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Abstract
In this paper we consider a dual gradient method for solving linear ill-posed problems
Ax = y, where A : X → Y is a bounded linear operator from a Banach space X to
a Hilbert space Y . A strongly convex penalty function is used in the method to select
a solution with desired feature. Under variational source conditions on the sought
solution, convergence rates are derived when the method is terminated by either an a
priori stopping rule or the discrepancy principle. We also consider an acceleration of
the method as well as its various applications.

Mathematics Subject Classification 65J15 · 65J20 · 47H17

1 Introduction

Many linear inverse problems can be formulated into the minimization problem

min{R(x) : x ∈ X and Ax = y}, (1.1)

where A : X → Y is a bounded linear operator from a Banach space X to a Hilbert
space Y , y ∈ Ran(A), the range of A, and R : X → (−∞,∞] is a proper, lower
semi-continuous, convex function that is used to select a solution with desired feature.
Throughout the paper, all spaces are assumed to be real vector spaces; however, all
results still hold for complex vector spaces byminormodifications adapted to complex
environments. The norms in X and Y are denoted by the same notation ‖ · ‖. We also
use the same notation 〈·, ·〉 to denote the duality pairing in Banach spaces and the
inner product in Hilbert spaces. When the operator A does not have a closed range,
the problem (1.1) is ill-posed in general, thus, if instead of y, we only have a noisy
data yδ satisfying
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‖yδ − y‖ ≤ δ

with a small noise level δ > 0, then replacing y in (1.1) by yδ may lead to a problem that
is not well-defined; even if it is well-defined, the solutionmay not depend continuously
on the data. In order to use a noisy data to find an approximate solution of (1.1), a
regularization technique should be employed to remove the instability [13, 42]

In this paper we will consider a dual gradient method to solve (1.1). This method
is based on applying the gradient method to its dual problem. In order for a better
understanding, we provide a brief derivation of this method which is well known in
optimization community [5, 43]; the facts from convex analysis that are used will
be reviewed in Sect. 2. Assume that we only have a noisy data yδ and consider the
problem (1.1) with y replaced by yδ . The associated Lagrangian function is

L(x, λ) = R(x) − 〈λ, Ax − yδ〉, x ∈ X and λ ∈ Y

which induces the dual function

inf
x∈X

{R(x) − 〈λ, Ax − yδ〉} = −R∗(A∗λ) + 〈λ, yδ〉,

where A∗ : Y → X∗ denotes the adjoint of A andR∗ : X∗ → (−∞,∞] denotes the
Legendre-Fenchel conjugate of R. Thus the corresponding dual problem is

min
λ∈Y

{
dyδ (λ) := R∗(A∗λ) − 〈λ, yδ〉} . (1.2)

Assuming thatR is strongly convex, thenR∗ is continuous differentiable with ∇R∗ :
X∗ → X and so is the function λ → dyδ (λ) on Y . Therefore, we may apply a gradient
method to solve (1.2) which leads to

λn+1 = λn − γ
(

A∇R∗(A∗λn) − yδ
)
,

where γ > 0 is a step-size. Let xn := ∇R∗(A∗λn). Then by the properties of subdif-
ferential we have A∗λn ∈ ∂R(xn) and hence

xn ∈ argmin
x∈X

{R(x) − 〈λn, Ax − yδ〉} .

Combining the above two equations results in the following dual gradient method

xn = argmin
x∈X

{R(x) − 〈λn, Ax − yδ〉} ,

λn+1 = λn − γ (Axn − yδ).
(1.3)

Note that when X is a Hilbert space and R(x) = ‖x‖2/2, the method (1.3) becomes
the standard linear Landweber iteration in Hilbert spaces [13].
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By setting ξn := A∗λn , we can obtain from (1.3) the algorithm

xn = argmin
x∈X

{R(x) − 〈ξn, x〉} ,

ξn+1 = ξn − γ A∗ (
Axn − yδ

)
.

(1.4)

Actually themethod (1.4) is equivalent to (1.3) when the initial guess ξ0 is chosen from
Ran(A∗), the range of A∗. Indeed, under the given condition on ξ0, we can conclude
from (1.4) that ξn ∈ Ran(A∗) for all n. Assuming ξn = A∗λn for some λn ∈ Y , we
can easily see that xn defined by the first equation in (1.4) satisfies the first equation
in (1.3). Furthermore, from the second equation in (1.4) we have

ξn+1 = A∗ (
λn − γ (Axn − yδ)

)

which means ξn+1 = A∗λn+1 with λn+1 defined by the second equation in (1.3).
The method (1.4) as well as its generalizations to linear and nonlinear ill-posed

problems in Banach spaces have been considered in [9, 29, 33, 34, 40, 41] and the
convergence property has been proved when the method is terminated by the discrep-
ancy principle. However, except for the linear and nonlinear Landweber iteration in
Hilbert spaces [13, 22], the convergence rate in general is missing from the existing
convergence theory. In this paper we will consider the dual gradient method (1.3) and
hence the method (1.4) under the discrepancy principle

‖Axnδ − yδ‖ ≤ τδ < ‖Axn − yδ‖, 0 ≤ n < nδ (1.5)

with a constant τ > 1 andderive the convergence ratewhen the sought solution satisfies
a variational source condition. This is the main contribution of the present paper. We
also consider accelerating the dual gradientmethod byNesterov’s acceleration strategy
and provide a convergence rate result when the method is terminated by an a priori
stopping rule. Furthermore,we discuss various applications of our convergence theory:
we provide a rather complete analysis of the dual projected Landweber iteration for
solving linear ill-posed problems in Hilbert spaces with convex constraint which was
proposed in [12] with only preliminary results; we also propose an entropic dual
gradient method using Boltzmann-Shannon entropy to solve linear ill-posed problems
whose solutions are probability density functions.

In the existing literature there exist a number of regularization methods for solv-
ing (1.1), including the Tikhonov regularization method, the augmented Lagrangian
method, and the nonstationary iterated Tikhonov regularization [19, 32, 42]. In par-
ticular, we would like to mention that the augmented Lagrangian method

xn ∈ argmin
x∈X

{
R(x) − 〈λn, Ax − yδ〉 + γn

2
‖Ax − yδ‖2

}
,

λn+1 = λn − γn(Axn − yδ)

(1.6)

has been considered in [17–19, 30] for solving ill-posed problem (1.1) as a regular-
ization method. This method can be viewed as a modification of the dual gradient
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method (1.3) by adding the augmented term γn
2 ‖Ax − yδ‖2 to the definition of xn .

Although the addition of this extra term enables to establish the regularization property
of the augmented Lagrangian method under quite general conditions onR, it destroys
the decomposability structure and thus extra work has to be done to determine xn at
each iteration step. In contrast, the convergence analysis of the dual gradient method
requires R to be strongly convex, however the determination of xn is much easier in
general. In fact xn can be given by a closed formula in many interesting cases; even
if xn does not have a closed formula, there exist fast algorithms for solving the min-
imization problem that is used to define xn since it does not involve the operator A,
see Sect. 4 and [9, 29, 33] for instance. This can significantly save the computational
time.

The paper is organized as follows, In Sect. 2, we give a brief review of some
basic facts from convex analysis in Banach spaces. In Sect. 3, after a quick account
on convergence, we focus on deriving the convergence rates of the dual gradient
method under variational source conditions on the sought solution when the method
is terminated by either an a priori stopping rule or the discrepancy principle; we also
discuss the acceleration of the method by Nesterov’s strategy. Finally in Sect. 4, we
address various applications of our convergence theory.

2 Preliminaries

In this section, we will collect some basic facts on convex analysis in Banach spaces
which will be used in the analysis of the dual gradient method (1.3); for more details
one may refer to [8, 44] for instance.

Let X be a Banach space whose norm is denoted by ‖ · ‖, we use X∗ to denote its
dual space. Given x ∈ X and ξ ∈ X∗ we write 〈ξ, x〉 = ξ(x) for the duality pairing.
For a convex function f : X → (−∞,∞], we use

dom( f ) := {x ∈ X : f (x) < ∞}

to denote its effective domain. If dom( f ) �= ∅, f is called proper. Given x ∈ dom( f ),
an element ξ ∈ X∗ is called a subgradient of f at x if

f (x̄) ≥ f (x) + 〈ξ, x̄ − x〉, ∀x̄ ∈ X .

The collection of all subgradients of f at x is denoted as ∂ f (x) and is called the
subdifferential of f at x . If ∂ f (x) �= ∅, then f is called subdifferentiable at x . Thus
x → ∂ f (x) defines a set-valued mapping ∂ f whose domain of definition is defined
as

dom(∂ f ) := {x ∈ dom( f ) : ∂ f (x) �= ∅}.
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Given x ∈ dom(∂ f ) and ξ ∈ ∂ f (x), the Bregman distance induced by f at x in the
direction ξ is defined by

Dξ
f (x̄, x) := f (x̄) − f (x) − 〈ξ, x̄ − x〉, ∀x̄ ∈ X

which is always nonnegative.
For a proper function f : X → (−∞,∞], its Legendre–Fenchel conjugate is

defined by

f ∗(ξ) := sup
x∈X

{〈ξ, x〉 − f (x)}, ξ ∈ X∗

which is a convex function taking values in (−∞,∞]. According to the definition we
immediately have the Fenchel–Young inequality

f ∗(ξ) + f (x) ≥ 〈ξ, x〉 (2.1)

for all x ∈ X and ξ ∈ X∗. If f : X → (−∞,∞] is proper, lower semi-continuous
and convex, f ∗ is also proper and

ξ ∈ ∂ f (x) ⇐⇒ x ∈ ∂ f ∗(ξ) ⇐⇒ f (x) + f ∗(ξ) = 〈ξ, x〉. (2.2)

We will use the following version of the Fenchel–Rockafellar duality formula (see
[8, Theorem 4.4.3]).

Proposition 2.1 Let X and Y be Banach spaces, let f : X → (−∞,∞] and g :
Y → (−∞,∞] be proper, convex functions, and let A : X → Y be a bounded linear
operator. If there is x0 ∈ dom( f ) such that Ax0 ∈ dom(g) and g is continuous at
Ax0, then

inf
x∈X

{ f (x) + g(Ax)} = sup
η∈Y ∗

{− f ∗(A∗η) − g∗(−η)}. (2.3)

A proper function f : X → (−∞,∞] is called strongly convex if there exists a
constant σ > 0 such that

f (t x̄ + (1 − t)x) + σ t(1 − t)‖x̄ − x‖2 ≤ t f (x̄) + (1 − t) f (x) (2.4)

for all x̄, x ∈ dom( f ) and t ∈ [0, 1]. The largest number σ > 0 such that (2.4) holds
true is called the modulus of convexity of f . It can be shown that a proper, lower semi-
continuous, convex function f : X → (−∞,∞] is strongly convex with modulus of
convexity σ > 0 if and only if

Dξ
f (x̄, x) ≥ σ‖x − x̄‖2 (2.5)

for all x̄ ∈ dom( f ), x ∈ dom(∂ f ) and ξ ∈ ∂ f (x); see [44, Corollary 3.5.11]. Fur-
thermore, [44, Corollary 3.5.11] also contains the following important result which in
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particular shows that the strong convexity of f implies the continuous differentiability
of f ∗.

Proposition 2.2 Let X be a Banach space and let f : X → (−∞,∞] be a proper,
lower semi-continuous, strongly convex function with modulus of convexity σ > 0.
Then dom( f ∗) = X∗, f ∗ is Fréchet differentiable and its gradient ∇ f ∗ : X∗ → X
satisfies

‖∇ f ∗(ξ) − ∇ f ∗(η)‖ ≤ ‖ξ − η‖
2σ

for all ξ, η ∈ X∗.

It should be emphasized that X in Proposition 2.2 can be an arbitrary Banach space.
For the gradient ∇ f ∗ of f ∗, it is in general a mapping from X∗ → X∗∗, the second
dual space of X . Proposition 2.2 actually concludes that, for each ξ ∈ X∗, ∇ f ∗(ξ)

is an element in X∗∗ that can be identified with an element in X via the canonical
embedding X → X∗∗, and thus ∇ f ∗ is a mapping from X∗ to X .

3 Main results

This section focuses on the study of the dual gradient method (1.3). We will make the
following assumption.

Assumption 1 (i) X is a Banach space, Y is a Hilbert space, and A : X → Y is a
bounded linear operator;

(ii) R : X → (−∞,∞] is a proper, lower semi-continuous, strongly convex function
with modulus of convexity σ > 0;

(iii) The equation Ax = y has a solution in dom(R).

Under Assumption 1, one can use [44, Proposition 3.5.8] to conclude that (1.1)
has a unique solution x† and, for each n, the minimization problem involved in the
method (1.3) has a unique minimizer xn and thus the method (1.3) is well-defined. By
the definition of xn we have

A∗λn ∈ ∂R(xn). (3.1)

By virtue of (2.2) and Proposition 2.2 we further have

xn = ∇R∗(A∗λn) (3.2)

for all n ≥ 0.

3.1 Convergence

The regularization property of a family of gradient type methods, including (1.4) as a
special case, have been considered in [33] for solving ill-posed problems in Banach

123



Convergence rates of a dual gradient method… 847

spaces. Adapting the corresponding result to the dual gradient method (1.3) we can
obtain the following convergence result.

Theorem 3.1 Let Assumption 1 hold and let L := ‖A‖2/(2σ). Consider the dual
gradient method (1.3) with λ0 = 0 for solving (1.1).

(i) If 0 < γ ≤ 1/L then for the integer nδ chosen such that nδ → ∞ and δ2nδ → 0
as δ → 0 there hold

R(xnδ ) → R(x†) and D
A∗λnδ

R (x†, xnδ ) → 0

and hence ‖xnδ − x†‖ → 0 as δ → 0.
(ii) If τ > 1 and γ > 0 are chosen such that 1− 1/τ − Lγ > 0, then the discrepancy

principle (1.5) defines a finite integer nδ with

R(xnδ ) → R(x†) and D
A∗λnδ

R (x†, xnδ ) → 0

and hence‖xnδ − x†‖ → 0 as δ → 0.

Theorem 3.1 gives the convergence results on the method (1.3) with λ0 = 0. The
convergence result actually holds for any initial guess λ0 with the iterative sequence
defined by (1.3) converging to a solution x† of Ax = y with the property

D A∗λ0
R (x†, x0) = min

{
D A∗λ0
R (x, x0) : x ∈ X and Ax = y

}
,

where x0 = argminx∈X {R(x) − 〈λ0, x〉}; this can be seen from Theorem 3.1 by
replacing R(x) by D A∗λ0

R (x, x0). This same remark applies to the convergence rate
results in the forthcoming subsection. For simplicity of exposition, in the following
we will consider only the method (1.3) with λ0 = 0.

In [33] the convergence result was stated for X to be a reflexive Banach space.
The reflexivity of X was only used in [33] to show the well-definedness of each xn

by the procedure of extracting a weakly convergent subsequence from a bounded
sequence. Under Assumption 1 (ii) the reflexivity of X is unnecessary as the strong
convexity of R guarantees that each xn is well-defined in an arbitrary Banach space,
see [44, Proposition 3.5.8]. This relaxation on X allows the convergence result to be
used in a wider range of applications, see Sect. 4.2 for instance.

The work in [33] actually concentrates on proving part (ii) of Theorem 3.1, i.e. the
regularization property of the method terminated by the discrepancy principle and part
(i) was not explicitly stated. However, the argument can be easily adapted to obtain
part (i) of Theorem 3.1, i.e. the regularization property of the method under an a priori
stopping rule.

It should be mentioned that the convergenceR(xnδ ) → R(x†) was not established
in [33].However, if the residual‖Axn−yδ‖ ismonotonically decreasingwith respect to
n, then, following the proof in [33], one can easily establish the convergenceR(xnδ ) →
R(x†) as δ → 0. For the dual gradient method (1.3), the monotonicity of ‖Axn − yδ‖
is established in the following result which is also useful in the forthcoming analysis
on deriving convergence rates.

123



848 Q. Jin

Lemma 3.2 Let Assumption 1 hold and let 0 < γ ≤ 4σ/‖A‖2. Then for the sequence
{xn} defined by (1.3) there holds

‖Axn+1 − yδ‖ ≤ ‖Axn − yδ‖

for all integers n ≥ 0.

Proof Recall from (3.1) that A∗λn ∈ ∂R(xn) for each n ≥ 0. By using (2.5) and the
equation λn+1 = λn − γ (Axn − yδ), we have

2σ‖xn+1 − xn‖2 ≤ D A∗λn
R (xn+1, xn) + D A∗λn+1

R (xn, xn+1)

= 〈A∗λn+1 − A∗λn, xn+1 − xn〉
= 〈λn+1 − λn, Axn+1 − Axn〉
= γ 〈Axn − yδ, Axn − Axn+1〉.

In view of the polarization identity in Hilbert spaces, we further have

2σ‖xn+1 − xn‖2 ≤ γ

2

(
‖Axn − yδ‖2 − ‖Axn+1 − yδ‖2 + ‖A(xn+1 − xn)‖2

)

≤ γ

2

(
‖Axn − yδ‖2 − ‖Axn+1 − yδ‖2

)
+ γ ‖A‖2

2
‖xn+1 − xn‖2.

Since 0 < γ ≤ 4σ/‖A‖2, we thus obtain the monotonicity of ‖Axn − yδ‖2 with
respect to n. ��

3.2 Convergence rates

In this subsection we will derive the convergence rates of the dual gradient method
(1.3) when the sought solution satisfies certain variational source conditions. The
following result plays a crucial role for achieving this purpose.

Proposition 3.3 Let Assumption 1 hold and let dyδ (λ) := R∗(A∗λ) − 〈λ, yδ〉. Let
L := ‖A‖2/(2σ). Consider the dual gradient method (1.3) with λ0 = 0. If 0 < γ ≤
1/L then for any λ ∈ Y there holds

dyδ (λ) − dyδ (λn+1) ≥ 1

2γ (n + 1)

(
‖λn+1 − λ‖2 − ‖λ‖2

)

+
{(

1

2
− Lγ

4

)
n +

(
1

2
− Lγ

2

)}
γ ‖Axn − yδ‖2

for all n ≥ 0.

Proof Since R is strongly convex with modulus of convexity σ > 0, it follows from
Proposition 2.2 that R∗ is continuously differentiable and

‖∇R∗(ξ) − ∇R∗(η)‖ ≤ ‖ξ − η‖
2σ

, ∀ξ, η ∈ X∗.
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Consequently, the function λ → dyδ (λ) is differentiable on Y and its gradient is given
by

∇dyδ (λ) = A∇R∗(A∗λ) − yδ

with

‖∇dyδ (λ̃) − ∇dyδ (λ)‖ ≤ L‖λ̃ − λ‖, ∀λ̃, λ ∈ Y ,

where L = ‖A‖2/(2σ). Therefore

dyδ (λn+1) ≤ dyδ (λn) + 〈∇dyδ (λn), λn+1 − λn〉 + L

2
‖λn+1 − λn‖2.

By the convexity of dyδ we have for any λ ∈ Y that

dyδ (λn) ≤ dyδ (λ) + 〈∇dyδ (λn), λn − λ〉.

Combining the above equations we thus obtain

dyδ (λn+1) ≤ dyδ (λ) + 〈∇dyδ (λn), λn+1 − λ〉 + L

2
‖λn+1 − λn‖2.

By using (3.2) we can see ∇dyδ (λn) = Axn − yδ which together with the equation
λn+1 − λn = −γ (Axn − yδ) shows that ∇dyδ (λn) = (λn − λn+1)/γ . Consequently

dyδ (λn+1) ≤ dyδ (λ) + 1

γ
〈λn − λn+1, λn+1 − λ〉 + L

2
‖λn+1 − λn‖2.

Note that

〈λn − λn+1, λn+1 − λ〉 = 1

2

(
‖λn − λ‖2 − ‖λn+1 − λ‖2 − ‖λn+1 − λn‖2

)
.

Therefore

dyδ (λ) − dyδ (λn+1) ≥ 1

2γ

(
‖λn+1 − λ‖2 − ‖λn − λ‖2

)

+
(

1

2γ
− L

2

)
‖λn+1 − λn‖2. (3.3)

Let m ≥ 0 be any number. By summing (3.3) over n from n = 0 to n = m and using
λ0 = 0 we can obtain
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m∑

n=0

(
dyδ (λ) − dyδ (λn+1)

) ≥ 1

2γ

(
‖λm+1 − λ‖2 − ‖λ‖2

)

+
(

1

2γ
− L

2

) m∑

n=0

‖λn+1 − λn‖2. (3.4)

Next we take λ = λn in (3.3) to obtain

dyδ (λn) − dyδ (λn+1) ≥
(
1

γ
− L

2

)
‖λn+1 − λn‖2.

Multiplying this inequality by n and then summing over n from n = 0 to n = m we
can obtain

m∑

n=0

n
(
dyδ (λn) − dyδ (λn+1)

) ≥
(
1

γ
− L

2

) m∑

n=0

n‖λn+1 − λn‖2.

Note that

m∑

n=0

n
(
dyδ (λn) − dyδ (λn+1)

) = −(m + 1)dyδ (λm+1) +
m∑

n=0

dyδ (λn+1).

Thus

−(m + 1)dyδ (λm+1) +
m∑

n=0

dyδ (λn+1) ≥
(
1

γ
− L

2

) m∑

n=0

n‖λn+1 − λn‖2.

Adding this inequality to (3.4) gives

(m + 1)
(
dyδ (λ) − dyδ (λm+1)

) ≥ 1

2γ

(
‖λm+1 − λ‖2 − ‖λ‖2

)

+
(

1

2γ
− L

2

) m∑

n=0

‖λn+1 − λn‖2

+
(
1

γ
− L

2

) m∑

n=0

n‖λn+1 − λn‖2.

Recall that λn − λn+1 = γ (Axn − yδ). By using the monotonicity of ‖Axn − yδ‖
shown in Lemma 3.2 we then obtain

(m + 1)
(
dyδ (λ) − dyδ (λm+1)

)

≥ 1

2γ

(
‖λm+1 − λ‖2 − ‖λ‖2

)
+

(
1

2γ
− L

2

)
γ 2

m∑

n=0

‖Axn − yδ‖2
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+
(
1

γ
− L

2

)
γ 2

m∑

n=0

n‖Axn − yδ‖2

≥ 1

2γ

(
‖λm+1 − λ‖2 − ‖λ‖2

)
+

(
1

2
− Lγ

2

)
γ (m + 1)‖Axm − yδ‖2

+
(
1 − Lγ

2

)
γ

m(m + 1)

2
‖Axm − yδ‖2.

The proof is therefore complete. ��
We now assume that the unique solution x† satisfies a variational source condition

specified in the following assumption.

Assumption 2 For the unique solution x† of (1.1) there is an error measure function
E† : dom(R) → [0,∞) with E†(x†) = 0 such that

E†(x) ≤ R(x) − R(x†) + M‖Ax − y‖q , ∀x ∈ dom(R)

for some 0 < q ≤ 1 and some constant M > 0.

Variational source conditions were first introduced in [23], as a generalization of the
spectral source conditions in Hilbert spaces, to derive convergence rates of Tikhonov
regularization in Banach spaces. This kind of source conditions was further gener-
alized, refined and verified, see [15, 17, 20, 24–26] for instance. The error measure
function E† in Assumption 2 is used to measure the speed of convergence; it can be
taken in various forms and the usual choice of E† is the Bregman distance induced by
R. Use of a general error measure functional has the advantage of covering a wider
range of applications. For instance, in reconstructing sparse solutions of ill-posed prob-
lems, one may consider the sought solution in the 
1 space and takeR(x) = ‖x‖
1 . In
this situation, convergence under the Bregman distance induced byRmay not provide
useful approximation result because two points with zero Bregman distance may have
arbitrarily large 
1-distance. However, under certain natural conditions, the variational
source conditions can be verified with E†(x) = ‖x − x†‖
1 ; see [15, 16].

We first derive the convergence rates for the dual gradient method (1.3) under an
a priori stopping rule when x† satisfies the variational source conditions specified in
Assumption 2.

Theorem 3.4 Let Assumption 1 hold and let L := ‖A‖2/(2σ). If 0 < γ ≤ 1/L and
x† satisfies the variational source conditions specified in Assumption 2, then for the
dual gradient method (1.3) with the initial guess λ0 = 0 there holds

E†(xn) ≤ C

(
n− q

2−q + δq + n
1−q
2−q δ + nδ2

)

for all n ≥ 1, where C is a generic positive constant independent of n and δ. Conse-
quently, by choosing an integer nδ with nδ ∼ δq−2 we have

E†(xnδ ) = O(δq).
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Proof Let dy(λ) := R∗(A∗λ) − 〈λ, y〉. Since 0 < γ ≤ 1/L , from Proposition 3.3 it
follows that

{(
1

2
− Lγ

4

)
n +

(
1

2
− Lγ

2

)}
γ ‖Axn − yδ‖2

≤ dyδ (λ) − dyδ (λn+1) − 1

2γ (n + 1)

(
‖λn+1 − λ‖2 − ‖λ‖2

)

= dy(λ) − dy(λn+1) + 〈λn+1 − λ, yδ − y〉
− 1

2γ (n + 1)

(
‖λn+1 − λ‖2 − ‖λ‖2

)
(3.5)

for all λ ∈ Y . By the Cauchy-Schwarz inequality we have

〈λn+1 − λ, yδ − y〉 ≤ δ‖λn+1 − λ‖ ≤ 1

4γ (n + 1)
‖λn+1 − λ‖2 + γ (n + 1)δ2.

Thus, it follows from (3.5) that

c0n‖Axn − yδ‖2 + 1

4γ (n + 1)
‖λn+1 − λ‖2

≤ dy(λ) − dy(λn+1) + ‖λ‖2
2γ (n + 1)

+ γ (n + 1)δ2,

where c0 := (1/2 − Lγ /4)γ > 0. By virtue of the inequality ‖λn+1‖2 ≤ 2(‖λ‖2 +
‖λn+1 − λ‖2) we then have

c0n‖Axn − yδ‖2 + 1

8γ (n + 1)
‖λn+1‖2

≤ dy(λ) − dy(λn+1) + 3‖λ‖2
4γ (n + 1)

+ γ (n + 1)δ2.

By the Fenchel-Young inequality (2.1) and Ax† = y we have

dy(λn+1) = R∗(A∗λn+1) − 〈λn+1, Ax†〉
= R∗(A∗λn+1) − 〈A∗λn+1, x†〉
≥ −R(x†). (3.6)

Therefore

c0n‖Axn − yδ‖2 + 1

8γ (n + 1)
‖λn+1‖2

≤ R∗(A∗λ) − 〈λ, y〉 + R(x†) + 3‖λ‖2
4γ (n + 1)

+ γ (n + 1)δ2
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for all λ ∈ Y . Consequently

c0n‖Axn − yδ‖2 + 1

8γ (n + 1)
‖λn+1‖2

≤ inf
λ∈Y

{
R∗(A∗λ) − 〈λ, y〉 + R(x†) + 3‖λ‖2

4γ (n + 1)

}
+ γ (n + 1)δ2

= R(x†) − sup
λ∈Y

{
−R∗(A∗λ) + 〈λ, y〉 − 3‖λ‖2

4γ (n + 1)

}
+ γ (n + 1)δ2.

According to the Fenchel–Rockafellar duality formula given in Proposition 2.1, we
have

sup
λ∈Y

{
−R∗(A∗λ) + 〈λ, y〉 − 3‖λ‖2

4γ (n + 1)

}
= inf

x∈X

{
R(x) + 1

3
γ (n + 1)‖Ax − y‖2

}
.

Indeed, by taking f (x) = R(x) for x ∈ X and g(z) = 1
3γ (n + 1)‖z − y‖2 for z ∈ Y ,

we can obtain this identity immediately from (2.3) by noting that

g∗(λ) = 3

4γ (n + 1)
‖λ‖2 + 〈λ, y〉, λ ∈ Y .

Therefore

c0n‖Axn − yδ‖2 + 1

8γ (n + 1)
‖λn+1‖2 ≤ ηn + γ (n + 1)δ2, (3.7)

where

ηn := sup
x∈X

{
R(x†) − R(x) − 1

3
γ (n + 1)‖Ax − y‖2

}
. (3.8)

We now estimate ηn when x† satisfies the variatioinal source condition given in
Assumption 2. By the nonnegativity of E† we have R(x†) − R(x) ≤ M‖Ax − y‖q .
Thus

ηn ≤ sup
x∈X

{
M‖Ax − y‖q − 1

3
γ (n + 1)‖Ax − y‖2

}

≤ sup
s≥0

{
Msq − 1

3
γ (n + 1)s2

}
= c1(n + 1)−

q
2−q , (3.9)

where c1 := (
1 − q

2

) (
3q M
2γ

) q
2−q

M > 0. Combining this with (3.7) gives

c0n‖Axn − yδ‖2 + 1

8γ (n + 1)
‖λn+1‖2 ≤ c1(n + 1)−

q
2−q + γ (n + 1)δ2
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which implies that

‖Axn − yδ‖ ≤ C
(

n− 1
2−q + δ

)
and ‖λn‖ ≤ C

(
n

1−q
2−q + nδ

)
. (3.10)

Recall A∗λn ∈ ∂R(xn) from (3.1), we have

R(xn) − R(x†) ≤ 〈A∗λn, xn − x†〉 = 〈λn, Axn − y〉.

Therefore, by using the variational source condition specified in Assumption 2, we
obtain

E†(xn) ≤ R(xn) − R(x†) + M‖Axn − y‖q

≤ 〈λn, Axn − y〉 + M‖Axn − y‖q

≤ ‖λn‖‖Axn − y‖ + M‖Axn − y‖q .

Thus, it follows from (3.10) that

E†(xn) ≤ ‖λn‖ (‖Axn − yδ‖ + δ
) + M

(‖Axn − yδ‖ + δ
)q

≤ C

(
n

1−q
2−q + nδ

) (
n− 1

2−q + δ
)

+ C
(

n− 1
2−q + δ

)q

≤ C

(
n− q

2−q + δq + n
1−q
2−q δ + nδ2

)
.

The proof is thus complete. ��

During the Proof of Theorem 3.4, we have introduced the quantity ηn defined by
(3.8). Taking x = x† in (3.8) shows ηn ≥ 0. As can be seen from the proof of Theorem
3.4, we have

ηn = inf
λ∈Y

{
R∗(A∗λ) − 〈λ, y〉 + R(x†) + 3‖λ‖2

4γ (n + 1)

}

by the Fenchel-Rockafellar duality formula. Taking λ = 0 in this equation gives
0 ≤ ηn ≤ R(x†) + R∗(0) < ∞. The proof of Theorem 3.4 demonstrates that ηn can
decay to 0 at certain rate if x† satisfies a variational source condition.

Corollary 3.5 Let Assumption 1 hold and let L := ‖A‖2/(2σ). If 0 < γ ≤ 1/L and
if there is λ† ∈ Y such that A∗λ† ∈ ∂R(x†), then for the dual gradient method (1.3)
with the initial guess λ0 = 0 there holds

D A∗λ†
R (xn, x†) ≤ C

(
n−1 + δ + nδ2

)
(3.11)
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for all n ≥ 1, where C is a generic positive constant independent of n and δ. Conse-
quently, by choosing an integer nδ with nδ ∼ δ−1 we have

D A∗λ†
R (xnδ , x†) = O(δ) (3.12)

and hence ‖xnδ − x†‖ = O(δ1/2).

Proof We show that x† satisfies the variational source condition specified in Assump-
tion 2 with q = 1. The argument is well-known, see [23] for instance. Since
A∗λ† ∈ ∂R(x†) for some λ† ∈ Y , we have for all x ∈ dom(R) that

D A∗λ†
R (x, x†) = R(x) − R(x†) − 〈λ†, Ax − y〉

≤ R(x) − R(x†) + ‖λ†‖‖Ax − y‖

which shows that Assumption 2 holds with E†(x) = D A∗λ†
R (x, x†), M = ‖λ†‖ and

q = 1. Thus by invoking Theorem 3.4, we immediately obtain (3.11) which together
with the choice nδ ∼ δ−1 implies (3.12). By using (2.5) we then obtain ‖xnδ − x†‖ =
O(δ1/2). ��

We next turn to deriving convergence rates of the dual gradient method (1.3) under
the variational source condition given in Assumption 2 when the method is termi-
nated by the discrepancy principle (1.5). We will use the following consequence of
Proposition 3.3.

Lemma 3.6 Let Assumption 1 hold and let L := ‖A‖2/(2σ). Consider the dual
gradient method (1.3) with λ0 = 0. If τ > 1 and γ > 0 are chosen such that
1 − 1/τ 2 − Lγ > 0, then there is a constant c2 > 0 such that

c2(n + 1)δ2 ≤ ηn and
1

8γ (n + 1)
‖λn+1‖2 ≤ ηn + γ (n + 1)δ2

for all integers 0 ≤ n < nδ , where nδ is the integer determined by the discrepancy
principle (1.5) and ηn is the quantity defined by (3.8).

Proof The second estimate follows directly from (3.7), actually it holds for all integers
n ≥ 0. It remains only to show the first estimate. For any n < nδ wehave ‖Axn−yδ‖ >

τδ. Therefore from (3.5) it follows for all λ ∈ Y that

{(
1

2
− Lγ

4

)
n +

(
1

2
− Lγ

2

)}
γ τ 2δ2

≤ dy(λ) − dy(λn+1) + 〈λn+1 − λ, yδ − y〉 − 1

2γ (n + 1)

(
‖λn+1 − λ‖2 − ‖λ‖2

)
.

By the Cauchy-Schwarz inequality we have
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〈λn+1 − λ, yδ − y〉
≤ δ‖λn+1 − λ‖ ≤ 1

2γ (n + 1)
‖λn+1 − λ‖2 + 1

2
γ (n + 1)δ2.

Therefore

[{(
1

2
− Lγ

4

)
n +

(
1

2
− Lγ

2

)}
τ 2 − 1

2
(n + 1)

]
γ δ2

≤ dy(λ) − dy(λn+1) + 1

2γ (n + 1)
‖λ‖2.

By the conditions on γ and τ , it is easy to see that

[{(
1

2
− Lγ

4

)
n +

(
1

2
− Lγ

2

)}
τ 2 − 1

2
(n + 1)

]
γ ≥ c2(n + 1),

where c2 := (
(1/2 − Lγ /2)τ 2 − 1/2

)
γ > 0. Therefore

c2(n + 1)δ2 ≤ dy(λ) − dy(λn+1) + 1

2γ (n + 1)
‖λ‖2.

According to (3.6) we have dy(λn+1) ≥ −R(x†). Thus

c2(n + 1)δ2 ≤ R∗(A∗λ) − 〈λ, y〉 + R(x†) + 1

2γ (n + 1)
‖λ‖2

which is valid for all λ ∈ Y . Consequently

c2(n + 1)δ2 ≤ inf
λ∈Y

{
R∗(A∗λ) − 〈λ, y〉 + R(x†) + 1

2γ (n + 1)
‖λ‖2

}

= R(x†) − sup
λ∈Y

{
−R∗(A∗λ) + 〈λ, y〉 − 1

2γ (n + 1)
‖λ‖2

}
.

According to the Fenchel-Rockafellar duality formula given in Proposition 2.1, we
can further obtain

c2(n + 1)δ2 ≤ R(x†) − inf
x∈X

{
R(x) + 1

2
γ (n + 1)‖Ax − y‖2

}

= sup
x∈X

{
R(x†) − R(x) − 1

2
γ (n + 1)‖Ax − y‖2

}

≤ ηn

which shows the first estimate. ��
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Now we are ready to show the convergence rate result for the dual gradient method
(1.3) under Assumption 2 when the method is terminated by the discrepancy principle
(1.5).

Theorem 3.7 Let Assumption 1 hold and let L := ‖A‖2/(2σ). Consider the dual
gradient method (1.3) with the initial guess λ0 = 0. Assume that τ > 1 and γ > 0
are chosen such that 1 − 1/τ 2 − Lγ > 0 and let nδ be the integer determined by the
discrepancy principle (1.5). If x† satisfies the variational source condition specified
in Assumption 2, then

E†(xnδ ) = O(δq). (3.13)

Consequently, if there is λ† ∈ Y such that A∗λ† ∈ ∂R(x†), then

D A∗λ†
R (xnδ , x†) = O(δ) (3.14)

and hence ‖xnδ − x†‖ = O(δ1/2).

Proof By using the variational source condition on x† specified in Assumption 2, the
convexity of R, and the fact A∗λnδ ∈ ∂R(xnδ ) we have

E†(xnδ ) ≤ R(xnδ ) − R(x†) + M‖Axnδ − y‖q

≤ 〈λnδ , Axnδ − y〉 + M‖Axnδ − y‖q

≤ ‖λnδ‖‖Axnδ − y‖ + M‖Axnδ − y‖q .

By the definition of nδ we have ‖Axnδ − yδ‖ ≤ τδ and thus

‖Axnδ − y‖ ≤ ‖Axnδ − yδ‖ + ‖yδ − y‖ ≤ (τ + 1)δ.

Therefore

E†(xnδ ) ≤ (τ + 1)‖λnδ‖δ + M(τ + 1)qδq . (3.15)

If nδ = 0, then we have λnδ = 0 and hence E†(xnδ ) ≤ M(τ + 1)qδq . In the following
we consider the case nδ ≥ 1. We will use Lemma 3.6 to estimate ‖λnδ‖. By virtue

of Assumption 2 we have ηn ≤ c1(n + 1)−
q

2−q , see (3.9). Combining this with the
estimates in Lemma 3.6 we can obtain

c2(n + 1)
2

2−q δ2 ≤ c1 (3.16)

and

‖λn+1‖2 ≤ 8γ c1(n + 1)
2(1−q)
2−q + 8γ 2(n + 1)2δ2 (3.17)
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for all 0 ≤ n < nδ . Taking n = nδ − 1 in (3.16) gives

nδ ≤
(

c1
c2δ2

) 2−q
2

which together with (3.17) with n = nδ − 1 shows that

‖λnδ‖ ≤ c3δ
q−1,

where c3 := √
8γ (γ + c2)(c1/c2)2−q . Combining this estimate with (3.15) we finally

obtain

E†(xnδ ) ≤ (
c3(τ + 1) + M(τ + 1)q)

δq

which shows (3.13).
When A∗λ† ∈ ∂R(x†) for some λ† ∈ Y , we know from the proof of Corollary 3.5

that Assumption 2 is satisfied with E†(x) = D A∗λ†
R (x, x†) and q = 1. Thus, we may

use (3.13) to conclude (3.14). ��

3.3 Acceleration

The dual gradient method, which generalizes the linear Landweber iteration in Hilbert
spaces, is a slowly convergent method in general. To make it more practical impor-
tant, it is necessary to consider accelerating thismethodwith faster convergence speed.
Since the dual gradient method is obtained by applying the gradient method to the dual
problem, one may consider to accelerate this method by applying any available accel-
eration strategy for gradient methods among which Nesterov’s acceleration strategy
[2, 6, 37] is the most prominent. By applying Nesterov’s accelerated gradient method
to minimize the function dyδ (λ) = R∗(A∗λ)−〈λ, yδ〉 it leads to the iteration scheme

λ̂n = λn + n − 1

n + α
(λn − λn−1),

λn+1 = λ̂n − γ∇dyδ (λ̂n).

Let x̂n = ∇R∗(A∗λ̂n). Then∇dyδ (λ̂n) = Ax̂n − yδ and A∗λ̂n ∈ ∂R(x̂n)which imply
that

λ̂n = λn + n − 1

n + α
(λn − λn−1),

x̂n = argmin
x∈X

{
R(x) − 〈λ̂n, Ax − yδ〉

}
,

λn+1 = λ̂n − γ (Ax̂n − yδ),

xn+1 = argmin
x∈X

{R(x) − 〈λn+1, Ax − yδ〉} ,

(3.18)
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where λ−1 = λ0 = 0, α ≥ 2 is a given number, and γ > 0 is a step size. We have
the following convergence rate result when the method is terminated by an a priori
stopping rule.

Theorem 3.8 Let Assumption 1 hold and let L := ‖A‖2/(2σ). Consider the acceler-
ated dual gradient method (3.18) with noisy data yδ satisfying ‖yδ − y‖ ≤ δ. Assume
that 0 < γ ≤ 1/L and α ≥ 2. If x† satisfies the source condition A∗λ† ∈ ∂R(x†) for
some λ† ∈ Y , then there exist positive constants c4 and c5 depending only on γ and
α such that

D A∗λn
R (x†, xn) ≤

(
c4‖λ†‖

n
+ c5nδ

)2

(3.19)

for all n ≥ 1. Consequently by choosing an integer nδ with nδ ∼ δ−1/2 we have

D
A∗λnδ

R (x†, xnδ ) = O(δ)

and hence ‖xnδ − x†‖ = O(δ1/2) as δ → 0.

Proof According to the definition of xn we have A∗λn ∈ ∂R(xn) for all n ≥ 1. From
this fact and the condition A∗λ† ∈ ∂R(x†) it follows from (2.2) that

D A∗λn
R (x†, xn) = R(x†) − R(xn) − 〈λn, y − Axn〉

=
{
〈A∗λ†, x†〉 − R∗(A∗λ†)

}
− {〈A∗λn, xn〉 − R∗(A∗λn)

}

− 〈λn, y − Axn〉
= R∗(A∗λn) − R∗(A∗λ†) − 〈λn, y〉 + 〈λ†, y〉
= dy(λn) − dy(λ

†), (3.20)

where dy(λ) := R∗(A∗λ)−〈λ, y〉. We need to estimate dy(λn)−dy(λ
†). This can be

done by using a perturbation analysis of the accelerated gradient method, see [2, 3].
For completeness, we include a derivation here. Because A∗λ† ∈ ∂R(x†), we have
x† = ∇R∗(A∗λ†). Thus

∇dy(λ
†) = A∇R∗(A∗λ†) − y = Ax† − y = 0.

Since dy is convex, this shows that λ† is a global minimizer of dy over Y . Note that
∇dyδ (λ) = ∇dy(λ) + y − yδ . Thus, it follows from the definition of λn+1 that

λn+1 = λ̂n − γ
(
∇dy(λ̂n) + y − yδ

)
.

Based on this, the Lipschitz continuity of ∇dy and the convexity of R, we may use a
similar argument in the proof of Proposition 3.3 to obtain for any λ ∈ Y that
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dy(λn+1) ≤ dy(λ) + 〈∇dy(λ̂n), λn+1 − λ〉 + L

2
‖λn+1 − λ̂n‖2

= dy(λ) +
〈
1

γ
(λ̂n − λn+1) − (y − yδ), λn+1 − λ

〉
+ L

2
‖λn+1 − λ̂n‖2

= dy(λ) + 1

2γ

(
‖λ̂n − λ‖2 − ‖λn+1 − λ‖2

)
− 〈y − yδ, λn+1 − λ〉

−
(

1

2γ
− L

2

)
‖λn+1 − λ̂n‖2.

Since 0 < γ ≤ 1/L and ‖yδ − y‖ ≤ δ, we have

dy(λn+1) ≤ dy(λ) + 1

2γ

(
‖λ̂n − λ‖2 − ‖λn+1 − λ‖2

)
+ δ‖λn+1 − λ‖. (3.21)

Note that n−1
n+α

= tn−1
tn+1

with tn = n+α−1
α

. Now we take λ =
(
1 − 1

tn+1

)
λn + 1

tn+1
λ† in

(3.21) and use the convexity of dy to obtain

dy(λn+1) ≤
(
1 − 1

tn+1

)
dy(λn) + 1

tn+1
dy(λ

†)

+ 1

2γ t2n+1

∥∥∥λ† −
(
λn + tn+1(λ̂n − λn)

)∥∥∥
2

− 1

2γ t2n+1

∥∥∥λ† − (λn + tn+1(λn+1 − λn))

∥∥∥
2

+ δ

tn+1

∥∥∥λ† − (λn + tn+1(λn+1 − λn))

∥∥∥ .

Let un = λn−1 + tn(λn − λn−1). Then it follows from λ̂n = λn + tn−1
tn+1

(λn − λn−1)

that λn + tn+1(λ̂n − λn) = un . Therefore

dy(λn+1) ≤
(
1 − 1

tn+1

)
dy(λn) + 1

tn+1
dy(λ

†) + 1

2γ t2n+1

‖λ† − un‖2

− 1

2γ t2n+1

‖λ† − un+1‖2 + δ

tn+1
‖λ† − un+1‖.

Multiplying both sides by 2γ t2n+1, regrouping the terms and setting wn := dy(λn) −
dy(λ

†), we obtain

2γ t2n+1wn+1 − 2γ t2n wn ≤ 2γρnwn + ‖λ† − un‖2 − ‖λ† − un+1‖2
+ 2γ δtn+1‖λ† − un+1‖ (3.22)
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for all n ≥ 0, where ρn := t2n+1 − tn+1 − t2n . Note that α ≥ 2 implies ρn ≤ 0 for
n ≥ 1. Let m ≥ 1 be any integer. Summing the above inequality over n from n = 1 to
n = m − 1 and using wn ≥ 0, we can obtain

2γ t2mwm + ‖λ† − um‖2 ≤ 2γ t21w1 + ‖λ† − u1‖2 + 2γ δ

m∑

k=2

tk‖λ† − uk‖.

Using (3.22) with n = 0 and noting that t20 +ρ0 = 0 and u0 = 0 we can further obtain

2γ t2mwm + ‖λ† − um‖2

≤ 2γ (t20 + ρ0)w0 + ‖λ†‖2 + 2γ δt1‖λ† − u1‖ + 2γ δ

m∑

k=2

tk‖λ† − uk‖

= ‖λ†‖2 + 2γ δ

m∑

k=1

tk‖λ† − uk‖. (3.23)

According to (3.23), we have

‖λ† − um‖2 ≤ ‖λ†‖2 + 2γ δ

m∑

k=1

tk‖λ† − uk‖ (3.24)

from which we may use an induction argument to obtain

‖λ† − um‖ ≤ ‖λ†‖ + 2γ δ

m∑

k=1

tk (3.25)

for all integers m ≥ 0. Indeed, since u0 = 0, (3.25) holds trivially for m = 0. Assume
next that (3.25) holds for all 0 ≤ m ≤ n for some n ≥ 0. We show (3.25) also holds
for m = n + 1. If there is 0 ≤ m ≤ n such that ‖λ† − un+1‖ ≤ ‖λ† − um‖, then by
the induction hypothesis we have

‖λ† − un+1‖ ≤ ‖λ†‖ + 2γ δ

m∑

k=1

tk ≤ ‖λ†‖ + 2γ δ

n+1∑

k=1

tk .

So we may assume ‖λ† − un+1‖ > ‖λ† − um‖ for all 0 ≤ m ≤ n. It then follows
from (3.24) that

‖λ† − un+1‖2 ≤ ‖λ†‖2 + 2γ δ

(
n+1∑

k=1

tk

)

‖λ† − un+1‖.
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By using the elementary inequality “a2 ≤ b2 + ca �⇒ a ≤ b + c for a, b, c ≥ 0",
we obtain again

‖λ† − un+1‖ ≤ ‖λ†‖ + 2γ δ

n+1∑

k=1

tk .

By the induction principle, we thus obtain (3.25). Based on (3.23) and (3.25) we have

2γ t2mwm ≤ ‖λ†‖2 + 2γ δ

m∑

k=1

tk‖λ† − uk‖

≤ ‖λ†‖2 + 2γ δ

(
m∑

k=1

tk

) (

‖λ†‖ + 2γ δ

m∑

k=1

tk

)

≤
(

‖λ†‖ + 2γ δ

m∑

k=1

tk

)2

.

Thus, by the definition of tn it is straightforward to see that

dy(λm) − dy(λ
†) ≤ 1

2γ t2m

(

‖λ†‖ + 2γ δ

m∑

k=1

tk

)2

≤
(

c4‖λ†‖
m

+ c5mδ

)2

,

where c4 and c5 are two positive constants depending only on γ and α. Combining
this with (3.20) we thus complete the proof of (3.19). ��

From Theorem 3.8 it follows that, under the source condition A∗λ† ∈ ∂R(x†), we
can obtain the convergence rate ‖xnδ − x†‖ = O(δ1/2) within O(δ−1/2) iterations
for the method (3.18). For the dual gradient method (1.3), however, we need to per-
form O(δ−1) iterations to achieve the same convergence rate, see Corollary 3.5. This
demonstrates that the method (3.18) indeed has acceleration effect.

We remark that Nesterov’s acceleration strategy was first proposed in [29] to accel-
erate gradient type regularization method for linear as well as nonlinear ill-posed
problems in Banach spaces and various numerical results were reported which demon-
strate the striking performance; see also [27, 28, 35, 39, 45] for further numerical
simulations. Although we have proved in Theorem 3.8 a convergence rate result for
the method (3.18) under an a priori stopping rule, the regularization property of the
method under the discrepancy principle is not yet established for general strongly con-
vex R. However, when X is a Hilbert space and R(x) = ‖x‖2/2, the regularization
property of the corresponding method has been established in [35, 39] based on a
general acceleration framework in [21] using orthogonal polynomials; in particular it
was observed in [35] that the parameter α plays an interesting role in deriving order
optimal convergence rates. For an analysis of Nesterov’s acceleration for nonlinear
ill-posed problems in Hilbert spaces, one may refer to [28].
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4 Applications

Various applications of the dual gradient method (1.3), or equivalently the method
(1.4), have been considered in [9, 29, 33] for sparsity recovery and image reconstruc-
tion through the choices of R as strong convex perturbations of the L1 and the total
variation functionals and the numerical results demonstrate its nice performance. In
the following we will provide some additional applications.

4.1 Dual projected landweber iteration

Wefirst consider the application of our convergence theory to linear ill-posed problems
in Hilbert spaces with convex constraint. Such problems arise from a number of real
applications including the computed tomography [36] in which the sought solutions
are nonnegative.

Let A : X → Y be a bounded linear operator between two Hilbert spaces X and
Y and let C ⊂ X be a closed convex set. Given y ∈ Y and assuming that Ax = y
has a solution in C , we consider finding the unique solution x† of Ax = y in C with
minimal norm which can be stated as the minimization problem

min

{
1

2
‖x‖2 : x ∈ C and Ax = y

}
. (4.1)

This problem takes the form (1.1) withR(x) := 1
2‖x‖2+δC (x), where δC denotes the

indicator function of C , i.e. δC (x) = 0 if x ∈ C and ∞ otherwise. ClearlyR satisfies
Assumption 1 (ii). It is easy to see that for any ξ ∈ X the unique solution of

min
x∈X

{R(x) − 〈ξ, x〉}

is given by PC (ξ), where PC denotes the metric projection of X onto C . Therefore,
applying the algorithm (1.3) to (4.1) leads to the dual projected Landweber iteration

xn = PC (A∗λn),

λn+1 = λn − γ (Axn − yδ)
(4.2)

that has been considered in [12]. Besides a stability estimate, it has been shown in [12]
that, for the method (4.2) with exact data yδ = y, if x† ∈ PC (A∗Y ) then

∞∑

n=1

‖xn − x†‖2 < ∞

which implies ‖xn −x†‖ → 0 as n → ∞ but does not provide an error estimate unless
‖xn − x†‖ is monotonically decreasing which is unfortunately unknown. Therefore,
the work in [12] does not tell much information about the regularization property
of the method (4.2). It is natural to ask if the method (4.2) renders a regularization
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method under a priori or a posteriori stopping rules and if it is possible to derive
error estimates under suitable source conditions on the sought solution. Applying our
convergence theory can provide satisfactory answers to these questions with a rather
complete analysis on the method (4.2), see Corollary 4.1 below, which is far beyond
the one provided in [12]. In particular we can obtain the convergence and convergence
rates when the method (4.2) is terminated by either an a priori stopping rule or the
discrepancy principle (1.5).

Corollary 4.1 For the linear ill-posed problem (4.1) in Hilbert spaces constrained by
a closed convex set C, consider the dual projected Landweber iteration (4.2) with
λ0 = 0 and with noisy data yδ satisfying ‖yδ − y‖ ≤ δ.

(i) If 0 < γ ≤ 1/‖A‖2 then for the integer nδ satisfying nδ → ∞ and δ2nδ → 0
as δ → 0 there holds ‖xnδ − x†‖ → 0 as δ → 0. If in addition x† satisfies the
projected source condition

x† = PC ((A∗ A)ν/2ω) for some 0 < ν ≤ 1 and ω ∈ X , (4.3)

then with the choice nδ ∼ δ− 2
1+ν we have ‖xnδ − x†‖ = O(δ

ν
1+ν ).

(ii) If τ > 1and γ > 0 are chosen such that1−1/τ−‖A‖2γ > 0, then the discrepancy
principle (1.5) defines a finite integer nδ with ‖xnδ − x†‖ → 0 as δ → 0. If in
addition x† satisfies the projected source condition (4.3), then ‖xnδ − x†‖ =
O(δ

ν
1+ν ).

Proof According to Theorems 3.1, 3.4 and 3.7, it remains only to show that, under the
projected source condition (4.3), x† satisfies the variational source condition

1

4
‖x − x†‖2 ≤ R(x) − R(x†) + cν‖ω‖ 2

1+ν ‖Ax − y‖ 2ν
1+ν (4.4)

for all x ∈ dom(R) = C , where cν := 2− 2ν
1+ν (1+ ν)(1− ν)

1−ν
1+ν . To see this, note first

that for any x ∈ C there holds

1

2
‖x − x†‖2 − R(x) + R(x†) = 1

2
‖x − x†‖2 − 1

2
‖x‖2 + 1

2
‖x†‖2

= 〈x†, x† − x〉.

By using x† = PC ((A∗ A)ν/2ω) and the property of the projection PC we have

〈(A∗ A)ν/2ω − x†, x − x†〉 ≤ 0, ∀x ∈ C

which implies that

〈x†, x† − x〉 ≤ 〈(A∗ A)ν/2ω, x† − x〉 = 〈ω, (A∗ A)ν/2(x† − x)〉.
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Therefore

1

2
‖x − x†‖2 − R(x) + R(x†) ≤ 〈ω, (A∗ A)ν/2(x† − x)〉

≤ ‖ω‖‖(A∗ A)ν/2(x† − x)‖.

By invoking the interpolation inequality [13] and theYoung’s inequalitywe can further
obtain

1

2
‖x − x†‖2 − R(x) + R(x†) ≤ ‖ω‖‖x − x†‖1−ν‖A(x − x†)‖ν

≤ cν‖ω‖ 2
1+ν ‖Ax − y‖ 2ν

1+ν + 1

4
‖x − x†‖2

which shows (4.4). The proof is therefore complete. ��
We remark that the projected source condition (4.3) with ν = 1, i.e. x† ∈ PC (A∗Y ),

was first used in [38] to derive the convergence rate of Tikhonov regularization in
Hilbert spaces with convex constraint.

The dual projected Landweber iteration (4.2) can be accelerated by Nesterov’s
acceleration strategy. As was derived in Sect. 3.3, the accelerated scheme takes the
form

λ̂n = λn + n − 1

n + α
(λn − λn−1), x̂n = PC (A∗λ̂n),

λn+1 = λ̂n − γ (Ax̂n − yδ), xn+1 = PC (A∗λn+1).

(4.5)

By noting that ∂R(x) = x + ∂δC (x), it is easy to see that an element λ† ∈ Y is such
that A∗λ† ∈ ∂R(x†) if and only if x† = PC (A∗λ†). Therefore, by using Theorem 3.8,
we can obtain the following convergence rate result of the method (4.5).

Corollary 4.2 For the problem (4.1) in Hilbert spaces constrained by a closed convex
set C, consider the method (4.5) with λ0 = λ−1 = 0. If 0 < γ ≤ 1/‖A‖2, α ≥ 2 and
x† ∈ PC (A∗Y ), then with the choice nδ ∼ δ−1/2 we have

‖xnδ − x†‖ = O(δ1/2)

as δ → 0.

4.2 An entropic dual gradient method

Let Ω ⊂ R
d be a bounded domain and let A : L1(Ω) → Y be a bounded linear

operator, where Y is a Hilbert space. For an element y ∈ Y in the range of A, we
consider the equation Ax = y. We assume that the sought solution x† is a probability
density function, i.e. x† ≥ 0 a.e. on Ω and

∫
Ω

x† = 1. We may find such a solution
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by considering the convex minimization problem

min
{
R(x) := f (x) + δΔ(x) : x ∈ L1(Ω) and Ax = y

}
, (4.6)

where δΔ denotes the indicator function of the closed convex set

Δ :=
{

x ∈ L1(Ω) : x ≥ 0 a.e. on Ω and
∫

Ω

x = 1

}

in L1(Ω) and f denotes the negative of the Boltzmann-Shannon entropy, i.e.

f (x) :=
{∫

Ω
x log x if x ∈ L1+(Ω) and x log x ∈ L1(Ω),

∞ otherwise

where, here and below, L p
+(Ω) := {x ∈ L p(Ω) : x ≥ 0 a.e. on Ω} for each 1 ≤ p ≤

∞. The Boltzmann-Shannon entropy has been used in Tikhonov regularization as a
stable functional to determine nonnegative solutions; see [1, 11, 14, 31] for instance.

In the following we summarize some useful properties of the negative of the
Boltzmann-Shannon entropy f :

(i) f is proper, lower semi-continuous and convex on L1(Ω); see [1, 11].
(ii) f is subdifferentiable at x ∈ L1(Ω) if and only if x ∈ L∞+ (Ω) and is bounded

away from zero, i.e.

dom(∂ f ) = {x ∈ L∞+ (Ω) : x ≥ β on Ω for some constant β > 0}.

Moreover for each x ∈ dom(∂ f ) there holds ∂ f (x) = {1+ log x}; see [4, Propo-
sition 2.53].

(iii) By straightforward calculation one can see that for any x ∈ dom(∂ f ) and x̃ ∈
dom( f ), the Bregman distance induced by f is the Kullback-Leibler functional

D(x̃, x) :=
∫

Ω

(
x̃ log

x̃

x
− x̃ + x

)
.

(iv) For any x ∈ dom(∂ f ) and x̃ ∈ dom( f ) there holds (see [7, Lemma 2.2])

‖x − x̃‖2L1(Ω)
≤

(
4

3
‖x‖L1(Ω) + 2

3
‖x̃‖L1(Ω)

)
D(x̃, x). (4.7)

Based on these facts, we can see that the function R defined in (4.6) satisfies
Assumption 1. In order to apply the dual gradient method (1.3) to solve (4.6), we need
to determine the closed formula for the solution of the minimization problem involved
in the algorithm. By the Karush-Kuhn-Tucker theory, it is easy to see that, for any

 ∈ L∞(Ω), the unique minimizer of

min

{∫

Ω

(x log x − 
x) : x ≥ 0 a.e. on Ω and
∫

Ω

x = 1

}
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is given by x̂ = e
/
∫
Ω

e
. Therefore we can obtain from the algorithm (1.3) the
following entropic dual gradient method

xn = 1
∫
Ω

eA∗λn
eA∗λn ,

λn+1 = λn − γ (Axn − yδ).

(4.8)

We have the following convergence result.

Corollary 4.3 For the convex problem (4.6), consider the entropic dual gradient method
(4.8) with λ0 = 0 and with noisy data yδ satisfying ‖yδ − y‖ ≤ δ.

(i) If 0 < γ ≤ 1/‖A‖2 then for the integer nδ satisfying nδ → ∞ and δ2nδ → 0 as
δ → 0 there holds ‖xnδ − x†‖ → 0 as δ → 0. If in addition x† satisfies the source
condition

1 + log x† = A∗λ† for some λ† ∈ Y , (4.9)

then with the choice nδ ∼ δ−1 we have ‖xnδ − x†‖L1(Ω) = O(δ1/2).
(ii) If τ > 1and γ > 0 are chosen such that1−1/τ−‖A‖2γ > 0, then the discrepancy

principle (1.5) defines a finite integer nδ with ‖xnδ − x†‖L1(Ω) → 0 as δ → 0. If in
addition x† satisfies the source condition (4.9), then ‖xnδ − x†‖L1(Ω) = O(δ1/2).

Proof Under (4.9) there holds A∗λ† ∈ ∂ f (x†). Therefore, by using (4.7), we have for
any x ∈ dom(R) that

1

2
‖x − x†‖2L1(Ω)

≤ D(x, x†) = f (x) − f (x†) − 〈A∗λ†, x − x†〉
= R(x) − R(x†) − 〈λ†, Ax − y〉
≤ R(x) − R(x†) + ‖λ†‖‖Ax − y‖,

where we used R(x) = f (x) and
∫
Ω

x = 1 for x ∈ dom(R). Thus x† satisfies the
varaitional source condition specified in Assumption 2 with E†(x) = 1

2‖x −x†‖2
L1(Ω)

,

M = ‖λ†‖ and q = 1. Now we can complete the proof by applying Theorems 3.1,
3.7 and Corollary 3.5 to the method (4.8). ��

The source condition (4.9) has been used in [11, 14] in which one may find further
discussions.We would like to mention that an entropic Landweber method of the form

xn+1 = xneγ A∗(yδ−Axn)

∫
Ω

xneγ A∗(yδ−Axn)
(4.10)

has been proposed and studied in the recent paper [10] in which weak convergence in
L1(Ω) is proved without relying on source conditions and, under the source condition
(4.9), an error estimate is derivedwhen themethod is terminated by an a priori stopping
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rule. Our method (4.8) is different from (4.10) due to its primal-dual nature. As stated
inCorollary 4.3, ourmethod (4.8) enjoys nicer convergence properties: it admits strong
convergence in L1(Ω) in general and, when the source condition (4.9) is satisfied, an
error estimate can be derived when the method is terminated by either an a priori
stopping rule or the discrepancy principle.

Applying Nesterov’s acceleration strategy, we can accelerate the entropic dual gra-
dient method (4.8) by the following scheme

λ̂n = λn + n − 1

n + α
(λn − λn−1), x̂n = 1

∫
Ω

eA∗λ̂n
eA∗λ̂n ,

λn+1 = λ̂n − γ (Ax̂n − yδ), xn+1 = 1
∫
Ω

eA∗λn+1
eA∗λn+1 .

(4.11)

By using Theorem 3.8 we can obtain the following convergence rate result on the
method (4.11) with noisy data.

Corollary 4.4 For the minimization problem (4.6), consider the method (4.11) with
λ0 = λ−1 = 0. If 0 < γ ≤ 1/‖A‖2, α ≥ 2 and x† satisfies the source condition (4.9),
then with the choice nδ ∼ δ−1/2 we have

‖xnδ − x†‖L1(Ω) = O(δ1/2)

as δ → 0.

5 Conclusion

Due to its simplicity and relatively small complexity per iteration, Landweber iteration
has received extensive attention in the inverse problems community. In recent years,
Landweber iteration has been extended to solve inverse problems in Banach spaces
with general uniformly convex regularization terms and various convergence proper-
ties have been established. However, except for the linear and nonlinear Landweber
iteration in Hilbert spaces, the convergence rate in general is missing from the existing
convergence theory.

This paper attempts to fill in this gap by providing a novel technique to derive
convergence rates for a class of Landweber type methods. We considered a class of
ill-posed problems defined by a bounded linear operator from a Banach space to a
Hilbert space and used a strongly convex regularization functional to select the sought
solution. The dual problem turns out to have a smooth objective function and thus can
be solved by the usual gradient method. The resulting method is called a dual gradient
method which is a special case of the Landweber type method in Banach spaces.
Applying gradient methods to the dual problem allows us to interpret the method in a
new perspective which enables us to use tools from convex analysis and optimization
to carry out the analysis. We have actually obtained the convergence and convergence
rates of the dual gradient method when it is terminated by either an a priori stopping
rule or the discrepancy principle. Furthermore, by applying Nesetrov’s acceleration
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strategy to the dual problem we proposed an accelerated dual gradient method and
established a convergence rate result under an a priori stopping rule.We also discussed
some applications, in particular, as a direct application of our convergence theory, we
provided a rather complete analysis of the dual projected Landweber iteration of Eicke
for which only preliminary result is available in the existing literature.

There are a few of questions which might be interesting for future development.

(i) We established convergence rate results for the dual gradient method (1.3) which
require A to be a bounded linear operator and Y a Hilbert space. Is it possible
to establish a general convergence rate result for Landweber iteration for solving
linear as well as nonlinear ill-posed problems in Banach spaces?

(ii) For the dual gradient method (1.3), its analysis under the a priori stopping rule
allows to take the step-size as 0 < γ ≤ 1/L , while the analysis under the dis-
crepancy principle (1.5) requires τ > 1 and γ > 0 to satisfy 1 − 1/τ 2 − Lγ > 0
which means either τ has to be large or γ has to be small. Is it possible to develop
a convergence theory of the discrepancy principle under merely the conditions
τ > 1 and 0 < γ ≤ 1/L?

(iii) In Sect. 3.3 we considered the accelerated dual gradient method (3.18) and estab-
lished a convergence rate result under an a priori stopping rule. Is it possible to
establish the convergence and convergence rate result of (3.18) under the discrep-
ancy principle?
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