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Abstract
We construct the exponential map associated to a nonholonomic system that allows us
to define an exact discrete nonholonomic constraint submanifold. We reproduce the
continuous nonholonomic flow as a discrete flow on this discrete constraint subman-
ifold deriving an exact discrete version of the nonholonomic equations. Finally, we
derive a general family of nonholonomic integrators that includes as a particular case
the exact discrete nonholonomic trajectory.

Mathematics Subject Classification Primary 70F25 · 70G45; Secondary 65D30 ·
65P10

1 Introduction

Many mechanical systems of interest in applications possess underlying geometric
structures that are preserved along the time evolution as, for instance, energy and other
constants of the motion, reversibility, symplecticity... Therefore, when we implement
numerical simulations it is interesting to exactly preserve some of these geometric
properties to improve the quantitative and qualitative accuracy and long-time stability
of the proposed methods. This is precisely the main idea behind geometric integration
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[3, 18, 33] and, in particular, of discrete mechanics and variational integrators [27].
In this last case, the construction of an exact discrete Lagrangian is a crucial element
for the analysis of the error between the continuous trajectory and the numerical
simulation derived by a variational integrator (see also [27, 32] and [7, 14] for forced
systems). However, an open question is how to derive the exact discrete version for
nonholonomic mechanics (see [29] for an attempt) and this is the main topic of the
present paper. The importance of this problem was point out as an open problem by
R.I. MacLachlan and C. Scovel:

The problem for the more general class of non-holonomic constraints is still
open, as is the question of the correct analogue of symplectic integration for
non-holonomically constrained Lagrangian systems. [28]

The importance of nonholonomic systems appears since they model mechanical
systems subjected to velocity constraints which are not derivable from position or
holonomic constraints and their equations are not obtained using variational tech-
niques. This is the case, for instance, of rolling without slipping. These systems are of
considerable interest since the velocity or nonholonomic constraints are present in a
great variety ofmechanical systems in engineering and robotics (see [4] and references
therein). However, at themoment, there is no consensus in the scientific community on
the best geometrical methods to numerically integrate a non-holonomic system while
several possibilities were proposed inspired in the geometry of each nonholonomic
system and suitable discretizations of Lagrange-d’Alembert principle (see [30] for
a discussion on this topic and [2, 5, 6, 13, 15, 16, 20, 29], among others, for some
proposals of numerical integrators). Apart from preservation of geometric structure,
another reason why variational integrators work so well for unconstrained systems
is because we can compare them with the corresponding exact discrete version to
estimate the error of the numerical integrator. Following the work started in [29], the
main contribution of our paper is to equip nonholonomic mechanics with an exact dis-
crete version and, as a relevant consequence, we define a new family of nonholonomic
integrators containing the exact discrete nonholonomic trajectory. For this purpose,
we study how to describe geometrically the exact discrete space where the nonholo-
nomic flow evolves as a submanifold of the Cartesian product of two copies of the
configuration space and then we construct an exact discrete version of nonholonomic
dynamics. The new geometric integrators are based in the application of the discrete
modified Lagrange-D’Alembert principle and, for this reason, theywill be calledmod-
ified Lagrange-d’Alembert integrators (see [31] for an application of similar methods
to Dirac systems).

The outline of the paper is the following: in Sect. 2, we review the theory
of Lagrangian mechanics three-fold: unconstrained, nonholonomic constrained and
forced. In Sect. 3, we construct the nonholonomic exponential map using the the-
ory of second-order differential equations on the tangent bundle (see [19]) and also
restricted to the constraint distribution. Themain result is summarized in Theorem 3.7.
The nonholonomic exponential map allows us to introduce an important geomet-
ric object: the exact discrete nonholonomic constraint submanifold. In Sect. 4, we
review discrete Lagrangian mechanics for unconstrained systems and the discrete
Lagrange-d’Alembert principle for discrete forced mechanics. In Sect. 5, we intro-
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Exact discrete Lagrangian mechanics for nonholonomic mechanics 51

duce the exact discrete flow for nonholonomic mechanics and derive an integrator
having it as a particular solution. With this motivation, we construct a new family
of nonholonomic integrators based on the properties of the exact discrete equations.
This theory is applied to several examples showing in numerical computations the
excellent behaviour of the energy. Finally, we discuss in Sect. 6 new directions to find
a completely intrinsic version of nonholonomic mechanics as a discrete version of the
recently proposed continuous setting [12, 17].

Unless stated otherwise, all the maps and manifolds in this paper are smooth.
Einstein’s summation convention is used along the paper.

2 Continuous Lagrangianmechanics

2.1 Unconstrained systems

Amechanical system is a pair formed by a smoothmanifold Q called the configuration
space and a smooth function L : T Q → R on its tangent bundle called the Lagrangian
[1, 9]. If the system is not subjected to any constraint or external forces, amotion of the
mechanical system is a solution of theEuler-Lagrange equations, whose expression on
natural coordinates relative to a chart (qi ) for Q and the induced coordinates (qi , q̇i )
on T Q is

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0. (1)

As it iswell-known these equations are obtained byminimizing the action functional
defined over curves with fixed end points. Denote the set of twice differentiable curves
with fixed end-points q0, q1 ∈ Q by

C2(q0, q1) = {q : [0, T ] −→ Q| q(·) is C2, q(0) = q0, q(T ) = q1}.

Then the action functional is defined by

J : C2(q0, q1) −→ R, q(·) �→ J (q(·)) =
∫ T

0
L(q(t), q̇(t)) dt .

We can also express these equations using the geometric ingredients on the tangent
bundle. Let τQ : T Q → Q be the canonical tangent projection which in coordinates
is given by (qi , q̇i ) −→ (qi ). The vertical lift of a vector vq ∈ TqQ = τ−1

Q (q) to
Tuq T Q, with uq ∈ TqQ is given by

(vq)
V
uq = d

dt

∣∣∣∣
t=0

(uq + tvq)
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and the Liouville vector field on T Q is

�(vq) = d

dt

∣∣∣∣
t=0

(vq + tvq) = (vq)
V
vq

.

The vertical endomorphism S : T T Q → T T Q is defined by

S(Xvq ) = (Tvq τQ(Xvq ))
V
vq

.

In local coordinates, �(qi , vi ) = vi ∂
∂q̇i

and S(Xi ∂
∂qi

+ Xn+i ∂
∂q̇i

) = Xi ∂
∂q̇i

.
A vector field � on T Q is said to be a second order differential equation (SODE)

if S� = � or, equivalently,

(Tvq τQ)(�(vq)) = vq , ∀vq ∈ TqQ. (2)

From (2), it also follows that � ∈ X(T Q) is a SODE if and only if its local expression
is

�(q, q̇) = q̇i
∂

∂qi
+ ξ i (q, q̇)

∂

∂q̇i
,

with ξ i local real C∞-functions on T Q. So, the integral curves

t → (qi (t), q̇i (t))

of a SODE � satisfy the following system of differential equations

dqi

dt
= q̇i ,

dq̇i

dt
= ξ i (q, q̇), ∀i

or, equivalently, the following system of second order differential equations

d2qi

dt2
= ξ i (q, q̇), ∀i .

In particular, every integral curve γ : I → T Q of a SODE � is the tangent lift of a
curve on Q. Namely,

γ (t) = d

dt
(τQ ◦ γ ).

Such curves on Q are the trajectories of �.
Other notion that will be used later is that of the vertical lift of a vector field on Q

to T Q. Let X ∈ X(Q), the vertical lift of X is the vector field on T Q defined by:

XV (vq) = d

dt

∣∣∣∣
t=0

(vq + t X(q))) = (X(q))Vvq , ∀vq ∈ TqQ.

123



Exact discrete Lagrangian mechanics for nonholonomic mechanics 53

Locally,

XV = Xi ∂

∂q̇i
(3)

where X = Xi ∂
∂qi

.

Denote by {�X
t } the flow of a vector field X ∈ X(Q). We can also define the

complete lift XC ∈ X(T Q) of X in terms of its flow. We say that XC is the vector
field on T Q with flow {T�X

t }. In other words,

XC (vq) = d

dt

∣∣∣∣
t=0

(
Tq�

X
t (vq)

)
.

In coordinates

XC = Xi ∂

∂qi
+ q̇ j ∂X

i

∂q j

∂

∂q̇i
. (4)

Note that, if qi (t) are the local coordinates of a curve on Q, then using (3) and (4), it
is easy to prove that such a curve is a solution of Euler-Lagrange Eq. (1) if and only if

XC (L)(q, q̇) − d

dt

(
XV (L)(q, q̇)

)
= 0, ∀ X ∈ X(Q).

When the function L is regular that is, the matrix Hess(L) :=
(

∂2L
∂q̇i ∂q̇ j

)
is non-

singular, Eq. (1) may be written as a system of second-order differential equations
obtained by computing the integral curves of the unique vector field �L satisfying

i�LωL = dEL , (5)

where ωL = −d(S∗dL) and EL = �L − L are the Poincaré-Cartan 2-form and the
energy function, respectively. Moreover, �L is a SODE vector field on T Q (see [9]).
Observe that regularity of L is equivalent to ωL being symplectic and therefore to the
uniqueness of solution for Eq. (5). In effect, the local expression of the Poincaré-Cartan
2-form is

ωL = ∂2L

∂q̇i∂q j
dqi ∧ dq j + ∂2L

∂q̇i∂ q̇ j
dqi ∧ dq̇ j .

Now, we move on to a brief description of standard Hamiltonian mechanics. The
cotangent bundle T ∗Q of a differentiable manifold Q is equipped with a canonical
exact symplectic structure ωQ = −dθQ , where θQ is the canonical 1-form on T ∗Q
defined by

(θQ)αq (Xαq ) = 〈αq , TαqπQ(Xαq )〉

123
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with Xαq ∈ Tαq T
∗Q, αq ∈ T ∗

q Q and πQ : T ∗Q → Q the canonical projection which
in canonical coordinates is (qi , pi ) → (qi ). In canonical bundle coordinates these
become

θQ = pi dq
i , ωQ = dqi ∧ dpi .

Given a Hamiltonian function H : T ∗Q → R we define the Hamiltonian vector field
XH by

ıXH ωQ = dH

The integral curves of XH are determined by Hamilton’s equations:

dqi

dt
= ∂H

∂ pi
,

dpi
dt

= −∂H

∂qi
.

We can define the Legendre transformation FL : T Q → T ∗Q by:

〈FL(uq), vq〉 = d

dt

∣∣∣∣
t=0

L(uq + tvq)

and if L is regular, its Legendre transformation is a local diffeomorphism. In local coor-
dinates FL(qi , q̇i ) = (qi , ∂L

∂q̇i
). Defining H = EL ◦(FL)−1 we have that the solutions

of �L and XH are FL-related. An extensive account of this subject is contained in [1,
9], for instance.

2.2 Forcedmechanics

Now, we also add into the picture external forces. An external force can be interpreted
as a fiber-preserving map denoted by F : T Q → T ∗Q satisfying πQ ◦ F = τQ . In
canonical bundle coordinates (qi , pi ) on T ∗Q we have that πQ(qi , pi ) = (qi ), thus
F(qi , q̇i ) = (qi , Fi (qi , q̇i )).

T Q
F

τQ

T ∗Q

πQ

Q

It is well-know that to each such a map we can associate a semibasic one-form on T Q
defined by

〈μF (vq),W 〉 = 〈F(vq), T τQ(W )〉, vq ∈ T Q and W ∈ Tvq T Q.

In coordinates μF = Fi (qi , q̇i ) dqi .
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Exact discrete Lagrangian mechanics for nonholonomic mechanics 55

A system described by a Lagrangian function L : T Q → R and subjected to an
external force F , satisfies the Lagrange-d’Alembert principle, which asserts that a
motion of this system between two fixed points q0, q1 ∈ Q is a curve q ∈ C2(q0, q1)
satisfying

d

ds

∣∣∣∣
s=0

∫ h

0
L(q(t, s), q̇(t, s)) dt +

∫ h

0

〈
F(q(t), q̇(t)),

∂q

∂s
(t, 0)

〉
dt = 0, (6)

for all smooth variations q(s) ∈ C2(q0, q1) of q. This is locally equivalent to the
forced Euler-Lagrange equations

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= Fi . (7)

As in the case of unconstrained systems, it is easy to see using (7), that a curve q(t)
on Q satisfies the forced Euler-Lagrange equations if and only if

XC (L)(q, q̇) − d

dt

(
XV (L)(q, q̇)

)
= 〈F(q, q̇), X ◦ q〉, ∀ X ∈ X(Q).

If L is regular, then the solutions of Eq. (7) are integral curves of a SODEvector field
on Q denoted by �(L,F), called forced Lagrangian vector field which is the unique
vector field satisfying

i�(L,F)
ωL = dEL − μF . (8)

Now, we move onto the Hamiltonian description of systems subjected to exter-
nal forces. Given a Hamiltonian function H : T ∗Q → R we may construct the
transformation FH : T ∗Q → T Q where 〈βq , FH(αq)〉 = d

dt

∣∣
t=0H(αq + tβq). In

coordinates, FH(qi , pi ) = (qi , ∂H
∂ pi

(q, p)). We say that the Hamiltonian is regular if
FH is a local diffeomorphism,which in local coordinates is equivalent to the regularity
of the Hessian matrix whose entries are:

Mi j = ∂2H

∂ pi∂ p j
.

Consider now the external force previously defined in the Lagrangian description and
denote FH = F ◦ FH : T ∗Q → T ∗Q.

T ∗Q FH

πQ

T ∗Q

πQ

Q

It is possible tomodify theHamiltonian vector field XH to obtain the forcedHamilton’s
equations as the integral curves of the vector field XH + Y v

F where the vector field
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Y v
F ∈ X(T ∗Q) is defined by

Y v
F (αq) = d

dt

∣∣∣
t=0

(αq + t F H (αq)) .

We will say the the forced Hamiltonian system is determined by the pair (H , FH ).
Locally,

Y v
F = Fi

(
q j ,

∂H

∂ p j
(q, p)

)
∂

∂ pi
= FH

i (q, p)
∂

∂ pi

modifying Hamilton’s equations as follows:

dqi

dt
= ∂H

∂ pi
(q, p) , (9)

dpi
dt

= −∂H

∂qi
(q, p) + FH

i (q, p) . (10)

2.3 Nonholonomic systems

A nonholonomic system is defined by the triple (Q, L,D) where L : T Q → R

is a Lagrangian function and D is a nonintegrable distribution on the configuration
manifold Q. The distribution D restricts the velocity vectors of motions to lie on D
without imposing any restrictionon the configuration space.Note that if the distribution
was integrable, then themanifold Q would be foliated by immersed submanifolds of Q
whose tangent space at each point coincideswith the subspace given by the distribution
at that point. Hence, motions of these systems would be confined to submanifolds
N ⊆ Q (the leaves of the foliation). In this way, we can consider this case as a
holonomic system specified by (N , L|N ). This class of constraints is called holonomic
constraints. See [4] for more details.

Locally, the nonholonomic constraints are given by a set of k equations that are
linear on the velocities

μa
i (q)q̇i = 0,

where 1 ≤ a ≤ k and the rank of D is dim(Q) − k. From other point of view,
these equations define the vector subbundle Do ⊆ T ∗Q, called the annihilator of D,
spanned at each point by the one forms {μa} locally given byμa = μa

i (q)dqi . Observe
that with this relationship, we can identify the distribution D with a submanifold of
the tangent bundle that we also denote by D.

In nonholonomicmechanics, the equations ofmotion are completely determined by
theLagrange-d’Alembert principle. This principle states that a curveq(·) ∈ C2(q0, q1)
is an admissible motion of the system if

δJ = δ

∫ T

0
L(q(t), q̇(t)) dt = 0 ,
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Exact discrete Lagrangian mechanics for nonholonomic mechanics 57

for all variations such that δq(t) ∈ Dq(t), 0 ≤ t ≤ T , with δq(0) = δq(T ) = 0. The
velocity of the curve itself must also satisfy the constraints q̇(t) ∈ Dq(t). From the
Lagrange-d’Alembert principle, we arrive at the well-known nonholonomic equations

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= λaμ

a
i (q) (11)

μa
i (q)q̇i = 0, (12)

for some Lagrange multipliers λa , which may be determined with the help of the
constraint equations.

In more geometric terms, Eqs. (11) and (12) are the differential equations for a
SODE �nh on D satisfying the equations

i�nhωL − dEL ∈ �(Fo), (13)

�nh ∈ X(D), (14)

where Fo = S∗((TD)o) is the annihilator of a distribution F on T Q defined alongD
and �(Fo) is the space of sections of Fo. The fact that �nh is a SODE alongD means
that

(Tvτ )(�nh(v)) = v, ∀v ∈ D,

with τ : D → Q the vector bundle projection. Thus, the integral curves of �nh are
tangent lifts of curves on Q, the trajectories of �nh .

The nonholonomic system is said to be regular if the following compatibility con-
dition is satisfied (see [8]):

TvD ∩ (�)v(F
o
v ) = {0} for all v ∈ D.

The sharp isomorphism � : T ∗(T Q) → T (T Q) is the inverse map to the flat isomor-
phism defined by �(X) = iXωL . If the nonholonomic system is regular, then Eqs. (13)
and (14) have a unique solution denoted by �nh whose integral curves satisfy Eqs.
(11) and (12).

To each of the one-forms μa ∈ �(Do) we associate the constraint functions
�a : T Q → R defined by �a(vq) = 〈μa(q), vq〉 or �a(q, q̇) = μa

i (q)q̇i . In local
coordinates, Eq. (13) may be written like

i�nhωL − dEL = λa S
∗(d�a) = λaμ

a
i dq

i ,

for some Lagrange multipliers λa . Therefore, a solution �nh of (13) is of the form
�nh = �L+λa Za , where Za = �(μa

i dq
i ). TheLagrangemultipliersmaybe computed

by imposing the tangency condition (14), which is equivalent to

0 = �nh(�
b) = �L(�b) + λa Z

a(�b), for b = 1, . . . , n − k. (15)
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58 A. A. Simoes et al.

This equation has a unique solution for the Lagrange multipliers if and only if the
matrix C = (Cab) = (Za(�b)) is invertible at all points of D, which is equivalent to
the compatibility condition (cf. [8]).

Recall from symplectic geometry that F⊥ = �(Fo) for any distribution F , where⊥
denotes the symplectic complement relative toωL . Hence, the compatibility condition
also implies the following Whitney sum decomposition

T (T Q)|D = TD ⊕ F⊥,

to which we may associate two complementary projectors P : T (T Q)|D → TD and
P ′ : T (T Q)|D → F⊥ with coordinate expressions

P(X) = X − Cab d�b(X)Za, P ′(X) = Cab d�b(X)Za,

where Cab are the entries of the inverse matrix C−1 of C .

Proposition 2.1 The nonholonomic dynamics is given by

�nh = P(�L |D).

Indeed, under all the assumptions we have considered so far, we can compute the
Lagrange multipliers to be

λa = −Cab�L(�b), (16)

fromwhere the result follows. So, under the compatibility condition, the nonholonomic
system (L,D) is said to be regular. For more details see [4] or [8].

Remark 2.2 Note that, under the compatibility condition, nonholonomic mechanics
can be interpreted as “restricted forced systems", in the sense that we can define
the nonholonomic external force Fnh : D → T ∗Q which makes (11) forced Euler-
Lagrange equations. In coordinates, Fnh(vq) = λa(vq)μ

a
i (q)dqi where the λa are

given in expression (16). Moreover, as in the case of forced Lagrangian systems, if
q(t) is a curve on Q such that q̇(t) ∈ D, then such a curve is a solution of the
nonholonomic Eq. (11) if and only if

XC (L)(q, q̇) − d

dt

(
XV (L)(q, q̇)

)
= 〈Fnh(q, q̇), X ◦ q〉, ∀ X ∈ X(Q). (17)

Taking the restriction of the Lagrangian L : T Q → R toD denoted by l : D → R

we can construct the nonholonomic Legendre map

Fl : D −→ D∗ ,

as

〈Fl(uq), vq〉 = d

dt

∣∣∣∣
t=0

l(uq + tvq)
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Exact discrete Lagrangian mechanics for nonholonomic mechanics 59

for uq , vq ∈ D. Under the compatibility assumption, the map Fl is a local diffeomor-
phism and we can transport the vector field�nh ∈ X(D) to a vector field �̄nh ∈ X(D∗)
which represents the almost-Hamiltonian dynamics on D∗ [12, 17].

Example 1 We will introduce here an example of a simple nonholonomic system to
which we will get back all along the text: the nonholonomic particle. Consider a
mechanical system in the configuration manifold Q = R

3 defined by the Lagrangian

L(x, y, z, ẋ, ẏ, ż) = 1

2
(ẋ2 + ẏ2 + ż2)

and subjected to the nonholonomic constraint ż−yẋ = 0. The one-formμ = dz−y dx
spans the vector subbundle Do, which is the annihilator of the distribution

D = span

{
∂

∂x
+ y

∂

∂z
,

∂

∂ y

}
.

Then the equations of motion of this system are given by Lagrange-d’Alembert Eqs.
(11) and (12), which in this case hold

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẍ = −λy

ÿ = 0

z̈ = λ

ż − yẋ = 0

⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẍ = −y ẋ ẏ
1+y2

ÿ = 0

z̈ = ẋ ẏ
1+y2

ż − yẋ = 0,

(18)

where the value of λ is computed with the help of the constraints. These equations
have an explicit solution given by

⎧⎪⎪⎨
⎪⎪⎩
xnh(t) = ẋ0

ẏ0

√
y20 + 1(arcsinh(ẏ0t + y0) − arcsinh(y0)) + x0

ynh(t) = ẏ0t + y0

znh(t) = ẋ0
ẏ0

√
y20 + 1(

√
(ẏ0t + y0)2 + 1 −

√
y20 + 1) + z0, if ẏ0 �= 0,

(19)

or

⎧⎪⎨
⎪⎩
xnh(t) = ẋ0t + x0
ynh(t) = y0
znh(t) = y0 ẋ0t + z0, if ẏ0 = 0.

(20)

3 The nonholonomic exponential map

In this section, we will define the nonholonomic exponential map associated with
a regular nonholonomic system (L,D) with configuration space Q and dynamical
vector field �nh ∈ X(D). We will use an arbitrary SODE extension � ∈ X(T Q) of
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60 A. A. Simoes et al.

�nh and the exponential map exp�
h for the SODE � on T Q at time h > 0. We remark

that such SODE extension vector fields always exist (see Appendix A).
First, we will review the definition of the exponential map associated with � (for

more details, see [26]).

3.1 Exponential map for SODE vector fields on the tangent bundle

A preliminary convexity result for a SODE � may be deduced using the theory of
explicit second order differential equations (see [19]).

Theorem 3.1 Let � be a SODE in Q and q0 be a point of Q. Then, one may find a
sufficiently small positive number h0, a family of tangent vectors of Q at q0,

v(h,q0) ∈ Tq0Q, for 0 < h ≤ h0,

and two compact subsets C and C̄ of Q and T Q, respectively, with q0 ∈ C and
v(h,q0) ∈ C̄, such that there exists a unique trajectory of �

σq0q0h : [0, h] → C ⊆ Q

satisfying

σq0q0h(0) = q0, σq0q0h(h) = q0,

and

σ̇q0q0h(t) ∈ C̄, for every t ∈ [0, h].

Proof Let (U , ϕ ≡ (qi )) be a local chart on Q such that

ϕ(U ) = B(0; ε) and ϕ(q0) = (0, . . . , 0),

where B(0; ε) is the open ball in R
n with centre the origin and radius ε > 0.

We consider the corresponding local coordinates (τ−1
Q (U ), ϕ̄ ≡ (qi , vi )) on T Q.

Note that ϕ̄(τ−1
Q (U )) = ϕ(U ) × R

n . Since � is a SODE, we also have that

� = q̇i
∂

∂qi
+ ξ i (q, q̇)

∂

∂q̇i
.

Then, the trajectories of � inU are the solutions of the system of second order differ-
ential equations

d2qi

dt2
= ξ i

(
q,

dq

dt

)
, for all i .
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Now, if we take

0 < R < ε and 0 < R′

then, using that ξ i is a real C∞-function on B(0; ε) × R
n , we deduce that there exist

positive constants L, L ′ > 0 satisfying

‖D1ξ(q, q̇)‖ ≤ L, ‖D2ξ(q, q̇)‖ ≤ L ′, for (q, q̇) ∈ B(0; R) × B(0; R′),

where B(0; R) and B(0; R′) are the closed balls in R
n centred at the origin and with

radius R and R′, respectively. Thus, from Proposition B.3 (see Appendix B), it follows
that

‖ξ i (q j
1 , q̇ j

1 ) − ξ i (q j
2 , q̇ j

2 )‖ ≤ ‖ξ i (q j
1 , q̇ j

1 ) − ξ i (q j
2 , q̇ j

1 )‖ + ‖ξ i (q j
2 , q̇ j

1 ) − ξ i (q j
2 , q̇ j

2 )‖
≤ L‖q2 − q1‖ + L ′‖q̇2 − q̇1‖

for (q j
1 , q̇ j

1 ), (q j
2 , q̇ j

2 ) ∈ B(0; R) × B(0; R′).
Moreover, it is clear that there exists a positive constant M > 0 such that

‖ξ(q j , q̇ j )‖ ≤ M, ∀(q, q̇) ∈ B(0; R) × B(0, R′).

Next, we choose a sufficiently small positive number h0 satisfying

Lh20
8

+ L ′h
2

< 1,
Mh20
8

≤ R,
Mh0
2

≤ R′.

Now, if we take h ∈ R, 0 < h ≤ h0 and the compact subsets K and K̄ of Q and T Q,
respectively, given by

K = ϕ−1(B(0; R)), K̄ = ϕ̄−1(B(0; R) × B(0; R′))

then, using Theorem B.1 (see Appendix B), we conclude that there exists a unique
trajectory σq0q0 : [0, h] → K ⊆ Q of � such that

σq0q0(0) = q0, σq0q0(h) = q0,

and

σ̇q0q0(t) ∈ K̄ , for t ∈ [0, h].

Therefore, if we take v(h,q0) = σ̇q0q0(0), we end the proof of the result. ��
Now, we will denote by �� the flow of the SODE �

�� : M� ⊆ R × T Q → T Q.
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Here, M� is the open subset of R × T Q given by

M� = {(t, v) ∈ R × T Q | ��(·, v) is defined at least in [0, t]}.

Now, if q0 is a point of Q and h ≥ 0, we may consider the open subset M�
(h,q0)

of
Tq0Q given by

M�
(h,q0) = {v ∈ Tq0Q | (h, v) ∈ M�}.

Note that if h > 0 is sufficiently small then it is clear that M�
(h,q0)

�= ∅. Moreover, we
may introduce the exponential map associated with � at q0 for the time h as follows

exp�
(h,q0)(v) = (τQ ◦ ��)(h, v), for v ∈ M�

(h,q0). (21)

We remark that the map exp�
(0,q0)

is constant. However, we have the following result.

Theorem 3.2 Let � be a SODE in Q and q0 a point in Q. We take a sufficiently small
positive real number h and v(h,q0) ∈ Tq0Q as in Theorem 3.1. Then,

v(h,q0) ∈ M�
(h,q0), exp�

(h,q0)(v(h,q0)) = q0,

and

Tv(h,q0)
exp�

(h,q0) : Tv(h,q0)
M�

(h,q0) → Tq0Q

is an isomorphism.

Proof From Theorem 3.1, it follows that

v(h,q0) ∈ M�
(h,q0) and exp�

(h,q0)(v(h,q0)) = q0.

Moreover, it is clear that the map

exp�
(h,q0) : M�

(h,q0) ⊆ Tq0Q → Q

is smooth.
Next, we will proceed locally. So, we will denote by

(t, qi , q̇i ) → (x j (t, qi , q̇i ), ẋ j (t, qi , q̇i ))

the flow of the SODE � given by

�(q j , q̇ j ) = q̇ i
∂

∂qi
+ ξ i (q j , q̇ j )

∂

∂ q̇i
,
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so that the second order equations

ẍ i (t, q j , q̇ j ) = ξ i (xk(t, q j , q̇ j ), ẋ k(t, q j , q̇ j )) (22)

are satisfied as well as the following boundary conditions

xi (0, q j , q̇ j ) = qi , ẋ i (0, q j , q̇ j ) = q̇ i . (23)

The local expression of the map exp�
(h,q0)

is

q̇i → exp�
(h,q0)(q̇

i ) = x(h, q0, q̇
i ).

Denote by q̇0h the tangent vector v(h,q0) ∈ Tq0Q. We must prove that the Jacobian
matrix of exp�

(h,q0)
at q̇0h

(Dq̇exp
�
(h,q0))(q̇0h) = (Dq̇x)(h, q0, q̇0h)

is non-singular which, by the inverse function theorem, automatically implies that the
map exp�

(h,q0)
is a diffeomorphism on a local neighbourhood of q̇0h .

Denote by U(q0,q̇0h)(t) the Jacobian matrix of the smooth map exp�
(t,q0)

at q̇0h , that
is,

U(q0,q̇0h)(t) = (Dq̇exp
�
(t,q0))(q̇0h) = (Dq̇x)(t, q0, q̇0h).

Then from the second order system of Eq. (22), using a standard argument on the
differentiability of solutions with respect to initial conditions, we may prove that

Ü(q0,q̇0h)(t) = (Dqξ)(xi (t, q0, q̇0h), ẋ
i (t, q0, q̇0h))U(q0,q̇0h)(t)

+ (Dq̇ξ)(xi (t, q0, q̇0h), ẋ
i (t, q0, q̇0h))U̇(q0,q̇0h)(t)

and, in a similar way, using (23) we also deduce that

U(q0,q̇0h)(0) = 0, U̇(q0,q̇0h)(0) = I d.

So, if we denote by B(q0,q̇0h)(t) and F(q0,q̇0h)(t) the matrices

(Dqξ)(xi (t, q0, q̇0h), ẋ
i (t, q0, q̇0h)) and (Dq̇ξ)(xi (t, q0, q̇0h), ẋ

i (t, q0, q̇0h)),

respectively, it follows that

Ü(q0,q̇0h)(t) = B(q0,q̇0h)(t)U(q0,q̇0h)(t) + F(q0,q̇0h)(t)U̇(q0,q̇0h)(t).

Now, we consider the linear system of second order differential equations

ÿ(t) = B(q0,q̇0h)(t)y(t) + F(q0,q̇0h)(t)ẏ(t). (24)
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Note that B(q0,q̇0h) and F(q0,q̇0h) are C
∞-matrices, for every sufficiently small positive

number h.
So, taking into account that there exists a compact subset C̄ ⊆ T Q such that

v(h,q0) ∈ C̄ (for every h), using Theorem B.1 and proceeding as in the proof of
Theorem 3.1, we conclude that there exists a sufficiently small positive number p0 > 0
such that for all h the unique solution

t → y(q0,q̇0h)(t)

of the system (24) satisfying the boundary conditions

y(q0,q̇0h)(0) = 0, y(q0,q̇0h)(p) = 0, with 0 < p ≤ p0,

is the trivial solution.
Thus, from Lemma 3.1, Chapter XII in [19] (see Lemma B.2), we deduce that the

matrix

U(q0,q̇0h)(p), with 0 < p ≤ p0,

is regular, for every h.
Therefore, it is sufficient to take h = p, with 0 < p ≤ p0, and the result is proved.

��
From Theorem 3.2, we have that there exist open subsets U0 and U in M�

(h,q0)
and

Q, respectively, with v(h,q0) ∈ U0 and q0 ∈ U , such that the map

exp�
(h,q0) : U0 ⊆ M�

(h,q0) → U ⊆ Q

is a diffeomorphism.
Next, we will consider the open subset M�

h of T Q given by

M�
h = {v ∈ T Q | (h, v) ∈ M�}.

Note that

v ∈ M�
h �⇒ M�

(h,τQ(v)) = M�
h ∩ TτQ(v)Q ⊆ M�

h .

Thus, since τQ : T Q → Q is an open map, it follows that τQ(M�
h ) is an open subset

of Q and

M�
h =

⋃
q∈τQ(M�

h )

M�
(h,q).

Definition 3.3 The smooth map exp�
h : M�

h ⊆ T Q → Q × Q defined as follows

exp�
h (v) = (τQ(v), exp�

(h,τQ(v))(v)), for v ∈ M�
h ,
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is the exponential map associated with the SODE � at time h.

Now, we deduce that

Lemma 3.4 Let v be an element of M�
h such that exp�

(h,τQ(v)) is non-singular at v.

Then, exp�
h is also non-singular at v.

Proof We must prove that the map

Tv(exp
�
h ) : Tv(M

�
h ) � Tv(T Q) → TτQ(v)Q × Texp�

(h,τQ (v))
(v)Q

is a linear isomorphism.
Suppose that

0 = (Tv(exp
�
h ))(Xv), with Xv ∈ Tv(M

�
h ).

Then, we have that

0 = (TvτQ)(Xv) and 0 = (Tvexp
�
(h,τQ(v)))(Xv).

The first condition implies that

Xv ∈ Tv(M
�
h ∩ TτQ(v)Q) = Tv(M

�
(h,τQ(v)))

and thus, using the second one, we conclude that

Xv = 0.
��

As we know, if h > 0 is sufficiently small and q0 ∈ Q then the map exp�
(h,q0)

:
M�

(h,q0)
→ Q is non-singular at the point v(h,q0) ∈ M�

(h,q0)
. Therefore, using

Lemma 3.4, we deduce the following result

Theorem 3.5 Let � be a SODE in T Q and q0 be a point of Q. Then, one may find a
sufficiently small positive number h, an open subset Uh ⊆ M�

h ⊆ T Q, with v(h,q0) ∈
Uh, and an open subset U of Q, with q0 ∈ U, such that:

1. The map

exp�
h : Uh ⊆ M�

h → U ×U ⊆ Q × Q

is a diffeomorphism.
2. For every couple (q, q ′) ∈ U ×U there exists a unique trajectory of �

σqq ′ : [0, h] → Q

satisfying

σqq ′(0) = q, σqq ′(h) = q ′ and σ̇qq ′(0) ∈ Uh .
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We will denote by Re−
h : U × U → Uh (respectively, Re+

h : U × U → Uh) the
inverse map of the diffeomorphism exp�

h : Uh → U ×U (respectively, exp�
h ◦ ��−h :

��
h (Uh) → U ×U ).
The maps

Re−
h : U ×U ⊆ Q × Q → Uh ⊆ T Q and Re+

h : U ×U ⊆ Q × Q → ��
h (Uh) ⊆ T Q

are called the exact retraction maps associated with �. We have that

Re−
h (q, q ′) = σ̇qq ′(0), Re+

h (q, q ′) = σ̇qq ′(h).

Note that

Re+
h = ��

h ◦ Re−
h ,

that is, the following diagram

Uh ⊆ T Q

��
h

U ×U ⊆ Q × Q
Re−
h

Re+
h

��
h (Uh) ⊆ T Q

is commutative.
In [26] (see also [24]), the authors give a generalized version of the previous theorem

in the scope of SODE vector fields on Lie algebroids.

3.2 Exponential map and the exact discrete submanifold for the nonholonomic
dynamics

Let L : T Q → R be a regular Lagrangian function and D a regular distribution on Q
such that the non-holonomic system (L,D) is also regular and let �nh be the SODE
on D which is solution of the non-holonomic dynamics. Denote by φ

�nh
t : D → D

the flow of �nh and for h a sufficiently small positive number, we consider the open
subset of D given by

M�nh
h = {v ∈ D | φ

�nh
t (v) is defined for t ∈ [0, h]}.

Note that, if � ∈ X(T Q) is a SODE extension of �nh then

M�nh
h = M�

h ∩ D.
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Definition 3.6 The map

exp�nh
h : M�nh

h ⊆ D → Q × Q

v ∈ D �→ (τQ(v), (τQ ◦ φ
�nh
h )(v)) ∈ Q × Q

is called the nonholonomic exponential map of �nh at time h.

Now, we may prove the following result

Theorem 3.7 Let (L,D) be a regular nonholonomic system with configuration space
Q and q0 a point in Q. Then, one may find a sufficiently small positive number h, an
open subset Unh

h ⊆ M�nh
h ⊆ D and an open subset U ⊆ Q, with q0 ∈ U, such that

the map

exp�nh
h : Unh

h ⊆ M�nh
h → U ×U

is an embedding.

Proof Let � be a SODE in T Q such that �|D = �nh (see Appendix A). Then, using
Theorem 3.5, we may find a sufficiently small positive number h, an open subset
Uh ⊆ M�

h ⊆ T Q, with v(h,q0) ∈ Uh , and an open subset U of Q, with q0 ∈ U , such
that the map

exp�
h : Uh ⊆ M�

h → U ×U ⊆ Q × Q

is a diffeomorphism.
Now, since �|D = �nh , it is clear that

(exp�
h )|Uh∩M

�nh
h

= exp�nh
h .

So, if we take the open subset of D

Unh
h = Uh ∩ M�nh

h

then, using that every immersion is a local embedding, we can suppose (without the
loss of generality) that the map exp�nh

h : Unh
h → U ×U is an embedding. ��

Now, we may introduce the following definition.

Definition 3.8 The exact discrete nonholonomic constraint submanifold is the sub-
manifold of Q × Q given by

Me,nh
h = exp�nh

h (Unh
h ) .
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In view of Theorem 3.7, the map

exp�nh
h : Unh

h → Me,nh
h

is a diffeomorphism and we can define its inverse diffeomorphism, called the non-
holonomic exact retraction map

Re−
h,nh : Me,nh

h −→ Unh
h .

The following are commutative diagrams:

Unh
h Me,nh

h

Q

τ

exp
�nh
h

pr1

Me,nh
h Unh

h

Q

pr1

Re−
h,nh

τ

We will also use the map: Re+
h,nh : Me,nh

h −→ φ
�nh
h (Unh

h ) defined by

Re+
h,nh = φ

�nh
h ◦ Re−

h,nh

Me,nh
h φ

�nh
h (Unh

h )

Q

pr2

Re+
h,nh

τ

Example 2 Let us get back to Example 1, the nonholonomic particle and identify the
different geometric objects involved. The nonholonomic vector field is given by

�nh = ẋ
∂

∂x
+ ẏ

∂

∂ y
+ yẋ

∂

∂z
− y

ẋ ẏ

1 + y2
∂

∂ ẋ
+ ẋ ẏ

1 + y2
∂

∂ ż
.

From (19) and (20), we construct its corresponding flow and nonholonomic exponen-
tial map

φ
�nh
t (x0, y0, z0, ẋ0, ẏ0, y0 ẋ0) = (xnh, ynh, znh, ẋnh, ẏnh, żnh),

exp�nh
h (x0, y0, z0, ẋ0, ẏ0, y0 ẋ0) = (x0, y0, z0, xnh(h), ynh(h), znh(h)).

We see that this is an invertible map, when we restrict the co-domain to its image, and
we may explicitly compute the inverse to be
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Re−
h,nh(x0, y0, z0, x1, y1, z1) =

⎛
⎝x0, y0, z0,

(x1 − x0)(y1 − y0)

h
√
y20 + 1(arcsinh(y1) − arcsinh(y0))

,

y1 − y0
h

,
y0(x1 − x0)(y1 − y0)

h
√
y20 + 1(arcsinh(y1) − arcsinh(y0))

⎞
⎠ ,

in the case where y1 �= y0. Note that the domain of the map Re−
h,nh is not R

3 × R
3, it

is restricted toMe,nh
h , which explicitly means that

z1 − z0
h

−
(x1 − x0)

(√
y21 + 1 −

√
y20 + 1

)

h(arcsinh(y1) − arcsinh(y0))
= 0. (25)

In fact, let the left-hand side of Eq. (25) be denoted by μd : Q × Q → R. It is a
constraint function whose annihilation gives the discrete spaceMe,nh

h .

4 Lagrangian discrete mechanics and the exact discrete Lagrangian

4.1 Unconstrained discrete mechanics

We will now describe a theory of discrete mechanics on the discretized velocity space
Q×Q [27]. Discrete mechanics differs from continuous mechanics on the description
ofmotion. In this respect, a discretemotion is not a curve on the configurationmanifold
Q, it is rather a sequence of points on Q.

We describe a variational discrete theory based on a discretized Hamilton’s princi-
ple. From here we see that much of the theory evolves in parallel with the continuous
Lagrangian theory. See [27] for the main bibliographic account on the subject.

Let Ld : Q × Q → R be the discrete Lagrangian function. Let us fix some N ∈ N

(number of steps) and a pair of points q0, qN ∈ Q
The discrete path space is the space of sequences:

Cd(q0, qN ) = {qd ≡ {qk}Nk=0 | qk ∈ Q and q0, qN fixed}.

The discrete action map is defined to be the map Sd : Cd(q0, qN ) → R,

Sd(qd) =
N−1∑
k=0

Ld(qk, qk+1). (26)

Note that when one wishes to construct a numerical method using this approach,
one usually regards the value of the discrete Lagrangian on a point (q0, q1) as being
an approximation of the (continuous) action, integrated over a solution connecting the
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two fixed points q0, q1 in a fixed time-step h ∈ R, i.e.,

Ld(q0, q1) ≈
∫ h

0
L(q0,1(t), q̇0,1(t)) dt,

where L : T Q → R is a regular continuous-time Lagrangian function and q0,1(t)
is the unique solution of the Euler-Lagrange equations connecting q0 and q1 (as a
consequence of Theorem 3.5).

The discrete Hamilton’s principle states that a solution of the discrete Lagrangian
system given by the discrete Lagrangian function Ld is an extremum for the discrete
action map (26) among all sequences of points with fixed end-points. That is, qd ∈
Cd(q0, qN ) is a solution if and only if qd is a critical point of the functional Sd , i.e.

dSd(qd)(Xd) = 0,

for all Xd ∈ TqdCd(q0, qN ).
Analogously to the continuous-time case, we find out the discrete Euler-Lagrange

equations (DEL equations) as necessary and sufficient conditions to find extrema

D2Ld(qk−1, qk) + D1Ld(qk, qk+1) = 0, for all k = 1, . . . , N − 1. (27)

where D1Ld(qk−1, qk) ∈ T ∗
qk−1

Q and D2Ld(qk−1, qk) ∈ T ∗
qk Q correspond to

dLd(qk−1, qk) under the identification T ∗
(qk−1,qk )

(Q × Q) ∼= T ∗
qk−1

Q × T ∗
qk Q, that

is,

dLd(qk−1, qk) = D1Ld(qk−1, qk) + D2Ld(qk−1, qk) .

Given a discrete Lagrangian Ld : Q×Q → Rwe can define two discrete Legendre
transformations F

±Ld : Q × Q → T ∗Q given by

F
+Ld(qk−1, qk) = (qk, D2Ld(qk−1, qk)) ,

F
−Ld(qk−1, qk) = (qk−1,−D1Ld(qk−1, qk)) .

We say that Ld if regular if F
+Ld (or, equivalently, F−Ld ) is a local diffeomorphism.

This is equivalent to the regularity of the matrix D12Ld .
Under this regularity condition the 2- form on Q × Q defined by

(F+Ld)
∗ωQ = (F−Ld)

∗ωQ =: �Ld

is a symplectic form.
Moreover if Ld is regular then we can obtain a well defined discrete Lagrangian

map

FLd : Q × Q −→ Q × Q

(qk−1, qk) �−→ (qk, qk+1(qk−1, qk)) ,
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which is the discrete dynamical flow of our system. Here qk+1 is the unique solution of
the DEL Eq. (27) for the given pair (qk−1, qk). We can easily check the symplecticity
of the flow:

F∗
Ld

�Ld = �Ld

Alternatively, using the discrete Legendre transformations, we can also define the
evolution of the discrete system on the cotangent bundle or Hamiltonian side, F̃Ld :
T ∗Q −→ T ∗Q, by any of the formulas

F̃Ld = F
+Ld ◦ (F−Ld)

−1 = F
+Ld ◦ FLd ◦ (F+Ld)

−1 = F
−Ld ◦ FLd ◦ (F−Ld)

−1 ,

because of the commutativity of the following diagram:

Q × Q : (qk−1, qk) (qk, qk+1) (qk+1, qk+2)

T ∗Q : (qk, pk) (qk+1, pk+1)

F
+Ld

FLd

F
−Ld F

+Ld

FLd

F
−Ld

F̃Ld

The discreteHamiltonianmap F̃Ld : (T ∗Q, ωQ) −→ (T ∗Q, ωQ) is symplecticwhere
ωQ is the canonical symplectic 2-form on T ∗Q.

Ifwe startwith a continuousLagrangian and somehowderive an appropriate discrete
Lagrangian, then the DEL equations become a geometric integrator for the continuous
Euler-Lagrange system, known as a variational integrator. This method to construct
integrators for Lagrangian systems enjoys plenty of nice geometric features such as a
symplectic discrete flow and discrete momentum conservation [27].

Hence, given a regular Lagrangian function L : T Q −→ R, we define a discrete
Lagrangian Ld as an approximation of the action of the continuous Lagrangian. More
precisely, for a regular Lagrangian L and appropriate h > 0, q0, q1 ∈ Q, we can
define the exact discrete Lagrangian function Le,h

d : Q × Q → R giving an exact
correspondence between continuous and discrete motions as

Le,h
d (q0, q1) =

∫ h

0
L(q0,1(t), q̇0,1(t)) dt . (28)

Again, q0,1(t) is the unique solution of the Euler-Lagrange equations connecting q0
and q1 with h small enough. Observe that the solutions of Discrete Euler-Lagrange
equations for L exactly lie on the solutions of the Euler-Lagrange equations for Le,h

d .
In fact, in [27], the authors prove the following theorem which gives us the correspon-
dence between discrete and continuous Lagrangian mechanics:

Theorem 4.1 Take a series of times {tk = kh, k = 0, . . . , N } for a sufficiently small
time-step h ∈ R, a regular Lagrangian L and its corresponding discrete Lagrangian
function Le,h

d . Let q(t) be a solution of Euler-Lagrange equations for L satisfying the
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boundary conditions q(0) = q0 and q(tN ) = qN . Define a sequence {qk}Nk=0 in Q by

qk = q(tk), for k = 0, . . . , N .

Then {qk}Nk=0 is a solution of the discrete Euler-Lagrange equations for L
e,h
d .

Conversely, if we let {qk}Nk=0 be a solution of the discrete Euler-Lagrange equations

for Le,h
d , then the curve q : [0, tN ] → Q defined by

q(t) = qk,k+1(t), for t ∈ [tk, tk+1],

where qk,k+1(t) is the unique solution of the Euler-Lagrange equations connecting
qk and qk+1, is a solution of Euler-Lagrange equations for L on the whole interval
[0, tN ].

Following the Hamiltonian formalism, if we have a Hamiltonian problem defined
by theHamiltonian H = EL◦(FL)−1, then the exactHamiltonianmap F̃Le,h

d
coincides

with the Hamiltonian flow φ
XH
h of the continuous Hamiltonian system H for a discrete

amount of time h. Now we recall the result of [27] and [32] for a discrete Lagrangian
Ld : Q × Q → R.

Definition 4.2 Let Ld : Q × Q → R be a discrete Lagrangian. We say that Ld is a
discretization of order r if there exist an open subset U1 ⊂ T Q with compact closure
and constants C1 > 0, h1 > 0 so that

|Ld(q(0), q(h)) − Le,h
d (q(0), q(h))| ≤ C1h

r+1

for all solutions q(t) of the second-order Euler–Lagrange equations with initial con-
ditions (q0, q̇0) ∈ U1 and for all h ≤ h1.

Following [27, 32], we have the following important result about the order of a
variational integrator.

Theorem 4.3 If F̃Ld is the evolution map of an order r discretization Ld : Q×Q → R

of the exact discrete Lagrangian Le,h
d : Q × Q → R, then

F̃Ld = F̃Le,h
d

+ O(hr+1).

In other words, F̃Ld gives an integrator of order r for F̃Le,h
d

= Fh
H .

This theorem gives us a method to find the order of a symplectic integrator for a
mechanical system determined by a regular Lagrangian function L : T Q → R. We
take a discrete Lagrangian Ld : Q × Q → R as an approximation of Le,h

d and the
order can be calculated by expanding the expressions for Ld(q(0), q(h)) in a Taylor
series in h and comparing this to the same expansions for the exact Lagrangian. If the
both series agree up to r terms, then the discrete Lagrangian is of order r (see [22, 27]
and references therein).
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4.2 Forced discrete mechanics

Oneof themost important properties of variational integrators is the possibility to adapt
to more complex situations, for instance, systems involving forces or constraints (see
[27]).

For the case of systems subjected to external forces, given a continuous force
F : T Q → T ∗Q, we introduce the discrete counterpart as twomaps F+

d : Q×Q −→
T ∗Q and F−

d : Q×Q −→ T ∗Q called the discrete force maps. These discrete forces
satisfy πQ ◦ F+

d = pr2 and πQ ◦ F−
d = pr1, where πQ is the canonical projection of

the cotangent bundle, and pr1,2 : Q × Q −→ Q are the canonical projections onto
the first and second factors, respectively.

Now, the discrete equations of motion are derived from the discrete Lagrange-
d’Alembert principle:

δSd(qd) · δqd +
N−1∑
k=1

[
F+
d (qk−1, qk) + F−

d (qk, qk+1)
] · δqk = 0 (29)

for all variations δqk , with δq0 = δqN = 0.
The forced Euler-Lagrange equations are given by

D2Ld(qk−1, qk) + D1Ld(qk, qk+1) + F+
d (qk−1, qk) + F−

d (qk, qk+1) = 0 . (30)

which implicitly define a discrete forced Lagrangian map F
L f
d

: Q × Q → Q × Q.

As in the unforced case, we can define the corresponding discrete Legendre trans-
formations F

f±Ld : Q × Q → T ∗Q given by

F
f +Ld(qk−1, qk) = (qk, D2Ld(qk−1, qk) + F+

d (qk−1, qk)) ,

F
f −Ld(qk−1, qk) = (qk−1,−D1Ld(qk−1, qk) − F−

d (qk−1, qk)) .

If the discrete forced system is regular, that is, the discrete Legendre transformations
F

f±Ld are local diffeomorphisms then we have an explicit discrete forced Lagrangian
map F

L f
d
which is a local diffeomorphism. In addition, we may consider the discrete

forced Hamiltonian map F̃
L f
d

: T ∗Q → T ∗Q

F̃
L f
d

= F
f ±Ld ◦ F

L f
d

◦
(
F

f±Ld

)−1
.

Now suppose that (L, F) is a forced continuous Lagrangian system with regular
Lagrangian function L : T Q → R and an external force F : T Q → T ∗Q. Then, as
we know (see Sect. 2.2), the dynamical vector field is a SODE �(L,F) on T Q which
is characterized by condition (8).

We will denote by

exp
�(L,F)

h : Uh ⊆ T Q → Q × Q
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the exponential map associated with �(L,F) for a sufficiently small positive number
h. This map is a local diffeomorphism and so we may consider the exact retraction
associated to it, which is its inverse map Re−

h,F .

Using the flow φ
�(L,F)

h of �(L,F) and the associated exact retraction we may intro-

duce the forced exact discrete Lagrangian function Le,h
d,F : Q × Q → R given by

Le,h
d,F (q0, q1) =

∫ h

0

(
L ◦ φ

�(L,F)

t ◦ Re−
h,F

)
(q0, q1) dt,

and the double exact discrete force Fe,h
d : Q × Q → T ∗(Q × Q) defined by

〈Fe,h
d (q0, q1, h), (Xq0 , Xq1)〉 =

∫ h

0

〈(
F ◦ φ

�(L,F)

t ◦ Re−
h,F

)
(q0, q1), X0,1(t)

〉
dt

where X0,1(t) = T(q0,q1)(τQ ◦ φ
�(L,F)

t ◦ Re−
h,F )(Xq0 , Xq1), for (Xq0 , Xq1) ∈ Tq0Q ×

Tq1Q.
Then, the exact discrete force maps are just Fe,+

d : Q × Q → T ∗Q and Fe,−
d :

Q × Q → T ∗Q given by

〈Fe,+
d (q0, q1), Xq1〉 = 〈Fe,h

d (q0, q1), (0q0 , Xq1)〉
〈Fe,−

d (q0, q1), Xq0〉 = 〈Fe,h
d (q0, q1), (Xq0 , 0q1 , 〉.

Note that if we denote by q : Q × Q × [0, h] → Q the function defined by

q(q0, q1, t) = q0,1(t),

where q0,1 : [0, h] → Q is the solution of the forced Lagrangian system satisfying
q0,1(0) = q0 and q0,1(h) = q1. Then it is clear that

q0,1(t) =
(
τQ ◦ φ

�(L,F)

t ◦ Re−
h,F

)
(q0, q1).

So, with this notation, the maps Le,h
d,F , F

e,+
d and Fe,−

d may be written as follows

Le,h
d,F (q0, q1) =

∫ h

0
L(q0,1(t), q̇0,1(t)) dt,

Fe,+
d (q0, q1) =

∫ h

0

〈
F(q0,1(t), q̇0,1(t)),

∂q0,1
∂q1

〉
dt

and

Fe,−
d (q0, q1) =

∫ h

0

〈
F(q0,1(t), q̇0,1(t)),

∂q0,1
∂q0

〉
dt,
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where

∂q0,1
∂q1

: Tq1Q → Tq0,1(t)Q, and
∂q0,1
∂q0

: Tq0Q → Tq0,1(t)Q

are given by

〈
∂q0,1
∂q1

, Xq1

〉
= T(q0,q1,t)q(0q0 , Xq1 , 0t ),

〈
∂q0,1
∂q0

, Xq0

〉
= T(q0,q1,t)q(Xq0 , 0q1 , 0t ),

for Xq0 ∈ Tq0Q and Xq1 ∈ Tq1Q.
Using the previous definitions, one may prove a forced version of Theorem 4.1 (cf.

[27]). Moreover, in [7], the authors give a forced version of Theorem 4.3 using the
variational order of the corresponding duplicated system.

In fact, we will need a useful Lemma from [27] in Sect. 5.

Lemma 4.4 Let (Q, L, F) be a forced Lagrangian problem with regular Lagrangian
function L. The corresponding exact discrete Legendre transformations satisfy

1. F
f +Le,h

d,F (q0, q1) = FL(q0,1(h), q̇0,1(h));

2. F
f −Le,h

d,F (q0, q1) = FL(q0,1(0), q̇0,1(0));

where q0,1(t) is the solution of the forced Euler-Lagrange equations verifying
q0,1(0) = q0 and q0,1(h) = q1.

5 Discrete nonholonomicmechanics

In this section, we introduce a modification of the discrete Lagrange-d’Alembert prin-
ciple. Later, using the construction of the nonholonomic exponential map in Sect. 3,
we will define the exact discrete version of nonholonomic mechanics and show that it
satisfies the discrete modified Lagrange-d’Alembert principle.

5.1 Discrete modified Lagrange-d’Alembert principle

Let D be a distribution on the manifold Q. Let Ld : Q × Q −→ R be a discrete
Lagrangian function, F±

d : Q × Q −→ T ∗Q discrete forces and Md ⊆ Q × Q a
discrete constraint space. We remark that πQ ◦ F+

d = pr2 and πQ ◦ F−
d = pr1, where

πQ : T ∗Q → Q and pr1,2 : Q × Q → Q are the canonical projections.

Definition 5.1 A sequence (q0, . . . , qN ) in Q satisfies the modified Lagrange-
d’Alembert principle if it extremizes

δSd(qd) · δqd +
N−1∑
k=1

[
F+(qk−1, qk) + F−(qk, qk+1)

] · δqk = 0

(qk, qk+1) ∈ Md , 0 ≤ k ≤ N − 1

(31)
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for all variations lying in the distribution δqk ∈ Dqk , δqd = (δq0, . . . , δqN ) ∈
TqdCd(q0, qN ) and δq0 = δqN = 0.

Remark 5.2 Observe that this principle is exactly the same that discrete Lagrange-
d’Alembert principle for forced systems whenD = T Q andMd = Q × Q. It is also
the discrete Lagrange-d’Alembert principle for nonholonomic systems introduced by
[6] when F+ = F− = 0. Also, in this context we find the methods proposed by
[11], using a discretization of the forces for a nonholonomic system and a discrete
submanifold derived from the continuous constraints and the forced discrete Leg-
endre transformations. Recently, a similar principle was introduced in [31] to study
discretizations of Dirac mechanics.

Now, as in the case of forced systems, we have that

Proposition 5.3 A sequence (q0, . . . , qN ) in Q satisfies the modified Lagrange-
d’Alembert principle if and only if it satisfiesmodifiedLagrange-d’Alembert equations

D2Ld(qk−1, qk) + D1Ld(qk, qk+1) + F+(qk−1, qk) + F−(qk, qk+1) ∈ Do
qk

ωa(qk, qk+1) = 0, 0 ≤ k ≤ N − 1, (32)

whereMd is determined by the zeros of a set of constraint functions ωa : Q× Q −→
R.

5.2 Exact discrete nonholonomic flow

Ifwe denote the inclusion ofD in T Q by iD : D ↪→ T Q, we induce the dual projection
i∗D : T ∗Q → D∗ defined by

〈i∗D(μq), vq〉 = 〈μq , iD(vq)〉, μq ∈ T ∗
q Q, vq ∈ Dq .

The Legendre transformations of the Lagrangian functions L : T Q → R and
l = L|D : D → R satisfy the following relation

i∗D ◦ FL ◦ iD = Fl, (33)

where Fl : D → D∗ is the restricted Legendre transformation defined from l (see
Sect. 2.3).

Now consider the exact discrete nonholonomic Legendre transformations F
±
h,nhl :

Me,nh
h → D∗ defined by

F
−
h,nhl(q0, q1) = Fl ◦ Re−

h,nh(q0, q1) ∈ D∗
q0

F
+
h,nhl(q0, q1) = Fl ◦ Re+

h,nh(q0, q1) ∈ D∗
q1 .

Note that F
±
h,nhl are (local) diffeomorphisms.
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Fig. 1 Commutative diagram.
Exact discrete and continuous
noholonomic flows

Me,nh
h Me,nh

h

D∗ D∗

Φe
h,nh

F
−
h,nhl F

+
h,nhl

F
−
h,nhl

ϕe
h,nh

Aswewill see below, the condition of momentummatching gives the exact discrete
nonholonomic equations:

F
+
h,nhl(q0, q1) − F

−
h,nhl(q1, q2) = 0

(q0, q1), (q1, q2) ∈ Me,nh
h .

(34)

We sill see in a theorem below why they are called "exact".

Remark 5.4 Alternatively we can define the subset

Senh = {(Fl ◦ Re−
h,nh(q0, q1), Fl ◦ Re+

h,nh(q0, q1)) | (q0, q1) ∈ Me,nh
h }

and we can think Senh ⊂ D∗ × D∗ as an implicit difference equation [21] producing
the exact discrete nonholonomic dynamics.

Observe that, since both Re−
h,nh and Fl are local diffeomorphisms, then Eq. (34)

implicitly define an exact discrete flow: �e
h,nh : Me,nh

h → Me,nh
h by

�e
h,nh(q0, q1) = exp�nh

h ◦ Re+
h,nh(q0, q1). (35)

Moreover, it produces a well-defined flow on D∗, denoted by ϕe
h,nh : D∗ → D∗,

which is defined by

ϕe
h,nh(μq0) = F

+
h,nhl ◦ (F−

h,nhl)
−1(μq0), μq0 ∈ D∗

q0 .

The interplay between both discrete flows and the nonholonomic Legendre transfor-
mations may be summarized in the commutative diagram in Fig. 1.

Having the construction of nonholonomic integrators in mind, it is interesting to
observe that the exact discrete nonholonomic dynamics exactly reproduces the con-
tinuous flow of the nonholonomic system at any step h.

Theorem 5.5 Given (q0, q1) ∈ Me,nh
h and h > 0, consider the sequence

(q0, q1, . . . , qN ) obtained by multiple iterations of the exact discrete flow �e
h,nh and

thus, by definition, satisfying the exact discrete nonholonomic equations

F
+
h,nhl(qk−1, qk) − F

−
h,nhl(qk, qk+1) = 0, (qk, qk+1) ∈ Me,nh

h , (36)

for 0 ≤ k ≤ N − 1.
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Then, we have that the sequence (q0, q1, . . . , qN ) exactly matches the trajectories
of �nh in the sense that

qk = q0,1(kh), (37)

where q0,1 is the unique trajectory of �nh satisfying q0,1(0) = q0 and q0,1(h) = q1.

Proof The theorem is a direct consequence of the definition of the exact discrete flow
in (35). ��

For the construction of geometric integrators we will need another alternative
expression of Eq. (36). In particular, using (33) we can rewrite these equations in
a way that are very similar to the modified Lagrange-d’Alembert equations defined in
Eq. (32) as

i∗D
(
(FL ◦ iD ◦ Re+

h,nh)(q0, q1) − (FL ◦ iD ◦ Re−
h,nh)(q1, q2)

)
= 0

(q0, q1), (q1, q2) ∈ Me,nh
h .

Note that the projection i∗D : T ∗Q → D∗ satisfies

ker(i∗D) = Do. (38)

Thus, we conclude that

(FL ◦ Re+
h,nh(q0, q1) − FL ◦ Re−

h,nh(q1, q2)) ∈ Do
q1

(q0, q1), (q1, q2) ∈ Me,nh
h ,

(39)

where we omit iD since Re+
h,nh(q0, q1) and Re−

h,nh(q1, q2) are vectors in the distribution
D and may be identified with its inclusion.

5.3 The nonholonomic forced exact discrete Lagrangian function

Given a regular nonholonomic system determined by the triple (Q, L, D), we have
seen how to derive the nonholonomic force Fnh : D → T ∗Q by modifying the free
dynamics to satisfy the nonholonomic constraints.

Consider now an arbitrary extension F̃nh : T Q → T ∗Q of Fnh . It is clear that the
solutions of the forced system determined by (L, F̃nh) with initial conditions in D,
remain in D and match the trajectories of the nonholonomic system. In fact, if �nh is
the nonholonomic dynamics and �(L,F̃nh) is the forced dynamics, then it is clear that
�nh = �(L,F̃nh)|D.

If Re−
h,F̃nh

is the exact retraction associated with the forced SODE �(L,F̃nh) then, as
in Sect. 4.2, we may define the exact discrete versions

Le,h
d,F̃nh

(q0, q1) =
∫ h

0

(
L ◦ φ

�(L,F̃nh )

t ◦ Re−
h,F̃nh

)
(q0, q1) dt,
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and

〈(F̃nh)e,+d (q0, q1), Xq1〉 = 〈Fe,h
d (q0, q1), (0q0 , Xq1)〉

〈(F̃nh)e,−d (q0, q1), Xq0〉 = 〈Fe,h
d (q0, q1), (Xq0 , 0q1 , 〉,

where Fe,h
d : Q × Q → T ∗(Q × Q) is the double exact discrete force given by

〈Fe,h
d (q0, q1), (Xq0 , Xq1)〉 =

∫ h

0

〈(
F̃nh ◦ φ

�(L,F̃nh )

t ◦ Re−
h,F̃nh

)
(q0, q1), X0,1(t)

〉
dt

where X0,1(t) = T(q0,q1)(τQ ◦φ
�(L,F̃nh )

t ◦ Re−
h,F̃nh

)(Xq0 , Xq1), for (Xq0 , Xq1) ∈ Tq0Q×
Tq1Q.

Following the notation in [27], we may rewrite these maps as

Le,h
d,F̃nh

(q0, q1) =
∫ h

0
L(q0,1(t), q̇0,1(t)) dt ,

(F̃nh)
e,+
d (q0, q1) =

∫ h

0

〈
(F̃nh)(q0,1(t), q̇0,1(t)),

∂q0,1(t)

∂q1

〉
dt ,

(F̃nh)
e,−
d (q0, q1) =

∫ h

0

〈
(F̃nh)(q0,1(t), q̇0,1(t)),

∂q0,1(t)

∂q0

〉
dt .

where now q0,1 : [0, h] → Q is the solution of the forced Euler-Lagrange equations
for (L, F̃nh) verifying q0,1(0) = q0 and q0,1(h) = q1.

Theorem 5.6 The exact discrete nonholonomic trajectories satisfy the discrete forced
Euler-Lagrange Eq. (30) associated with the exact discrete Lagrangian and forces,
that is,

D2L
e,h
d,F̃nh

(qk−1, qk) + D1L
e,h
d,F̃nh

(qk, qk+1)

+ (̃Fnh)
e,+
d (qk−1, qk) + (̃Fnh)

e,−
d (qk, qk+1) = 0,

(qk, qk+1) ∈ Me,nh
h , 0 ≤ k ≤ N − 1.

(40)

Proof By construction, the exact discrete forced trajectory associated with the forced
system (L, F̃nh) and initial values (q0, q1) ∈ Me,nh

h is precisely the exact discrete
nonholonomic trajectory with respect to the nonholonomic system (L,D). ��
Remark 5.7 Observe that the exact discrete nonholonomic Eq. (40) are a particular
instance of the modified Lagrange-d’Alembert equations proposed in Eq. (32) where
the corresponding term in D0

qk is exactly zero. This is a direct consequence of using
the exact discrete force maps corresponding to the continuous nonholonomic external
forces Fnh : D → T ∗Q defined in Remark 2.2.

However, when one discretizes the forced Eq. (40) and take approximations of the
exact discrete Lagrangian function Le,h

d,F̃nh
defined above, the exact discrete forces
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(F̃nh)
e,−
d and (F̃nh)

e,+
d , as well as the exact discrete nonholonomic constraint sub-

manifold Me,nh
h , there is no reason why the discrete forced flow should still satisfy

the discrete constraint (qk, qk+1) ∈ Md
h , whereMd

h is the discrete version ofM
e,nh
h .

This is guaranteed if we let the equations lie inD0
qk in Eq. (32) and impose at the same

time the discrete constraint.

Remark 5.8 The relation between themodified discrete Lagrange-d’Alembert Eq. (32)
and the nonholonomic exact discrete flow is different from other popular nonholo-
nomic integrators in two senses:

1. the exact discrete nonholonomic equations are included as a particular case of (32)
described above but not in DLA (see [6]).

2. the exact Eq. (40) generate a well-defined discrete flow �d
h : Me,nh

h → Me,nh
h in

contrast with the exact integrator proposed in [29].

5.4 Construction of integrators and numerical examples

To construct variational integrators we consider discretizations (Ld , F
−
d , F+

d ) of

(Le,h
d,F̃nh

, (F̃nh)
e,−
d , (F̃nh)

e,+
d ) as a typical forced integrator and then we consider a

discretization Md
h of Me,nh

h to derive the modified discrete Lagrange-d’Alembert
equations:

D2Ld(qk−1, qk) + D1Ld(qk, qk+1) + F+
d (qk−1, qk) + F−

d (qk, qk+1) ∈ Do
qk

(qk, qk+1) ∈ Md
h , 0 ≤ k ≤ N − 1,

(41)

We remark that (41) is equivalent to the projection onto D∗, i.e.,

i∗D
(
D2Ld(qk−1, qk) + D1Ld(qk, qk+1) + F+

d (qk−1, qk) + F−
d (qk, qk+1)

) = 0

(qk, qk+1) ∈ Md
h , 0 ≤ k ≤ N − 1,

(42)

This projection motivates the definition of the Legendre transformations F
±ld :

Md
h → D∗ given by

F
+ld = i∗D ◦ F

f +Ld |Md
h

F
−ld = i∗D ◦ F

f −Ld |Md
h
.

Example 3 Consider once more the nonholonomic particle. We introduce a discretiza-
tion of the discrete space Me,nh

h

Md
h = {z1 = z0 +

(
y1 + y0

2

)
(x1 − x0)}, (43)
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and a discrete Lagrangian

Ld(x0, y0, z0, x1, y1, z1) = 1

2h

[
(x1 − x0)

2 + (y1 − y0)
2 + (z1 − z0)

2
]
.

Moreover we need two discrete forces

F+
d (q0, q1) = 2

h

(x1 − x0)(y1 − y0)

4 + (y1 + y0)2

(
− y1 + y0

2
dx1 + dz1

)

and

F−
d (q0, q1) = 2

h

(x1 − x0)(y1 − y0)

4 + (y1 + y0)2

(
− y1 + y0

2
dx0 + dz0

)
.

The forced discrete Legendre transformations which appear also in the modified
Lagrange-d’Alembert equations are

F
f−Ld(q0, q1) =

(
x1 − x0

h
+ 1

h

(x1 − x0)(y1 − y0)(y1 + y0)

4 + (y1 + y0)2

)
dx0

+ y1 − y0
h

dy0 +
(
z1 − z0

h
− 2

h

(x1 − x0)(y1 − y0)

4 + (y1 + y0)2

)
dz0

and

F
f +Ld(q0, q1) =

(
x1 − x0

h
− 1

h

(x1 − x0)(y1 − y0)(y1 + y0)

4 + (y1 + y0)2

)
dx1

+ y1 − y0
h

dy1 +
(
z1 − z0

h
+ 2

h

(x1 − x0)(y1 − y0)

4 + (y1 + y0)2

)
dz1.

Now projecting the forced Legendre transformations onto D∗ by means of i∗D and
restricting toMd

h we get

F
−ld(qi0, qa1 ) = x1 − x0

h

(
1 + 1

2
y0(y1 + y0) + (y1 − y0)2

4 + (y1 + y0)2

)
e1 +

(
y1 − y0

h

)
e2

and

F
+ld(qi0, qa1 ) = x1 − x0

h

(
1 + 1

2
y1(y1 + y0) + (y1 − y0)2

4 + (y1 + y0)2

)
e1 +

(
y1 − y0

h

)
e2,

where the local frame {ea} ⊆ D∗ is dual to the local frame {ea} spanning D, where
e1 = ∂

∂x + y ∂
∂z and e2 = ∂

∂ y .
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Fig. 2 Comparison of the value of the Hamiltonian function between DLA and MLA integrators

Now solving Eq. (42) for this example we get

x2 = x1 + (x1 − x0)
1 + 1

2 y1(y1 + y0) + (y1−y0)2

4+(y1+y0)2

1 + 1
2 y1(3y1 − y0) + (y1−y0)2

4+(3y1−y0)2

y2 = 2y1 − y0.

We can see in Figs. 2 and 3 a comparison between the proposed integrator (MLA)
and the more standard Discrete Lagrange-d’Alembert (DLA) integrator. We compare
the error in both integrators as well as the energy behaviour of both. We observe the
proposed integrator as good behaviour in both aspects and it even behaves slightly
better than DLA. Notice that the Hamiltonian function H |D∗ given by

H |D∗(x, y, z, p1, p2) = 1

2

(
p21

1 + y2
+ p22

)

becomes constant along the discrete flow, after the first steps. To run the simulation
we set the initial position at the origin q0 = 0 and q1 = (0.4, 0.4, z1), with z1 being
determined by (43). The step is h = 0.5 and the total number of steps is N = 1200.

We also draw in Fig. 4 the discrete constraint space Md
h and compare it with its

exact version Me,nh
h .

Example 4 Let us introduce another typical example of nonholonomic system (see [4]):
the knife edge. Choosing appropriate constants, its Lagrangian function is described
by the function L : T (Q × S

1) → R

L(x, y, ϕ, ẋ, ẏ, ϕ̇) = 1

2
(ẋ2 + ẏ2 + ϕ̇2) + x

2
,
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Fig. 3 Evolution of the error in DLA and MLA integrators

Fig. 4 Graph of the defining function for the respective spaces. We have fixed the origin as the initial point
q0 = 0 and plotted the coordinate z1 as a function of x1 and y1

and it is subjected to the nonholonomic constraint

sin(ϕ)ẋ − cos(ϕ)ẏ = 0.

We introduce the following discretization of the constraint space

Md
h =

{
sin

(
ϕ1 + ϕ0

2

)
x1 − x0

h
− cos

(
ϕ1 + ϕ0

2

)
y1 − y0

h
= 0

}
.

123



84 A. A. Simoes et al.

The natural discretization of the Lagrangian compatible with the above discrete con-
straint space is then

Ld(x0, y0, ϕ0, x1, y1, ϕ1) = 1

2h
((x1 − x0)

2 + (y1 − y0)
2 + (ϕ1 − ϕ0)

2)

+h · x1 + x0
4

Moreover the discrete forces are given by

F+
d (q0, q1) = h

2
λ
(
μxdx1 + μydy1

)
, F−

d (q0, q1) = h

2
λ
(
μxdx0 + μydy0

)
,

with

λ = −ϕ1 − ϕ0

h2

(
(x1 − x0) cos

(
ϕ1 + ϕ0

2

)
+ (y1 − y0) sin

(
ϕ1 + ϕ0

2

))

− 1

2
sin

(
ϕ1 + ϕ0

2

)

and

μx = sin

(
ϕ1 + ϕ0

2

)
, μy = cos

(
ϕ1 + ϕ0

2

)
.

With these ingredients we obtained an integrator with a nearly preservation of the
energy (see Fig. 5), where we use the Hamiltonian function

H |D∗(x, ϕ, y, p1, p2) = 1

2

(
p21

A(ϕ)
+ p22 − x

)
, A(ϕ) = 1 + sin2(ϕ)

cos2(ϕ)
.

Example 5 We now slightly perturb the knife edge system by introducing the nonholo-
nomic constraint (see [30])

sin(ϕ)ẋ − (cos(ϕ) − ε)ẏ = 0, ε > 0.

We obtain an integrator for the perturbed system that no longer preserves energy.
Anyway, it still behaves clearly better than standard DLA algorithm (check Fig. 6),
for the Hamiltonian function

H |D∗(x, ϕ, y, p1, p2) = 1

2

(
p21

A(ϕ, ε)
+ p22 − x

)
, A(ϕ, ε) = 1 + sin2(ϕ)

(cos(ϕ) − ε)2
.
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Fig. 5 Experiment with the knife edge example: the initial positions are the origin q0 = 0 and q1 =
(0.4, 0.4, y1), the step is h = 0.5 and the total number of steps is N = 600

Fig. 6 Experiment with the perturbed knife edge example with ε = 0.1: the initial positions are the origin
q0 = 0 and q1 = (0.4, 0.4, y1), the step is h = 0.5 and the total number of steps is N = 600

6 Towards an intrinsic version of the exact discrete nonholonomic
equations

We have recently introduced a formulation of nonholonomic mechanics using a suit-
able geometric environment, in this case, the skew-symmetric algebroid (cf. [12, 17])
which is a weaker version of the well-known concept of Lie algebroid, where now the
Lie bracket may not satisfy the Jacobi identity.
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Following the program initiated by Alan Weinstein in [35], it was shown in [23,
25] and [24] how to formulate discrete mechanics in a unified way using the notion
of a Lie groupoid. In the future, we want to find and study the equivalent algebraic
structures for nonholonomic mechanics.

In this section we will describe some of the ingredients needed to develop this new
theory, in particular, the nonholonomic exact discrete Lagrangian defined in Me,nh

h ,
its main properties and the relationship with the results of [29].

Assume thatwe have a nonholonomic systemdefined by the triple (Q, L,D), where
L : T Q → R is a regular Lagrangian and (L,D) is a regular non-holonomic system.

With the help of the constrained exact retraction, defined by Re−
h,nh : Me,nh

h →
Unh
h ⊆ D introduced in Sect. 3, we define the nonholonomic exact discrete Lagrangian

for (Q, L,D) as a function on the exact discrete space leh,nh : Me,nh
h → R given by

leh,nh(q0, q1) =
∫ h

0

(
L ◦ φ

�nh
t ◦ Re−

h,nh

)
(q0, q1) dt . (44)

where {φ�nh
t } is the flow of �nh , the solution of the nonholonomic dynamics.

To ease the notation let us introduce the following objects:

1. given (q0, q1) ∈ Me,nh
h , define the following curves on D and Q, respectively:

γ0(t) :=
(
φ

�nh
t ◦ Re−

h,nh

)
(q0, q1) and c0(t) := τQ ◦ γ0(t);

2. a variation of the former curve is denoted by

γs(t) =
(
φ

�nh
t ◦ Re−

h,nh

)
(q0(s), q1(s)) and cs(t) := τQ ◦ γs(t)

3. the infinitesimal variation vector field on the configuration manifold is

X0,1(t) = d

ds

∣∣∣∣
s=0

cs(t).

Next we will prove a result which we will use later. The proof of this result involves
the canonical involution κQ : T T Q → T T Q of the double tangent bundle. We recall
that κQ is a vector bundle isomorphism between the vector bundles T τQ : T T Q →
T Q and τT Q : T T Q → T Q. In fact, κQ is characterized by the following condition:
if

x : U ⊆ R
2 → Q, (s, t) �→ x(s, t)

is a smooth map then

κQ

(
d

dt

d

ds
x(s, t)

)
= d

ds

d

dt
x(s, t).
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So, κ2
Q = I d. Moreover, if X : Q → T Q is a vector field on Q then the tangent map

T X : T Q → T T Q is a section of the vector bundle T τQ : T T Q → T Q and, in
addition, κQ ◦ T X = XC , where XC is the complete lift of X to T Q (see [34] for
more details).

Lemma 6.1 Given a SODE �, if γs is a one-parameter family of integral curves of �,
then the infinitesimal variation vector field of γs is the complete lift of the infinitesimal
variation vector field of the one-parameter family of curves formed by the base integral
curves of �, that is cs = τQ ◦ γs .

Proof If γs is a one-parameter family of integral curves of�, it has the form γs = d
dt cs .

Let

X01(t) = d

ds

∣∣∣∣
s=0

τQ ◦ γs(t)

be the infinitesimal variation vector field of cs . Then the infinitesimal variation vector
field of γs is

d

ds

∣∣∣∣
s=0

γs(t) = d

ds

∣∣∣∣
s=0

dcs
dt

(t)

= κQ

(
d

dt

d

ds

∣∣∣∣
s=0

c(s, t)

)
= κQ

(
d

dt
X01(t)

)
= XC

01(t).

��
Next, we will obtain an interesting expression for the differential of the nonholo-

nomic exact discrete Lagrangian function leh,nh . For this purpose, we will denote by
Fnh : D → T ∗Q the continuous-time nonholonomic external force (see Remark 2.2).

Proposition 6.2 The differential of the nonholonomic exact discrete Lagrangian sat-
isfies

〈dleh,nh(q0, q1), (Xq0 , Xq1)〉 = −〈βnh(q0, q1), (Xq0 , Xq1)〉
+〈FL ◦ Re+

h,nh(q0, q1), Xq1〉
−〈FL ◦ Re−

h,nh(q0, q1), Xq0〉,

where

〈βnh(q0, q1), (Xq0 , Xq1)〉 =
∫ h

0
〈Fnh(γ0(t)), X01(t)〉 dt

and we are identifying the vector (Xq0 , Xq1) ∈ T(q0,q1)M
e,nh
h with its image by T i :

TMe,nh
h ↪→ T (Q × Q), with i : Me,nh

h ↪→ Q × Q the canonical inclusion. The
smooth curve X01 : [0, h] → T Q is defined as

X01(t) = T(q0,q1)(τQ ◦ φ
�nh
t ◦ Re−

h,nh)(Xq0 , Xq1) .
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Proof Let v : (−ε, ε) → Me,nh
h be a smooth curve denoted by v(s) = (q0(s), q1(s))

such that v(0) = (q0, q1) ∈ Me,nh
h and v′(0) = (Xq0 , Xq1) ∈ T(q0,q1)M

e,nh
h and

γs(t) =
(
φ

�nh
t ◦ Re−

h,nh

)
(q0(s), q1(s)).

Then, using Lemma 6.1, we have that

〈dleh,nh(q0, q1),
d

ds

∣∣∣∣
s=0

(q0(s), q1(s))〉

=
∫ h

0
〈dL(γ0(t)),

d

ds

∣∣∣∣
s=0

γs(t)〉dt

=
∫ h

0
〈dL(γ0(t)), X

C
01(t)〉dt .

(45)

Note that XC
01(t) is a vector field on T Q along γ0(t), hence using (17) it follows that

〈dleh,nh(q0, q1), (Xq0 , Xq1)〉 = XV
01(h)(L) − XV

01(0)(L) −
∫ h

0
〈Fnh(γ0(t)), X01(t)〉dt

= 〈FL(γ0(h)), X01(h)〉 − 〈FL(γ0(0)), X01(0)〉

−
∫ h

0
〈Fnh(γ0(t)), X01(t)〉dt .

(46)

By unyielding the definition of X01 and identifying (Xq0 , Xq1) with its image by
T i : TMe,nh

h ↪→ T (Q × Q), we see that

X01(h) = T(q0,q1)(τQ ◦ Re+
h,nh)(Xq0 , Xq1) = Xq1 ,

X01(0) = T(q0,q1)(τQ ◦ Re−
h,nh)(Xq0 , Xq1) = Xq0 ,

since

τQ ◦ Re+
h,nh = pr2|Me,nh

h
and τQ ◦ Re−

h,nh = pr1|Me,nh
h

,

where pr1,2 : Q × Q → Q are the projection onto the first and second factor, respec-
tively. ��

Observe that in the previous Proposition, the intrinsic discrete objects associated
to the nonholonomic problem are dleh , βnh ∈ �1(Me,nh

h ). Then, σnh given by

σnh = dleh + βnh (47)

is also a 1-form inMe,nh
h .

Finally we will relate the exact discrete objects we use in the modified Lagrange-
d’Alembert principle in Sect. 5 with the intrinsic exact discrete objects defined above.
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Proposition 6.3 The restriction toMe,nh
h of the forced exact discrete Lagrangian func-

tion Le,h
d,F̃nh

is just the non-holonomic exact discrete Lagrangian function leh,nh, that
is,

Le,h
d,F̃nh

∣∣∣Me,nh
h

= leh,nh .

Moreover, if (q0, q1) ∈ Me,nh
h and (Xq0 , Xq1) ∈ T(q0,q1)M

e,nh
h then

〈((̃Fnh)e,−d (q0, q1), (̃Fnh)
e,+
d (q0, q1)), (Xq0 , Xq1)〉 = 〈βnh(q0, q1), (Xq0 , Xq1)〉.

Thus, the 1-form σ̃nh ∈ �1(Q × Q) defined by

σ̃nh = dLe,h
d,F̃nh

+ ((̃Fnh)
e,−
d , (̃Fnh)

e,+
d )

satisfies i∗σ̃nh = σnh, where i : Me,nh
h ↪→ Q × Q.

Proof Given a pair of points (q0, q1) ∈ Me,nh
h , since the unique trajectory of �nh

connecting the two points is also the unique trajectory of the forced problem (L, F̃nh)

connecting these points, the expressions of Le,h
d,F̃nh

∣∣∣Me,nh
h

and leh,nh match.

By definition, we have that

σnh = dleh,nh + βnh

and

σ̃nh − dLe,h
d,F̃nh

= ((F̃nh)
e,−
d , (F̃nh)

e,+
d ).

By Proposition 6.2, we have that

〈σnh(q0, q1), (Xq0 , Xq1)〉 = 〈FL ◦ Re+
h,nh(q0, q1), Xq1〉 − 〈FL ◦ Re−

h,nh(q0, q1), Xq0〉
= 〈i∗σ̃nh(q0, q1), (Xq0 , Xq1)〉,

for (q0, q1) ∈ Me,nh
h and (Xq0 , Xq1) ∈ T(q0,q1)M

e,nh
h , where the last equality comes

from Lemma 4.4. So,

βnh = σnh − dleh,nh = i∗(̃σnh − dLe,h
d,F̃nh

),

from where the result follows. ��
From Proposition 6.2, we can recover the equations satisfied by the exact discrete

nonholonomic trajectory appearing in [29]. In fact, it is a generalized version of these
equations since we may drop the assumption that we have a reversible Lagrangian
(see [29] for the definition).
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Proposition 6.4 Suppose that (L,D) is a regular nonholonomic system, (q0, q1),
(q1, q2) ∈ Me,nh

h . Then q1 is a point in the intersection Me,nh
h,q0

∩ Me,nh
−h,q2

where

Me,nh
h,q0

= {q1 ∈ Q | (q0, q1) ∈ Me,nh
h }, Me,nh

−h,q2
= {q1 ∈ Q | (q2, q1) ∈ Me,nh

−h }

Let Xq1 be a vector in the intersection Tq1M
e,nh
h,q0

∩ Tq1M
e,nh
−h,q2

. Then, along the exact
discrete nonholonomic trajectory the following equation is satisfied

〈dleh,nh(q0, q1), (0q0 , Xq1)〉 + 〈βnh(q0, q1), (0q0 , Xq1)〉
= 〈dleh,nh(q1, q2), (Xq1 , 0q2)〉 + 〈βnh(q1, q2), (Xq1 , 0q2)〉.

Observe that the exact discrete Eq. (40) might be written as

〈σ̃nh(q0, q1), (0q0 , Xq1)〉 = 〈σ̃nh(q1, q2), (Xq1 , 0q2)〉, ∀Xq1 ∈ Tq1Q

and (q0, q1), (q1, q2) ∈ Me,nh
h . However, using the intrinsic objects we can onlywrite

〈σnh(q0, q1), (0q0 , Xq1)〉 = 〈σnh(q1, q2), (Xq1 , 0q2)〉

for Xq1 ∈ Tq1M
e,nh
h,q0

∩ Tq1M
e,nh
−h,q2

.
So, as the authors noted in [29], the last equation is not a suitable initial value

integrator, since the number of dimensions in the intersection Tq1M
e,nh
h,q0

∩Tq1M
e,nh
−h,q2

may be too low to produce a well-defined discrete flow. This is precisely the main
reason why, in this paper, we consider the modified Lagrange-d’Alembert principle as
the correct discrete analogue of Lagrange-d’Alembert principle. This is an important
difference from the approach followed in [29].

7 Conclusion and future work

In this paper, we have precisely identified the exact discrete equations for a nonholo-
nomic system. The main ingredients were the definition of the exponential map for a
constrained second-order differential equation allowing us to define the exact discrete
nonholonomic constraint submanifold. Then, we define the main discrete elements
that appear on the definition of the exact discrete nonholonomic equations. The spe-
cial form of these equations allow us to introduce a new family of nonholonomic
integrators showing in numerical computations the excellent behaviour of the energy.

In a future paper, we will study an intrinsic version of discrete nonholonomic
mechanics in Me,nh

h following the steps given in Sect. 6. Also we aim to find a non-
holonomic version of Theorem 4.3 once we know the exact discrete nonholonomic
flow and the elements that it is necessary to approximate (discrete constraint subman-
ifold, discrete Lagrangian and discrete forces) . Knowing these data we will be in a
position describe the order of the numerical method for a nonholonomic system as
in the pure variational case. Moreover, since typically nonholonomic systems admit
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symmetries [4], we will study the reduction of the discrete counterparts following the
results by [20].

On the other hand, one of the advantages of our approach is that it can be extended, in
a natural way, to the discretization of Lagrangian systems subjected to nonholonomic
constraints which are not necessarily linear. Indeed, for a regular Lagrangian function
L : T Q → R and a constraint submanifoldC (not necessarily a distribution in Q) such
that the nonholonomic system (L, Q,C) is regular, there exists a unique SODE �nh

along C whose trajectories are the solutions of the nonholonomic dynamics (see, for
instance, [10]). In fact, as in the case when C is a distribution in Q, the nonholonomic
system (L, Q,C) may be considered as a restricted forced system. In addition, using
Theorem 3.5 and proceeding as in Sect. 3.2, we can introduce the nonholonomic
exponential map associated with �nh , the exact discrete constraint submanifold and
the exact retractions maps on it. From these objects, one may also introduce the
forced exact discrete Lagrangian function and the exact forces and, then, a version
of Theorem 5.6 could be proved. The construction of the corresponding integrators
(as in Sect. 5.4) and its application to concrete examples of nonholonomic systems
subjected to non-linear constraints (in particular, to affine constraints in the velocities)
should be the next step.

Acknowledgements Open Access funding provided thanks to the CRUE-CSIC agreement with Springer
Nature. D. Martín de Diego and A. Simoes acknowledge financial support from the Spanish Ministry of
Science and Innovation, under grants PID2019-106715GB-C21,MTM2016-76702-P, and from the Spanish
National ResearchCouncil, through the “Ayuda extraordinaria aCentros de Excelencia SeveroOchoa”R&D
(CEX2019-000904-S). A. Simoes is supported by the FCT research fellowship SFRH/BD/129882/2017
partially funded by the European Union (ESF). J.C. Marrero acknowledges the partial support by European
Union (Feder) grantMTM2015-64166-C2-2P andPGC2018-098265-B-C32.The authors thank the referees
for the suggestions that helped to improve the quality of the paper.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendices

Appendix A: SODE extensions for the nonholonomic dynamics

We will see that SODE extensions of the nonholonomic dynamics �nh ∈ X(D),
associated with a regular nonholonomic system (L,D) with configuration space Q,
always exist.

For this purpose, we will consider a Riemannian metric g on Q. Then, we have the
orthogonal projectors

P : T Q → D, Q : T Q → D⊥
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where D⊥ is the orthogonal complement to D. Thus, we can define a vector bundle
isomorphism

(P,Q) : T Q → D ⊕Q D⊥

over the identity of Q. So, the tangent map to (P,Q)

T (P,Q) : T T Q → T (D ⊕Q D⊥) = TD ⊕T Q TD⊥

induces a vector bundle isomorphism (over the identity of T Q) between T T Q and

TD ⊕T Q TD⊥ = {(X ,Y ) ∈ TD × TD⊥ / (T τ)(X) = (T τ⊥)(Y )}

where τ : D → Q and τ⊥ : D⊥ → Q are the canonical vector bundle projections. In
fact, if vq ∈ TqQ then

Tvq (T Q) � {(X ,Y ) ∈ TP(vq )D × TQ(vq )D⊥ / (TP(vq )τ )(X) = (TQ(vq )τ
⊥)(Y )}.

Under the previous identifications, the canonical inclusion of D in T Q and the non-
holonomic dynamics

iD : D → T Q � D ⊕Q D⊥, �nh : D → TD ⊆ T T Q � TD ⊕T Q TD⊥

are given by

iD(uq) = (uq , 0
⊥(q)), �nh(uq) = (�nh(uq), (Tq0

⊥)(uq)),

for uq ∈ Dq , with 0⊥ : Q → D⊥ the zero section in D⊥. Moreover, a vector field
� : T Q � D ⊕Q D⊥ → T T Q � TD ⊕T Q TD⊥ on T Q � D ⊕Q D⊥

�(uq , vq) = (�1(uq , vq), �2(uq , vq)) ∈ TuqD ×Tq Q TvqD⊥, (uq , vq) ∈ Dq × D⊥
q

is a SODE if and only if

(T(uq ,vq )π)(�(uq , vq)) = uq + vq

with π : D ⊕Q D⊥ → Q the canonical projection. This is equivalent to either one of
the projections below

(T(uq ,vq )τ )(�1(uq , vq)) = uq + vq = (T(uq ,vq )τ
⊥)(�2(uq , vq)).

Now, using again the previous identifications, we can introduce a SODE � : D ⊕Q

D⊥ → TD ⊕T Q TD⊥ on D ⊕Q D⊥, which extends �nh , given by

�(uq , vq) = (�D(uq , vq), �D⊥(uq , vq))
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with �D and �D⊥ defined as follows.
Definition of �D
If f ∈ C∞(Q), α : Q → D∗ is a section of the vector bundle τ ∗ : D∗ → Q and

α̂ : D → R is the fiberwise linear function induced by α then there exists a unique
tangent vector �D(uq , vq) ∈ TuqD which satisfies

�D(uq , vq)( f ◦ τ) = uq( f ) + vq( f ), (48)

and

�D(uq , vq)(α̂) = �nh(uq)(α̂) + TD(α)(uq , vq), (49)

where TD : �(D∗) → �(D∗ ⊗Q (D⊥)∗) is a R-linear map and

TD( f α)(uq , vq) = vq( f )α(q)(uq) + f (q)TD(α)(uq , vq). (50)

For instance

TD(α)(uq , vq) = (∇vqα)(uq),

with ∇ the Levi-Civita connection of g. Note that α may be considered as a 1-form
on Q. In fact, α may be considered as a section of the annihilator (D⊥)0 → Q ofD⊥
(a vector subbundle of T ∗Q).

We remark that (48) and (49) are compatible. In fact, using (48), (49) and (50) and
the fact that (Tuq τ)(�nh(uq)) = uq , it follows that

�D(uq , vq)( f̂ α) = �D(uq , vq)(( f ◦ τ)α̂)

= �nh(uq)(( f ◦ τ)α̂) + TD( f α)(uq , vq)

= (uq( f ) + vq( f ))α(q)(uq)

+ f (q)(�nh(uq)(α̂) + TD(α)(uq , vq))

= �D(uq , vq)( f ◦ τ)α(q)(uq) + f (q)�D(uq , vq)(α̂).

So, there exists a unique tangent vector �D(uq , vq) ∈ TuqD which satisfies (48)
and (49). In addition, from (48) and (49), we have that

(Tuq τ)(�D(uq , vq)) = uq + vq , �D(uq , 0
⊥(q)) = �nh(uq). (51)

Definition of �D⊥
If (uq , vq) ∈ Dq × D⊥

q , f ∈ C∞(Q), α⊥ : Q → (D⊥)∗ is a section of the vector

bundle (τ⊥)∗ : (D⊥)∗ → Q and α̂⊥ : D⊥ → R is the fiberwise linear function
induced by α⊥ then there exists a unique tangent vector �D⊥(uq , vq) ∈ TvqD⊥ which
satisfies

�D⊥(uq , vq)( f ◦ τ⊥) = uq( f ) + vq( f ), (52)
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and

�D⊥(uq , vq)(α̂⊥) = TD⊥(α⊥)(uq , vq), (53)

where TD⊥ : �((D⊥)∗) → �(D∗ ⊗Q (D⊥)∗) is a R-linear map and

TD⊥( f α⊥)(uq , vq) = (uq + vq)( f )α
⊥(q)(vq) + f (q)TD⊥(α⊥)(uq , vq). (54)

That relations (52) and (53) are compatible may be proved using (54) and proceeding
as in the definition of �D. Furthermore, from (52), (53) and since �⊥ vanishes on the
zero section 0⊥ : Q → D⊥, it follows that

(Tvq τ)(�D⊥(uq , vq)) = uq + vq , �D⊥(uq , 0
⊥(q)) = (Tq0

⊥)(uq). (55)

Now, using the first relations in Eqs. (51) and (55), we obtain that

�(uq , vq) ∈ T(uq ,vq )(D ⊕Q D⊥),

and that � is a SODE. On the other hand, using the second relations in Eqs. (51) and
(55), we conclude that

�(uq , 0
⊥(q)) = (�nh(uq), (Tq0

⊥)(uq)),

and, thus, � is a SODE extension of the nonholonomic dynamics �nh .
An example of amap TD⊥ : �((D⊥)∗) → �(D∗⊗Q (D⊥)∗) satisfying the previous

conditions may be obtained as follows. First of all, we will consider a vector field �⊥
in D⊥ which vanishes on the zero section 0⊥ : Q → D⊥ and, in addition, it is a
SODE along D⊥. For instance,

�⊥(vq) = (TvqQ)(�g(vq)), for vq ∈ D⊥
q , (56)

where �g is the geodesic flow associated with the Riemannian metric g. In fact, using
that �g is a SODE in T Q and that it vanishes on the zero section 0 : Q → T Q, we
deduce that �⊥, defined as in (56), is a SODE along D⊥ and it vanishes on the zero
section 0⊥ : Q → D⊥. Next, we can take the R-linear map TD⊥ : �((D⊥)∗) →
�(D∗ ⊗Q (D⊥)∗) given by

TD⊥(α⊥)(uq , vq) = (∇uqα
⊥)(vq).

Then, our map TD⊥ : �((D⊥)∗) → �(D∗ ⊗Q (D⊥)∗) may be defined by

TD⊥(α⊥)(uq , vq) = �⊥(vq)(α̂⊥) + TD⊥(α⊥)(uq , vq).
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Appendix B: Some auxiliary analytical results

Let

d2qi

dt2
= ξ i

(
t, q j ,

dq j

dt

)
, ∀i ∈ {1, . . . , n}

be a system of second order differential equations on R
n , with ξ i a real C∞-function

on a compact subset of R × R
2n which contains the origin.

We will consider the problem of the existence of solutions satisfying the boundary
conditions

qi (0) = 0, qi (h) = 0, ∀i, with h > 0.

In this direction, if we take x0 = 0 in Corollary 4.1 of Chapter XII in [19], we deduce
the following result.

Theorem B.1 Let ξ i (t, q, q̇) be continuous for 1 ≤ i ≤ n, 0 ≤ t ≤ h, ‖q‖ ≤ r ,
‖q̇‖ ≤ r ′ such that ξ satisfies a Lipschitz condition with respect to q, q̇ of the form

‖ξ(t, q j
1 , q̇ j

1 ) − ξ(t, q j
2 , q̇ j

2 )‖ ≤ K‖q2 − q1‖ + K ′‖q̇2 − q̇1‖

with Lipschitz constants K , K ′, so small that

Kh2

8
+ K ′h

2
< 1 and h > 0.

In addition, suppose that ‖ξ(t, q j , q̇ j )‖ ≤ M and that

Mh2

8
≤ r ,

Mh

2
≤ r ′.

Then, the system of second order differential equations

d2q j

dt2
= ξ j (t, qi , q̇i ), for all j

has a unique solution satisfying

‖q(t)‖ ≤ r , ‖q̇(t)‖ ≤ r ′, qi (0) = 0, qi (h) = 0,

for all t ∈ [0, h] and 1 ≤ i ≤ n.

If we have a second order linear system of differential equations of the type

ẍ = A(t)ẋ + B(t)x (57)
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and satisfying the boundary conditions

x(0) = 0, x(h) = 0, (58)

Lemma 3.1. in Chapter XII, also in [19], provides a necessary and sufficient condition
for the existence of non-trivial solutions of the previous problem in terms of the
corresponding matrix solution. So, the lemma states the following:

Lemma B.2 Let A(t) and B(t) be continuous d × d matrices on t ∈ [0, h]. If U (t) is
the matrix solution of the initial value problem

Ü = A(t)U̇ + B(t)U , U (0) = 0, U̇ (0) = I d,

then (57) has a non-trivial solution satisfying (58) if and only if U (h) is singular.

At last, we need the following classical result:

Proposition B.3 Let f : U ⊆ R
n → R

n be a C∞-smooth map, with U a convex open
subset of R

n and suppose that there exists a positive constant C > 0 such that

‖d f (z)‖ ≤ C, ∀z ∈ U .

Then, we have that

‖ f (x) − f (y)‖ ≤ C‖x − y‖, for x, y ∈ U .

Proof Suppose that x, y ∈ U and denote by f1, . . . , fn the components of f and by

gi : [0, 1] → R

the smooth real function on the interval [0, 1] given by

gi (t) = fi (x + t(y − x)).

Then, we have that

fi (y) − fi (x) = gi (1) − gi (0) =
∫ 1

0
g′
i (t)dt

=
∫ 1

0

⎛
⎝ n∑

j=1

∂ fi
∂x j

(x + t(y − x))(y j − x j )

⎞
⎠ dt .

So, we deduce that

f (y) − f (x) =
∫ 1

0
d f (x + t(y − x))(y − x)dt
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which implies that

‖ f (y) − f (x)‖ ≤
∫ 1

0
‖d f (x + t(y − x))‖‖y − x‖dt

= ‖y − x‖
∫ 1

0
‖d f (x + t(y − x))‖dt .

Thus, using that ‖d f (z)‖ ≤ C for every z ∈ U , we conclude that

‖ f (y) − f (x)‖ ≤ C‖y − x‖.

��
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