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Abstract

In this paper we introduce a numerical scheme for fluid—structure interaction problems
in two or three space dimensions. A flexible elastic plate is interacting with a viscous,
compressible barotropic fluid. Hence the physical domain of definition (the domain of
Eulerian coordinates) is changing in time. We introduce a fully discrete scheme that
is stable, satisfies geometric conservation, mass conservation and the positivity of the
density. We also prove that the scheme is consistent with the definition of continuous
weak solutions.

Mathematics Subject Classification 35Q30 - 76N99 - 74F10 - 65M12 - 65M60

1 Introduction

In the recent decades, there is an increasing attendance of mathematicians on the sub-
ject of fluid—structure interaction (FSI) problems due to their numerous applications.
This includes blood flow through a vessel, oil flows through an elastic pipe, oscillations
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of suspension bridges, lifting of airplanes, bouncing of elastic balls or the rotation of
wind turbines, see [2, 5, 10, 40] and the references therein.

We will consider the particular setting where the solid (or the structure) is a shell
or a plate. This means that it is modeled as a thin object of one dimension less than
the fluid. For related up-to-date modeling and model reductions on plates and shells
see [16, 17, 41] and references therein. The fluid will be considered to be governed by
the compressible Navier—Stokes equations. We are interested in the development of
Galerkin schemes which are connected to the setting of weak solutions. Most of the
mathematical effort in this setting so far was devoted to incompressible fluids for weak
solutions with a fixed prescribed scalar direction of displacement of the shell. Well
posedness results commonly show that a weak solution exists until a self-touching of
the solid is approached. For incompressible Newtonian fluids we name the following
results [3, 9, 20, 21, 32, 33, 37, 45-47]. On the other hand, the theory for compressible
flows is much less developed. Only recently the existence of weak solutions in the
above setting was shown [4], see also [50] for the existence of a weak solution where
the structure is a thermoelastic plate.

The numerical results of fluid—structure interactions are rich and diverse. The
numerical analysis for the incompressible flows is developed in accordance with the
existence theory; see the kinematic splitting schemes developed in [9, 11, 12, 38], see
also [10, 29, 36, 48] for more simulation results. The numerical theory for compress-
ible fluids interacting with shells or plates is rather sparse. We mention [1, 19] for
the stability analysis with a given variable geometry and [28, 42] for some numerical
simulations. It seems that a numerical strategy for compressible flows interacting with
an elastic structure stays undeveloped due to the high nonlinearity of the problem
originating from the fluid and its sensitive coupling to the motion of solid structure.

This paper aims to fill that gap and enrich the theory on fluid—structure interactions
by introducing a (fully discrete) numerical approximation scheme which is in coher-
ence with the known continuous existence theory. In particular we study numerics
for the interaction between a compressible barotropic fluid flow with an elastic shell
in the time-space domain Q7 = I x Q, where @ = Q) c RY (d € (2,3},
t € I = [0,T]) is a time dependent domain defined by its unsteady boundary.
The boundary of 2 consists of a time dependent elastic shell I"g(¢#) on the top sur-
face of the fluid (whose projection in d'”- space direction is ¥ given below), and
fixed solid walls I'p = 9Q\I's for the other parts of the boundary. Throughout the
paper we reserve r = (x1,...,Xx4—1) as the coordinates for the plate displacement
n=n(t,r): ¥ — R,i.e.thedistance of the shell above the horizontal plane x; = H.
We define x = (r, x;) as the Eulerian coordinates in the domain

Q) :={(r,xq) e Zx[0,H+n(,r)]}, E=I[0,L1]x---x[0,Ls—1].

Moreover, we denote by Q = ¥ x [0, H] the reference domain. The mapping from
the reference domain 2 to the current domain 2 reads

_ H
A: Q- Q T x=AGD = AGT.R) = (?fd¥) (1.1)
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Fig.1 Time dependent domain and the ALE mapping

Note that A is invertible as long as 1 (¢, r) > —H. Here and hereafter, we distinguish
the functions on the reference domain by the superscript “~” with the exception of the
ALE mapping denoted by A instead of A. Further, we denote J and F as the Jacobian
of the mapping A and its determinant:

J=VA, F=detQ).

We present Fig. 1 for a two dimensional example of the domain and ALE mapping.
The evolution of the fluid flow is modelled by the Navier—Stokes system

00 + div(ou) =0, in QO7, (1.2a)
d;(ou) 4 div(ou ® u) = divt + of, in O7, (1.2b)

where o = o(t, x) is the fluid density, u = u(z, x) is the fluid velocity, f is an external
force, 7 is the Cauchy stress

7 =S(Vu) — p(o)I, S(Vu) =2uD(u) + Adivu I,
Vu+ VTu

Dw =—3>—, plo= ag”.

Here, a > 0, y > 1, the viscosity coefficients satisfy u > 0 and 2 + dA > 0. The
motion of the shell is given by

e00sdn+K'(n) =g+e;-F, onlx X, (1.2¢)
where og > 0 is the density of the shell, e; = (0,0, 1)7 ford = 3 (e = (0, 1)7 for
d =2), g = g(t,r)is a given function, F = —(T . n) o A F, n is the outer normal

vector. For the sake of simplicity, we assume throughout the paper that egos = 1. As
the elastic energy K (1) we use the following linearised energy functional K (n) =

M + ﬁIVTnIz’ o > 0, B > 0, which leads to the following Lz-gradient:

K'(n) = aA*n — BAn.

Throughout the paper, for the sake of a concise presentation we denote by z = 9;n
the function representing the speed of the shell deformation.
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We refer to Ciarlet and Roquefort [16] and references therein for the details of the
model and also other choices of K (1). To close the system we propose the following
boundary conditions and initial data

ulr, =0, nlsx =0, Vilss =0, 0(0) = o, (cw)(0) =qp in 2(0),
1n(0, -) = no, z(0,-) = zpin X. (1.3)

We also need a compatibility condition between the shell-motion and the fluid
u(t, x)|rg o A=z(t,r)eq. (1.4)

The purpose of the present paper is to introduce a fully discrete numerical scheme
that is equipped with suitable physical and mathematical properties. By that we mean
that it satisfies in particular:

(a) A weak continuity equation that can be renormalized in the sense of DiPerna
and Lions on the discrete level, such that the error for convex renormalizations is
positive.

(b) Mass conservation and positivity of the discrete density is preserved.

(c) A fully coupled momentum equation in the spirit of Definition 1 on the discrete
level.

(d) A discrete energy inequality for the coupled system (analogous to the continuous
energy inequality (2.1)).

(e) The scheme is consistent with the continuous weak solutions introduced in [4]
(See also Definition 1). This means in particular, that if the discrete deformation,
density and velocity converge (strongly) to some limit triple, this limit triple is
indeed a weak solution of the continuous problem.

(f) The scheme exists for a minimal time-interval. L.e. for every 8y € (0, H/2) there
is a minimal time Ty, such that a-priori infjo 7,7 (¢, ) > do — H.

The existence of weak solutions for compressible viscous barotropic fluids inter-
acting with an elastic plate has only recently been shown in [4]. It follows the seminal
existence proof for weak solutions of the compressible Navier—Stokes equations [27,
44]. Note that the existence approach introduced in [4] can not be adapted to numerical
approximations in a straight forward manner since it uses fixed point theorems and
regularization operators on the continuous level. Indeed, the introduction of a numer-
ical scheme that satisfies all conditions above turns out to be rather sophisticated.
In particular, in order to capture the material time-derivative at the interacting inter-
face, we have to introduce a background geometric flow field (the function w, below)
that depends (linearly) on the elastic deformation » which allows to approximate the
material derivative of the deformation of the domain.

The main result of the present paper is the existence of numerical solutions which
satisfy (a)—(f) stated above. We illustrate our methodology for the proofs of (a)—(f)
first by studying a semi-discrete numerical scheme (discrete in time but continuous
in space). In the second part of the paper we study the fully discrete case for which
(a)—(f) hold. For the better readability we state here where the respective results are
shown:
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(a) See Lemma 2 (semi-discrete) and Lemma 8 (fully discrete) for the renormalized
equation.

(b) See (3.3) and Lemma 3 for conservation of mass and non-negativity of the density
for the semi-discrete case; see (4.18) and Lemma 9 for conservation of mass and
positivity of the density for the fully discrete case.

(c) See Definition 2 (semi-discrete) and Definition 3 (fully discrete) for the fully
coupled momentum problem.

(d) See Theorem 1 (semi-discrete) and Theorem 4 (fully discrete) for the energy
inequality.

(e) See Theorem 2 (semi-discrete) and Theorem 5 (fully discrete) for the consistency
of the schemes.

(f) See Theorem 3 for the existence of a numerical solution to the fully discrete scheme.
See Lemma 5 (semi-discrete) and Corollary 6 (fully discrete) for the minimal time
interval of existence.

The critical property of the schemes introduced are Theorem 4 (resp. Theorem 1)
where it is shown that the introduced fully discrete (resp. semi-discrete) scheme satis-
fies a discrete version of the energy inequality. It turns out that for compressible fluids
only a fully implicit and nonlinear scheme does satisfy the energy inequality (see
Remark 4). This is in contrast to incompressible fluids, which can be linearized (see e.g.
[9]). Though the strategy to get energy stable schemes for the compressible barotropic
Navier—Stokes system is quite standard if the fluid domain €2 is fixed, see e.g. [30,
34, 39], it becomes rather difficult when a time dependent domain is considered. We
would like to mention here the stability results of [1, 19] where the moving domain is
defined by a given function. As far as we know, this is the first result on energy stable
and mass conservative numerical solutions for the FSI problem with compressible
fluids.

The technical highlight is the consistency of solutions, see Theorem 2 and Theo-
rem 5. This is due to the fact that the definition of the space of test function is a part
of the weak solution for fluid—structure interaction problems (see Definition 1). One
has to ensure that the space of test functions of the limit weak solution (that depends
on the limit geometry) can indeed be approximated. For that reason, the consistency
of solutions is sensitive to the regularity of solutions in particular the regularity of the
(discrete) deformation 7.

The plan of the paper is the following. In Section 2 we introduce the necessary
analysis for the incremental time-stepping approximation, Section 3 is dedicated to a
semi-discrete scheme, which means that all functions are assumed to be continuous
in space. This is (to some extent) a preparation of Section 4 where the fully time and
space discrete scheme is introduced and the respective results are proven.

Finally wish to point out that the scheme is built in such a way that one may prove
that any subsequence of a numerical approximation converges weakly to a continuous
solution. The convergence result for the scheme will be the content of an independent

paper.
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224 S. Schwarzacher and B. She

2 Preliminaries

In this section, we introduce the necessary notations, the time discretization and time
difference operators.

Weak solutions We begin by introducing the following concept of weak solutions
developed in [4] where the existence of weak solutions (until a self-contact of the
boundary) under appropriate initial conditions was shown. Indeed, existence could be
shown in the following continuous spaces:

— The deformation is usually assumed to be in the following Bochner space! 7 €
W= L20,T; Wy* () N Wh2(0, T; L3 (%)).

— The density 0 € Q', were Q! := L>®(0, T; LY (2(1)). This means that o(r)
LY (2(t)) for almost every ¢ and that the essential supremum over the respective
norms is bounded.

— The velocity u € VI := {u e L*0,T; W'2(Q@)), u(r, H + n(r)) =
on(r)eg forallr € ¥ andu = Oon I'p}. Here let us point out that the space
V! does depend on the deformation map 7 in two ways. Firstly it defines the
domain of definition and secondly its time-derivative defines the (no-slip) bound-
ary conditions. In particular the compatibility (1.4) holds.

Note that the space of the velocity depends sensitively on the deformation in two ways,
by the shape of the domain and the boundary values at the moving part of the domain.

Definition 1 (Weak solution) A weak solution to the problem (1.2) with the initial
data (1.3) is a triple (7, 0,u) € W! x Q! x V! that satisfies the following for all
¢ e Cy° ((—oo, T) x Rd)

T
—/ Qow(o)dx—/ / (009 + ou- Vo) dxdt =0
Q(0) 0 Ja

and forall (¥, ¥) € C3°((—o0, T)xR%) X Ceo((—00, T)x Z) with W (s, r, H+n) =
Y(t,r)egon (—oo,T) x ¥ and ¥ = 0 on I'p that

T
—/ QQU()-‘I’(O)dx—/ /(QH-3;‘I’+QU®U:V\I’) dx dt

Q(0) 0o Ja

T
+/ /(S(Vu):W—angiv\p) dx dr

0 Q

T

—/ zow(O)dr—/ /(8,778,1// +aAnA1ﬁ+ﬂVn-V1//>drdt

) 0 )

T T
=/ /Qf~\Ildxdt+/ /gl/fdrdt.
0 Q 0 )

1 Throughout the paper we make use of the standard notation of Bochner, Sobolev and Lebesgue spaces,
see for instance [26] for more details.
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In particular the boundary condition (1.4) is satisfied the sense of traces for a.e. t €
[0, T']. Moreover, the solution satisfies the energy estimates

2
sup </ <lg|u|2+H(Q)) dx—i—/ (|8ln| +K(n))dr)
ref0.71 \Ja \2 . 2

T
+/ /S(Vu):Vudxdt @.1)
0 Q

1 2
< / <§Q0|UO|2+H(90)> dx + / (% +K(n(0))) dr +c(f, g)
Q M)

where H (o) = y‘il o? represents the pressure potential of the fluid and c(f, g) is a
positive constant depending on the right-sides f, g.

Time discretization We divide the time interval / into N7 subintervals and set
T =T/N7 € (0, 1) as the size of the time step. For simplicity, we write r* = kt and
1% = (tk_l, tk] forallk =1, ..., Nr. Moreover, we denote v’r‘ as the approximation
of v at time tf for v ¢ {o,u, p,n,z,w, 0, ¥, ¥, Q, A}, where w represents the
deformation rate of the fluid domain w, see (2.6). Further, it is convenient to extend
the set of point-wise-in-time functions {vl, cee, viv T} as a piecewise constant in time
function on the whole time interval 7, i.e.

Nt
ve(t, ) = Z 1Ik(t)l)].; forany r € I,
k=1
Vr € {0, Ur, Pr, e, 2o, We, @, Yo, Y, Q41 (2.2)

where 1 (¢) is the characteristic function

1 ifr e I*,

1 (t) =
(0 0 otherwise .

Analogously, we denote on the fixed reference domain Q

Nt
De(t,) =Y 1u(0)0F forany t € I, Or € (@r. Uy, Pr. We. £, §r. We, A} (23)
k=1

Here we would like to point out that

vy = U oA;1 and ¥ :6’; o (A];)*l, forv e {o,u, p,w, @, ¥}. (2.4)

4

Finally, we define a projection operator mapping a continuous-in-time function to a
time-discrete function:

Nr

M=y O . 2.5)

T k
k=1 1
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226 S. Schwarzacher and B. She

ALE mapping In consistency with the ALE mapping (1.1) and (2.4), we define the
deformation rate of the fluid domain on the reference domain 2 and current domain
2, respectively by

~ T
N .Ak _ Ak—l k _ o k—1 5
k_ T * — (0, Ne — N Xd and

w
t T T H
k k—1 T
k _ ok ky—1 N — Ny Xd
W, =W A =10,4_1, , 2.6
T o (A <d1 - U'§+H> (2.6)
fork e {1,..., NT}, where 0;_1 is (d — 1)-dimensional zero vector. For convenience,

we introduce X7 as the mapping from Q! at time interval /' to Q7 at time interval 1/,
ie.,
I . . I . L
X/ Qe xe X = Ao ()T (). @7

Recalling again the definition of the ALE mapping (1.1), the Jacobian of X l] and its
determinant read

. . I+ H
and 7/ =det (1)) = '777,. iH, 2.8)

o aX! (x')

! dx!

respectively. From the above notations it is easy to check
t divwt =1 - F L (2.9)

Further, if n*(r) € (80 — H, 8max — H), Smax > 80 > 0, we observe for all k €
{1,..., Nt} and r € X that

81’11&)(

5 .
0 < F/ < im
max 50

0 < i,jefl,..,Nr}.

In order to transfer between the current domain and the reference domain, we recall
the chain-rule and properties of the Piola transformation from [14]

~ PN FI Ta
dx = Fd%, dS(x) = |FJ TR|dS®E), n= %,
FdivgoA = div (fJ‘Tfi) . ViqoAJ=V3, (2.10)

for a scalar function ¢ and a vector filed q, where we have denoted by V= Vi and
div = divz. Finally we denote for simplicity

— 1 — o~ ~
divg := divg o A = —=div (HF‘&) , Vgi=VgoA=VgI'. @11
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Time difference operators First, we introduce the standard backward Euler method

sy = 2O —Tnlé‘l(r) b (r) — dmg ™' ).

80k (r) = 8,8k () = .
(2.122)

Next, we define the material derivative

k k—1 k—1
- oX
pfgt =% —t (2.12b)

where X' = A1 o (A¥)~! is the mapping from QX to Q4~1, see (2.7). Further,
we define a “conservative?" time derivative

k k—1 k—1 k—1
- o X, " F
Dygk ="t kT (2.12¢)
T

Thanks to (2.9) it is easy to observe that

_ k—1 rk—1 — k—1 k—1
g — gt o X T R gk — gkt o Xy A=F) hot ket
= + q; oXk
T T T
DAGE + divwk g5 o XK1, (2.13)

Digt =

which, as can be seen below, turns out to be the suitable deviation for getting the
following discrete version of the Reynolds transport theorem.

Lemma 1 (Discrete Reynolds transport) Let the discrete operators &y, DtA and D; be
givenin (2.12). Then we have the following discrete analogy of the Reynolds transport
theorem.

3,/ q’;dx=/ D,q’;dx=/ ( Agk + divwk gk X,’f‘) dx,
Qk Qk Qk

T

where X]k‘_1 is given in (2.7) and w is given in (2.6).

Proof Recalling the definitions (2.7) and (2.12) together with the equality (2.13), we
derive

1
kq, L k. k=1
g fszl; =2 <fszk o dx /9';1 T dx)

O

2 By “conservative" we mean this operator leads to some conservative properties, such as the geometric
conservation law (2.14) and mass conservation (3.3).
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228 S. Schwarzacher and B. She

Note that the discrete Reynolds transport holds also for any subdomain of Q. (¢).
Consequently, we obtain the following corollary by taking g, = 1 in Lemma 1, which
is well known as the geometric conservation law.

Corollary 1 (Geometric conservation law) Let C; C 2. be an arbitrary d-dimensional
subdomain of ;. Then it holds forall k = 1, ..., Ny that

1 k k—1 _ . k _ k
- (|c,| —|ck |) - /Ck divwt dx = fac# wh - ndr, (2.14)

T

where |C;| is the volume of the domain C;.

3 Semi-discrete scheme

This section introduces the necessary tools and observations with respect to a time
discretization scheme for the approximation of the problem (1.2). Due to the over-
whelming technical notations in the fully discrete case we decided to include this
semi-discrete section and leave the space discretization to the next section. We empha-
size that the main objective of this section is to explain the methodology.

3.1 The scheme

Before giving the semi-discrete scheme, let us denote W = Wg ’2(2), Q’; = LV(Qlé)
and Vrk ={ve WI'Z(Q];) i vlrp, =0} forallk € {I,..., Nr}. Moreover, we denote
piecewise-constant-in-time function spaces Q; = LY (Q2;) and V; = wl2(Q,) in
the sense of (2.2).

Definition 2 (Semi-discrete scheme on the current domain) For all k € {1, ..., Nt}
we say that (7%, o, uk) € W x Q% x V¥ such that o¥uk € L1(Q¥) is a weak solution
to the semi-discrete scheme (on the current domain), if for all ¢, € C Oo(Rd) we find
that

/ D, 05 ¢- dx —/ okvk Vg, dx = 0; (3.1a)
Qk Qk

and forall (Y, ¥;) € C°(Z) x C®(RY; RY) with W, |pg0A; = yrregand ¥, |r, =
0 we find that

/Qk(D, (g’;u’;) W, — (Fuk @ vh) v, dx

+/ S(vub) : V\Ilrdx—/ p(F)divw, dx—i—/ 8725 dr
Qk Qk =
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+a/ An’,‘m/f,dr—i—ﬂ/ VX . Vi dr
) p)

= fgk otk Wtdx+Lgfw,dr (3.1b)

with
=8t vE=ul—wk g =T[g] and £, = I, [f];

where the initial data and boundary conditions are given by

0 0 0 0 k k
0; =00, W, =Wy, N, =10, Z; =20, U;lpQ, = W;|sq,-

We will discuss the solvability of the scheme later in Theorem 3, where a fully
discrete scheme is analyzed.

3.2 Stability

In this subsection, we aim to show some stability properties for the scheme (3.1). The
stability properties are only shown formally. The methodology is justified in Section 4
where all arguments can be rigorously repeated for the fully discrete approximation
scheme. In principle the assumptions vary from statement to statement. It is however
always enough to assume

ok e W@y forallk € {1, ..., Nr}. (3.2)

In particular this assumption implies that all below used test-function for the semi-
discrete scheme introduced in Definition 2 are admissible.

First, we remark that the scheme (3.1) preserves the total mass. Indeed, by setting
¢r = 1 in (3.1a) and applying the discrete Reynolds transport Lemma 1, we derive

8t (ka ok dx) = [ou Dio¥ dx = Oforallk = 1,..., Ny, which implies
f kd —/ ldx = —/ 9dx =: My, forallk =
o7 dx = o X=---= 0, dx =: My, fora =1,...,Nr.
Qk Qk-! Q0
(3.3)

Next, we show the renormalization of the discrete density problem.

Lemma 2 (Renormalized continuity equation)
Let (07, u;) € Q1 x V; satisfy the discrete continuity equation (3.1a) with the bound-
ary condition u;|yq, = We|aq, and let (3.2) hold. Then for any B € CL(R) i holds

! (f B(ei‘)dx—/ B(Qi“1>dx)
T \Jax Q!

+ f (e5B'e5) — B(eh)) divu dx + Dy = 0.
Qt
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230 S. Schwarzacher and B. She

where Dy = %fﬂ’é ]-',]:_1 (B(Q’T‘_1 o X],:_l)—B(Q’T‘)—B/(Q]T‘)(Q’T‘_l o X,li_l—glf‘)> dx.
Obviously, Dy > 0 if B is convex.

Proof We set ¢, = B’ (Q]r‘) in the discrete density equation (3.1a) and obtain
/Qk D,0*B'(0*) dx — /Qk o* vk . VB (oFydx = 0.

First, by direct computation we have

k_ k=1 o xk—1pk-1
R A COLY
Qk Qk T

T

1 e
- _/ (B(g’;) — B o x4 (Q’EB/(Q'E) — B(Q’f‘))
T QI;

k! (B(Q’;—l o Xk — gkl X,’j—lB’(g’;))) dx
1 ket

- _/ (B = Bl o X{THA!) dx

T Qllc_

o [ (Beh - Bh) - A ax
T QI{_

| - B B _ _

i [ (B o Xt - Bl - Beh(ek ! o X - o)) ax
_ 1 k k—1
== (/;zi B(o7)dx — /QI;I B(o; )dx)

+ /Qk (g’;B’(Q’;) - B(g’;)) divwk dx + Dy, (3.4)

T

where we have used the relation between the Jacobian and the deformation rate of the
domain given in (2.9). Next, noticing the equality V{oB'(0) — B(0) ) = oV B'(0)
and thanks to integration by parts, we reformulate the convective term as

- /Q Qkvy - VB'(g) dx = — /Q vV (eEB/(0h) — B(eh)) ax
= /Q divv (4B} — Bleh)) ax.

Consequently, summing up the above equations and seeing v, = u; —w;, we complete
the proof. O

With the renormalized continuity equation in hand, we are ready to show non-
negativity of the discrete density and the internal energy balance.
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Lemma 3 (Non-negativity of density) Let QQ > 0 and (3.2) hold. Then any solution
to the scheme (3.1) preserves non-negativity of the density. It mean ng > 0 for all
k=1,...,Nr.

Proof We show the proof by mathematical induction and it is enough to show Q]; >0
given Q’;_l > 0. The rough idea is to set B(p) = max{0, —p} > 0 in Lemma 2.
More precisely, we adopt the idea of [34,Lemma 3.2] and construct an approximate
sequence Bj(0) € C!'(R) such that

(—0)**! forp <0,
Bs@) =1 ¢ ¢
0 foro > 0,

for 6 > 0. Note that Bs(¢) — B(o) = max{—p, 0} and QBé(Q) — Bs(o) =
8(—0)*t! — 0ass — 0T foro < 0, as well as 0Bj(0) — Bs(0) = 0 for 0 > 0.
Collecting the above information we apply Lemma 2 with the choice of B € C'(R) as
0+ B(0) = Bs(p). Then passing § — 07 in the estimate we find ka B(o¥)dx <0.
Realizing B is a non negative function we know that B(Q.[) = 0 holds for all x € Qk
which implies Qr > 0. O

Further discussion on the strict positivity of the discrete density will be shown for the
fully discrete scheme in Lemma 9 in the next section.

Next, we recall the pressure potential H(o) = )’j(—fl) defined in Definition 1. By
setting B = H(p) in Lemma 2 and realizing p = oH'(0) — H(o), we derive the
following relation on the pressure potential that plays the role of the internal energy.

Corollary 2 (Internal energy balance) Let (n’i , Q’T‘, u’j) be a solution of the semi-discrete
scheme (3.1) forallk =1, ..., Nt and let (3.2) hold. Then

(/ H(Qf)dx—f H(ok~ 1)dx> / p(@5divet dx + Dy =0, with
Q%

Qk

T
2
= ffzf*l—H 2@) (D;“Q'é dx > 0, (3.5)

o

where & € co{Q’f1 o X,ljfl, Q';}. Here, we have denoted
co{a, b} = [min(a, b), max(a, b)].

Finally, we proceed to show the energy stability of the scheme (3.1).

Theorem 1 (Energy estimates) Let (0¥, uk, n¥) be a solution of the semi-discrete
scheme (3.1) for all k = 1, ..., Nt and let (3.2) hold. Then the following energy
estimate holds forany N =1, ..., Nt
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(/ E§de+/E§Vdr>—(/ Egldx+/ESdr)
Qy ) Q0 )
2 N 2 2
T
—l—EZ_/E(I&Z];IZ—i-a‘Az’; )dr
k=1

N
+r Z/Qk (2,u|D(u’§)|2 + A|divu’§|2> dx

k
+ | vk

+Z Z/ Fh 1<H”(§)‘Dt ok 2) dx
N

‘CZ (/ ol fdx—i—[ g,z,dr) (3.6)
k=1

where  E% = Lok |uk | +1(oh),  EF = L0k P+ alank? + BIVoEP).

+ Q];q o X]]:_l ‘D,Au];

k12
Proof Setting ¢, = —|“§‘ in (3.1a), and (¥, ¥;) = (u¥, z) in (3.1b), we have
21-2: I =0, and Z?=3 I; = 0, respectively, where

k k

T

e

! i [”
L =- QT T 5 dx,
— k

I3 _/ Dy (Q.[llr) -uy dx,
24

I4=/ div( kukvk) -u]r‘dx,
24

Is = —/ p(Q].;)diVll]; dx,
&%

Is :zu/ |D(u'§)|2dx+A/ |diva¥ | du,
9 4k

I = /k ok uk dx —i—/ gkZkdr,
Q

T

k k—1
i — X2
Igz/ T T fdr,
b)) T

Iy = (x/ An];AZ];dr + ﬂf Vn]; . Vzlr(dr.
) )
Now we proceed with the summation of all the I; terms fori =1,...,9.
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Term [y + I3 + I3. Applying the equality a(a — b) = + b b) we get
L+L+13

[ (et hex AT ot Y

T Jak T T T 2

k k—1
i — 2%
+/ T Kar
> T

_/ (Q’T‘IU’Elz—(Q’{‘IIU’é‘l\z)oX,f’lf,’j” +g';—' o xk-!
Qk

2t 2t
k k—1
i — 2
+/ =z z’;dr
> T

b —uf o XETPES ‘)d

2 2
ui_l‘ dx) /6,<|Zzl )dr
T
EL\B,zflzdr.

Term I, + 1. For the convective terms, we have

uf
L+ 1= / <—div(g )| | + div (qulg ®v’;> u’;) dx
@
k ok |“l§|2 kk o vk k
=/ Q,VI~VT—Q,u,®Vt:Vur dx =0.
o

Pressure term /5. Recalling the discrete internal energy equation (3.5), we can
rewrite the pressure term as

Is = —/ p(@X)divut dx
k

1 " 2
- (f H(o") dx —/ H(Q’;‘l)dx> +/ rf,f_lw ‘D,Ag’; d
T \Jax Qk! Qk 2

Term /g + I7. These terms don’t change.
2
Term Iy. Applying again a(a — b) = # + (“;b )~ we deduce

19=/ =& (OtlAﬂfl + BIVRE? dr+/< 8(Ank)
5 2 5

1 2 2 T
— | s <a|AnT| +/3|vnf| dr 4+ = (Az
x 2 2

g f 8:(Vrb)

)
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Collecting all the above terms, we find

1
—(/ El}dx—/ El}ldx)
T Qk k=1
+f atE’;dr+5/ |8,z]§|2+a‘Az’§
s 2 Js

2
)dr
+/ (2M|D(uk)| + Aldivut | )
QT

S H 2 T . _ 2
+/ t]:,f 1—(5) ‘D;AQI; dx+f —Q]r( 1oX,f I‘D;“ult‘
Qk 2 ok 2
:/ Qkfk u];dx—i-/g,z dr.

Finally, summing up the above equality from £ = 1 to N and multiplying with
complete the proof. O

2 k
+ﬁ‘er

Fildx

3.3 Some a-priori estimates

Let us recall that all unknowns including the domain and the test functions are piece-
wise constant in time, see (2.3). We define 777 (¢, r) as the affine linear interpolant of n,
meaning that 77; € C°([0, T]; ), such that 77 (t*, r) = n*(r) and 8,777 (¢, r) = X (r)
forr e I* = (¢5=1, 1%].

With a little abuse of notation we use [0, T] x Q; = U,ivzrl 1k x Q’; Accord-
ingly we define for s € [0, 00), ¢ € [1, 00] and p € [1, c0)

Nr » %
. k
||UT||L[7(O,T;W‘S’II(Q‘[)) T (];T ‘ Uz W&q(Q’;)) ’
. k
oz llzoe 0,73 wea o) = max vy wea (k)

Note that the expressions above bound the respective norms for both the piecewise
constant functions in time as well as the piecewise affine linear functions in time.

Then the energy estimate Theorem 1 implies the following a-priori estimates (for
the piecewise constant in time functions 7, 0, u;) that are uniform in t:

Corollary 3 (A-priori estimates)

Let (¢, 07, Uy) be a solution of the semi-discrete scheme (3.1) with y > 1. Further,
assume that the right hand side in (3.6) is bounded in the sense that f € L*°([0, T] x
Q;)and g € L%([0, T] x T). Then we have the following estimates:
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Qr|ur|2H <c,

) . <c,
||Qr||L (0,T;LY () = ’ LoO.T:L1(20))

locucll 2y =c
L0, T; LY+ (2y))

lacllz2.7: 062, < ¢ IVucllp2o 2@,y < ¢ Idivaclizzg 7.2, < ¢
||Zr||L00(0 T:12(%)) = C, ||A77r||Loo(o,T;L2(z)) =c ||V77r||Loc(o,T;L2(z)) =c
208z 2.2y <60 TP IAZe N 2011205y < ©

1/2
2| Vz, lz20,7:16(x)) =
where ¢ depends on the external force £ and g as well as the initial data.

Proof We find by Holder’s and Young’s inequality that

/Qk Q';ff -ulg dx —l—/ g’;zljdr

1
< / oku 2 ‘gk &
- LOC(Qk) L2(@h) L! ! L2(>:) R IF210-)
k 271/1 k ZTV k 2
s el gy +el f +| |
I IR P (o) gr N et 1298 iy T 1)
e k|? k k
<c|f| c‘ 1) / E" dx Efdr ).
=1 L R L ( o Er e B

This allows to estimate the right hand side of (3.6)

N
kek k k _k
rZ(Lk Jod .qux+/Egrzfdr)

2
k k k
<ctT +c¢é max E% dx + Etd
c Z 12(%) ¢ ke{l,...,N}(/ng rax L s r)

8t
yl k k
< cIFNET + g2 rpes) + 08 {maxN}(/ Efdx+/Esdr>-
,,,,, b

L°°(SZ’<) ’

Choosing § < % in the last term of the above inequality allows us to absorb this term
by the left-hand side of the energy balance (3.6), that implies the a-priori estimates. O

In order to prove the consistency of the scheme (3.1) we need some additional
a-priori estimates.

Lemma4 Forall s € [0, %) and all g € [1,4) there is a constant independent of T
such that
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S 77/T€
|

The constant C depends on the initial values and the bounds of the energy estimates
alone. Moreover, for all 6 € [0, %) there exists a constant Cy depending on the energy
estimates and 0, such that

’

8;nk <

L2(0,T; WS2(%)) * H 1l L2(0,T;L4()) —
<C

L2(0,T;L4(Q2%) —

o [
Lo(0.T:L2(2%)) FllL2o.mwe2(0k)) v

k—1

nk —nk < Cprl. (3.7)

max ‘ ”
k Loo(D)

Proof Since zX is the trace of u¥ which s in L2(0, T; W!-2(Q¥)), we find by the trace-
theorem (see the related estimate in [37,Corollary 2.9]) and by change of variable that
for for all s € [0, %)

>

5 - < )
tnf Ws2(%) Z Wﬂ():) Z wt22@,)
k=1 k=1 k=1
2
k
<CZ ’ WlZ(Qk T W2,2(2)

which can be bounded by the energy as well, see the second and the third line of the
estimates stated in Corollary 3. Due to the fact that for any g € [1, 4) thereisans < %
such that W*2 < L4 the first inequality is completed.

The second inequality follows by the very definition of WT

Finally, we proceed to show the last mequahty We extend nT , *=1 by zero to RZ~!
and take o > 0. We use the notation of JCB,,(x) k() dy = ad’ln fBa(X) nk(y) dy for
the mean value integral. We fix ¢ € (0, 1), such that 8 = ﬁ Then by Sobolev

embedding, we find that n’r‘ € C*(X) (with uniform bounds in k) and so forall o > 0

ko) =0l = [k - f ni(y)dy\+|][ @) =ty dy
By () By (r)

+

o) — ][ n'i_l(y)dy‘
B, (r)

cott|f ot way]
5 (1
1

< Co® + r(][ |z’;(y)|%ly)7 <co? 4+t (3.8)
B o

o (r)

Now the result follows by choosing o = 1 wlT
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The regularity can be used to guarantee a minimal existence interval in time in which
the shell is not touching the bottom of the fluid domain. At first we have the following
observation which is a direct consequence of (3.7) above.

Corollary 4 (Inductive prolongation principle) Let the parameters C and 6 € [0, %)
be given in Lemma 4. Let 17 < %" and §1 > 26¢9. Then infrnlt‘ (r) =61 — 8o — H for
any k € {1, ..., Nt} provided inf,nf_l(r) >4 — H.

Moreover, we have the following lemma:

Lemma5 For every 8o € (0, H/2) there exists a Ty just depending on the bounds of
the energy inequality and H, such that infio 7,0 (¢, 1) > 80 — H.

Proof The result essentially follows from (3.7) from which we import the bound Cy
to a given exponent § = QLH Let (Tp + 1) < HC;Q‘SO Then we choose N such that

(N -1t <Tp < Nt.Fork € {1, ..., N} we find by the fact that n; = 0 analogous
to (3.8) for t € ((k — 1)7, k1) (using the 0 extension of n’§ again) that

Inet, )| = ko) —n )|

to - bwd] v k- itma
By (r) By (r)

N
< Co“ +Z][
I=1

S

_ T
It (y) — n* "Lyl dy < Co® + CN—
)

o (r
To+t
<Co® 42 = Co(Tp +1)°,
1, .
where we have chosen o = (T + t) T+« in the last equality. O

3.4 Consistency

In this subsection, we aim to show the consistency of the scheme, meaning the if the
numerical solution converges, then it satisfies the weak formulation (1) in the limit of
T — 0.

Usually, for that one takes a fixed test function and shows that the error produced
by the discretization vanishes in the limit. Due to the geometric coupling we have to
approximate the test function space as well. Indeed, due to the non-linear coupling
the consistency can only be shown provided the numerically approximated geometry
is close enough to a limit geometry. Recall that 7, : [0, T] x ¥ — [60 — H, 00)
is defined as the affine linear function in time which satisfies 77, (kt) = n’,‘ for all k.
Then, the a-priori estimates imply the following lemma:

Lemma 6 For any o € [0, %) and any of the above approximation sequences there
exists a sub-sequence, {ﬁr,}jeN e CY(0, T]x X)andann € C*([0, T] x X), such
that 7, — n with j — oo uniformly in C*([0, T] x ).
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Proof Sobolev embedding implies that 77, (¢) is bounded in C*(X) for all @ € (0, 1)
uniformly in ¢, T thanks to the uniform bounds stated in Corollary 3. Combining that
with (3.7) implies that 77, is bounded in C*([0, T] x X) for all ¢ € (0, %) uniformly
in 7. Hence the theorem of Arzela—Ascoli implies the result. O

The above lemma motivates us to assume that 77, — 7 uniformly (omitting the index
J of 7;). Now, we take a coupled test function on the limit domain for a potential limit
equation (see Definition 1):

(f, W) € C([0, T1, Cg°(%)) x C([0, T] x Q(1); RY) such that
Y(®)lr, =0, W, -, nt, )+ H)=¢(,)egonZand W(t) =0 =y (¢) forallt > T.
(3.9)

The strategy of consistency is as follows: We first fix an approximation parameter
€ € (0, 1) which introduces a sub-class of test-functions that satisfy the coupling
condition not only on the (variable in time) limit-boundary determined by the limit
function n but in a neighborhood of the (variable in time) limit boundary. In particular,
these test functions will satisfy the coupling conditions for all geometries that are
close enough to the limit geometry—which is the case for our strongly converging
subsequence 77, for T small enough.
In particular, we require for a given € € (0, 1) that?

(W, ) satisfying (3.9) and moreover, W (¢, r, x4) = W (t,r)eg forallr € X,
allx; € (n(t, )+ H—e€,n(t,-)+ H+¢€)andallt € [0, T].
(3.10)

Since the uniform convergence of 77, — n in C* implies in particular that there exists
a 7, such that ||ﬁt - r;||OO < € for T € (0, tc) we find that (y, ¥¢) is an admissible
test function for Definition 2 for all T € (0, 7).

The next theorem is a consistency theorem in the following sense. If the numeric
scheme converges (by which we means that n;, 0, u; converge to some limit functions
in an appropriate sense), then one may pass to the limit first with 7 — 0 and then with
€ — 0, which would imply that those limit functions satisfy Definition 1. Note further
that for the continuity equation we do not need the extra approximation parameter €
for the space of test-functions since no coupled boundary values are requested.

Theorem 2 (Consistency of the semi-discrete scheme (3.1)) Let (37, 01, U;) be a solu-
tion of the scheme (3.1) witht € (0, 1) and y > 1. Then forany ¢ € C*([0, T]x R?)
there exists ¥ > 0 that

T
- /QO 07’ dx —/0 /Q (00919 + 0rur - Vo) dxdt = O(z”),  (3.11)

3 Suchan approximation can be made precise by taking a cut-off function. We take ¢ € C°°(—00, 00),

such that the s-th derivative ¢£s)(x) = O0foralls € Nand x < 0 and ¢¢(x) = 1 for all x € [€, 00)

and 0 < ¢, < % and |¢]| < E%. Moreover, we denote (b)c as the standard convolution for a

function b : C¥([0, T']). Recall that since n € C% uniformly we find in particular n — €* < ()¢ <
17 + €%. Then (for a fixed ¢) we define We (1,7, xg4) := (1 — ¢e (xg — H — () (t) + 2NV (t, r, xg) +
Pe(xg — H — (n)e (1) + 2€%) Y (¢, r), which satisfies (3.10).
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Assume moreover, that, — nin C*([0, T]x X) (for somea € (0, 1), see Lemma 6).
There exists v € (0, 1], such that for € € (0, 1) and © € (0, 1) with ||ﬁT — nHoo <€
we find

T
—/Oggug.\yfdx—/ / (0rUy - 9 Y, + 0ru; @ uy : VW) dx dr
Q0 o Ja

T
+/ (S(Vuy) : VU, — p(o;)divWe)dx dr
0 Qr

T
—/ a,n(O)llfodr—/ /S,nra,Wdrdt
> 0 )

T
+/ / (@ An: Ay + BVn, - VY )dr de
0 D)

T T
=f /grlﬁdr+/ / f, W dxdr +O(”)dt (3.12)
0 ) 0 Qr

for all pairs (We, ) € C3(0,T x RY) x C3([0, T x ) satisfying the coupling
condition (3.10).

Proof To prove the consistency, we must test the discrete problem (3.1) with piece-
wise constant in time test functions. Thus we apply the piecewise constant projection
operator I1; introduced in (2.5) to the smooth test functions ¢, W and . Note that for

any ¢, = I [@], ¢ € {p, V¢, ¥} and for any piecewise constant in time function g,
it holds

T Nt Nt T
¢ dt = I dr = pdr = ¢ dt.
foq¢> };/Iq (1] ];/Ikcub /0q¢>

Thanks to this equality, hereafter, we will directly use smooth (in time) test functions
to show the consistency of our numerical scheme.

As we are dealing with functions that are continuous in space, we only need to treat
the consistency error of the time derivative terms.

First, for the time derivative term of the shell displacement, we have

T T _ _
fo f):(stztl//tdrdtzfo /}Sww(t)drdt

1 T 1 T—1
= —/ /z,(t)w(t)drdt— —/ /Zf(l‘)lfl(l-i-f)drdl
TJo Jx TJ-r =

T —
— / / Zr(t)wdr dt
0 Jx T
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f /Zr(l)lﬁ(f+t)drdt——/ /Zf(t)t/f(t—i-t)drdt
T—1 >

=0
T
=/ fzratlﬂdrdt—/ ¥08,17(0)dr + e, (3.13)
0 ) )

240

where 9;1n(0) = zr due to the initial condition and eq reads
T
H—yi+r
ey = / / Zf(f?tl/f _ M)drdt
0 Jx T

1 T
+f 8,1(0) (vf(m——/ vfa)dr) dr
) T Jo

=< C(||1/f||c2 s ||Zr||L00(0,T;L2(}:)))T + C(||1/f||cl s )T,

LX(Z)

z

which is the consistency of the time derivative term for the shell displacement.
Next, we show the consistency of the time derivative terms of the density and
momentum. In the following we use g, as a substitute for either o; or o;u;. Analo-

gously to (3.13), we find

Xklkl

f/th,w dx dr = Z// 4~ 45 kg (r)dxdr
Ik Qk
‘ ‘-IJ \I,k+l Xk+1f,§+l
:Z/f qt dxdr — /qt /\IJ(t)dtdx
k=1 1k JQk T

k+1+H

\Ijé(t’raxd)_ql€<t+raraxdnk—>
_Zf/ T Ty de
Ik Qk T

—/ qg—/ V. (t)dtdx =: [ + I».
QY T Jo

It is easy to derive

1 T
——/ q?—/ W (1) dtdx=—/ q2W (0)dx + Ry,
QT Jo Q0

where

1 T
R = foqi) (%(0) - ;f \ve(wdr) dx < 7 llgellpi o 1Well 2 iy < .
Qv 0

Concerning the estimate of /1, we begin by the observation
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k+1
+ H
"IJE(tsr9xdr}—> _\I’le(t’rsxd)

n* +H
k+1 k k+1 kN2 42
=" 0 = 0
= X ——\I’ (t,r,x>+ Xd——F———— _\IJ (t1r9>
AF T H axg e d (dnkJrH)Bxﬁe §

= —rw]T‘ VW1, r, xq) + RE,
nk+1_7]k k
where & € co{xy, xdn"T} and the term R"* reads

k+1 k—1 k+1 kN2 92
U 0 U 0

RE =gy —— L~y (t,r,x>+(x —) —, (t,r, )
R H g e d AT H a2 e §

By Taylor’s expansion, the fact x; € [0, nk + H] and the bounds on 7, we find
IRY) < ¢ IVWell I+ =01 e | V20| ! — ot
which implies by Lemma 4 that
[RY) < €199l 17 = * 1 1 ¢ [ V20 |10 = < Cle 0, )2,

for T < 1. Hence

[ kiRt ax < ceoowe o]

Now we calculate using Taylor’s expansion (using the uniform bounds on |37 We||
T llgzll10,7: 11 (2,)) and find for a suitable & > 0 that

Nt W (t,r,xqg) — W (t+t,r,Xd)
1122// g ‘
= e Jar T

T

k1
\Ijé(t—i_‘[’rsxd) - \Ij€<t+1”r’xdn:+1‘1f1)
+qk ! )dxdt

T

Nr
=_Z/kfkq§a,we dx dr + O(7)
k=1 1 QF
Nt
- Z[k /k "Wk -V (t + 1) dx dr + O(2?).
k=1 I QF
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Consequently we derive

T T
/ / D,q. Ve dx dt—}-/ q?qzodxdt+/ f Ge ()0, Ve (1) dx dt
0 Jo, Q0 0 Jo,

T
—|—/ / G (W (1) - V¥ (1) dx = O(z?), © > 0, (3.14)
0 Q

for g; being o, we may take W, = ¢ in case g; = o;u; we have to take the e-
approximation.

Finally, substituting (3.14) into the continuity method, (3.14) and (3.13) into the
coupled momentum and structure method (3.1b), we finish the proof. O

Remark 1 In variable domain analysis (in particular in fluid structure interaction
involving elastic solids) it is unavoidable to approximate the space of test functions
at some point. In our case we do this by introducing the parameter €. We wish to
indicate what are the next steps in order to prove that a subsequence converges to a
weak solution, which will be the content of a second paper (relaying on this work).
The energy estimate allows to take weakly converging sub-sequences (in 7). In order
to pass with T — 0 one has to prove that the various non-linearities as the pressure and
the convective terms do indeed decouple in the limit. This is a sophisticated analysis
introduced in [4] and goes back to seminal works of Lions [44]. The last step is then
to pass with € — 0. This limit passage is how ever not as dramatic (essentially it uses
Taylor expansion); but it depends sensitively on the regularity of d;n and in particular
on the fact that y > % O
Remark2 We have assumed for simplicity that the boundary I'p consists of solid
walls only. The extension of our (stability and consistency) analysis to more general
boundary conditions on I'p would be an interesting future task. Here, we would like
to invite the reader to a very recent work of Kwon and Novotny [43], where the
authors analyzed the consistency, convergence and error estimates for a mixed finite
volume—finite element approximation of the compressible Navier-Stokes equations
with general inflow/outflow boundary data.

4 Fully discrete scheme

In this section, we propose a fully discrete scheme for the FSI problem (1.2). For
the time discretization, we use the method introduced in Section 3. Further, for the
space discretization, we adopt a mixed finite volume—finite element method proposed
by Karper [39] for the compressible Navier— Stokes part (1.2a)—(1.2b) and a standard
finite element method for the shell part (1.2¢). Following Section 3 we keep 7 as the
time discretization parameter. Moreover, we introduce % as the spatial discretization
parameter, which is assumed to be coupled to 7 in a convenient manner®. In the
following we will use the subscripts (%, 7) for all discrete functions. We shall write

4 For the consistency actually we will assume that 2 ~ 7.
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a~bifa < cb for some positive constant ¢ (independent of z and t), and a = b if
a~bandb ~ a.

4.1 Discretization

For the discretization in time, we follow the previous section and approximate all
unknowns including the mesh and test functions by piecewise constant in time func-
tions. For the space discretization, we start with the notations on the fixed reference
domain.

Mesh for the fluid part Let the reference domain Q be aclosed polygonal domain,

and ’/T\h be a triangulation of Q: 5 =Ug 7, K. The time dependent domain (or mesh)
at time 7 is described by the ALE mapping

QL =Qo (M ) and T, = Tj 0 (AL )" forallk =0, 1, .., Ny,

where the ALE mapping A];l . will be given in (4.9) below. Further, we take the
following notations and assumptions:

— By £(K) we denote the set of the edges o of an element K € 7j, ;. The set
of all edges is denoted by £. We distinguish exterior and interior edges: £ =
S UE, & = {0 cs ‘ acaszh,,}, & =E\&.

— We denote the set of all faces on the top boundary by £ (C &g).

— Foreach o € £ we denote n as the outer normal and write it as n, g if 0 € £(K).
Moreover, for any 0 = K|L being a common edge of elements K and L, we have
Ny gk = —Ng L.

— We denote by |K| and |o| the d and (d — 1)-dimensional Hausdorff measure of
the element K and edge o, respectively. Further, we remark A g as the diameter
of K and h = maxge7; , hg as the size of the triangulation. The mesh is regular
and quasi-uniform in the sense of [15], i.e. there exist positive real numbers 6y and
co independent of £ such that 6y < inf {i—’;{, K e ’];Bt} and coh < hg, where &g
stands for the diameter of the largest ball included in K.

— The mesh is built by an extension of the (d — 1)-dimensional bottom surface mesh
in the d™ direction, i.e., the projection of any element in the 4" direction must
coincide with an edge o € &g on the bottom surface. We give an example in
two dimensions for illustrating such kind of mesh, see Fig. 2. In particular ’Thkr is
assumed to be a conformal triangulation.

Mesh for the structure part The mesh discretization of the time independent
(d — 1)-dimensional domain X coincides with bottom edges of 92, ; such that £, =
Ee N {xg = 0}.

Remark 3 On one hand, the mesh is constructed by the extension of the mesh of the
(d — 1)-dimensional bottom boundary. On the other hand, we will define a linear
function for the discrete ALE mapping Ay, -, see (4.8) below. As a consequence, any
triangle on the reference mesh is kept to be a triangle in the current mesh, see a two
dimensional mesh discretization in Fig. 2.
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244 S. Schwarzacher and B. She

Fig.2 An example of mesh in two dimensions: left is the reference mesh and right is the deformed current
mesh

Function spaces Our scheme utilizes spaces of piecewise smooth functions, for
which we define the traces

2" = lim v(x + én), v = limv(x —dn), x €0, o €€&.
§—0 §—0

Note that, v°% is set according to the boundary condition for an exterior edges o € k.
We also define

v =+ |v|
7

. 1
[Vl e = v =", V]g = ————, (v), = —/ vdS(x), and v* =
2 lo| Jo

Next, we introduce on the reference mesh the space of piecewise constant functions
Qh = {(p e L'(Q) ‘ ¢|k = const € R forany K € 7\7,} ,

and the space of the linear Crouzeix—Raviart finite element

Vi = {v e L*(Q)

v|g = affine function on K € ’/T\h / [vdS(x) =0foro € a},
o

and the space of piecewise polynomial functions of degree £ € N on the shell domain
by

Wy, = {q ecl®) ‘q|(, e Pl(o) foro € zh}

for some £ > 3. For the case of d = 2 one can use the standard Hermit elements with
any £ > 3 (since X is one dimensional in this case), and for the case of d = 3 we refer
to [15] for the Hsieh-Clough-Tocher macro finite elements with £ = 3.

In accordance with (2.4) we denote the piece-wise constant function v, =
Vpr A;]T for all t+ € (0,7T) and for all unknowns including the test functions
vefou p,nz,w, o ¥, 1} as well as the function spaces

Onr(t) = On o Ay (1), Viz(t) = Vo AL (1)
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Thus it is clearly that
O € Ohe <= Pht € One Yno € Ve <= ¥y €V

The associated projections of the function spaces are

1
M7 L @) = O, Trlol = o [ v dx, K € T
K
and (the uniquely defined interpolation operator [22])

Mg : Wl’l(Qh,T) — Vj.¢, such that /

o

MelvldS(x) = f vdS(x) forany o € £.

Coupling at the boundary and ALE mapping Following the previous notations
we denote by F§ = I'g(r%) the piecewise polynomial boundary produced by nﬁ -

Namely FI§ = {(r,xd) e [0, L)% 1 x {H + ”];l,r(”)}} isaC! boundary since we

have used a C! finite element space for the approximation of 7y .. In order to get
automatically a piecewise linear discretization of I'g we shall introduce a projection
operator on 1, . To this end, we first introduce a piecewise linear function space on
P}

W — {q € Hl (D) )q|0 e Pl(o) foro ¢ zh}. 4.1)
Then we use the following projection
I, : W(}’z(Z) > W, satisfying
f VII,v - Veydr = / Vv - V¢pdr forall ¢y € W;,k. “4.2)
Zp A
Thanks to this projection we obtain a polygonal computational domain given by
T, = 1{(r,xq) € = x [0, H + T, () ) ()]} 4.3)
Here, let us derive the estimates related to the above projection operator IT,, which
will be used later and which indicate that its use is suitable. Upon setting ¢, = IT,v
in (4.2) and using Holder’s inequality we find

VI 2y < IVVI2xy  forallv e WoP(D). (“.4)

Next, we introduce &, € W’ as the L? projection of —Aw for v € W}, meaning

(&n + Av)gpp dr = 0 for all ¢y, € W;f. 4.5)
A

@ Springer



246 S. Schwarzacher and B. She

Then we find fz VII,v - Vpdr = fz Engpdr for all v € Wy,. By setting ¢, = &
in (4.5) and using Holder s inequality we find that [|§1/12(x,) < IAvll 2z, This
implies for instance by [49,equation (5.10)] and Sobolev-Poincare’s inequality that

}|Vnpv|\mz) <cllAv| 2, forall p € [1,00) and ”HvaLm(E) <clAvlg) . (4.6)

Moreover, by the standard projector error (see for instance [49,equation (6.3)]), we
have

“V(HPU - < ch ||AU||L2(2) .

v) ”LZ(Z)

This together with the inverse estimate stated later in (4.14) imply that

”HPU - v“LOO(Z) < ch= @Dk “Hp” - UHLS(Z)
< ch™ VR v, - v) HL2(2)
< ch™ [ Avll 2z, 4.7)

where so =1 —(d —1)/s > 0foralls € (d — 1, 00).
In consistency with (4.3), the discrete ALE mapping (1.1) is redefined due to the
space discretization preceddingly introduced

I +H _ .
x =A%) = (r, de) , with

H
I1 H
r=7, Xg = %Yd forx = (r, xq). 4.8)

The discrete Jacobian and determinant read J* = VA% o F k= det(J¥), respectively.
Moreover, we need to update the definitions in (2.6) and (2 8) due to the ALE mapping.

h,t — T T

T
I,k =k ") xa
wﬁyr — Odfla P\t - h,t ,
o (Mp(of )+H)

axf(x) M, )+H
= det = LT
]: ( ) (), )+H’

k k—1 k =1y .\ T
sk _ 'Ah.'r_‘Ah,r —(o I, (=11, )x_d
— = =\ 041, ————F |

B /0 B
and rdlvwh»f_—l'lp(n,’;,,HH =1-F"". 4.9)

Note that the domain €2, ; is defined via 1,  and its triangulation 7}, ; is defined by
1,74, Moreover, the Dirichlet boundary values of u;, ; will be defined by I,z =

Hpgtnh,t'
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Upwind divergence To approximate the convective terms, we apply a dissipative
upwind operator

divy’; (qn,o, Va0 (x) = Z Z / Uplgh,c, Va,c1dS(x),  (4.10)

KeTy; oceE(K)
where
u
Uplgn,, Vo,c1 = qh?f <Vh,r : n>a - K HQh,t]]
—_— —————
standard upwind artificial diffusion
1
= Gz (Vi -m), — (h° + 5' (vie -m) 1) [an.-]-
—_—
convective part dissipative part
Here

| _ Jap, if {(vac-m), =0,
o — .
hot g, otherwise.

As pointed out in [23], the artificial diffusion included in the above flux function is
(h**1 + %1 (vhr - m)_|). For the consistency we will require

e e 0,2y — 1)).

We emphasize that the existence of a numerical solution, its stability, mass conserva-
tion and positivity of the density do not depend on the additional artificial diffusion
term. However, it is important for deriving the unconditional consistency of our numer-
ical scheme without any assumption on the regularity of the numerical solution, see
Theorem 5.

In accordance with the relation (2.10), we introduce the upwind divergence on the
reference domain as

up up
dlvh 1;(Clh o, Vo) = leh 1r(Qh o Vi) o Ane

1
_Z = Z /UP[Qr,uhr]lfJ_ﬁldS(’\)

Ke’]?, Kl , &t

Preliminary inequalities We assume the readers are familiar with the techniques
in finite element method. For the sake of completeness, we report a few necessary
inequalities. As is common the constant ¢ appearing in this paper depends on the
regularity of the mesh; i.e. on the constants 6y and ¢y above. As follows from our
estimates (4.25) the numbers cg and 6y can be chosen independently of 4 and t.

Meaning that 6y < inf {g—i K e Th,t} and coh < hg, where £k stands for the
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diameter of the largest ball included in K. Moreover, it follows from (4.25) that
hg < cih forall K € 7y ;, with a constant uniform in 4 and 7.

Since these constants can assumed to be uniform w.r.t the change of variables (due to
the L° bound on 7y, ; (4.24)) the below estimates hold both on the reference domain,
as well as on the current domain. For that reason we take Qp, r = (Jg 7, Kasa
(regular) polygonal domain. We define for the discrete function uy ; the following
norms:

lwielyg = /K Vel dr, ey = /

1 2
Z[[uh,r]] dS(x).
KG'Z}LT oe&p o

Next we would like to introduce the Korn inequality [7, equation (1.19)].

[wiel 7, ~ D@D 2, ) + [Wnel 2o, ) + Tone ]y
and the Poincaré—Friedrichs inequality [6, equation (1.5)]

||uh’f||L2(Qh,,) ~ ”“h,f“hThJ + ”uh»T”L‘(th_,)’

respectively foralluy, ; € Vj,. Thus we deduce the following modified Korn inequality

““hqf”LThJ + ”“h,THLZ(Qh,,) ~ ”D(uh’f)”L%Qh,r) + ||“h,r||Lz(th,,> + ”“hJ “HY‘ :
4.11)

Further, we need the following version of Sobolev’s inequality [24, Lemma 2.3]

e | LS(Q.1) = ”“h,ful,ﬁu + ”uh:fni'(ghv,)’ Yy €V (4.12)

Next, due to scaling argument we introduce the trace theorem [24, equation (2.26)]

all oy ~ B~ Y7 Il Lok, we P™(K), 1<p<oo, VK €Tjr, (4.13)

where P (K) denotes the space of polynomial degree not grater than m. It is worth
mentioning the inverse estimate, see [15] and [34, Remark 2.1]

< 1_1 d(L_L)
”uhﬁf”LPI(O,T;L‘” @uay ST R0 ““h»f”Lpz(o,T;LfIZ(Qh_,))’
Vi<py<p1 <00, 1 <g2 <¢q1 <00 (4.14)

Finally, we recall the standard interpolation error estimates for ¢ € C ! (2,7) [8] (see
also [31, Appendix]).

[T (11| ~ Aligllcr. IT7[6) = dllLoq, .y ~ Aldllcr. wis)
IMgl¢] — Pllrocoy. ~ Allgler. ITM7Melel]l — llirq, . ~ hlller.
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for 1 < p < oo, and also from [39, Lemma 2.7] and [18] that

<
IV —T7 ¥l 20, ) ~ B 1YYl L2, Ly » YV € Vior C' (.0
Iv = el 2q, ) + IV = TelVDl 2, ) (4.16)

<
~ W Vllw22gg, ) - YV € WHH(Q0).

4.2 The scheme

With the above notations, we are ready to present a mixed finite volume—finite element
method for the FSI problem (1.2). First we present the scheme in the current domain.

Definition 3 (Fully discrete scheme onthe current domain) Let (Qg, ug’r, ng’r, Zg,r) =
(7 [eol, Tz [uol, Myw[nol, Mwlzo]) be the giveninitial data. We say (n); .., o) .- )
e W, x Q];L’T X V,f’r, k = 1,..., N7, is a mixed finite volume—finite element
approximation of the problem (1.2) if the following hold for any (wﬁr, go,];’ o ‘I'lli,r) €
Wi x Q) . x Vi with TIg[W) (r, n+ H)] = Te[T, ¥ (r)]eq (forall r € X5):

/Q - Dihonedst [ aviP el covh encdr =0 (4.17)

h,t Qh,r

/Q Dy (o il 1) W dr + fg AP (o Tl 1V ) W de
h,t

h,T

+2u/ D} ) : V¥, dx
2 '
1
2y / - I:[uﬁ,r]] -] dS(x)+A/k divaf , divi), , dx
ce&’? ¢

—/k P(Qlfl,f)diV‘I’h,r dx—i-/ Szzl;i,rl/fh,rdr—l-/ Anlﬁ,,AI/fh,rdr
T T

Qh,r

=/Qk Q];l,rf,kl’t~\llh,,dx+/ gh o Vnodr; (4.17b)
)

h,t

where

T
HP[Zé,r]xd )

kK _ k kK _ .k k k _
ipr = 8177}1,1’ Ve =W = Wh oo wh,r(x) = {041, IS x
p[nh’r] + H

gh . =Telgiland £} _ := M¢[f}].

Moreover, the boundary conditions are

(vaz), =0, [[th(’,]:la =0, Vo € &.
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where [Ty is the projection operator from W22(X) to Wj,.

Here we would like to point out that by construction

(“ﬁ,r>0 = <W];)U = <sz§),>a ey forallo € 3.

Analogously to the semi-discrete case, the fully discrete scheme (4.17) preserves the
total mass as well

J.

k—1
o= [ edtacm
N

k
h,T h,T

=/QO o . dx =: My, forallk=1,..., Nr.
h,t

(4.18)

Actually, it can be shown by setting ¢, r = 1in (4.17a) and noticing the conservativity
of the upwind flux.

Remark 4 We observe that the above scheme is fully implicit and nonlinear. This means
that both velocity uﬁ’r and density Qﬁyt are coupled to their domain of definition Q’,;r,
which is determined by the unknown nﬁ = for each time step k = 1, 2, ..., Nr. This
is in contrast to the approaches from incompressible flows [9] where the velocity and
pressure can be solved for each time step in the domain of the previous step. Here a
common problem for compressible fluids reveals itself: The fact that the renormalized
density equation that is necessary for deriving an energy inequality makes an implicit
and non-linear scheme unavoidable up-to-date. Indeed, even for fixed domains there
is no time discretization method known for compressible fluids providing energy
estimates which is not both nonlinear and fully implicit. Analogously, the coupling
between the velocity fields of the fluid and the shell together with the requirement of
an implicit mesh velocity w in the discrete Reynolds transport theory (Lemma 1) block
us to work with a scheme that is explicit with respect to the shell. Conclusively, in our
investigations it turned out that also for fluid—structure interactions there is no space
to allow explicit in time parts of the solutions. Nevertheless, we can solve the scheme
(4.17) by rewriting its equivalent formulation on the reference domain Q to avoid
the problem of solving unknowns on an unknown domain, see scheme (4.19) given
below in Definition 7. Though the scheme (4.19) is also a fully implicit and nonlinear
scheme, we can solve the nonlinear system iteratively on the given reference domain.
Furthermore, we will show that a full discretization in time and space actually admits
a solution, see Theorem 3. In addition, we can assure that for a positive time interval
that the fully discrete scheme is well-defined, see Corollary 6.

Recalling (2.4) allows to transfer the scheme in the following way:

Lemma 7 (Fully discrete scheme on reference domain) Let (n’h‘ . Q'h‘ . u’,j ;) € Wi x
Q],i : X V,ft, k = 1,..., N1, be a solution to the mixed FV-FE method given in
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Definition 3. Then (nﬁ T,'Q\ﬁ T,ﬁﬁ ;) satisfies:

~k k k=1 k-1
One?” Qe P TR g -
/ b b (ph,fdx+/Adlvzl?r(glz’r,Vl;’r)(ph,r]:kdx:O; (4.19a)
Q

o T
-1 —1 _
b\erT[ﬁl}{l r]]:k _Ezr HT[ﬁﬁr ]fk b ~
- - : - Wy o dx
Q T

/S;dlvh r(Qh tl'[T[uh 1 vh BE \Ilh Tf dx
+2,;,/AD(u’,;J) VW, FRdE

+2MZ/ [[uhTH [% 174 @5 TRidS®)

oe&p

/\

d1vuh iV,  Frdx
—/Ap(gh’r)div\llh,r]:kdf+[ 812y Wdr
Q z

+/ Anj  Aydr =/A5§;‘j§.\ih,,7’< df+/ &y dr (4.19b)
b Q =
and boundary conditions

</‘7£T> = <ﬁl;l1’ _er<> =0, [[5},;1-:” =0, Vo €&.
o o .

Our numerical scheme is nonlinear, nevertheless we can show that its solution always
exists.

Theorem 3 (Ex1stence of a numerical solution and positivity of the density)

LetO<QhT thr,( ht,nﬁrl, hr)eV,f; xththegiven. Then there

exist0 < Qh,r € Onr and(uh’r, nh’t, zz’r = M) € V.o x Wi, x Wy, satisfying
the discrete problem (4.17) (or equivalently (4.19)), where nfl .= n];l_tl + 'L’Z];l I
The proof is an adaption of previous approaches using homotopy arguments (see [30]).

For the sake of completeness a rigorous proof can be found in the Appendix A.1.

4.3 Stability

Since the differences of the proofs of the renormalization and the stability between the
semi and fully discrete scheme are merely of technical nature we put the respective
proofs in the appendix.

First, the fully discrete scheme (4.17) satisfies the renormalized continuity equation.
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Lemma8 (Renormalized continuity equation) Let (0p.z, Wp ) € Qn.r X Vi 1 satisfy
the discrete continuity equation (4.17a). Then for any function B € C'([0, 00)) we

have
_1 B(Qk )dx — B(Q ])dx
T I]f,-[ h,t i1 h,t

h,t

+ /k (Q'Z,IB’(QQ,) - B(g,’i,t)) divuj; , dx + D; + D =0,
Qh,r

where

/
D=
T Jok

h

b= 5 5 [ (oo Lo ] Lok ) ([ o))

k -
KeTk, ocedK

F (Bl o XF D= Blek ) — Bk (ef o X{T — of 1)) d,

Moreover, D1 > 0 and D> > 0 provided B is convex.

Proof The proof is similar to Lemma 2 but we need to pay attention to the convective
terms, see the details of the proof in Appendix A.2. O

Next, we show the strictly positivity of the discrete density.
Lemma 9 (Positivity of density) Let Qg,r > 0. Then any solution to (4.17) satisfies
of . >O0forallk=1,.... Nr.

Proof We prove via mathematical induction and start with the assumption ng_rl > 0.
First, by exactly the same argument as in Lemma 3 we know that Qﬁ . > 0.Second, we
assume there exists a K € ’Z;lk . such that Q];( = 0. Then a straightforward calculation

from the density scheme (4.17a) yields
0 — |K/|Q/;(:1)/‘L' = —/;(divl;fr(gﬁ’r, Vﬁ,r) dx
>- ¥ Q,’j";‘“[<v’,§ . -n> " >0, with K’ = K o X¥_,
’ ’ o

ce&(K)

which contradicts with the assumption QZ;I > (. Thus we know Qﬁ . > 0 and finish
the proof. O

Further, setting B = H(op,r) in Lemma 8 we get the following corollary on the
internal energy balance.

Corollary 5 (Discrete internal energy balance) Let (0n.z, Un.r) € Qn.r X Vi satisfy
the discrete continuity equation (4.17a). Then there exists & € co{gﬁ?l o X,Ifl, QZ o)
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and ¢ € CO{Q];(, Q]Z}for anyo = K|L € Elk such that

l/ 'H(Q];”)dx—/ H(o) ") dx
T \Jef, ’ o ’

+ / P} divuy o dx = =Dy — Dy, where: (4.20)

h,t

')
Dlz/ TR Dl
@, - 2

D= [H© [[Q’,;,r]]z (hs + % (v . ~n)g‘> ds(r).  (421)

kYO
I

2
dx,

Analogously as the semi-discrete case, the fully discrete scheme (4.17) (or (4.19))
dissipates the total energy.

N
Theorem 4 (Energy stability of the fully discrete scheme (4.17)) Let (Qz o ul,‘l, o nllj T) !

be a family of numerical solutions obtained by the scheme (4.17) (or (4.19)). Then for B
any N =1, ..., Nt the energy is stable in the following sense

/ E}.de+/E§Vdr
Q. b

N
+TZ/Qk (2uDf )P + Aldiva ) dx

+2/”Z Z/ [[u, T]] ds(x)

k=1 oe&;

2 k 2 k 2
/Z (|8,z,1’,| +ala,

2 N )
T k—1 k—1]pA k
+— § :/k Cpr © X ‘Dz 7w, .1

+B ‘Wﬁi

2
)dr

N
Fldx+1) (D1 + Do)

2 k=1 Qh,r =1
N 1 k, 2
Ty D f (2 oy IV - nl+h8@h,f> [rtof 1] as@
k=1 065{"
= EY + / EOdr
/92,, S

N
+‘CZ/QI< Qhrfk uhrdX+TZ/nghr
k=1 h,t
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2
where Dy, D> are given in (4.21), E’; = %Qﬁ . + H(Qﬁ,r) and Eé‘ =

332k P+ alanf 1>+ BV 1P

§ el

Proof The proof is similar to the energy stability of the semi-discrete scheme, see
Theorem 1. We leave it to Appendix A.3. O

4.4 A-priori estimates

Before proving the consistency of the scheme (4.17) (or equivalently (4.19)) we derive
some useful estimates. Due to the coherence of the argument we use the notation of
Subsection 3.4. In particular we use the same definition of the piecewise constant in
time functions (as defined in (2.3)) and the piecewise constant domain 2 ;.

Applying the modified Korn inequality (4.11) and the Sobolev inequality (4.12) to
the energy estimates (Theorem 4) and the definition of D and D (see (4.21)) directly
imply the following uniform bounds on the numerical solutions:

lonellio.rizr @y = © ”Qh’f|n7[uh‘]|2HLO@(O,T;LI(Qh,I)) =¢
D@ 2072000 =€ VO] 20 7120, ) =€
f Zf [or-]Pdse) <e,
o0&

[ V- ”LZ(O TL2@p0) = € [« ||L2(0,T;L6(Qh,r)) =¢

2.2 ||L"O(O T2z = 6 | Anne HLOC(O,T;LZ(E)) =c (4.22)
fo Z / <§QZ{1|vh,f “n| +hQ1_> [l 1] dS@) < e,
o
/ 3 f H'@) [one ] (4 + |(vae -m), ) dSGo) < c,
o€l
lon.Tirlus 1| 2y <c, |oncun:| 6y <c

Lo°(0,T; L7+ (Q.)) 120,751 755 (2 1)
|82l oo riz2ey ST 1Veanel goryesy S 7775

Az, ||L2((0,T)><E) ISR

where ¢ depends on the external force f; and g, as well as the initial data. Further, we
recall the triangular inequality, interpolation error (using the Aubin-Nitsche-duality
method), and the above estimates on z, r and Azj, . to derive

HHPZMHLDC(O,T;LZ(E)) = ”HPZhJ - Zh,fHLw(o,T;H(Z)) + HZh,T”LDO(O,T;Lz(E))
S Az o iz 1~ BT 4TS LorT A .
(4.23)

@ Springer



On numerical approximations to fluid-structure... 255

Next, since the discretization of the displacement 7, . is conformal in Wg ’2(2) C
Cé(E) we find for n, . that

|| Nh,t HLOC(O Tw22(zy =€ and (by Sobolev embedding)

n.x HLDO(O,T;LOO(Z)) + (| Vi ”LOO(O,T;LI’():)) =c (4.24)
where the constant depends on p < oo but is independent from t, . Thanks to the
above estimates, the Sobolev inequality, and (4.6) we have

HHPWLJ” L®((0,T)xE) ~ HVHPWLJ” L®@O,7;LP (%)) = €

Moreover, by precisely the same argument as in Lemma 4 combined with (4.7) we
find for all 6 € [0, %) there exists a constant C depending on the energy estimates and
6, such that

k %
max [ nf ) a7 )] < €xand

max H(Hpnlﬁ,f)(r) — I, )HLOO(E) <cr,

which implies the following corollary by the very same argument as in the semi-
discrete case.

Corollary 6 (Exclusion ofself touching) Let 7 < 5 0 and 81 > 28¢. Then, if for some
kef{l,.. Nt} mfrnh (r) > 81 — H, then ’7h satlsﬁes mf(,nh (r)y =381 —36p—
M()reover for every 8o € (0, H /2) there exists a Ty just dependmg on the bounds of
the energy inequality H, such that info 7, yn(t, r) > 8o —

From the above and the L> bound of 7, ; given in (4.24), we may assume in the
following that there exist two positive constants §; > &1 > 0 such that

k

0<s <t Tt (4.25)
H

Remark 5 Note the uniform upper and lower bounds on the Jacobian (4.25) imply
that all uniform bounds in Lebesgue spaces appeared in this paper hold both on the
reference domain Qh and the current time-dependent domain €2, ;. We emphasize
this fact in the following by denoting L” L4, L4 for the norms L” (0, T'; L4 (2, ) and
L9(S2p, 1), respectively.

Moreover, by the same reasoning all estimates on integrals over the jumps, as well
as on area-integrals that have been shown on the reference mesh are also valid on the
push forwarded mesh.

In the following we collect some estimates that we need for the consistency proof.
First, we recall the definition of divw, and w; (4.9), the estimates (4.23) and (4.25),
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and the fact x; < (l'[,,(nﬁ’r) + H) to obtain

: Mpz, ~
vl = [Ty P i <
Iyzh,cxa
ol oesz = ”#;nh, Lo ~ Mzl rimy <1 @20

The estimate (4.26) together with the velocity bounds stated in (4.22) imply
|divvnc] 2o ~1 and  |[Vic] 20 ~ 1. (4.27)

Next, we use Sobolev’s inequality, the estimate (4.4), and the estimate of Vz; . stated
in (4.22) to get

”HPZhJHLZ(O,T;LP(E)) ~ “VHPZhJHLZ((o,T)xz) = ”VZh,T”Lz((O,T)XE) ~ ol

for any p € [1, 00). Further, recalling (4.9) for the definition of w; and the velocity
bound stated in (4.22) we find for all T € (0, 1) that

Mpzp,cXa _1
woelz0r = H#;nhr 2L ~ Mzl 2o,y ~ 772
and ||vh,f||L2L6 <712 (4.28)

The next lemma collects some estimates related to the errors that appear due to the
convective terms. The proof of these estimates goes along the techniques developed
by the community of the numerics for compressible fluids, see appendix A.4 for a
complete proof.

Lemma 10 (Useful estimates) Let ¢ > O be a constant independent of the parameters
T and h (may depend on the initial data, the external force f and g and the mesh
regularity).

1. Let oy, Vi, be a solution of (4.17a) with & € (0, 1) and satisfy the estimates

lencllry e Joneinztma?| | =
hE/T 3 f H'(0) [[Qﬁ’r]:lzdS(x) <c.
0 UES{‘ 7

Then the following holds

e+2

e+2 _&+2
lonel2pe < ch™ % and o Trluncl] 2 <ch™ % . (4.29)

@ Springer



On numerical approximations to fluid-structure... 257

2. Let o1, vi,r be a solution of (4.17a) with y > 2 and satisfies the estimates
”QhJ“L”LV =c ||diVVh~T“L2L2 =c.

Then the following holds

T 2
/ X 2 /[[Q+]]out|(vh,r'n)g [dS(x)dr <c. (4.30)
0 g

KeT: 0eE(K) max {Qh,f’ Ch.r

3. Let o7, up -, Wy - satisfy the estimates in (4.22). Then the following hold

T
/ oy f|[[gh,,]]<vh,r-n)—ade(x)dt5cr—%h9, (4.31a)
0

KeTh,o0eE(K) 77

T
/ >y f [on. ] Tz Tws < 1(vi.c - m); [dSGx)de < et/ Af,
0 o

KeTy . 0€E(K)
(4.31b)

where

9_{—% ify > ¢, g_{—% ify > 4,

22 ity e (1L D), R ity e (1Y)

4. Letr,F € Qpt,vV € Vi and ¢ € C1(T; ;). Then it holds

4
/ rv-Ve¢dx = — Z / Fdivzpt[r, v] dx + Z E;(r), where:
Q K ’

KeTh, i=1

Exr)y= Y Y [(F=¢)Irlv-n;dsw),
KeTh,0eE(K) 77 (4.32)

Ex(y= > > [ ¢r(v-n—(v-m),)dS(x),

KeT,o0eEK)"°

E3(r):/ r(F — ¢)divwdx, Es(r) = h* Z/[[r]] [F]dS(x).
Q

o
lTEg[

4.5 Consistency

With the a-priori estimates derived in the last subsection, we are ready to show the con-
sistency of the fully discrete scheme (4.17) (or equivalently (4.19)). For the momentum
equation we have to introduce the e-layer again.
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Theorem 5 (Consistency of the fully discrete scheme (4.17)) Let (Nn.z, Oh.z, Un.1)
be a solution of the scheme (4.17) with T =~ he (0,1), y > g and the artificial
diffusion parameter ¢ in the upwind flux (4.10) satisfy ¢ € (0, 2(y — 1)). Then for any
@€ Cg(O, T: R?) we have

T
—/ Qﬂ,rwodx—f / (0.t 09 + on.runc - Vo) dx
Q‘T) 0 Q. r

= O?), for some 6 € (0, 1). (4.33)

If moreover, gy, — nin L*°([0, T] x X), then there exists 6 € (0, 1) such that for
all e € (0, 1) and all T € (0, 1) with | pnp . — 1|, < € we find®

0 0 0
- /;20 Op U \Ije dx

T

T
_/ / (Qh,ruh,r <0 We + OncWhr QU 7 V\Ije) dx
0 Qp,z

T
+/ / (S(Vup,z) : VW — p(on,)dive)dx dr
0 Qh.r

T
- / 3, (0)y°dr — / / 8, Oy
> 0 >

T
+/ / (aAnp < AY + BV« - V) dr di
0o Js

T T
—/ /grwdrdt—/ f f, - W dxdr = OhY), (4.34)
0 z 0 Qh.r

forall (We,¥) € C3(0, T x RY) x CZ([0, T x X) satisfying (3.10).

Proof To show the consistency of the numerical scheme, we take W, , = IT7[W,]
and the pair (We 5, ¥i.r) = (ITg[Wel, g[y]) as the test functions in the discrete
density and momentum equation, respectively. As mentioned already before due to
the uniform conformity of the mesh with respect to time change we have bounds
on the projection error independent of the time-step. And as before we will use
below all quantities that are related to the triangulation like 7, ;, K, o, £ as quan-
tities that change from time-step to time-step. We deal with each term separately:

Step 1 - time derivative terms The consistency of the time derivative terms have
been shown in Theorem 2. Indeed, by recalling (3.14) and (3.13) as well as the inter-
polation estimates (4.15), we find that

5 Note that due to (4.7) the assumption ”Hpﬂh,r - 17||OO < € follows from || Nh,r — r]Hoo < €, provided
h is sufficiently small.

@ Springer



On numerical approximations to fluid-structure... 259

T
/ / Do ¢ dxdt +/ Qg’rwo dx
0 Jou. Q)

T

T T
+/ f O,z ()0 (1) dxdt+/ f Oh,(OWh (1) - Vo(t) dx dt
0 Q. z 0 Q. z

=0 +0Mm), e (0, 1), (4.35a)

T
[/ Dy (0n.c W) - Ve dxdr+f o cup - Wldx
0 JQu. Q0

h,t

T
+/ / Oh.zUp 1 - 0 We(r) dx dt
0 Q. z

T
+/ / (On.tUp: @ Wp.r) : VW (1) dxdr
0 Q. z

=0+ Owm), 6€(0,1), (4.35b)
T
/ /Sch‘f'(/fdrdt
0 )
T
=/ /Zh,,a,wdrdt—/ ¥00,n(0)dr + O(x) + O(h), (4.35¢)
0 >z >z

Step 2 — convective terms We first deal with convective terms of the discrete density
problem by setting r = o ¢, V= Vu 1, ¢ = ¢, and F = I17[¢] in (4.32)

T
/ / On,tVh,r - Vo dx dt
0 Jou.

Z_/OTZ

KeTy .

T 4
= —/ / <PdiVZf),[Qh,r, Vp,o] dx dt + Z E;
0 Jou.

i=1

4
f M7leldiv," [on . V] dxdi + Y E;
K i=1

where

T
Ei(on:) = /0 o f (M7lel — @) [on- ]| (Va.r - m), dS(x) dt,

KeT . 0eE(K)

T
Ex(onc) = /0 > > | eonc(vhe-n—{vic n), )dS(x)dr,

KeT,,0eE(K)"

T
Es(on.c) = /0 /Q on+(T7lg] — p)divey o dx dr,

T
E4(on.7) =h€/0 Z/[IQh,r]] [M7[elldS(x)dr.

o
(7651
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Next, we estimate the terms Z?:l E;.
Term E(on.r) Applying the estimate (4.31a) we get

T
|E1(Qh,r)|sh||go||clf0 > > | enc] (var - n), 1dS(x) dr < ch®,

KeT . 0eE(K)°°

where
1 . 6
= ify > 2,
o = {g*(y_ . > (4.36)

Obviously ¢; > O forall y > 1.
Term E;(op ) It is easy to get from Holder’s inequality, the estimates (4.22), the
fact that gj, . is piece wise constant, Gauss theorem and (4.29) that

T
|Ex(on.o)| = /0 > / 0nt(@ = (©)o) (Var -m— (Vi - m) )dS(x)dr

KeT, . 0€€(K)

T
= /0 Z 0K /BK((/) —(@)ax) (Var -0 = TI7[vi ol x - m)|dS(x) dr

KeTy

T
= / E QK/ (¢ — (@)ax)divvp r + Vo - (vyr — 7V 1) dx| df
0 KeT K
€lp

T
= / Z QK/ (¢ — (@)ak)divvp,r + (Vo —II7[Ve]) - vj o dx| dr
0 KeTy . K

~h el ”Qh,r ”L2L2 (”diVVh,r ||L2L2 + “Vh,r ”LZLZ) < h®,

where ¢; reads

1— &2 if 1,2),
;zz{l ey (4.37)

if y > 2.

Obviously & > 0ase < 2(y — 1).
Term E3(on..) Applying Holder’s inequality, the first estimate of the uniform
bounds (4.22) and the velocity bound (4.27) we get

[E3(on,0)| < hllelle HQh,r ” 1212 ”diVVh,r ”L2L2 <h ”Qh,r HLsz <h%,
where {» > 0 is the same as in (4.37).
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Term E4 (05, ) Applying Holder’s inequality, the interpolation estimate (4.15), the
uniform bounds (4.22), the fact (Ja —b| < a+b) fora, b > 0, and the trace inequality
(4.13) we get

|E4(0n,7)l —hEI/ Z/[[Qhr]] (M7 (@]l dS(x) dr

oe&y

h€+‘/ Z/|[[Qhr]]|d5(x)dt <h8+1/ Z/ZQGdS(x)dt

ol o€l

< h® ”Qh,‘f ”LI(O,T;Qh.r) — < h*.

Consequently, we derive

f / OnrVir - Vo dxde + / > / M7 l@ldivy’ [on . v <] dx d
Qhr K

K
<h?, 6 =min{¢, &, €). (4.38)

Clearly, & > Ofore € (0,2(y — 1)) and y > 1.
Next, we deal with convective terms in the discrete momentum problem. We recall
(4.32) withr = op I 7[Upc], V= "Vhr, ¢ = Ve, F = TI7[Ig[Vc]]

T
/ fQ onruy 1@ vy 1 VW, dxdt
h,t

f > /dlvhf(ahfnﬂuhr] Vi) - TIr[Mg[We]] dxdr

KeTy .
4
+ Y Ei(on:Trlu <)

T 4
- / / divy? (on e Tz (W o], Vo) - Tg[Wel dxde + Y Eion Mz lup o))
Q. i=1

where

Ei(on N7 [up,c])

/ >y /(HT[HE[‘I’ 1= %) [en Tz [up 1] (va.r - m), dS(x) dr,

KeTh: oeE(K)
E>(on, 7 up,c])

f >y / e (©ne W, o D) (Vie -1 — (vac - ), )dS(x) dr

KeT, . 0e€E(K)

E3(on,7uy . ]) = / / on 7wy o] (Il [Mg[Wel] — We)divyy . dx drdr,
0 Qh.r
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1 T
Ea(oneTrlw, ) =h*> f > f [on T lup - 1]] - [T 7 [Me[We T dS(x) dt.
0 o

oe&y

Next, we estimate the terms Z?:] E;(on7[up < ]).
Term Eq(opI17[uy]) By Holder’s inequality and the interpolation esti-
mate (4.15) we get

|E1(Qh,r H’T[uh,r])|

T
< h Wl /0 > > / | Len e Tz lup 1] (vac - m) | 1dS(x) d

KeTy . 0€€E(K)

s Y%

KeTh0eE(K) "7

([en] 7 Tun -1

+02" [T 1] ) (vac - ) ‘dS(x)dt — I, + D,

where we have also applied the productrule [uv], = ug’ [vls+Muls vg”t for all u,v €
Q- . Applying the estimate (4.31b) we get the estimates of the first term

T
h=h /0 S 3 [ 1 lenc] Mrtuncl(vae - n), [dS@)dr < A%,

KeT; . 0eE(K)"°

1/4 if y € [%.00),

where {3 = ) 4
Gy —6)/Q2y) ify e(l,3),
term /, can be estimates by

g3 > 0 provided y > g—’. The second

T
L=h /0 S et [t 1] (vae - n)) 1dS@) di

KeTpo0eEK)"°
12

<h( [0 [ ettt 1t dswar | x

, 1/2
x / » / ot | (Var -m), |dS(x)dr
0 o
0‘651

S P 1 e PRV ALY PO

where we have used the estimate (4.22). It is obvious that I N h% fory > g. Further
by the inverse estimate we derive for y € (1, %) that

< 13 1/2 < 3=D

L hzh;(%_%) ”Qh,rHLooLy ~h
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Consequently, 1> N h%', and ¢1 > O for all y > 1, see (4.36).
Combining the estimates of the terms /; and I, we get

Ei(onT7[up 1) < h + K.

Term E>(op I17[uy -]) We proceed analogously as the estimate of term E>(op,¢)
with the fact that gj, . [17[uy, ] is constant on each K.
|E2(op,r Tl [up £ DI

T
=/ ooy /ah,fnﬂuh,fuwg—<we>g>(v;,,f-n—(vh,f~n)(,)dS(x>dr
O KeT),o0eE(k)’°

T d . .
=/0 3 ZQKHT[(MK)J']/BK(‘I'%]—(‘I"e]>aK)(Vh,r'n—HT[Vh,r”K'n)dS(x) a

KG?’h.r j=1

dr

T d ) ) . .

=/ > D QKHT[(MK)jJ/(‘I’ej—(‘l’ejml()di\’Vh,r‘f‘(V‘I’g—HT[V‘I"e/J)'Vh,rdX
0 ker, . =1 K

€lpJ=

< h el lon, e rTun o1 2,2 (divva el 2,2 + [Vae | 12,2) ~ B2,

where {» > Ois givenin (4.37). Term E3(op,  [17[up - ]) Employing Holder’s inequal-
ity, the interpolation estimate (4.15) and the estimate (4.22) we derive

|Es(on 7w DI < A l1Weller |on ez un | 2,0 [ diven e 2, < A%

where {» > 0 is given in (4.37). Term E4(op 17 [0y - ]) Using Holder’s inequality,
the interpolation estimate (4.15), and the estimate (4.22) we derive

|Eq(on, 17 [up <))

T
= 1’| /0 > [ LoneTrlup 1] [T 1% dSCr) di|

ce&’?

T
< h°t! /0 3 / | [on,e Tz [wn 1] 1S x) dr

o
UES[

T
< pet! f 3 f Yo Tz Tun 2 T1dS () dr
0 o
oe&p

<h® HQh,fl'IT[uh,r]HL](OVT;QW <k

Consequently, we derive

T
/ / (Qh,r H’T[uh,r] ® Vh,r) 1 VW, dx dr
0 Q
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T
+ /O > [ dviP o Tt vi ) Telwe] drar <57, (439)
KeTy . K

where 0 = min{¢1, &3, ¢3, €} > O provided y > g and ¢ € (0,2(y — 1)).
Step 3 — pressure and diffusion terms First, it is easy to calculate

/ph,fdivng[we]dx= > pK/ divIg[W,] dx
@ KeTy ¢ K

= Z PKf ‘I’e-n=/ PhdivWe dx. (4.40)
E(K) Q

KeTy .

Similarly for the physical diffusion term we have
/ divuy, divIlg[We]dx = / divuy, ;div\W, dx,
Qp.z Q¢

/ D(uh,,):vng[we]dxzf D(wy ;) : VW, dx. (4.41)
Qz Qp.z

Concerning the penalty diffusion term, we control it as follows

1
> / o [ e ] - IMeTw N dS ()

o
0'651

1 <
= —[lupo - [Mg[We] = Wl dS () ~ [lupe | 1 ITe[We] — Well 1
h Y Y

ce& v

i h Huh’f ” 1-1)1/ ||\IJ€ ||W2,2

where we have used Holder’s inequality, the fact [ W, ]| = 0 and the following estimate

172
1
ITelWel = Welly = D / SN IMelWe] — W] PdS ()
0651 o
< 1 <
~ e = Wl 2gg, ) ~ bl Welly2a

thanks to the trace inequality (4.13) and the interpolation error (4.16), see also [35,
Lemma 2.6] for an analogous proof of estimate.

Step — 4 rest of the structure part and external forces By the standard interpo-
lation error and the uniform bounds (4.22) we have

T
/ / Anp Ay dr dt
0 )
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T
:/ / Anp - Aydrdt + O(h),
0 D)

T T
/ f On,fhr - Tlg[We] dx dr +f f gh.o ¥ odrde (4.42)
0 Qh‘r 0 x

T T
= f f on.tfn - Ve dxdt +/ / g ¥drde + O(h).
0 Q. z 0 p)

Finally, collecting all the above terms we finish the proof. O

5 Conclusion

We have studied the fluid—structure interaction problem involving compressible vis-
cous fluids. We have firstly proposed an energy stable time discretization scheme (3.1),
see Theorem 1. Our discretization fulfils the geometric conservation law, see Corol-
lary (1). Moreover, we have shown that the numerical solutions satisfy the renormalized
equation and they are consistent with respect to the weak solutions, see Lemma 2 and
Theorem 2, respectively.

Further, we have developed a fully discrete mixed finite volume—finite element
method (4.17). We have proven the existence of a numerical solution to the scheme
(4.17) in Theorem 3. We have shown that numerical solutions of (4.17) satisfy the
renormalized equation, mass conservation, positivity of density, energy dissipation and
they are consistent to the weak solutions, see Lemma 8, (4.18), Lemma 9, Theorem 4,
and Theorem 5, respectively.

Finally, we would like to emphasize that the time discretization method (3.1) can
be used in the design of other numerical methods pursuing the energy stability for
compressible fluids interacting with an elastic structure.

A: Appendix
A.1 Proof of Theorem 3: existence of a numerical solution

We aim to prove Theorem 3 for the existence of a numerical solution. Before that let
us first introduce an abstract theorem, see [30, Theorem A.1].

Theorem 6 ([30, Theorem A.1]) Let M and N be positive integers. Let Co > € > 0
and C1 > 0 be real numbers. Let V and W be defined as follows:

V:{(x,y)eRMxRN, x > 0},

W={xy eR" xR, e <x <Crand|y| < C1},
where the notation x > ¢ means that each component of x is greater than c, and || - || is
a norm defined over RN . Let F be a continuous function from V x [0, 1]to RM x RN

satisfying:
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1. Y¢ € [0, 1], ifv € V is such that F(v,¢) = 0thenv € W;
2. The equation F(v,0) = 0 is a linear system on v and has a solution in W.

Then there exists at least a solution v € W such that F (v, 1) = 0.
Now we are ready to show Theorem 3.
Proof Let us denote U,f’r = (u’;l’r,z’,i’r), Q = {(¥,¥) € Vir x Wp| W5 = vreg},

and define

V ={(} .. Uf,) € On: xQ, o}, >0}

It is obvious that the degrees of freedom of the spaces Q. and Q are finite. Indeed,
the space Q. can be identified by the set of values og for all K € ’Z;lk . therefore

On: C RM where M is the total number of elements of T;lk .- Analogously, QC RV,

where N is the sum of d times degrees of freedom of £ and the degrees of freedom
of X. Let us consider the mapping

F:Vx[01]— 0y xQ. (@) Uy .0)— (0~ U*) = F(g; .. Uy .. ),

where (0*, U*) € Qp.r x Q is such that

k k—1 k=1 k-1
N Cht —Chr o Xy Ty
0 gn,rdx = @p,r dx
Q. r Q. z

T

+¢ / divy” (0 .+ Vi ) @n.c dx; (A.la)
Qh,r

/ U* ¥, .dx
Qh,r

/ of Trluf 1— (o7 Tirlw, Do X 7!
Qh T T

. \I’hyf dx

k k—1

Z —Z
+/ uwh,,dr+/ Anf Ay dr
) T >
—/ Qﬁyrff~‘llh’rdx+/ g5y dr
Q7 )
b [ dviP o Tt vk Widv—¢ [ peh v ax
Qh,r Qh,r

+gx/9 divu’,;,,div\lrh,,dxﬂzu/gz D(uj ) : V¥, ; dx
h,t

h,t

+( = Op / K (Vb J*+ TV ) ¢ (VT ) d

ooy, / [ |- Tncas

o€l
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(1—;)2u2/ [uf ]] - [T Ifk(Jk) 70800 (A.1b)

0'68]

k k—1 k k k k—1
where ¥, ; = (Wp,7, Yn,o), Mhe = Mpo + LZ uh,fli = Zp 1€, fk =

CEE S VICER S

It is easy to check that F' is continuous. Indeed, it is a one to one mapping, since
the values of o* and U™ can be determined by setting ¢;, = 1k in (A.la), and
(®:); = 1p,, (P); =0for j #iin (A.1b).

Let (o) ., Uy ) € On x Qand ¢ € [0, 1] such that F (o}, ., Uy ., ¢) = (0,0) (in
particular Q]];yt > 0). Then for any (goh,r, Q). =Yy, Wh,r)) e 0, xQ

k k—1 k—1 k-1
Chr —Chr o Xy Ty
$h,t dx
Qhr T

+¢ / leh (Qh o vh 2@, dx = 0; (A.2a)
Qp,r

/ of Mrluf 1— (o) ' Tirluy ') o X A _—
: , T
Qhr

T

+/ Anﬁ’tAwh,,dr—/ Qh Tf ) dx—i—/ gfl//h,,dr
> Qp )
+;/Q divy? (of 7wy 1. vy )+ W o dx

h,t

—g/ p(gz’r)div\llh,,dx—i-;)»/ divuj  divi¥ ; dx
Qh,r Qh,r

+§2u/ D(uj ) : V¥ - dx
Qh,r
1
+(1 - z;)uf iz (Vo 35+ @) (VT ) de

weou Y [ o - DT aseo

oce&l

1
+(1 =¢)2u Z / I:[“h r]] %] de‘(x) (A.2b)

o€l

Taking ¢, r = 1 as a test function in (A.2a) we obtain

k - k - k—1
”Qh” L@ /sz’; o = fgm Ohc dx >0, (A-3)

h,T
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which indicates the boundedness of Qz’r in the L' norm, and thus in all norms as the
problem is of finite dimension. Following the same argument as Lemma 3 we know
that Qﬁ’ ; = 0 provided nggl > 0.

Taking ®; . = (uﬁ’ o z’Z’ ;) as the test function in (A.2b) and follow the proof of
Theorem (1) gives

k

pt <C (A4)

LX(z) —

= HVu';l

k
H Unx T2y + H

where C; depends on the data of the problem.
Further, let K € ’];lkr be such that Q];< is the smallest, i.e., Q];< < Q’E forall L € ’];lkr

We denote K’ = Al,i’_rl o (.A];l,r)_1 (K). Then a straightforward computation gives

k k—1 /
ox|K|— 0 IKI X
. d"h (Qhr’vhr)
k,
=— Z lolo, "p<v§’r-n>g+ Z lo| h® I:[Qﬁ’r]:l
oeE(K) oe&(K) _
>0
k [k
== ) lolok (Vioom) + X
oeE(K) oe&(K)

(©k — o) )<Vh v -n>g
k 3ok k k N
= —IKlek @ ok = Y lol[[eh (i m),

oe€(K)

> —|K|ok (divv) Dk = —|K|of|(divvy )kl

IK'| QK’
Y THeel(divwE x|
where € depends only on the data of the problem. Further, we get from (A.3) that

k—1
_/Qk 10, dx
Qk < h,t
h,t — mmK Tk |K|°

Thus QZ’ > (. Consequently, by virtue of (A.4) Q;T > €

which indicates the existence of C, > 0 such that Qﬁ ; < Co.

Therefore, Hypothes1s 1 of Theorem 6 is satisfied.
Next, we proceed to show that Hypothesis 2 of Theorem 6 is satisfied. Let { = 0
then the system F(Q;T, U}]f,r) = 0 reads

oh.=0p, o X FTh (A.52)
of Trluf 1— (o' Tirluy ') o X 7
: : Wy o dx
th T
k k—1
Z —Z
+/ ht ~ Zhr i dr
b)) T

+“/Q flk (Vo 5+ @7 ) (V9T ) de
h,t
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+2MZ/ [[“hr]] (%] |]:k(Jk) Tl dS(x)

(768[

+/ (OlAr)I;l’tAlﬂh,r + ﬂvn’;,,tvwh,,) dr
b))

—/ Q’,;,fgﬂ-q:h,,der/ &y dr = 0. (A.5b)
Qh,r X

To solve the above system (A.5), we further reformulate it on the reference domain
according to (2.10)

0y Fr=0, F N (A.62)
M7 ] - 7, ] -

A,Q\l;l_tl]__k_l h,t h,t hrdx
Q T

Zﬁ T Zh T = ~
+/ Ty odr + 2 Z/ [[uhf [[‘I'h,r]]dSOc)

(e
oe& 1

+2u/ D(f ) : %@h,,dﬂr/ (OtAnlh"rAWh,r +/3Vn’;mvwh,f) dr
z

—ffi‘ : @h,ré’;i;lfk‘ldf+f gy dr =0, (A.6b)
Q D)

where F*~1 =1 + nﬁ;l /H is determined by nz’_rl. Realizing that (A.6b) is a linear
system with a matrix being block-wise symmetric positive definite, we know that there
exists exactly one solution U }’f (uh . z~ n.o)- Then usmg the fact n% he = nl,i;l ~|—1:z’,§, .
we get nh ; and .Ah .- Further, it is straightforward that uh!r = uh, . o.A h. . (). Finally,
substituting nh’ ; into (A.6a) we obtain the solution for Q; .- Obviously, Q]I;,r > (0 as

long as no self touching. Thus the solution (Q;T, U }’f ) belongs to W, which implies
Hypothesis 2 of Theorem 6.

We have shown that both hypotheses of Theorem 6 hold. Applying Theorem 6
finishes the proof. O

A.2 Proof of Lemma 8: renormalization

Here we show the validity of the discrete renormalized equation stated in Lemma 8
for the discrete continuity problem (4.17a).

Proof Firstly, we set ¢, ; = B'(0) in (4.17a) and obtain

/;}k Dtgﬁ,rB’(Qfl’t)dx + /k divff”r (Qfl’,,vlfl’» B,(Q];i,z)dx =0.

h,T h,t
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Next, recalling (3.4), we know there exist £ € co{gﬁ;l o X,’i_l, Qﬁyr} such that

k k— k—1
Ohr — Opr © X
|, Dok Bh = [ et B'(of ) dx

T
h,t h,t

- (1,

h,t

B(g} ;) dx — /Q/H B(Q}/;Tl)dx>

h,t

+ /k (0} . B'(e}, .) — B(g} )divw),  dx + Dy
Q

h,t

Dy = - /k F (Bl o XiTh = Blek ) = Bk e o X o 1)) dx.

h,T

Further, by recalling the definition of the upwind flux (4.10), and using again the
Taylor expansion, we reformulate the convective term as

/k leh (Qh o Vh T)B (Qh . dx

h,t
o
- 3 [ X i), w [ ]) o
Ke Tk ocdK
:/k Qk B’(Qﬁ T)divvﬁrdx
Qhr
k, k k
2 [ Bel X Bk —do(vh.n) o
Ke?}lkr o€dK
—h Y Bk Y Iol[[a’li,r]]
KET;Ikr ocdK

- fk o+ B' (0} )divvy  dx
h,t
B'(o%) I:[Q;T]:I <[<v§’f : nu_ . h6> ds(x)

:/, o - B' (0} )divv)  dx

k
h,t

+ 2 2 / [8e@hn]] ([(v’z,f'n)g]_—W) dS(x) + D,
Ke’T" ocedkK

@ Springer



On numerical approximations to fluid-structure... 271

where

p= ¥ % [ (o [[eh.] - [5eho]) <[<Vﬁ,z‘n>g]7—hg> as().

k - 4
KeTf, ocdK

Moreover, using the facts

[(vhem), 7= 3 (ke m), [l m), )
and Z/[I:B(Q];l,r):[l <‘<V]’;»f'n>g

k o
KE'];,‘, oecdK

+ he) dS(x) =0,

we obtain

S 5 [ Lokl ([ n), ] ) aseo
[(e'];ﬁraeal( o

=3 X % [ [reto] e o), ase0

k o
KG’Z;I,T oIk

=— ) By Y. /(vﬁ;f -n>a dS(x) = —/k B(g} )divv) , dx.

KeTk o€k O Sh.r

h,t

Consequently, we derive

/k divy” (o} ¢+ ¥i.0)B (0} ;) dx

h,t

= fk (QIZ,IB/(QIZ,I) - B(Q’;,‘,J) diVV’;,T dx + D».
Q

h,T

Finally, collecting the above terms and seeing v’g .t w’,j = ulg .» we complete the
proof, i.e.,

1 _
- (/Q TR B(g,ﬁ,bdx)

h,t Qh.r

+ fk (g,’;rB’(g’,;y,) - B(th"r)> divuj, . dx + Dy + D> = 0.
Q

h,t

O
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A.3 Proof of Theorem 4: energy stability

Here we prove the energy stability stated in Theorem 4 for the discrete scheme (4.17).

. ‘I'IT[llf,_r] ? . k k .
Proof Setting ¢ ; = ———F—— in (4.17a) and (¥ ¢, Ypr) = (uhvr,zh!r) in

(4.17b) we get Ziz=1 I; = 0and Z?=3 I; = 0 respectively, where

2
‘HT uhr]
L = —/Qk DtQherx’
h,t

2
N 7w ]
I = —/Qk d1V (Qhr’ r)de’

h,t

h=/ka@mmwﬁouﬂm,
Qh,r

:,UP k k Gk k
14 = /S;k leh’T (Qh‘rn’]'[u]h, vh’1> . llh’r dx,

h,t
Is = —/ p(ok Hdiva) _dx,
Qf ’ ’
Is = / 2D} )+ Aldiva ) dx +20 Y f [[u r]] ds(x)
Qk
h,t oe&
_ k k
I; = /k Qh ‘L’f ‘W, . dx+/ grzh rdr
Qh,r
k k—1
I _/ Thr " Zne
8 = —zh Ldr,
b T ’
Io = f (wnf Ak + BVif - Vaf ) dr.
)
Now we proceed with the summation of all the [; terms fori =1, ...,09.

Term (1| + I3+ Ig)+ (I¢+ I7) + I9. Firstly, analogously as in the proof of Theorem 1
we have

h+L+LB)+Us+17)+ Dy
1 Iy 2 [
=7 (/Qﬂ;, 79n.c dx — /Szﬁ,1 79«

T _ _ 2 i
3 [ dbn o Xt ot A ax
Qhr '

Iz 7 T oo
+ 5, (St 2 +§|8tzh,‘[| dr
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1 2
k 2 ok 2 k
/ﬁr (2M|D(Uh,f)| —|—)»|d1vuh,r| ) dx +2u E /a_h [[“h,r]] dS(x)

0'651

1
[ bt cder [ gbeh are [ 2o (alan P+ BV P) ar
z z

h,t
T 2
+/ <—(Az§§, >dr.
s\ 2 ’

Term I + 4. For the convective terms, we have using the fact that [17[uy, ] and

divzpr (Qﬁ . HT[u]’;l, v’,j T) are constant on each K € 7, ; and the upwind divergence

2 T
+ 7'8 ‘Vzl,;f

k 2
M )

2

L+l = /Qk —div}? (of .- vh..)

+ /@ divy’, (th"zl'l"[[u]];,, v’h‘.r) “uj,  dx

h,t

k, k, 1 2
= ¥ X [ (et nrw - o 3 i

KET/zk,r oedk °°

DD f ([[Qﬁ,fﬂf[uﬁjl]}vnﬂuz,r]—[[a’,;,,]]%\nﬂuz,,]

KEThk,r gedk *°

= ¥ [ 5[ ] (kv et + e mat) asco

o=K|Le&f

w1 3 [ b [ ] asco

G'Gc“:lk

1 k’ P 2
_ Z/{;(EQh.il’Wﬁ,r~n|+h8Qz,r> [[HT[u',;_I]]] 450,

k
oEE]

>V,h(,r -ndS(x)

2
> dS(x)

Pressure term /5. Recalling the discrete internal energy equation (4.20), we can
rewrite the pressure term as

Is = —/k p(ng’T)divuzr dx
Q

h,t
_ 1 k k—1
= - H(gp, ) dx — H(o), ; )dx | + D1 + D2,
T \Je, ’ @ ’
where D and D are given in (4.21). Collecting all the above terms, we get
ko2 ko2 ko2
1 k k-1 |2, | |Amy | Vi, |
T(/QZTEfdx—/QﬁTIEf dx)—%—/%&( > +a > +B > dr
2
)dr

T 2
+5 / <|8le;t,r|2 to ‘Azﬁ,r +8 ‘Vzﬁ.f
P
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+/ﬂi_r (Z/L\D(uh DI + Aldivaf, ,|2) dr +2u1 Y / [[uh T]] ds(x)

651

f,ffldx

DTz [u} ]

T k- -
:—D]—Dz—/k EgﬁloX’gl
Q/LT

+/Qk O, Tfk u];,,rdx‘l'/ grzh Ldr

h,T

—_— 2
=3 [ (Sekntomr ) [ortuh s

o€ Sk
We finish the proof by summing up the above equation for k = 1, ..., N and multi-
plying with 7. O

A.4 Proof of Lemma 10: useful estimates

Proof Item 1 has been reported by [23, Lemma 3.5]. Item 2 has been reported by [31,
Lemma 4.3]. Item 4 has been reported by [25, Chaper 9, Lemma 7]. We are only left
with the proof of Item 3. We start the proof with the a-priori estimates on v, ¢

_1
”Vhsf”Lm(Lﬁ) = ||uhaf||L°°(L6) + ||thf||L°0(L6) ~T,

where we used (4.14) for uy, ; and (4.28) for wj . On one hand, for y > 2, we employ
(4.30) to get

/ > X f|[[Qhr (Vi,c -m)1dS(x)dr

KeT,  0€E(K)
1/2
Oh,
f Z / lo.c] ut|<Vh,f-n>gldS<x> x
maX{Qh - Qh r}
12

/ 3 / max{ol', 02"} (v - m), |4S()

o€l

<

~ 1/2 ”Qh,r”Lsz ”Vh’T”Lsz)l/Z <

On the other hand, it is easy to check for y € (1,2) that H”(r) = ar? > > aifr < 1
and rH’(r) = ar¥~! > a if r > 1. Therefore

H'(r)(1 +7r) > aforall r € (0, 00)
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Applying these inequalities together with Holder’s inequality, and the estimate (4.22)
we derive (by choosing QZ’T conveniently and (4.13)) that

/ X X /|[[Qhr Vie ) 1dSCo) dr

KeT, . 0€€E(K)

/ Zf,/H"(ghm[[ghf]]l\/\ Vi ), 1y/(1+ 0} )l {var -n), 1dS(o)

0651

S\

12
( HN(Qh ) [[Qh ‘L']] ‘(Vh T n) |dS(x)) X
(TES]

1/2
(/ Z / Vh,t n | + |Q;’, (Vh,r . n)a |dS(x))
€&

~h” %T %“QhTHLooLWS: I

1/2
2 (Ivn el 5o + lonel ogos [¥nell o0

Then, for y € [6/5,2) we have I} Shmiea, Concerning y € (1, 6/5) we deduce
by inverse estimate (4.14) that

N R ARG g V2, S e,

which completes the proof of the first estimate (4.31a).
Similarly, we prove the second estimate (4.31b) in two steps. First for y > 2 we
may derive it due to Holder’s inequality, trace theorem, and the inverse estimate (4.14)

that

/ Z Z [|[[th]]HTuht]<Vhr'n>;|dS(x)dt

KeTy . 0eE(K)
1/2

Qh r
/ Z ,/. maX{Qh I Qzu;} —m _ouy| <Vh,r . n>o |[dS(x) x

o€
1/2

/ > [ maxtele. o) (Mirtws 1)1 {vsc - n), 1450
ol

<

12 -
S (ol oopo Nune I 32p0 ¥l poogs) = 071227

Next, we proceed to show the second estimates for y € (1, 2).

/ Z Z / ||IQh r]] 7 [uy, f](Vhf -n); |dS(x) dt

KeT, . 0€E(K)
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1/2
fZ/ L2 v -m), tascor | x

1/2

/ Z/Q;ll rm | (Ve - m) | (T Tws . 1)° dS(x)

oe&y
. 12
< —_
< pl2 (/ ”Qh T ||L2(2 ) ”Vh’f ”L6 ”llh,r ”L(’ dt)
S oo | ot [Vie 5 1o luae 26
S o |G, =,

where we have used the algebraic inequality for y e (1,2) that [[Qh,,]]z <
|:[(,QV/2 ]] < - y/2> If % < y it follows (as before) that I, ~ h~1/2¢=1. On

the other hand, if | <y < % we complete the proof by the inverse estimates (4.14)
and find

—12 -1 =
L <h ¢ ”Qh’T”LOO(LZ(%W)
1, 3 3 2y 9y—12
< h V2T (T o oogry) T =P
which finishes the estimate. O
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