic
ESFEM (colorbar applies to all plots)

Fig. 3 Spatial convergence of the BDF2 / quadratic ESFEM discretisation for Problem 1.1 with T = 1 and
α = 2

but with reversed roles. Convergence of fully discretemethods is not shown, but O(τ 2)

is expected for the 2-step BDF method, cf. [37].
The convergence in time and in space as shown by Figs. 3 and 4, respectively, is in

agreement with the theoretical convergence results (note the reference lines).

10.3 Convexity/non-convexity along the flow

It is well known that for mean curvature flow, [34], a strictly convex surface shrink to
a round point in finite time, and stays strictly convex throughout. For the flow (1.1)
this is not true. In Figs. 5 and 6, F(u, H) = g(u)H and D(u) ≡ 1 where g(u) =
G(u) − G ′(u)u = 3u−2, which corresponds to the energy density G(u) = u−2. This
problem satisfies our assumptions fromSect. 2.We respectively report on the evolution
of an elongated ellipsoid as initial surface with an initial value u0 (concentrated along
the tips with values ≈ 5 decreasing in themiddle to 0.5), and on themass conservation,
weak maximum principle, energy decay, and the mean convexity along the flow. The
plots of Fig. 5 show the flow until final time T = 7.5, where a pinch singularity occurs.
The simulations used dof = 4002 for the number of degrees of freedom and a time step
τ = 0.01, (the colorbar applies to all plots). We point out the crucial observation that
the approaching singularity is detectable on the mass conservation plot. Note that in
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Fig. 4 Temporal convergence of the BDF2 / quadratic ESFEM discretisation for Problem 1.1 with T = 1
and α = 2

Fig. 5 Unlike for mean curvature flow, convex surfaces do not remain convex along the flow (1.1) with
F(u, H) = g(u)H = 3u−2H (the colorbar applies to all plots)

Remark 5.1 only the mass conservation of the spatial semi-discretisation was studied,
but not that of the fully discrete numerical method (10.1). For Fig. 6 (and the other
experiments as well) the mass and energy were computed by quadratures.

10.4 Slow diffusion through a tight neck

The diffusion speed on surfaces is greatly influenced by the geometry, see, e.g., the
insightful paper of Ecker [28]. To report on such an experiment for the flow (1.1a)–
(1.1b), as an initial surface we take a dumbbell (given by [32,Eq. (2.3)]) and initial
data u0 which is 0.8 from the neck above and smoothly transitioning to 10−4 for the
neck and below. The experiment takes D(u) ≡ 1 and F(u, H) = u H . In view of
these choices, and the initial data u0, the bottom part barely moves, while the top part
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Fig. 6 Mass conservation, weak maximum principle, energy decay, and mean convexity for the example in
Fig. 5 along the flow (1.1) with g(u) = 3u−2

Fig. 7 The diffusion speed is slow at a tight neck, and hence the large concentration differences cannot
equilibrate before the top part shrinks along the flow (1.1) with F(u, H) = u H and D(u) ≡ 1

quickly shrinks before the concentration could pass through the neck. We note that for
pure mean curvature flow of this initial surface a pinch-off singularity would occur in
finite time, cf. [37,Fig. 4] which uses the exact same initial surface Γ 0.

The experiment uses a mesh with dof = 10522 and a time step size τ = 0.001.
In Fig. 7 we observe that, since the diffusion speed at the neck is rather slow, the
concentration uh cannot equidistribute before the top part is vanishing. A pinch-off
does not occur, contrary to standard mean curvature flow, see [37,Sect. 13.2] (using
the same initial surface). Similarly as before, Fig. 8 reports on the mass conservation,
weak maximum principle, and the mean convexity along the flow, we note however
that the initial surface is not mean convex: min{H(·, 0)} ≈ −1.72 · 10−12. Note the
axis-limits in Fig. 8.

10.5 A self-intersecting flow

The flow (1.1) may describe surface evolutions where Γ [X ] is self intersecting,
i.e. X(·, t) : Γ 0 → R

3 is not a parametrisation, but an immersion, see the similar con-
struction in [15,Figs. 5.3–5.5]. We consider the flow (1.1) with F(u, H) = g(u)H
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Fig. 8 Mass conservation, weak maximum principle (note the axis-scaling), and mean convexity for the
example in Fig. 7, along the flow (1.1) with F(u, H) = u H and D(u) ≡ 1

Fig. 9 Snapshots (cross section at the x = 0 plane) of a self-intersecting evolution (1.1) with F(u, H) =
g(u)H = 5u−4H and D(u) ≡ 1

Fig. 10 Snapshots of the surface Γh [x] and the concentration uh (bottom view of the x–y-projection) of a
self-intersecting evolution (1.1) with F(u, H) = g(u)H = 5u−4H and D(u) ≡ 1

and D(u) ≡ 1 where g(u) = G(u) − G ′(u)u = 5u−4, which corresponds to the
energy density G(u) = u−4. This problem satisfies our assumptions from Sect. 2.

For a cup shaped surface1 (with dof = 4002) and a suitably chosen initial value
self-intersections are possible. The initial datum is chosen such that u0 is constant 10

1 Generated in Blender: blender.org.
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Fig. 11 Mass conservation, weak maximum principle and energy decay for the self-intersecting example
in Figs. 9–10 along the flow (1.1) with g(u) = 5u−4

over the whole surface Γ 0, except on the outer-bottom where it is gradually decreased
to a smaller value ≈ 1 as shown in the leftmost plot in Fig. 10. In Figs. 9 and 10 we
present the numerical solution obtained by the 2-step BDF method with τ = 10−3.
The self-intersection is clearly observable on both figures, e.g., note the bright patch
in Fig. 10 after the self intersection. Of course the self-intersection does not influence
the mass conservation, weak maximum principle, and energy decay, see Fig. 11. (The
initial surface is clearly not convex.)
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