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Abstract
This article concerns a scalar conservation law where the flux is of Panov type and
may contain spatial discontinuities. We define a notion of entropy solution and discuss
the existence via Godunov type finite volume approximation. We further show that
our numerical scheme converges the entropy solution at an optimal rate of O(

√
Δt).

To the best of our knowledge, the error estimates of the numerical scheme are the first
of its kind for conservation laws with discontinuous flux where spatial discontinuities
can accumulate. We present numerical examples that illustrate the theory.

Mathematics Subject Classification 35L65 · 35B44 · 35A01 · 65M06 · 65M08

1 Introduction

In this article we study the initial value problem for the following scalar conservation
law,

ut + A(x, u)x = 0 for (t, x) ∈ (0,∞) × R, (1)

u(0, x) = u0(x) for x ∈ R, (2)

where the flux A : R×R → R is of Panov type, as in [38], i.e., A(x, u) = g(β(x, u)),
where g can be a locally Lipschitz continuous real-valued function and β(x, ·) is a
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monotone function for each x ∈ R.Thus in this articlewe do not impose any restriction
on the shape of u �→ A(x, u) and thereby extending the one dimensional convergence
analysis discussed in [24, 26, 41]. Furthermore, the flux function A can have infinitely
many spatial discontinuities with accumulation points. Optimal rate of convergence
1/2 is achieved under the assumption that β(x, u) = u + r(x).

Mathematical analysis of these type of equations is complicated due to the presence
of discontinuities in the spatial variable of the flux function A(·, ·). It is well known
that when x �→ A(x, u) is not sufficiently smooth, the classical Kruzkov inequality,

∂t |u − k| + ∂x
[
sgn(u − k)(A(x, u) − A(x, k))

]

+ sgn(u − k)∂x A(x, k) ≤ 0, ∀k ∈ R in D′(R+ × R),

does not make sense due to the term sgn(u − k)∂x A(x, k). When the spatial disconti-
nuities are discrete, the uniqueness of weak solutions is obtained by imposing certain
additional conditions (known as interface entropy conditions) along the spatial dis-
continuities of the flux, which require the existence of traces. Various types of entropy
conditions can be chosen depending on the underlying physics of the problem, details
of which can be found in [1, 3–5, 7, 8, 14–17, 40] and the references therein. How-
ever, when the spatial discontinuities accumulate, the traces do not exist in general. To
overcome this obstacle, the notion of adapted entropy solutions has been proposed,
first in [13] for a monotone flux, and then in [10] for monotone or unimodal flux. The
adapted entropy approach to uniqueness can be seen as a generalization of the classical
Kruzkov theory. Adapted entropy conditions use a certain class of spatially dependent
steady state solutions k = k(x) chosen so that the term sgn(u − k(x))∂x A(x, k(x))

vanishes. This work was later generalized in [37] to A(x, u) of the form g(β(x, u)).

In addition, uniqueness results for solutions of (1)–(2) have been further generalized
to fluxes possessing degeneracy, see [25]. The convergence analysis of the numerical
schemes for these kind of fluxes was open for a quite a long time and recently this has
been answered in [24, 26, 41].

One of the important objective of this article is to study the error analysis of our
numerical method. From a practical point of view, along with the convergence, it is
also important to understand how fast the scheme converges, i.e. how fast the error of
approximation of the exact solution u by the numerical approximation ||uΔ(T , ·) −
u(T , ·)||L1 goes to zero as mesh size Δ goes to zero. This can be measured in terms
of the α which satisfies the following

||uΔ(T , ·) − u(T , ·)||L1 ≤ CΔtα. (3)

In addition, convergence rates can also be used for a posteriori error based mesh adap-
tation [42] and optimal design of multilevel Monte Carlo methods [11]. In the case of
a spatially independent flux with d = 1, using the doubling of the variable argument,
Kuznetsov [35] proved that monotone schemes converge to the weak solution satis-
fying the Kruzkov entropy condition with α = 1/2. Reference [33] shows that these
results are indeed true in several spatial dimensions (for flux function independent of
space variable). Sabac constructed explicit examples in [39] which imply that this
estimate is optimal. Of late, [23] proves the convergence rates of monotone schemes
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for conservation laws for Holder continuous initial data with Holder exponent greater
than 1/2, where bounded variation of the initial data is not required. For unilateral
constrained problem [18] provides error estimate for the Godunov approximation of

the problem to beO(Δt
1
3 ). However, the rates can be shown to be the optimal rate of

O(
√

Δt) provided bounds on the temporal total variation of the finite volume approx-
imation exists in the cells adjacent to the point where the constraint is imposed. The
techniques introduced in this paper can be adapted to scalar conservation laws with
discontinuous flux (with finitely many discontinuities) and the rate of convergence
depends on the temporal total variation bounds of the finite volume approximation in
the cells adjacent to the spatial of discontinuities of the flux (see section 7.3, [18]).
Such bounds on temporal variation can be easily obtained for Riemann data, how-
ever, such bounds were not known for general data. Very recently, the bounds on the
temporal total variation of the finite volume approximation are proved for the case
of strictly monotone fluxes [12] and thus the rates are shown to be 1/2 for monotone
fluxes with finitely many spatial discontinuities. These estimates are obtained based
on the idea that, for the case of monotone fluxes, problem of discontinuous flux can
be treated as boundary value problem with a BV boundary data, where Kuznetsov’s
type arguments can be invoked and combining the boundary value problems, error
estimates can be obtained for the IVP (1)–(2), which allows to estimate the boundary
terms in space at the discontinuities that appear when applying the classical Kuznetsov
theory to problem.

To the best of our knowledge proofs for the optimal rate 1/2 are not known for
general BV data for non monotone flux even in the case of single discontinuity. Also,
no results on error estimates are available when spatial discontinuities of the flux are
allowed to be infinite,which in turnmay accumulate. In this article, for a certain class of
fluxes we prove that Godunov type schemes converge to the adapted entropy solution
with the optimal rate 1/2, thus dispensing with the assumption of strict monotonicity
and finitely many points of discontinuity of [12] to obtain the optimal rate 1/2. Since
the methods of [12] are not applicable when the set of spatial discontinuities contains
accumulation points, we prove a Kuznetsov type lemma based on adapted entropy
formulation to obtain the error estimates. To the best of our knowledge, this is the first
error estimate for conservation laws with discontinuous flux where the set of spatial
discontinuities of A(x, u) is infinite and may also contain accumulation points.

One-dimensional conservation laws with discontinuous flux have been the subject
of a large literature over the past several decades. The multidimensional case has
received less attention, see e.g., [6, 9, 21, 22, 29, 31, 34, 37, 38]. The notion of interface
entropy condition was then generalized to several dimensions in [9] and existence
of such solutions was established via the vanishing viscosity method. However, the
convergence of finite volume approximations remains open for the multidimensional
problem even for the case of single discontinuity. For the case of homogeneous flux
(no spatial dependence), convergence of numerical approximations is established by
the so-called dimension splitting techniques see for example, [20, 30]. The classical
dimensional splitting arguments cannot be used when the fluxes are discontinuous
because the solutions do not satisfy the TVD property in general [2, 25, 27, 28]. In
the case of several dimensions, if we further assume that β(x, u) = u + r(x) and
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x ∈ R
d , we can use the dimension splitting techniques to prove the β−TVD property

for general g and use it to establish the convergence of the dimension splitting method
for β(x, u) = u+r(x).This technique also implies the existence of a BV bound on the
solution for the class fluxes which are under consideration, which is of independent
interest.

In Sect. 2 we define the relevant notion of the entropy solution and discuss
the uniqueness and convergence of finite volume approximation which establishes
the well-posedness. Section 3 presents rate convergence estimate, obtained by a
Kuznetsov-type analysis. Section 4 presents various numerical simulations that illus-
trate the theory.

2 Adapted entropy condition and well-posedness

We denote by Q = R
+ × R. Consider the flux function of the form A(x, u) =

g(β(x, u)), where g and β satisfy the following assumptions.

A-1 For u, v ∈ [−M, M], M > 0

|β(x, v) − β(x, u)| ≤ K1(M)|u − v|, (4)

for some continuous K1 : R → [0,∞). Also,

|β(x, u) − β(y, u)| ≤ K2(u)|r(x) − r(y)|, (5)

where K2 : R → [0,∞) is continuous and r ∈ BV (R).
A-2 For some K3 > 0, independent of x ,

|β(x, u) − β(x, v)| ≥ K3|u − v|. (6)

In other words, let β̃(x, ·) denote the inverse of the map ξ �→ β(x, ξ), then

|β̃(x, u) − β̃(x, v)| ≤ K̃3|u − v|.

A-3 The function g(z) is (locally) Lipschitz-continuous, i.e.,

|g(z1) − g(z2)| ≤ K4(M)|z1 − z2| for z1, z2 ∈ [−M, M], M > 0, (7)

where K4 : R → [0,∞) is continuous.
A-4 For strictly increasing functions h1, h2 : R → R such that lim|u|→∞ |h1(u)| =

∞, for any fixed u, h1(u) ≤ β(x, u) ≤ h2(u), for all x ∈ R.

Definition 1 (Adapted Entropy Condition) A function u ∈ C([0, T ]; L1
loc(R)) ∩

L∞(Q) is said to be an adapted entropy solution of the IVP (1)–(2) if the follow-
ing holds:

∂t |u(t, x) − kα(x)| + ∂x
[
sgn(u − kα(x))(A(u, x) − g(α))

] ≤ 0, in D′(Q) (8)
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for α ∈ R. Or equivalently, for all 0 ≤ φ ∈ C∞
c (Q),

∫

Q

|u(t, x) − kα(x)|φt (t, x)

+ sgn(u(t, x) − kα(x))(A(x, u(t, x)) − g(α))φx (t, x) dxdt

+
∫

R

|u0(x) − kα(x)|φ(0, x) dx ≥ 0, (9)

where kα : R → R is a stationary state defined by β(x, kα(x)) := α.

Remark 1 If the flux function A(x, u) is unimodal, then the above definition of adapted
entropy solutions can be viewed as the generalization of the definition given in [10],
in the following sense:

Let �A(x, u) denote the singular map corresponding to A(x, u). Then the flux can
be written in the Panov form A(x, u) = g(β(x, u)), with g(u) = |u| and β(x, u) =
�A(x, u). Now, for α ∈ R, we have,

kα(x) =
{

k+
α (x), α ≥ 0,

k−
|α|(x), α ≤ 0.

Here, k±
α (x) := (A±)−1(x, α) for α > 0.

Theorem 1 Let u, v ∈ C([0, T ]; L1
loc(R)) ∩ L∞(Q) be entropic solutions to the IVP

(1)–(2) with initial data u0, v0 ∈ L∞(R). Assume the flux satisfies the hypothesis
(A-1)–(A-4). Then for t ∈ [0, T ] the following holds,

b∫

a

|u(t, x) − v(t, x)|dx ≤
b+Mt∫

a−Mt

|u0(x) − v0(x)|dx, (10)

where −∞ ≤ a < b ≤ ∞ and M := sup{|Au(x, u(t, x))|; x ∈ R, 0 ≤ t ≤ T }.
Proof Note that an adapted entropy solution u satisfies the following distributional
inequality:

|β̃(x, v(t, x)) − β̃(x, k)|t + [sgn(v − k)(g(v) − g(k))]x ≤ 0 in D′(R+ × R),

where v(t, x) := β(x, u(t, x)) and β̃(x, ·) is the inverse of the map ξ �→ β(x, ξ).

Suppose u1 and u2 are the two adapted entropy solutions, by repeating the doubling
of the variable arguments, we get:

|β̃(x, v1(t, x)) − β̃(x, v2(t, x))|t + [sgn(v1(t, x) − v1(t, x))(g(v1(t, x)) − g(v2(t, x)))]x

≤ 0 in D′(R+ × R).
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By appropriately choosing a sequence of test functions and passing to the limit (see
[37] for details) we get the following contraction estimate:

b∫

a

|β̃(x, v1(t, x)) − β̃(x, v2(t, x))|dx ≤
b+Mt∫

a−Mt

|β̃(x, v1(0, x)) − β̃(x, v2(0, x))|dx,

which is same as (10). �


2.1 Godunov type scheme and its convergence

We briefly present the convergence analysis for a general g. Most of the proofs are in
the spirit of [26].

For Δx,Δt > 0, consider equidistant spatial grid points xi := iΔx for i ∈ Z and
temporal grid points tn := nΔt for integers 0 ≤ n ≤ N , such that T ∈ [t N , t N+1). Let
λ := Δt/Δx . Letχ(x) denote the indicator function ofCi := [xi −Δx/2, xi +Δx/2),
and let χn(t) denote the indicator function of Cn := [tn, tn+1). We approximate the
initial data according to:

uΔ
0 (x) :=

∑

i∈Z
χ(x)u0

i , where u0
i = u0(yi ) for i ∈ Z. (11)

The approximations generated by the scheme are denoted by un
i , where un

i ≈ u(xi , tn).
The grid function {un

i } is extended to a function defined on ΠT = R × [0, T ] via

uΔ(x, t) =
N∑

n=0

∑

i∈Z
χ(x)χn(t)un

i .

Similarly, we define another grid function βn
i = β(xi , un

i ) ≈ β(xi , u(xi , tn)), and is
extended to a function defined on ΠT via

βΔ(x, t) =
N∑

n=0

∑

i∈Z
χ(x)χn(t)βn

i .

We use the symbols Δ± to denote spatial difference operators:

Δ+zi = zi+1 − zi , Δ−zi = zi − zi−1. (12)

We use the Godunov type scheme given by:

un+1
i = un

i − λΔ− Ā(un
i , un

i+1, xi , xi+1), i ∈ Z, n = 0, 1, 2, . . . , (13)
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where the numerical flux Ā is the generalized Godunov flux of [26]:

Ā(u, v, xi , xi+1) := ḡ (β(xi , u), β(xi+1, v)) (14)

and

ḡ(p, q) =
{
minw∈[p,q] g(w), p ≤ q,

maxw∈[q,p] g(w), p ≥ q.
(15)

Let S = sup|u|≤M,x∈R |β(x, u)|, and define Lβ = K1(M), Lg = K4(S). Here-

after the ratio λ = Δt
Δx is fixed and satisfies the CFL condition:

λLg Lβ ≤ 1/2. (16)

Lemma 1 Under the CFL condition (16), the following properties hold:

i. The scheme is monotone and the Godunov approximations are bounded:

|un
i | ≤ M, i ∈ Z, n = 0, 1, 2, . . . . (17)

ii. Discrete time continuity estimates:

∑

i∈Z
|un+1

i − un
i | ≤ K5 TV(β0), n = 0, 1, 2, . . . (18)

where K5 > 0 is independent of the mesh size Δ.
iii. TVD property with respect to {βn

i } :
∑

i∈Z
|βn+1

i+1 − βn+1
i | ≤

∑

i∈Z
|βn

i+1 − βn
i |. (19)

iv. Discrete entropy inequality:

|un+1
i − kα

i | ≤ |un
i − kα

i | − λ(Pn
i+1/2 − Pn

i−1/2), for all i ∈ Z, n = 0, 1, 2, . . . ,

(20)

where

Pn
i+1/2 = Ā(un

i ∨ kα
i , un

i+1 ∨ kα
i+1, xi , xi+1) − Ā(un

i ∧ kα
i , un

i+1 ∧ kα
i+1, xΔx , xi+1).

Proof The key step in obtaining compactness is the β−TVD property and can be
proved as below. Using the marching formula of u (13), we can express β as follows:

βn+1
i = βn

i − λθ
n+1/2
i Δ−ḡn

j+1/2, (21)
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where

θ
n+1/2
i =

⎧
⎨

⎩

βn+1
i −βn

i

un+1
i −un

i
, un+1

i − un
i �= 0,

0, un+1
i − un

i = 0.
(22)

Note that, 0 ≤ θ
n+1/2
i ≤ Lβ. Hence we can write (21) in incremental form:

βn+1
i = βn

i + Cn
j+1/2Δ+βn

i − Dn
j−1/2Δ−βn

i , (23)

where

Cn
j+1/2 =

⎧
⎨

⎩
−λθ

n+1/2
i

(
ḡ(βn

j ,β
n
j+1)−ḡ(βn

j ,β
n
i )

βn
j+1−βn

i

)
, βn

j+1 − βn
i �= 0,

0, βn
j+1 − βn

i = 0,

Dn
j−1/2 =

⎧
⎨

⎩
λθ

n+1/2
i

(
ḡ(βn

j ,β
n
i )−ḡ(βn

j−1,β
n
j )

βn
j −βn

j−1

)
, βn

j − βn
j−1 �= 0,

0, βn
j − βn

j−1 = 0.

(24)

Recalling (2.1) and that ḡ(·, ·) is a monotone numerical flux [19, 36], we have:

0 ≤ Cn
j+1/2,Dn

j−1/2 ≤ λLg Lβ ≤ 1/2. (25)

Thus Cn
j+1/2 + Dn

j+1/2 ≤ 1, and we can apply Harten’s lemma [36][Theorem 6.1] to
get the β−TVD property. �

Theorem 2 Assume that the flux function A(x, u) satisfies the assumptions (A-1)
through (A-4), and that u0 ∈ BV (R). Then as the mesh size Δ → 0, the approx-
imations uΔ generated by the Godunov scheme described above converge in L1

loc(Q)

and pointwise a.e. in Q to the unique adapted entropy solution u ∈ L∞(Q)∩C([0, T ] :
L1
loc(R)) corresponding to the Cauchy problem (1), (2) with initial data u0. In addition,

the total variation u(·, t) is uniformly bounded for t ≥ 0.

Proof Proof is same as the one presented in [26]. �


3 Error estimates

In this section, we estimate the rate of convergence of the numerical methods intro-
duced in the previous section. The idea is to prove the Kuznetsov type lemma based
on the adapted entropy formulation. We begin by listing some of the technical tools
required to prove the Kuznetsov lemma. We assume that u0, r ∈ BV (R)∩ L1(R) and
the fluxes satisfy the assumptions detailed in the previous section.

Definition 2 Let ΠT = R × [0, T ]. We define 
η,ε : ΠT
2 → R by,


η,ε(t, x, s, y) = ωε(t − s)ωη(x − y),
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where for z ∈ R, ωη(z) := 1
η
ω

(
z
η

)
is a mollifier such that ω ∈ C∞(R;R) is an even

function and satisfies the following:

supp(w) ⊂ [0, 1], 0 ≤ ω(z) ≤ 1 and
∫

R

w(z)dz = 1. (26)

For further calculations, we note the following properties of 
η,ε :

1.


η,ε
x = ∂

∂x

η,ε(t, x, s, y) = − ∂

∂ y

η,ε(t, x, s, y) = −
η,ε

y . (27)

2.



η,ε
t = ∂

∂t

η,ε(t, x, s, y) = ω

′
ε(t − s)ωη(x − y)

= − ∂

∂s

η,ε(t, x, s, y) = −
η,ε

s . (28)

3.


η,ε(t, x, s, y) = 
η,ε(t, y, s, x) = 
η,ε(s, x, t, y) = 
η,ε(s, y, t, x). (29)

4.

∫

R

wη(x − y)dy = 1 and

T∫

0

wε(t − s)ds ≤ 1, for all x ∈ R, t ≥ 0, (30)

5. There exists C independent of η and ε such that,

∫

R

|∂xwη(x − y)|dy ≤ C

η
and

T∫

0

|w′
ε |(t − s)ds ≤ C

ε
,

for all x ∈ R, t ≥ 0. (31)

Definition 3 For σ > 0, define the following

i. κ := {u : ΠT → R : ||u(·, t)||L∞ ≤ k, |u(·, t)|BV ≤ k}.
ii. νt (u, σ ) := sup|τ |≤σ ||u(t + τ) − u(t)||1.
iii. ν(u, σ ) := sup0<t<T νt (u, σ ) = supt∈(0,T ) sup|τ |≤σ ||u(t + τ) − u(t)||1.

Remark If u0 ∈ BV (R)∩L1(R) then there exists L such that adapted entropy solution
satisfies ν(u, σ ) ≤ Lσ.
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Definition 4

�T (u, φ, kα) :=
∫

ΠT

(
|u(t, x) − kα(x)|φt + sgn(u(t, x) − kα(x))

×
(

A(x, u(t, x)) − α
)
φx

)
dxdt

−
∫

R

|u(T , x) − kα(x)|φ(T , x)dx +
∫

R

|u0(x) − kα(x)|φ(0, x)dx .

(32)

�η,ε(u, v) :=
∫

ΠT

�T (u(·, ·), φη,ε(·, ·, s, y), ṽ(s, y, x))dyds. (33)

�η,ε(v, u) :=
∫

ΠT

�T (v(·, ·),
η,ε(t, x, ·, ·), ũ(t, x, y))dxdt . (34)

Lemma 2 Let v be the solution of IVP (1)–(2) and u ∈ κ. For 0 < ε < T and η > 0,
then

‖u(·, T ) − v(·, T )‖L1(R) ≤ ‖u0 − v0‖L1(R) + C
[

Lε + TV(r)|η| + TV(v)|η|
+ν(u, ε)

]
− �η,ε(u, v). (35)

where C is independent of the mesh size Δ.

Proof Adding �η,ε(v, u) and �η,ε(u, v), we get the following

�η,ε(v, u) + �η,ε(u, v)
∫

ΠT

(
|u(t, x) − ṽ(y, s, x)|
η,ε

t dxdtdyds

+
∫

ΠT

[
(sgn(u(t, x) − ṽ(y, s, x))(Ai (x, u(x, t)) − Ai (y, v(y, s))))

]

η,ε

xi
dxdtdyds

−
∫

ΠT

∫

R

|u(T , x) − ṽ(s, y, x)|
η,ε(x, T , y, s)dxdyds

+
∫

ΠT

∫

R

|u0(x) − ṽ(s, y, x)|
η,ε(x, 0, y, s)dxdyds

+
∫

ΠT

(
|v(s, y) − ũ(t, x, y)|
η,ε

s dydsdxdt

+
∫

ΠT

[
sgn(v(s, y) − ũ(t, x, y))(Ai (y, v(s, y)) − A(x, u(t, x)))

]

η,ε

y dydsdxdt

−
∫

ΠT

∫

R

|v(T , y) − ũ(t, x, y)|
η,ε(x, t, y, T )dydxdt

+
∫

ΠT

∫

R

|v0(y) − ũ(t, x, y)|
η,ε(x, t, y, 0)dydxdt .
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From (27), terms involving 

η,ε
x and 


η,ε
y cancel each other. Now invoking symmetry

of 
η,ε given by (27)–(29), we have the following

�η,ε(u, v) = −�η,ε(v, u) − A + B + C,

where

A =
∫

ΠT

∫

R

(
|u(T , x) − ṽ(s, y, x)| + |v(T , y) − ũ(t, x, y)|

)

η,ε(x, s, y, T )dydxds

=
∫ T

0
wε(T − s)

∫

R2

(
|u(t, x) − ṽ(s, y, x)| + |v(T , y) − ũ(t, x, y)|

)
wη(x − y)dydxds.

B =
∫

ΠT

∫

R

(
|u0(x) − ṽ(s, y, x)| + |v0(y) − ũ(t, x, y)|

)

η,ε(x, s, y, 0)dxdyds

=
∫ T

0
wε(T − s)

∫

R2

(
|u0(x) − ṽ(s, y, x)| + |v0(y) − ũ(t, x, y)|

)
wη(x − y)dxdyds.

C =
∫

ΠT
2

(
|u(t, x) − ṽ(s, y, x)| − |v(s, y) − ũ(t, x, y)|

)
w′

ε(t − s)wη(x − y)dxdydsdt .

since v is the solution, �η,ε(v, u) ≥ 0, implying that

A ≤ B + C − �η,ε(u, v). (36)

Claim 1 We have the following lower bound on A :

A ≥ ‖u(·, T ) − v(·, T )‖L1(R) − C
(

Lε + TV(r)|η| + TV(v)|η| + ν(u, ε)
)
.

(37)

To prove the claim we make the following estimates.

(a) Estimation of |u(T , x) − ṽ(s, y, x)|: Consider,

|u(T , x) − v(T , x)| = |u(T , x) − ṽ(s, y, x) + ṽ(s, y, x)

−ṽ(T , y, x) + ṽ(T , y, x) − v(T , x)|
≤ |u(T , x) − ṽ(s, y, x)| + |ṽ(s, y, x)

−ṽ(T , y, x)| + |ṽ(T , y, x) − v(T , x)|.

Thus we have,

|u(T , x) − ṽ(s, y, x)| ≥ |u(T , x) − v(T , x)| − |ṽ(s, y, x)

−ṽ(T , y, x)| − |ṽ(T , y, x) − v(T , x)|.

Using the definition of ṽ we get,

|ṽ(T , y, x) − ṽ(s, y, x)| = |β̃(x, β(y, v(T , y))) − β̃(x, β(y, v(s, y)))|
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≤ C |β(y, v(T , y)) − β(y, v(s, y))|
≤ C |v(T , y) − v(s, y)|.

Invoking the properties of β, we get the following

|ṽ(T , y, x) − ṽ(T , x, x)| = |β̃(x, β(y, v(T , y))) − β̃(x, β(x, v(T , x)))|
≤ C |β(y, v(T , y)) − β(x, v(T , x))|
= C |β(y, v(T , y)) − β(x, v(T , y))

+β(x, v(T , y)) − β(x, v(T , x))|.
≤ C [|r(x) − r(y)| + |v(T , y) − v(T , x)|] .

Combining all these estimates we get,

|u(T , x) − ṽ(s, y, x)| ≥ |u(T , x) − v(T , x)| − |v(T , y) − v(s, y)|
−C [|r(x) − r(y)| + |v(T , y) − v(T , x)|] .

(38)

(b) Estimation of |v(T , y) − ũ(t, x, y)|: Consider |u(T , x) − v(T , x)|, add and
subtract ũ(s, x, y) and v(T , y) = ṽ(T , y, y) to get,

|u(T , x) − v(T , x)| = |u(T , x) − ũ(s, x, y)

+ũ(s, x, y) − v(T , y) + v(T , y) − v(T , x)|
≤ |u(T , x) − ũ(s, x, y)|

+|ũ(s, x, y) − v(T , y)| + |v(T , y) − v(T , x)|.

Thus we have,

|ũ(s, x, y) − v(T , y)| ≥ |u(T , x) − v(T , x)|
−|u(T , x) − ũ(s, x, y)| − |v(T , y) − v(T , x)|.

|u(T , x) − ũ(s, x, y)| = |β̃(x, β(x, u(T , x)))

−β̃(y, β(x, u(s, x)))|
≤ C |r(x) − r(y)| + |u(T , x) − u(s, x)|.

Combining all these estimates we get,

|v(T , y) − ũ(t, x, y)| ≥ |u(T , x) − v(T , x)| − |v(T , y) − v(T , x)|
−C [|r(x) − r(y)| + |u(T , x) − u(s, x)|] . (39)

Adding (38) and (39), for some C > 0 we get the following estimate:

|u(T , x) − ṽ(s, y, x)| + |ũ(s, x, y) − v(T , y)|
≥ 2|u(T , x) − v(T , x)|C |v(T , y) − v(s, y)|
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−C [|r(x) − r(y)| + |v(T , y) − v(T , x)|]
−C [|r(x) − r(y)| + |u(T , x) − u(s, x)|] − |v(T , y) − v(T , x)|

≥ 2|u(T , x) − v(T , x)|
−C

[
|v(T , y) − v(s, y)| + |r(x) − r(y)| + |v(T , y) − v(T , x)| + |u(T , x) − u(s, x)|

]
.

Thus

A =
∫ T

0
wε(T − s)

∫

R2

(
|u(t, x) − ṽ(s, y, x)| + |v(T , y) − ṽ(t, x, y)|

)
wη(x − y)dydxds

≥
∫ T

0
wε(T − s)

∫

R2
2|u(T , x) − v(T , x)| − C

(
|v(T , y) − v(s, y)| + |r(x) − r(y)|

+|v(T , y) − v(T , x)| + |u(T , x) − u(s, x)|
)
wη(x − y)dydxds. (40)

To obtain the desired lower bound onA, we estimate terms appearing on the
right side of (40) as follows:

i. Consider the integral
∫ T
0

[
wε(T − s)

∫
R2

(
|u(T , x) − v(T , x)|

)
wη(x − y)

dydx
]
ds. By symmetry of w we have

∫ T

0
ωε(T − s)ds =

∫ T

0
ωε(s)ds = 1

2
,

Now applying Fubini-Tonellis’s theorem we get,

∫ T

0

[
wε(T − s)

∫

R2

(
|u(T , x) − v(T , x)|

)
wη(x − y)dydx

]
ds

= 1

2
‖u(T , ·) − v(T , ·)‖L1(R).

ii. Consider the integral
∫ T
0 wε(T −s)

∫
R2

(
|v(T , y)−v(s, y)|

)
wη(x−y)dydxds.

Since the support of wε ⊂ [−ε, ε], using the time continuity of v we get,

∫ T

0
wε(T − s)

∫

R2

(
|v(T , y) − v(s, y)|

)
wη(x − y)dydxds ≤ 1

2
Lε.

iii. Consider the integral
∫ T
0 wε(T − s)

∫
R2

(
|r(x) − r(y)|

)
wη(x − y)dydxds.

Note that,

∫

R2
ωη(x − y)|r(x) − r(y)|dxdy ≤ |η|TV(r),
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and thus we have,

∫ T

0
wε(T − s)

∫

R2

(
|r(x) − r(y)|

)
wη(x − y)dydxds ≤ 1

2
TV(r)|η|.

iv. Consider the integral
∫ T
0 wε(T − s)

∫
R2

(
|v(T , x) − v(T , y)|

)
wη(x −

y)dydxds. Since v(T , ·) has bounded variation, repeating the arguments as
in the previous step, we get,

∫ T

0
wε(T − s)

∫

R2

(
|v(T , y) − v(T , x)|

)
wη(x − y)dydxds ≤ 1

2
TV(v)||η|.

v. Consider the integral
∫ T
0 wε(T −s)

∫
R2

(
|u(T , x)−u(s, x)|

)
wη(x−y)dydxds.

Note that wε(T − s) is zero for T − s > ε. Thus invoking the definition of
ν(u, ε) we get,

∫ T

0
wε(T − s)

∫

R2

(
|u(T , x) − u(s, x)|

)
wη(x − y)dydxds ≤ 1

2
ν(u, ε).

Combining all these estimates, we get the desired lower bound on A.

Claim 2 We have the following upper bound on B.

B ≤ ‖u(·, 0) − v(·, 0)‖L1(R) + C
(

Lε + TV(r)|η| + TV(v)|η| + ν(u, ε)
)
.

(41)

Claim follows by repeating the arguments done in the estimation of A, for
|u0(x) − ṽ(s, y, x)| + |v0(y) − ṽ(t, x, y)|.

Claim 3

C = 0. (42)

Suppose β(x, u) = au + r(x) for a �= 0, using the definition of ũ and ṽ we
have,

β(x, u(t, x)) = au(t, x) + r(x) = aũ(t, x, y) + r(y) = β(y, ũ(t, x, y)),

β(x, ṽ(s, y, x)) = aṽ(s, y, x) + r(x) = av(s, y) + r(y) = β(y, v(s, y)).

Which implies

u(t, x) − ṽ(s, y, x) = ũ(t, x, y) − v(s, y),

and hence

|u(t, x) − ṽ(s, y, x)| = |ũ(t, x, y) − v(s, y)|.
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Thus we have C = 0 and claim is proved.

Substituting the values of (37)–(42) in (36), we have

‖u(T , ·) − v(T , ·)‖L1(R) ≤ ‖u0 − v0‖L1(R)

+C
[

Lε + TV(r)|η| + TV(v)|η| + ν(u, ε)
]

− �η,ε(u, v).

which completes the proof of the lemma. �

Remark 2 The terms involving TV(r) are absent in the original Kuznetsov lemma
where the flux is homogeneous.

Before moving on to the proof of the error estimate, we introduce the following
notations:

ηn
i := |un

i − ki
α|,

pn
i := sgn(un

i − ki
α)

(
A(xi , un

i ) − A(xi , ki
α)

) = A(xi , un
i ∨ ki

α) − A(xi , un
i ∧ ki

α).

Now we state and prove the convergence rate theorem.

Theorem 3 (Convergence rate for conservation laws with discontinuous flux) Let u
be the entropy solution of (1)–(2) and uΔ the numerical solution given by (13)–(14).
Then we have the following convergence rate:

∥∥uΔ(T , ·) − v(T , ·)∥∥L1(R)
= O(

√
Δt),

for some constant C independent of Δt .

Proof Let η = ε = √
Δt . In view of the previous lemma, it is enough to show the

following:

ν(uΔ,
√

Δt) = O(
√

Δt), (43)

−�√
Δt,

√
Δt (u, v) = O(

√
Δt). (44)

Note that (43) follows from the time estimate (18). Now it remains to prove (44). Let
x ∈ R and uΔ be a piecewise constant function obtained by the numerical scheme.
Consider,

−�Δ
T (uΔ, φ, kΔ

α ) = −
N−1∑

n=0

( ∑

i

[ ∫

Ci

∫

Cn

(
ηn

i φt (x, s) + pn
i φx (x, s)

)
dsdx

−
∫

Ci

η0i φ(x, 0)dydx +
∑

i

∫

Ci

ηN
i φ(x, t)dydx

)
.
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Fundamental theorem of calculus followed by summation by parts imply,

−�Δ
T (uΔ, φ, kΔ

α ) =
∑

i

N−1∑

n=0

[ (
ηn+1

i − ηn
i

)

∫

Ci

φ(x, tn+1)dxdy + (
pn

i − pn
i−1

) ∫

Cn

φ(xi− 1
2
, s)dyds

]
.

Using the discrete entropy inequality (20) in the above equation, we get

−�Δ
T (uΔ, φ, kΔ

α ) ≤
∑

i

N−1∑

n=0

[
− �

(
Pn

i+ 1
2

− Pn
i− 1

2

) ∫

Ci

φ(x, tn+1)dx

+ (
pn

i − pn
i−1

) ∫

Cn

φ(xi− 1
2
, s)ds

]
,

which on rearrangement implies that

−�Δ
T (uΔ, φ, kΔ

α ) ≤
∑

i

N−1∑

n=0

[
λ|Pn

i+ 1
2 , j

− pn
i |

∫

Ci

|φ(x + Δx, tn+1) − φ(x, tn+1)|dydx

+|pn
i − pn

i−1||
∫

Cn

φ(xi− 1
2
, y, s)dyds − λ

∫

Ci

φ(x, tn+1)dxdy|
]
.

Adding and subtracting

λ

∫

Ci

φ(xi− 1
2
, y, tn+1)dx =

∫

Cn
φ(xi− 1

2
, y, tn+1)dt

in the term

∣
∣∣∣

∫

Cn
φ(xi− 1

2
, y, s)ds − λ

∫

Ci

φ(x, tn+1)dx

∣
∣∣∣

respectively, we get

−�Δ
T (uΔ, φ, kΔ

α ) ≤
∑

i

N−1∑

n=0

[
λGφ

1 |Pn
i+ 1

2 , j
− pn

i | + ∣
∣pn

i − pn
i−1

∣
∣
(
Gφ
2 + λxGφ

3

) ]

:=
∑

i

N−1∑

n=0

[
Gφ
1 K i,n

1 + Gφ
2 K i,n

2 + Gφ
3 K i,n

3

]
,
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where

Gφ
1 =

∫

Ci

φ(x + Δx, tn+1) − φ(x, tn+1)dx,

Gφ
2 =

∫

Cn

|φ(xi−1/2, t) − φ(xi−1/2, tn+1)|dsdx,

Gφ
3 =

∫

Ci

|φ(x, tn+1) − φ(xi−1/2, tn+1)|dydx,

For each (x, s) ∈ ΠT , consider the test function φ(x, t) := 

√

Δt,
√

Δt (x, t, x, s) and
α = β(x, v(, s)).

Using the properties of

√

Δt,
√

Δt , the following estimate can be obtained (see [32]
for the details):

∫

ΠT

G

√

Δt,
√

Δt (·,·,·,x,s)
l dxds ≤ O(Δt5/2). (45)

Our assumptions on the flux function A imply the following:

|pn
i − pn

i−1| ≤ C
[
|un

i − un
i−1, j | + |ri − ri−1, j |

]
,

|pn
i − Pn

i, j+ 1
2
| ≤ C

1∑

k=−1

|un
i+k, j − un

i |.

Since the numerical approximations are uniformly total variation bounded, the above
inequalities imply that, Δt

∑

i
K i,n

l is uniformly bounded for l ∈ {1, 2, . . . , 4}, n =
0, 1, 2, . . . , N − 1, α ∈ R and Δ > 0.

Now (45) implies the following

�Δ√
Δt,

√
Δt

(uΔ, v) =
∫

ΠT

�Δ
T (uΔ,


√
Δt,

√
Δt (·, ·, ·, x, s), kΔ

β(y,v(y,s)))

=
(

∑

i

N−1∑

n=0

K i,n
l

)∫

ΠT

G

√

Δt,
√

Δt (·,·,·,x,s)
l dxds

= O(Δt−2)O(Δt5/2) = O(
√

Δt). (46)

Note that,

�Δ
T (uΔ, φ, kΔ

α ) =
∫

ΠT

(
|uΔ(t, x) − kΔ

α (x)|φt

+ sgn(uΔ(t, x) − kΔ
α (x))

(
g(βΔ(x, uΔ(t, x))) − α

)
φx

)
dxdt
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−
∫

R2
|uΔ(T , x) − kΔ

α (x)|φ(T , x)dx +
∫

R2
|u0(x)

−kΔ
α (x)|φ(0, x)dx .

Thus, we have,

|�√
Δt,

√
Δt (u

Δ, v) − �Δ√
Δt,

√
Δt

(uΔ, v)| ≤ C

( ∫

ΠT
2

|kα − kΔ
α |

∣
∣∣


√
Δt,

√
Δt

t + 

√

Δt,
√

Δt
x

∣
∣∣

+
∫

R4

|kα − kΔ
α |

∣
∣∣


√
Δt,

√
Δt (·, 0) + 


√
Δt,

√
Δt (·, T )

∣
∣∣
)

.

Since,
∥∥k − kΔ

∥∥
L1(R2)

= O(Δt), using (31) and (46) in the above inequality, we get

�√
Δt,

√
Δt (u

Δ, v) = �Δ√
Δt,

√
Δt

(uΔ, v) + O(
√

Δt) = O(
√

Δt).

This completes the proof of the theorem. �

Remark 3 In Theorem 3 we proved that the rate of convergence is not less than 1/2.
This result has to be considered as the worst case estimate in the sense that rate cannot
be less than 1/2. An example due to Sabac [39] shows that in general this result cannot
be improved as the rate 1/2 is achieved for the example. However, the method in many
cases exhibits rates much higher than 1/2.

Remark 4 For general β, where the flux satisfies conditions (A-1)–(A-4), (42) is
replaced by

C ≤ Cβ

ε

η
.

As a result, we get the following Kuznetsov type estimate:

‖u(·, T ) − v(·, T )‖L1(R) ≤ ‖u0 − v0‖L1(R) + C
[

Lε + TV(r)|η| + TV(v)|η|
+ν(u, ε)

]
− �η,ε(u, v) + Cβ

ε

η
. (47)

Repeating the arguments of the theorem 3 for any ε and η we get

− �η,ε(u, v) ≤ CT Δx

(
1

ε
+ 1

η

)
. (48)

Hence, we get the convergence rate 1/3 by choosing ε = (Δt)2/3 and η = (Δt)1/3 in
(47)–(48).
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Remark 5 Consider the conservation law in several dimensions given by,

ut + div A(x, u) = 0 for (t, x) ∈ (0,∞) × R
d , (49)

u(0, x) = u0(x) for x ∈ R
d , (50)

where the flux A : R × R
d → R

d is of Panov type, as in [38], i.e., A(x, u) =
g(β(x, u)), where g can be a locally Lipschitz continuous real-valued function and
β(x, ·) is a monotone function for each x ∈ R

d along with the other properties
mentioned in Sect. 2. For d > 1,we further assume thatβ(x, u) = u+r(x).The notion
of adapted entropy condition (Definition 1)can be easily extended to several space
dimensions and the uniqueness can be proved as in Theorem 1. Note that when the
flux function contains discontinuities in the space variable, numerical approximations
(uΔ) do not satisfy TVD property, as a result the usual dimension splitting arguments
can not be applied directly to conservation laws with discontinuous flux. However,
in the previous section, we observed that our numerical scheme satisfies β−TVD
property. For β(x, u) = au + r(x), L1 contractivity of u implies the L1 contractivity
of β(·, u(t, ·)). Thus, by repeating the TVD arguments of the homogeneous case on
β, β−TVD property can be proved in several dimensions as well. Now, the limit of
the numerical approximation can be shown to be the adapted entropy solution by a
Crandall-Majda type argument [20] which establishes the existence of the adapted
entropy solution. Lemma 2 and Theorem 3 remains valid in several space dimensions
and hence we get the desired error estimates.

4 Numerical simulations

This section present numerical simulations of the Godunov type scheme for various
types of flux functions and initial data.

Example 1 We consider the IVP (49)–(50) with fluxes as defined below:

Ai (x, y, u) := gi (u + r(x)), for i = 1, 2.

g1(u) = u2/2, g2(u) = sin(u) and r(x) =

⎧
⎪⎨

⎪⎩

p, x < 1,

pqn−1, x ∈ Cn, n ∈ N,

0, x > a∞,

(51)

where p = 4, q = 0.8 and for each n ∈ N, Cn = [an, an+1], with

a1 = 1 and an = 1 +
n−1∑

i=1

ãi for n ≥ 2
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Fig. 1 Example 1. The solution at t = 6 with mesh size Δx = Δy = 6/200. Solution contains infinitely
many shocks along the spatial discontinuities of the flux, which accumulates along the plane x = 5.

with

ãn =
{

pqn−1 − pqn, if n is odd,

pqn−2 − pqn−1, if n is even.

Define and consider a piecewise constant initial data

u0(x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−pq, x < a2,

−pqn, x ∈ Cn and n odd,

−pqn−2, x ∈ Cn and n even,

0, x > a∞.

(52)

At t = 1, the solution is given by,

u(1, x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−pq, x < a2,

x − an − pqn−1, x ∈ Cn and n odd,

x − an+1 − pqn−1, x ∈ Cn and n even,

0, x > a∞.

(53)

Numerical experiments are performed on the spatial domain [0, 6] × [0, 6] with M =
50, 100, 200 and 400 uniformly spaced spatial grid points along the x and y directions.
Figure 1 plots the numerical solutions at the final time t = 1 for the mesh size
Δx = Δy = 6/200. It can be seen that the scheme captures both stationary shocks
and rarefactions efficiently.

123



A Godunov type scheme and error estimates for scalar… 621

Table 1 Approximate L1 error
and total variation at t = 1 for
Example 1

M eΔ TV(uΔ(·, 1)) TV(β(·, uΔ(1, ·))
50 1.3464 32.9298 33.9876

100 0.9618 34.4796 35.9166

200 0.6282 37.7934 40.0374

400 0.4038 39.4704 41.8296

Clearly, the solutions are the extensions of the solutions obtained in the one
dimensional case (see Example 4.1, [26]), more precisely u(1, x, y) = u(1, x), for
(x, y) ∈ [0, 6] × [0, 6]. Thus, the values listed in the above table are approximately
six times of those obtained in the corresponding 1D simulations (see Table 1, [26]).

Example 2 We consider the IVP (49)–(50) with u0(x, y) = 2 and fluxes as defined
below:

Ai (x, y, u) := gi (u + r(x)) for i = 1, 2,

where

g1(u) =

⎧
⎪⎨

⎪⎩

−u − 1, u < −1,

0, u ∈ (−1, 0),

u, u > 1,

g2(u) = sin(u) and

r(x) =

⎧
⎪⎨

⎪⎩

2, x < 1,

rnχ[an ,an+1](x), x ∈ (1, 5),

1, x > 5,

with

an = 5(1 − 0.8n), rn = 1 − (−0.8)n .

The flux considered here admits infinitely many spatial discontinuities which accu-
mulates along the plane x = 5. Solution at t = 6 is given by,

u(6, x, y) = r(x) for (x, y) ∈ [0, 6] × [0, 6].

Numerical experiments are performed on the spatial domain [0, 6] × [0, 6] with M =
50, 100, 200 and 400 uniformly spaced spatial grid points along the x and y directions.
Figure 2 plots the numerical solutions at the final time t = 6 for the mesh size
Δx = Δy = 6/200. It can be seen that the scheme captures both stationary shocks
efficiently.

As in the previous example, the values listed in the above table are approximately
six times of those obtained in the corresponding 1D simulation (see Table 2, [26]).
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Fig. 2 Example 2. The solution at t = 6 with mesh size Δx = Δy = 6/200. Solution contains infinitely
many shocks along the spatial discontinuities of the flux, which accumulate along the plane x = 5

Table 2 Approximate L1 error
and total variation at t = 6 for
Example 2

M eΔ TV(uΔ(6, ·)) TV(β(·, uΔ(6, ·))
50 2.7933e-02 40.701 8.7198e-02

100 2.559e-03 41.914 1.3788e-02

200 1.1147e-04 43.4088 1.07436e-03

400 3.5146e-07 43.6824 6.3834e-06

Fig. 3 Example 3. The solution at t = 2 with mesh size Δx = Δy = 12/200
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Table 3 Approximate L1 error
and total variation at t = 2 for
Example 3

M eΔ TV(uΔ(2, ·)) TV(β(·, uΔ(2, ·))
100 0.5175 22.0051 10.8616

200 0.4424 22.7040 11.2148

400 0.2732 22.9291 11.3466

800 0.1790 23.1841 11.4962

Example 3 In this example, we consider the IVP (49)–(50) with constant initial data
u0 = 0 and the flux function A1(x, y, u) = A2(x, y, u) = u + r(|x | + |y|), where r
is as defined in Example 1 with p = 1 and q = 0.9. The solution of the IVP at time t
is given by u(t, x, y) = r(|x − t | + |y − t |) − r(|x | + |y|).

Numerical experiments are performed on the spatial domain [−6, 6]×[−6, 6]with
M = 100, 200, 400 and 800 uniformly spaced spatial grid points along the x and y
directions. Figure 3 plots the numerical solution at finial time t = 2 for mesh size
Δx = Δy = 12/200. Table 3 compares the L1 error and the total variation of uΔ and
β(uΔ) for various mesh sizes.
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