
Numerische Mathematik (2022) 150:373–422
https://doi.org/10.1007/s00211-021-01254-z

Numerische
Mathematik

A real triple dqds algorithm for the nonsymmetric
tridiagonal eigenvalue problem

Carla Ferreira1 · Beresford Parlett2

Received: 18 December 2010 / Revised: 14 May 2021 / Accepted: 25 October 2021 /
Published online: 18 January 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
The paper discusses the following topics: attractions of the real tridiagonal case, rela-
tive eigenvalue condition number for matrices in factored form, dqds, triple dqds, error
analysis, new criteria for splitting and deflation, eigenvectors of the balanced form,
twisted factorizations and generalized Rayleigh quotient iteration. We present our fast
real arithmetic algorithm and compare it with alternative published approaches.

Mathematics Subject Classification 65F15

1 Introduction

The dqds algorithm was introduced in [9] as a fast and extremely accurate way to
compute all the singular values of a bidiagonal matrix B. This algorithm implicitly
performs the Cholesky LR iteration on the tridiagonal matrix BT B and it is used in
LAPACK. However the dqds algorithm can also be regarded as executing, implicitly,
the LR algorithm applied to any tridiagonal matrix with 1’s on the superdiagonal.
Our interest here is in real unsymmetric matrices which may, of course, have some
complex eigenvalues. In contrast to the QR algorithm, the LR algorithm preserves
tridiagonal form and this feature makes dqds attractive. It is natural to try to retain real
arithmetic and yet permit complex conjugate pairs of shifts. Our analogue of the double

The research of the first author was partially financed by Portuguese Funds through FCT (Fundação para a
Ciência e a Tecnologia) within the Projects UIDB/00013/2020 and UIDP/00013/2020.

B Carla Ferreira
caferrei@math.uminho.pt

Beresford Parlett
parlett@math.berkeley.edu

1 Centro de Matemática, Universidade do Minho, 4710-057 Braga, Portugal

2 Division of the Electrical Engineering and Computer Science, Department of Mathematics and the
Computer Science, University of California, Berkeley, CA 94720, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00211-021-01254-z&domain=pdf

374 C. Ferreira, B. Parlett

shift QR algorithm of Francis [14] is the triple step dqds algorithm. We explain why
three steps are needed. However the main goal of this paper is to derive our implicit
implementation (3dqds) of this 3-steps process which relies on the implicit L analogue
of the implicit Q theorem. See Sect. 3.4.1 and Theorem 3.1.

In order to focus on our 3dqds algorithm we assume an extensive background for
our reader. The unsymmetric eigenvalue problem can be almost ill-posed and such
cases are not easily apparent. A tridiagonal matrix requires so little storage that it
seems feasible to compute approximate eigenvalues together with an indication of the
number of digits that are robust in the presence of computer arithmetic. We decided to
provide relative condition numbers (for factored forms) for each computed eigenvalue
even when the user does not request it. The extra cost, in storage and arithmetic
operations is surprisingly low, 2n storage and O(n) computing. See Sect. 7.2 for
details. We omit any history of the contributions to the field, even the seminal work
of H. Rutishauser who invented the qd algorithm and the LR algorithm [26–28]. We
must however mention that he also discovered the so-called differential form of qd but
did not appreciate its accuracy and never published it. That understanding came much
later in the computation of singular values of bidiagonal matrices. See [9]. We do
describe the double LR algorithm for complex conjugate shifts because of its relation
to our triple dqds algorithm.We say nothing about the need for an eigensolver devoted
to tridiagonal matrices because that issue is covered admirably by Bini et al. [1]. We
do give pseudocode for a complete program but hope it will not produce distractions
from our main concern, the 3dqds algorithm. We provide error analyses for both dqds
and 3dqds.

A novel feature of our approach is the usefulness of keeping matrices in factored
form. We also acknowledge the preliminary work on this problem by Wu [36].

We do not follow Householder conventions except that we reserve capital Roman
letters for matrices. Section 2 describes other relevant methods, Sect. 3 presents stan-
dard, but needed, material on LR, dqds, single and double shifts and the implicit L
theorem. Section 4 develops our 3dqds algorithm, Sect. 5 is our error analysis, Sect. 6
our splitting, deflation and shift strategy.

Section 7 analyzes applications of factored forms - the computation of eigenvectors
using twisted factorizations of the balanced form, relative condition numbers and the
generalized Rayleigh quotient iteration. Finally, Sect. 8 presents our numerical tests
using Matlab and Sect. 9 gives our conclusions.

2 Other methods relevant to 3dqds

2.1 2 steps ofLR = 1 step ofQR

For a symmetric positive definite tridiagonal matrix 2 steps of the LR (Cholesky)
algorithm produces the same matrix as 1 step of the QR algorithm. Less well known
is the article by Xu [37] which extends this result when the symmetric matrix is not
positive definite. The catch here is that the LR transform, if it exists, does not pre-
serve symmetry. The remedy is to regard similarities by diagonal matrices as “trivial”,
always available, operations. Indeed, diagonal similarities cannot introduce zeros into

123

A real triple dqds algorithm for the nonsymmetric… 375

a matrix. So, when successful, 2 steps of LR are diagonally similar to one step of QR.
Even less well known is a short paper by Slemons [31] showing that for a tridiagonal
matrix, not necessarily symmetric, 2 steps of of LR are diagonally equivalent to 1 step
of HR, see [2]. Note that when symmetry disappears then QR is out of the running
because it does not preserve the tridiagonal property.

The point of listing these results is to emphasize that 2 steps of LR gives twice as
many shift opportunities as 1 step of QR or HR. Thus convergence can be more rapid
with LR (or dqds) than with QR or HR. This is one of the reasons that dqds is faster
than QR for computing singular values of bidiagonals. This extra speed is an additional
bonus to the fundamental advantage that dqds delivers high relative accuracy in all the
singular values. The one drawback to dqds, for bidiagonals, is that the singular values
must be computed in monotone increasing order; QR allows the singular values to be
found in any order.

In our case, failure is always possible and so there is no constraint on the order in
which eigenvalues are found. The feature of having more opportunities to shift leads
us to favor dqds over QR and HR. See the list of other methods which follows.We take
up the methods in historical order and consider only those that preserve tridiagonal
form.

2.2 Cullum’s complexQR algorithm

As part of a program that used the Lanczos algorithm to reduce a given matrix to
tridiagonal form in [4], Jane Cullum used the fact that an unsymmetric tridiagonal
matrix may always be balanced by a diagonal similarity transformation [18]. She
then observed that another diagonal similarity with 1 or i produces a symmetric, but
complex, tridiagonal matrix to which the (complex) tridiagonal QR algorithm may be
applied. The process is not backward stable because the relation

cos2 τ + sin2 τ = 1

is not a constraint on | cos τ | and | sin τ | when τ is complex. Despite the possibility
of breakdown the method proved satisfactory in practice. We have not used it in our
comparisons because we are persuaded by 2.1 that it is outperformed by the complex
dqds algorithm, described below.

2.3 Liu’sHR algorithm

In [16], Liu found a variation on the HR algorithm of Angelika Bunse–Gerstner that,
in exact arithmetic, is guaranteed not to breakdown—but the price is a temporary
increase in bandwith. This procedure has only been implemented in Maple and we
do not include it in our comparison.

2.4 Complex dqds

In his thesis Day [5] developed a Lanczos-style algorithm to reduce a general matrix
to tridiagonal form and, as with Jane Cullum, needed a suitable algorithm to compute

123

376 C. Ferreira, B. Parlett

its eigenvalues. He knew of the effectiveness of dqds in the symmetric positive definite
case and realized that dqds extends formally to any tridiagonal that admits triangular
factorization. The code uses complex arithmetic because of the possible presence of
complex conjugate pairs of eigenvalues.

We compare our real 3dqds algorithm with its explicit version—the three steps of
dqds are computed explicitly in complex arithmetic—in a more sophisticated version
of David Day’s complex dqds code.

2.5 Ehrlich–Aberth algorithm

This very careful and accurate procedure was presented by Bini et al. [1]. It finds the
zeros of the characteristic polynomial p(·) and exploits the tridiagonal form to evaluate
p′(z)/p(z) for any z. The polynomial solver improves a full set of approximate zeros
at each step. Initial approximations are found using a divide-and-conquer procedure
that delivers the eigenvalues of the top and bottom halves of the matrix T . The quantity
p′(z)/p(z) is evaluated indirectly as

[
trace(z I − T)−1

]
using a QR factorization of

z I −T . Since T is not altered there is no deflation to assist efficiency. Very careful tests
exhibit the method’s accuracy - but it is very slow compared to dqds-type algorithms.

3 LR and dqds

The reader is expected to have had some exposure to the QR and/or LR algorithms so
we will be brief.

3.1 LU factorization

Any n×n matrix A permits unique triangular factorization A = LDŨ where L is unit
lower triangular, D is diagonal, Ũ is unit upper triangular, if and only if the leading
principal submatrices of orders 1, . . . , n − 1 are nonsingular.

In this paper we follow common practice and write U = DŨ so that the “pivots”
(entries of D) lie on U ’s diagonal. Throughout this paper any matrix L is unit lower
triangular while U is simply upper triangular.

3.2 LR transformwith shift

Note thatU is “right” triangular and L is “left” triangular and this explains the standard
name LR. For any shift σ let

A − σ I = LU , (3.1)

Â = UL + σ I . (3.2)

Then Â is the LR(σ) transform of A. Note that

Â = L−1(A − σ I)L + σ I = L−1AL.

123

A real triple dqds algorithm for the nonsymmetric… 377

We say that the shift is restored (in contrast to dqds—see below). The LR algorithm
consists of repeated LR transformswith shifts chosen to enhance convergence to upper
triangular form. For the theory see [28,29,33,34].

In contrast to the well known QR algorithm, the LR algorithm can breakdown and
can suffer from element growth, ‖L‖ >> ‖A‖, ‖U‖ >> ‖A‖. However LR preserves
the banded form of A while QR does not (except for the Hessenberg form).

When amatrix A is represented by its entries then the shift operation A −→ A−σ I
is trivial. When a matrix is given in factored form the shift operation is not trivial.

3.3 The dqds algorithm

From now on we focus on tridiagonal matrices in J -form which means that entries
(i, i + 1) are all 1, i = 1, . . . , n − 1. Any tridiagonal matrix C = tr idiag(b, a, c)
that does not split (unreduced), bi ci �= 0, is diagonally similar to a J -form. Entries
(i + 1, i) equal bi ci . Throughout this paper all J matrices have this form. See [11,
Section 2.2] on representations of tridiagonals.

If J − σ I permits triangular factorization

J − σ I = LU

then L and U must have the following form

L =

⎡

⎢⎢⎢⎢⎢
⎣

1
l1 1

. . .
. . .

ln−2 1
ln−1 1

⎤

⎥⎥⎥⎥⎥
⎦

, U =

⎡

⎢⎢⎢⎢⎢
⎣

u1 1
u2 1

. . .
. . .

un−1 1
un

⎤

⎥⎥⎥⎥⎥
⎦

. (3.3)

It is an attractive feature of LR that

UL = Ĵ

is also of J -form. Thus the parameters li , i = 1, . . . , n − 1, and u j , j = 1, . . . , n,
determine the matrices L and U above and implicitly define two tridiagonal matrices
LU and UL .

The qds algorithm is equivalent to the LR algorithm but only the factors L,U are
formed, not the J matrices. The progressive transformation is from L,U to L̂, Û ,

L̂Û = UL − σ I . (3.4)

Notice that the shift is not restored and so Û L̂ is not similar to UL ,

Û L̂ = L̂−1(UL)L̂ − σ I . (3.5)

123

378 C. Ferreira, B. Parlett

Equating entries in each side of equation (3.4) gives

qds(σ) : û1 = u1 + l1 − σ ;
for i = 1, . . . , n − 1

l̂i = li ui+1/ûi
ûi+1 = ui+1 + li+1 − σ − l̂i

end for.

The algorithm qds fails when ûi = 0 for some i < n. When σ = 0 we write simply
qd, not qds.

In 1994 a better way was found to implement qds(σ). These are called differential
qd algorithms. See [21] for more history. This form uses an extra variable d but never
forms matrix products.

dqds(σ) : d1 = u1 − σ

for i = 1, . . . , n − 1
ûi = di + li
l̂i = li (ui+1/ûi)
di+1 = di (ui+1/ûi) − σ

end for
ûn = dn .

By definition, dqd=dqds(0). In practice we choose to compute, and store, ûi and l̂i
separately from ui and li . This allows us to reject a transform, choose a new shift, and
proceed smoothly to another step. Only when the transform is accepted will we write
ûi and l̂i over ui and li .

A word on terminology. In Rutishauser’s original work qi = ui , ei = li ; and
the qi ’s were certain quotients and the ei ’s were called modified differences. In fact
the qd algorithm led to the LR algorithm, not vice-versa. The reader can find more
information concerning dqds in [21,23]

One virtue of the dqds and QR transforms is that they work on the whole matrix so
that large eigenvalues are converging near the top, albeit slowly, while the small ones
are being picked off at the bottom.

We summarize some advantages and disadvantages of the factored form.

3.3.1 Advantages of the factored form

1. L,U determines the entries of J to greater than working-precision accuracy
because the addition andmultiplication of l’s and u’s is implicit. Thus, for instance,
the (i, i) entry of J is given by li−1 + ui implicitly but f l(li−1 + ui) explicitly.

2. Singularity of J is detectable by inspection when L and U are given, but only by
calculation from J . So, LU reveals singularity, J does not.

3. LU defines the eigenvalues better than J does (usually). There is more on this in
[7].

4. Solution of J x = b takes half the time when L and U are available.

123

A real triple dqds algorithm for the nonsymmetric… 379

3.3.2 Disadvantages of the factored form

The mapping J , σ �→ L,U is not everywhere defined for all pairs J , σ and can suffer
from element growth. This defect is not as serious as it was when the new transforms
were written over the old ones. For tridiagonals we can afford to double the storage
and map L,U into different arrays L̂, Û . Then we can decide whether or not to accept
L̂, Û and only then would L and U be overwritten. So the difficulty of excessive
element growth has been changed from disaster to the non-trivial but less intimidating
one of, after rejecting a transform, choosing a new shift that will not spoil convergence
and will not cause another rejection.

Now we turn to our main question of dqds(σ): how can complex shifts be used
without having to use complex arithmetic? This question has a beautiful answer for
QR and LR iterations.

3.4 Implicit shiftedLR for J matrices

3.4.1 Double shiftLR algorithm

We use the J , L and U notation from the previous section. Consider two steps of the
LR algorithm with shifts σ1 and σ2,

J1 − σ1 I = L1U1

J2 = U1L1 + σ1 I

J2 − σ2 I = L2U2

J3 = U2L2 + σ2 I . (3.6)

Then, with matrices L = L1L2 and U = U2U1, we have

J3 = L−1 J1L (3.7)

and the triangular factorization

LU = L1(J2 − σ2 I)U1 = L1(U1L1 + σ1 I − σ2 I)U1

= L1U1 [L1U1 + σ1 I − σ2 I] = (J1 − σ1 I)(J1 − σ2 I)

= J 21 − (σ1 + σ2)J1 + σ1σ2 I =: M . (3.8)

An important observation from (3.8) is that column 1 of M is proportional to column
1 of L,

Me1 = LUe1 = Le1u11, u11 = m11.

According to the following theorem, matrix L is determined by its first column and
we can compute J3 from J1 without using J2.

123

380 C. Ferreira, B. Parlett

Theorem 3.1 [Implicit L theorem] If H1 and H2 are unreduced upper Hessenberg
matrices and H2 = L−1H1L, where L is unit lower triangular, then H2 and L are
completely determined by H1 and column 1 of L.

We omit the proof and refer to [11, pp. 66–68].
So the application to J1 and J3, using (3.7), is to choose column 1 ofL (which has

only three nonzero entries since J1 is tridiagonal and J 21 is pentadiagonal) to be

L1 = I + m1e1T (3.9)

where m1 = [
0 m21/m11 m31/m11 0 . . . 0

]T and perform a first explicit similarity
transform on J1,

L−1
1 J1L1 =: K .

Observe that K is not tridiagonal. In the 6 × 6 case

K =

⎡

⎢
⎢⎢⎢⎢⎢
⎣

x 1
x x 1
+ x x 1
+ x x 1

x x 1
x x

⎤

⎥
⎥⎥⎥⎥⎥
⎦

. (3.10)

Next we apply a sequence of elementary similarity transformations such that each
transformation pushes the 2 × 1 bulge one row down and one column to the right.
Finally the bulge is chased off the bottom to restore the J -form. In exact arithmetic,
the implicit L theorem ensures that this technique of bulge chasing gives

J3 = (L1 . . .Ln−1)
−1 J1(L1 . . .Ln−1) and L = L1 . . .Ln−1.

In Sect. 4.1 below we will see the details on L j , j = 2, . . . , n − 1.
If matrix J1 and shifts σ1 and σ2 are real then factors L1,U1, L2,U2 and matrices

J2, J3 will all be real. Now suppose that J1 is real and σ1 is complex. Then, by (3.8),
J3 will be real if, and only if, σ2 = σ 1. The reason is that M is real,

M = J 21 − 2(�σ1)J1 + |σ1|2 I ,

so that L and U are real and J3 is the product of real matrices. Note however that
J2, and factors L2,U2, will be complex, given that L1,U1 and shifts σ1, σ2 are all
complex. As we have described above, it is possible to skip this complex matrix J2
and go straight from real J1 to real J3. So, in the case of complex eigenvalues (which
for real matrices occur in complex conjugate pairs) we will be able to apply a complex
conjugate pair of shifts implicitly and avoid complex arithmetic. Recall that we are
seeking an algorithm that uses only real arithmetic and converges to real Schur form.

123

A real triple dqds algorithm for the nonsymmetric… 381

Fig. 1 Implicit two steps of LR and three steps of dqds

3.4.2 Connection to dqds algorithm

In Fig. 1 we examine the two steps of the LR transform derived in the previous section
but with a significant difference. Instead of J1 being an arbitrary matrix in J -form,
we assume that it is given to us in the form U0L0. A different way of introducing this
factorization is saying that our initial matrix is J0 (not J1) and we always consider an
additional unshifted LR step for constructing real factored forms

J0 = L0U0andJ1 = U0L0

so that dqds starts with factors L0,U0. The dqds algorithm can not start with J1 unless
its UL factorization is available.

The crucial observation in Fig. 1 is that the implicit LR algorithm forms only the J
matrices while dqds, on the bottom line, works only on the factors L ,U . So with LR
the only J matrix which is skipped by an implicit double step is J2 and we go from
J1 = U0L0 to J3 = L3U3. The dqds algorithm cannot stop with L2,U2 because it is
only when we take the product U2L2 and add back the shift σ2 that we get the matrix
J3; it requires a third step to obtain L3,U3 which define J3. The triple dqds algorithm
will skip the factors L1,U1, L2,U2 and will go from L0,U0 to L3,U3 performing
implicitly three dqds steps.

Here is anotherway to describe the diagonal arrows in Fig. 1 for the relation between
double shift LR and triple dqds:

double shift LR triple dqds

J1 = U0L0
J1 − σ1 I = L1U1

}
L1U1 = U0L0 − σ1 I

J2 = U1L1 + σ1 I
J2 − σ2 I = L2U2

}
L2U2 = U1L1 − (σ2 − σ1)I

J3 = U2L2 + σ2 I L3U3 = U2L2 − (−σ2)I

(3.11)

So the similarity (3.7) corresponds to

L3U3 = L−1(U0L0)L (3.12)

and, in contrast to a single dqds step, a triple dqds step (implicit) restores the shifts.
Observe that in the triple dqds step (3.11) we find factors L3,U3 such that J3 =

L3U3 and these factors (different factors) would only occur in LR in the following
step with a new shift σ3,

123

382 C. Ferreira, B. Parlett

J3 = U2L2 + σ2 I
J3 − σ3 I = L3U3

}
L3U3 = U2L2 − (σ3 − σ2)I

J4 = U3L3 + σ3 I .

(3.13)

So to make explicit dqds equivalent to LR with shifts σi and σi+1 it is necessary to use
the differences (σi+1 − σi) with dqds. In other words, successive shifts σi and σi+1 in
LR lead to the dqds step

Li+1Ui+1 = Ui Li − (σi+1 − σi)I .

3.4.3 Single shift LR and double dqds

Analogously to a double shift, a single shift LR step is equivalent to two steps of dqds
when we consider the implicit implementation of these shifted algorithms.

single shift LR double dqds

J1 = U0L0
J1 − σ1 I = L1U1

}
L1U1 = U0L0 − σ1 I

J2 = U1L1 + σ1 I L2U2 = U1L1 − (−σ1)I

(3.14)

Similar to (3.7) and (3.12),

J2 = L−1 J1L and L2U2 = L−1(U0L0)L (3.15)

with L = L1. Here matrix M is tridiagonal,

LU = L1U1 = J1 − σ1 =: M

and matrix K corresponding to (3.10) has only one bulge in entry (3, 1) (instead of a
2 × 1 bulge).

Recall from Sect. 3.4.1 that the implicit double LR algorithm uses the technique of
bulge chasing. This technique is also applied for implicit single shifts.

The next section develops a form of bulge chasing for the triple dqds algorithm
(3dqds). We did not develop this technique for the double dqds algorithm (2dqds)
because in our shift strategy we will always use double shifts (only initially we use
single dqds with zero shifts). See Sect. 6.3 for details on the shift strategy in our
complete algorithm.

4 Triple dqds algorithm

We use the term 3dqds as a shorthand for our triple dqds algorithm which, using bulge
chasing, implements implicitly the three dqds steps (3.11) equivalent to an implicit
double shift LR step. Although the 3dqds algorithm has been primarily developed to
avoid complex arithmetic in the case of consecutive complex shifts σ1 and σ2 = σ 1

123

A real triple dqds algorithm for the nonsymmetric… 383

in the presence of complex eigenvalues, it can be applied to the case of two real shifts
σ1 and σ2. To cover both cases, all we need is the sum and the product of the pair of
shifts, sum = σ1 + σ2 and prod = σ1σ2, to form matrix M in (3.8),

M = (U0L0)
2 − sum(U0L0) + prodI . (4.1)

Using (3.12) the idea is to transform U0 into L3 and L0 into U3 by bulge chasing
in each matrix,

L3U3 = L−1U0︸ ︷︷ ︸ L0L︸︷︷︸ .

Notice that we need to transform an upper bidiagonal into a lower bidiagonal and
vice-versa. From the uniqueness of the LU factorization, when it exists, it follows,
see [20], that there is a unique hidden matrix X such that

L3 = L−1U0X
−1, XL0L = U3.

The matrix L is given, from Sect. 3.4.1, as a product

L = L1 . . .Ln−1Ln

(Ln = I) and we will gradually construct the matrix X in corresponding factored form
Xn · · · X2X1. In fact we will write each Xi as a product

Xi = Yi Zi .

Matrices Li and Yi are elementary matrices, Li = I + mi eTi and Yi = I + wi eTi ,
but Zi is not. The details are quite complicated and will be shown in the following
sections.

4.1 Chasing the bulges

Starting with the factors L0,U0 and the shifts σ1, σ2, we normalize column 1 of M in
(4.1) to form L1, spoil the bidiagonal form with

L−1
1 U0︸ ︷︷ ︸

L0L1︸ ︷︷ ︸

and at each minor step i , i = 1, . . . , n, matrices Zi , Li and Yi are chosen to chase the
bulges. After n minor steps, we obtain L3 and U3,

L3U3 = L−1
n · · ·L−1

1 U0Z
−1
1 Y−1

1 · · · Z−1
n Y−1

n︸ ︷︷ ︸
Yn Zn · · · Y1Z1L0L1 · · ·Ln︸ ︷︷ ︸

= L−1
n · · ·L−1

1 U0X
−1
1 · · · X−1

n︸ ︷︷ ︸
Xn · · · X1L0L1 · · ·Ln︸ ︷︷ ︸

= L−1U0X
−1

︸ ︷︷ ︸ XL0L︸ ︷︷ ︸

123

384 C. Ferreira, B. Parlett

All the work of bulge chasing will be confined to two matrices F and G. Initially,

F = U0, G = L0

and, finally,

F = L3, G = U3.

For a pair of shifts σ1 and σ2 (real or a complex conjugate pair), the triple dqds
algorithm has the following matrix formulation:

3dqds(σ1, σ2) :
% step 1

F = U0; G = L0

F = FZ−1
1 ; G = Z1G

F = L−1
1 F; G = GL1 [form L1 using (3.9) and (4.1)]

F = FY−1
1 ; G = Y1G

% steps 2 to n-3

for i = 2, . . . , n − 3

F = FZ−1
i ; G = ZiG

F = L−1
i F; G = GLi

F = FY−1
i ; G = YiG [Zi with one, Li with two and Yi with three

end for nonzero off-diagonal entries]

% step n-2

F = FZ−1
n−2; G = Zn−2G

F = L−1
n−2F; G = GLn−2

F = FY−1
n−2; G = Yn−2G [Yn−2 with two nonzero off-diagonal entries]

% step n-1

F = FZ−1
n−1; G = Zn−1G

F = L−1
n−1F; G = GLn−1

F = FY−1
n−1; G = Yn−1G [Yn−1 and Ln−1 with one nonzero off-diagonal entry]

% step n

Ln = I ; Yn = I

F = FZ−1
n ; G = ZnG [Zn diagonal]

L3 = F; U3 = G

123

A real triple dqds algorithm for the nonsymmetric… 385

4.2 Details of 3dqds

In this section we will go into important details of the 3dqds algorithm. Consider
L0 with subdiagonal entries l1, . . . , ln−1 and U0 with diagonal entries u1, . . . , un ,
as defined in Sect. 3.3, and consider matrices L3 and U3 with subdiagonal entries
l̂1, . . . , l̂n−1 and diagonal entries û1, . . . , ûn , respectively.

For each iteration of 3dqds, at the beginning of a minor step i, i = 2, . . . , n − 3,
the active 4 × 4 windows of F and G are

F =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎣

. . .

. . . 1
l̂i−1 ui 1
xl ui+1 1

yl ui+2

. . .

. . .

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥⎥
⎦

, G =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎣

. . .
. . .

ûi−1 1
xr
yr 1
zr li+1 1

. . .
. . .

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎦

. (4.2)

We denote the entries Fi+1,i−1 and Fi+2,i−1 by
[
xl yl

]T , the 2×1 bulge in F , and the

entriesGi,i ,Gi+1,i andGi+2,i by
[
xr yr zr

]T . The bulge inG is
[
yr zr

]T . In practice,
as the bulges both change value and position, these 5 auxiliary variables are enough to
accomplish all the calculations. The subscripts l and r in x, y and z derive from “left”
and “right”, respectively, and observe that these variables are not from matrices X , Y
and Z described in Sect. 4.1.

Each minor step i , i = 2, . . . , n − 3, consists of the following 3 parts. The values
in xl , yl , xr , yr , zr change and they move one column right and one row down.

Minor stepi

(a) F ←− FZ−1
i puts 0 into Fi,i+1 and 1 into Fi,i G ←− ZiG turns Gi,i+1 into 1

and changes Gi,i

Z−1
i =

⎡

⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢
⎣

. . .

1
1
ui

− 1
ui

0 1
1

. . .

⎤

⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥
⎦

, Zi =

⎡

⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢
⎣

. . .

1
ui 1
0 1

1
. . .

⎤

⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥
⎦

,

FZ−1
i =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

. . .

. . . 1
l̂i−1 1 0
xl ui+1 1

yl ui+2

. . .

. . .

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

, ZiG =

⎡

⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

. . .
. . .

ûi−1 1
xr 1
yr 1
zr li+1 1

. . .
. . .

⎤

⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

xr ←− xr ∗ ui + yr

123

386 C. Ferreira, B. Parlett

(b) F ←− L−1
i F puts 0 into Fi+1,i−1 and Fi+2,i−1, and moves the bulge to column

i G ←− GLi creates ûi in Gi,i and changes Gi+1,i , Gi+2,i and Gi+3,i below it

xl ←− −xl /̂li−1

yl ←− −yl /̂li−1
, L−1

i =

⎡

⎢⎢⎢⎢⎢
⎢
⎣

. . .

1
xl 1
yl 1

. . .

⎤

⎥⎥⎥⎥⎥
⎥
⎦

, Li =

⎡

⎢⎢⎢⎢⎢
⎢
⎣

. . .

1
−xl 1
−yl 1

. . .

⎤

⎥⎥⎥⎥⎥
⎥
⎦

L−1
i F =

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

. . .

. . . 1
l̂i−1 1 0
0 xl ui+1 1

0 yl ui+2
. . .

. . .

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

, GLi =

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

. . .
. . .

ûi−1 1
ûi 1
xr 1
yr li+1 1
zr li+2 1

. . .
. . .

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

ûi ←− xr − xl
xr ←− yr − xl
yr ←− zr − yl − xl ∗ li+1
zr ←− −yl ∗ li+2

(c) G ←− YiG puts 0 into Gi+1,i , Gi+2,i and Gi+3,i , and moves the bulge to column
i + 1 F ←− FY−1

i creates l̂i in Fi+1,i and changes Fi+2,i and Fi+3,i (bulge in
F) below it

xr ←− xr/ûi
yr ←− yr/ûi
zr ←− zr/ûi

, Y−1
i =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

. . .

1
xr 1
yr 1
zr 1

. . .

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

, Yi =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

. . .

1
−xr 1
−yr 1
−zr 1

. . .

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

FY−1
i =

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

. . .

. . . 1
l̂i−1 1 0
0 ̂li ui+1 1
0 xl ui+2 1

yl ui+3
. . .

. . .

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

, YiG =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

. . .
. . .

ûi−1 1
ûi 1
0 xr
0 yr 1
0 zr li+2 1

. . .
. . .

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

123

A real triple dqds algorithm for the nonsymmetric… 387

l̂i ←− xl + yr + xr ∗ ui+1
xl ←− yl + zr + yr ∗ ui+2
yl ←− zr ∗ ui+3

xr ←− 1 − xr
yr ←− li+1 − yr
zr ←− −zr

The result of this minor step is that the active windows of F and G shown in (4.2)
have been moved down and to the right by one place.

Naturally steps 1, n − 2, n − 1, n are slightly different and their practical imple-
mentation may be found in [11, pp.147–157].

4.3 Comparison of dqds and 3dqds

In this section we present a detailed version of the inner loop of 3dqds and compare
one step of 3dqds with three steps of simple dqds in terms of arithmetic effort.

Here is the inner loop of 3dqds. See “AppendixA” for the whole 3dqds algorithm.

3dqds(σ1, σ2) :
for i = 2, . . . , n − 3

xr = xr ∗ ui + yr
xl = −xl /̂li−1; yl = −yl /̂li−1;
ûi = xr − xl;
xr = yr − xl; yr = zr − yl − xl ∗ li+1; zr = −yl ∗ li+2
xr = xr/ûi ; yr = yr/ûi ; zr = zr/ûi
l̂i = xl + yr + xr ∗ ui+1
xl = yl + zr + yr ∗ ui+2; yl = zr ∗ ui+3
xr = 1 − xr ; yr = li+1 − yr ; zr = −zr

end for

In contrast,

dqds(σ) :
d1 = u1 − σ

for i = 1, . . . , n − 1
ûi = di + li
t = ui+1/ûi
di+1 = di t − σ

l̂i = li t
end for
ûn = dn . (4.3)

In practice, each di+1 may be written over its predecessor in a single variable d
and, using and auxiliary variable t , only one division is needed.

Table 1 below shows that the number of floating point operations required by one
step of 3dqds is comparable to three steps of dqds (table expresses only the number
of floating point operations in the inner loops).

123

388 C. Ferreira, B. Parlett

Table 1 Operation count of
3dqds and 3 dqds steps

3dqds 3 dqds steps

Divisions 5 3

Multiplications 6 6

Additions 5 3

Subtractions 6 3

Assignments 16 12

Auxiliary variables 5 2

However to accomplish a complex conjugate pair of shifts these 3 dqds steps will
be complex in contrast to our 3dqds which uses only real arithmetic. Thus 3 steps of
complex dqds take more time than one step of 3dqds(complex arithmetic raises the
cost by a factor of about 4 [6, p.163]).

5 Error analysis

We turn to the effect of finite precision arithmetic on our algorithms. First consider
the dqds algorithm.

5.1 dqds

It is well known that even in exact arithmetic the dqds iteration, applied to the factors
L,U of a J matrix can break down due to a zero pivot in the new factors. The dqds
transform, just like the LR transform, is unstable. In the early days when the new
was written over the old immediately breakdown was a disaster. Today all users can
afford to store the new factors separately from the old and simply reject a transform
with unacceptable element growth, choose a new shift, and continue the iteration. A
rejection is a nuisance, not a disaster.

One of the attractions of dqds is that it has high mixed relative stability, to be
explained below. One of us proved this in [9] in the context of singular values of
bidiagonals and eigenvalues of real symmetric tridiagonals. Since this desired property
is independent of symmetry, we take this opportunity to present the result again in the
context of J matrices.

To set up notation for the proof we consider real bidiagonal factors L and U of a
real J matrix together with a real shift σ and use the dqds transform to obtain output
L̂, Û satisfying

L̂Û = UL − σ I . (5.1)

We assume no anomalies occur, i.e. no divisions by zero, no overflow/underflow.

Theorem 5.1 ([9], Theorem 4) Let dqds(σ) map L,U into computed L̂, Û with no
anomalies. Then well chosen small relative changes in the entries of both input and

123

A real triple dqds algorithm for the nonsymmetric… 389

Fig. 2 Effects of roundoff for
dqds

output matrices, of at most 3 ulps each, produces new matrices, one pair mapped into
the other, in exact arithmetic, by dqds(σ).

Our analysis consists to write down the exact relations satisfied by the computed
quantities L̂, Û and then to work out among them an exact dqds transform whose
input is close to L,U and output is close to L̂, Û . The diagram in Fig. 2 is an excellent
summary.

The model of arithmetic we assume is that the floating point result of a basic
arithmetic operation
 (one of the four binary operations +, −, ∗ and /) satisfies

f l(x
 y) = (x
 y)(1 + ε) = (x
 y)/(1 + η) (5.2)

where ε and η depend on x , y, and the operation
, and satisfy

|ε| < ε, |η| < ε. (5.3)

The quantity ε is called variously roundoff unit, machine precision or macheps. We
will choose freely the form (ε or η) that suits the analysis.Wewill also use the acronym
ulp which stands for units in the last place held and it is the natural way to refer to
relative differences between numbers.

Our result is possible because of the simple form of the recurrence for the auxiliary
variable {di }ni=1. In exact arithmetic

d1 = u1 − σ, di+1 = diui+1

di + li
− σ, i = 1, . . . , n − 1.

Proof We consider the floating point implementation of dqds in (4.3). The computed
quantities L̂, Û are governed by the following exact relations.

ûi = f l(di + li) = (di + li)/(1 + ε+)

t = f l(ui+1/ûi) = ui+1(1 + ε/)

ûi
= ui+1(1 + ε/)(1 + ε+)

di + li

di+1 = f l
(
f l(di ∗ t) − σ

) = di t(1 + ε∗) − σ

1 + εi+1

l̂i = f l(li ∗ t) = li t/(1 + ε∗∗)

123

390 C. Ferreira, B. Parlett

The symbol ε∗∗ represents the rounding error in the second multiplication li ∗ ti . All
the ε’s obey (5.3) and depend on i but we supress this dependence on i except for the
subtraction of the shift σ . Here εi+1 accounts for the error in subtracting the real shift
σ . To be consistent we must also use di (1 + εi), where εi is defined in minor step
i − 1, and (1 + ε1)d1 = u1 − σ . Here t is just an auxiliary variable for the analysis.

Now we can write an exact dqds transform using [·] to surround our chosen vari-
ables.

[
ûi (1 + ε+)(1 + εi)

] = [di (1 + εi)
]+ [li (1 + εi)

]

[
di+1(1 + εi+1)

] =
[
di (1 + εi)

][
ui+1(1 + ε/)(1 + ε+)(1 + ε∗)

]

[
di (1 + εi)

]+ [li (1 + εi)
] − σ

[̂
li (1 + ε∗)(1 + ε∗∗)

] =
[
li (1 + εi)

][
ui+1(1 + ε/)(1 + ε+)(1 + ε∗)

]

[
di (1 + εi)

]+ [li (1 + εi)
]

We can read off the perturbations, defining
�
l i ,

�u i+1 and
�
l i ,

�u i on the way to an exact
transform:

li −→ li (1 + εi) =: �
l i l̂i −→ l̂i (1 + ε∗)(1 + ε∗∗) =: �

l i

ui+1 −→ ui+1(1 + ε/)(1 + ε+)(1 + ε∗) =: �u i+1 ûi −→ ûi (1 + ε+)(1 + εi) =: �u i

The perturbations are as claimed in the theorem: 3 ulps for ui and 1 ulp for li , and 2
ulps each for l̂i and ûi as shown in Fig. 2. Notice that our choices of

�
L,

�
U and

�
L,

�
U

are not in general machine representable.
When σ = 0 the (1 + εi) factors are omitted but still 3 ulps are needed for ui+1.

��
The remarkable feature here is that element growth does not impair the result.

However,
Theorem 5.1 does not guarantee that dqds returns accurate eigenvalues. For that,
an extra requirement is needed such as positivity of all the parameters u j , l j in the
computation, as is the case for the eigenvalues of BT B where B is upper bidiagonal.

We mention that Yao Yang considered the roundoff in dqds in his dissertation at
UC, Berkeley, in 1994 [38]. He had two results. He gave an n = 4 example to show that
even dqd (no shift in dqds) is not backward stable. He also produced an a posteriori
(computable) bound on the error in the exact product L̂Û of the output matrices.
Unfortunatly, his dissertation has not been published but his results are stated and
proved in [21].

5.2 3dqds

Eachminor step in the algorithm consists of 3 simple transformations onworkmatrices
F and G. All three parts arise from similarities that chase the bulges in the transfor-
mation fromU0L0 to L3U3. See Sect. 4. Two of these transformations are elementary
transformations of the form I +veTj , with inverse I −veTj , and v has at most 3 nonzero

123

A real triple dqds algorithm for the nonsymmetric… 391

entries. We examine the condition number of these 3 transforms. Consult Sect. 4.2 to
follow the details.

• The active part of Zi is

[
ui 1
0 1

]
and cond(Zi) max

{
|ui |, |ui |−1

}
.

• The active part of Li is

⎡

⎣
1

−xl /̂li−1 1
−yl /̂li−1 0 1

⎤

⎦ and cond(Li) 1 +
(

xl
l̂i−1

)2

+
(

yl
l̂i−1

)2

.

• The active part of Yi is

⎡

⎢⎢
⎣

1
−xr/ûi 1
−yr/ûi 0 1
−zr/ûi 0 0 1

⎤

⎥⎥
⎦ and cond(Yi) 1 +

(
xr
ûi

)2

+
(
yr
ûi

)2

+
(
zr
ûi

)2

.

The variables xl , yl , xr , yr , zr are formed from additions and multiplications of pre-
vious quantities. Note that ui is part of the input and so is assumed to be of acceptable
size. We see that it is tiny values of l̂i−1 and ûi that lead to an ill-conditioned transform
at minor step i . In the simple dqds algorithm a small value of ûi (relative to ui+1)
leads to a large value of l̂i and di+1. In 3dqds the effect of 3 consecutive transforms is
more complicated. The message is the same: reject any transform that has more then
modest element growth. In practice, |̂ui | and |̂li−1| are monitored and a transform is
rejected if either quantity is too big (bigger than 1/

√
ε). The computed eigenvalues

are used as input for Rayleigh quotient correction in the original balanced matrix (see
[19]).

In order to understand the intricate arguments below we have found it essential
to absorb the contents of Sects. 4.1 and 4.2, in particular the division of the typical
inner loop of 3dqds in three parts (a), (b) and (c). The three dqds similarities have
morphed into a sequence of n − 1 similarities of FG (implicit) each of which in its
turn is composed of three transformations of F and G by matrices Zi , Li , Yi (with
exact inverses) at minor step, or loop, i where we concentrate our attention.

Minor step i .
Recall that at the start the bulges xl , yl are in column i − 1 of F while xr , yr , zr

are in column i of G. See (4.2). The values in these bulges change and they move one
column right and one row down. In analysis, not practice, as the bulges both change
value and position, new variables are created and denoted by augmentation of the
subscripts (See Table 2). By the end of minor step i new values are given to all the
bulge variables to be ready for the next step. The most active is xr , the entry on the
diagonal of G. The loop i updates xr four times so we find

xr , xr1 , xr2 , xr3 , xr4

123

392 C. Ferreira, B. Parlett

Table 2 Input and output
variables of 3dqds algorithm

Part Input Output

(a) xr , yr , ui xr1
l̂i−1, li+1, li+2 ûi

(b) xl , yl xl1 , yl1
xr1 , yr , zr xr2 , yr1 , zr1
li+1, ui+2, ui+3, ûi l̂i

(c) xl1 , yl1 xl2 , yl2
xr2 , yr1 , zr1 xr3 , yr2 , zr2

xr4 , yr3 , zr3

and the last value xr4 becomes xr at the next loop i + 1. Its position changes from
Gi,i to Gi+1,i+1. This change in position occurs at operation 14 of the 16 arithmetic
operations in 3dqds.

To follow the analysis below the reader should have reference to Sect. 4.2. At minor
step i the inner loop transforms columns i − 1, i of F and i , i + 1 of G.

To anticipate our result we are going to show that very small relative, but well
chosen, perturbations in the input and output variables of each part, (a), (b), and (c),
separately, of loop i yield exact, albeit implicit, transformations of F andG. Of course,
the input and output variables are different for each part.

Note that the output variables for Part (b)maybe perturbed (again) as input variables
of Part (c). We will point out the two (of 16) operations at which our perturbations
fail to give an exact implementation of the whole of loop i . That would be a result as
strong as the one for real dqds.

As said above, if e j denotes column j of I and v is a vector satisfying eTj v = 0

then the exact inverse of I −veTj is I +veTj since (I −veTj)(I +veTj) = I −veTjve
T
j =

I − (eTjv)veTj = I . Hence the attraction of using elementary matrices for Parts (b)

and (c). The matrix Zi , whose active part is

[
ui 1
0 1

]
, is not elementary but the action

of its inverse is implicit in creating 0 and 1 in F and it is only Zi that acts on G. Thus
1/ui is never used explicitly and, again, there is no error in the implicit use of Z−1

i on
F . These observations help to explain the welcome accuracy of 3dqds in practice.

In the analysis in each statement we use a subscript on ε as an indicator of the
operation. For example,

f l
(
a + b + c ∗ d

) = f l
(
f l(a + b) + f l(c ∗ d)

) = [(a + b)(1 + ε+) + c · d(1 + ε∗)
]
(1 + ε++).

Wefind it simpler to not name the perturbed variables but to indicate them by judicious
use of parentheses and square brackets.We use either a dot or juxtaposition to represent
an exact multiplication.

123

A real triple dqds algorithm for the nonsymmetric… 393

Loop i, 1 < i < n − 2, in Section 4.3.

Part (a)
F ←− FZ−1

i puts Fi,i+1 = 0 and Fi,i = 1. No errors.
G ←− ZiG turns Gi,i+1 = 1, updates xr in Gi,i .

1 xr1 = f l
(
f l(xr ∗ ui) + yr

) = [xr · ui (1 + ε∗) + yr
]
(1 + ε+)

xr1 = [

xr (1 + ε+)
][

ui (1 + ε∗)
] + [

yr (1 + ε+)
]

Part (b)
F ←− L−1

i F puts 0 into Fi+1,i−1 and Fi+2,i−1, and moves the bulge to column i .
G ←− GLi creates ûi in Gi,i (an LU output) and creates xr2 , yr1 , zr1 (bulge in G) below it.

2 xl1 = − f l(xl /̂li−1) = −xl /̂li−1(1 + ε/) xl1 = −[

xl (1 + ε/)
]

/̂li−1

3 yl1 = − f l(yl /̂li−1) = −yl /̂li−1(1 + ε/) yl1 = −[

yl (1 + ε/)
]

/̂li−1

Note that l̂i−1 is created in loop i − 1 and (1 + ε/) differs from (1 + ε/) in Op. 3.

4 ûi = f l(xr1 − xl1) = (xr1 − xl1)/(1 + ε−)
[

(1 + ε−)ûi
] = xr1 − xl1

5 xr2 = f l(yr − xl1) = (yr − xl1)/(1 + ε−)
[

(1 + ε−)xr2
] = yr − xl1

6 yr1 = f l
(
f l(zr − yl1) − f l(xl1 ∗ li+1)

) = [(zr − yl1)/(1 + ε−) − xl1 · li+1(1 + ε∗)
]
/(1 + ε−−)

[

(1 + ε−)(1 + ε−−) yr1
] = zr − yl1 − xl1

[

li+1(1 + ε∗)(1 + ε−)
]

7 zr1 = − f l(yl1 ∗ li+2) = yl1 li+2(1 + ε∗) zr1 = − yl1
[

li+2(1 + ε∗)
]

Part (c)
F ←− FY−1

i creates l̂i in Fi+1,i (an LU output) and creates xl2 , yl2 (bulge in F) below it.
G ←− YiG puts 0 into Gi+1,i , Gi+2,i and Gi+3,i , and moves the bulge to column i + 1.

8 xr3 = − f l(xr2/ûi) = −xr2/ûi (1 + ε/) xr3 = −[

xr2 (1 + ε/)
]

/ûi

9 yr2 = − f l(yr1/ûi) = −yr1/ûi (1 + ε/) yr2 = −[

yr1 (1 + ε/)
]

/ûi

10 zr2 = − f l(zr1/ûi) = −zr1/ûi (1 + ε/) zr2 = −[

zr1 (1 + ε/)
]

/ûi

11 l̂i = f l
(
f l(xl1 + yr2) + f l(xr3 ∗ ui+1)

) = f l
(
(xl1 + yr2)/(1 + ε+) + xr3 · ui+1(1 + ε∗)

)

= [(xl1 + yr2)/(1 + ε+) + xr3 · ui+1(1 + ε∗)
]
/(1 + ε++)

[

(1 + ε+)(1 + ε++)̂li
] = xl1 + yr2 + xr3

[

ui+1(1 + ε∗)(1 + ε+)
]

123

394 C. Ferreira, B. Parlett

Part (c)(cont .)

12 xl2 = f l
(
f l(yl1 + zr2) + f l(yr2 ∗ ui+2)

) = f l
(
(yl1 + zr2)/(1 + ε+) + yr2 · ui+2(1 + ε∗)

)

= [(yl1 + zr2)/(1 + ε+) + yr2 · ui+2(1 + ε∗)
]
/(1 + ε++)

[

(1 + ε+)(1 + ε++)xl2
] = yl1 + zr2 + yr2

[

ui+2(1 + ε∗)(1 + ε+)
]

13 yl2 = f l(zr2 ∗ ui+3) = zr2 · ui+3(1 + ε∗) yl2 = zr2
[

ui+3(1 + ε∗)
]

14 xr4 = f l(1 − xr3) = (1 − xr3)/(1 + ε−) (1 + ε−)xr4 = 1 − xr3

15 yr3 = f l(li+1 − yr2) = (li+1 − yr2)/(1 + ε−) (1 + ε−) yr3 = li+1 − yr2

16 zr3 = f l(−zr2) = −zr2 zr3 = −zr2

No error in negation.

end loop

Note that l̂i−1 is created in loop i − 1 and (1 + ε/) differs from (1 + ε/) in Op. 3.

Some comments. In Op. 4, for example, when cancellation occurs (xr1 and xl1 have
same exponent) there is no error in subtraction but ûi ’s uncertainty increases (Table 2).

We perturb xr2 in Op. 5, as an output in Part (b), and also in Op. 8, as an input in
Part (c). Similarly, we perturb yr1 in Op. 6, in Part (b), and also in Op. 9 in Part (c).
We use plain zr1 in Op. 7, as an output in Part (b), and perturb zr1 in Op. 10, as an
input in Part (c).

We did not need to perturb xl1 nor yl1 in Ops. 2 and 3 in Part (b) and used xl1 and
yl1 in Ops. 5 and 6, still Part (b), as well as Op. 11 and 12, in Part (c). So xl1 and yl1
did preserve their identities for the whole of loop i .

In Ops. 5 and 6 the perturbations we heaped on xr2 and yr1 were to avoid perturbing
xl1 and yl1 . It seemed just too messy to try and carry the perturb xr2 and yr1 through
the later operations in Part (c) that use them, such as Ops. 8 and 9.

Minor step 1 has a slightly different analysis but we omit the details which may be
derived using a similar analysis.

In summary,

Theorem 5.2 If 3dqds is executed in standard floating point IEEE standard arithmetic
with no invalid operations then suitable small perturbations (2 ulps maximum) of Parts
(a), (b), and (c) produce an exact instance of each part in every minor step.

123

A real triple dqds algorithm for the nonsymmetric… 395

6 Implementation details

6.1 Deflation (n ← n − 1)

Some of our criteria for deflating come from [23], others are new. Consider both
matrices UL and LU and the trailing 2 × 2 blocks,

[
ln−1 + un−1 1

ln−1un un

]
,

[
ln−2 + un−1 1
ln−1un−1 ln−1 + un

]
.

Deflation (n ← n − 1) removes ln−1 as well as un . Looking at entry (n − 1, n − 1)
of UL shows that a necessary condition is that ln−1 be negligible compared to un−1,

|ln−1| < tol · |un−1|, (6.1)

for a certain tolerance tol close to roundoff unit ε.
The (n, n) entries ofUL and LU suggest either un+acshi f t or ln−1+un+acshi f t

as eigenvalues where acshi f t is the accumulated shift. Recall that simple dqds is a
non-restoring transform (see (3.5)). To make these consistent we require that

|ln−1| < tol · |un + acshi f t |. (6.2)

Finally we must consider the change δλ in the eigenvalue λ caused by setting
ln−1 = 0. We estimate δλ by starting from UL with ln−1 = 0 and then allowing ln−1
to grow. To this end let J be UL with ln−1 = 0 and (un, yT , x) be the eigentriple for
J . Clearly yT = eTn . Now we consider perturbation theory with parameter ln−1. The
perturbing matrix δ J , as ln−1 grows, is

ln−1(en−1 + enun)eTn−1.

By first order perturbation analysis

|δλ| = | yT δ J x|
‖x‖2‖ y‖2

and ‖ y‖2 = 1 in our case. So,

|δλ| =
∣∣ln−1eTn (en−1 + enun)eTn−1x

∣∣

‖x‖2 = |ln−1un||xn−1|
‖x‖2

and we use the crude bound
|xn−1|
‖x‖2 < 1. So, we let ln−1 grow until the change

|δλ| < |ln−1un|

123

396 C. Ferreira, B. Parlett

in eigenvalue λ = un is no longer acceptable. Our condition for deflation is then

|ln−1un| < tol · |acshi f t + un|. (6.3)

A similar first order perturbation analysis for LU with ln−1 = 0 will give our last
condition for deflation. For the eigentriple (un, yT , x) we also have yT = eTn . The
perturbing matrix is now

ln−1en
(
eTn−1un−1 + eTn

)

and

|δλ| =
∣∣ln−1eTn en(e

T
n−1un−1+eTn)x

∣∣

‖x‖2 = |ln−1| |un−1xn−1+xn |
‖x‖2 < |ln−1| (|un−1|+1) .

Finally we require

|ln−1| (|un−1| + 1) < tol · |acshi f t + un|. (6.4)

6.2 Splitting and deflation (n ← n − 2)

Recall that the implicit L theorem was invoked to justify the 3dqds algorithm. This
result fails if any lk , k < n−1 vanishes. Consequently, checking for negligible values
among the lk is a necessity, not a luxury for increased efficiency. Consider J = UL
in block form

⎡

⎢⎢⎢⎢
⎢⎢
⎣

J1
1

μ

J2

⎤

⎥⎥⎥⎥
⎥⎥
⎦

where μ = uk+1lk , k < n − 1. We can replace μ by 0 when

spectrum(J1) ∪ spectrum(J2) = spectrum(J), to working accuracy.

However we are not going to estimate the eigenvalues of J1 and J2. Instead we create
a local criterion for splitting at (k + 1, k) as follows. Focus on the principal 4 × 4
window of J given by

⎡

⎢⎢
⎢
⎣

uk−1 + lk−1 1

uklk−1 uk + lk 1

uk+1lk uk+1 + lk+1 1

uk+2lk+1 uk+2 + lk+2

⎤

⎥⎥
⎥
⎦

.

123

A real triple dqds algorithm for the nonsymmetric… 397

Now J1 and J2 are both 2 × 2 and our local criterion is

det(J1) · det(J2) = det(J), to working accuracy. (6.5)

Let us see what this yields. Perform block factorization on J and note that the Schur
complement of J1 in J is

J ′
2 = J2 −

[
0 μ

0 0

]
J−1
1

[
0 0
1 0

]

with

J−1
1 = 1

det1

[
uk + lk −1
−uklk−1 uk−1 + lk−1

]

where

det1 = det(J1) = uk−1(uk + lk) + lk−1lk .

Thus

J ′
2 =

[
uk+1 + lk+1 1
uk+2lk+1 uk+2 + lk+2

]
−
[
μ(uk−1 + lk−1)/det1 0

0 0

]
.

Since det is linear by rows and the second rows are equal

det(J2) − det(J ′
2) = μ(uk−1 + lk−1)(uk+2 + lk+2)/det1.

Our criterion reduces to splitting only when

det(J ′
2) = det(J2), to working accuracy.

Thus we require

|lkuk+1(uk+2 + lk+2)(uk−1 + lk−1)/det1| < tol · |det(J2)| .

Since

det2 = det(J2) = uk+1(uk+2 + lk+2) + lk+1lk+2,

the criterion for splitting J at (k + 1, k) is then

|lkuk+1(uk+2 + lk+2)(uk−1 + lk−1)| < tol · |det1det2| . (6.6)

Finally, to remove lk we also need lk to be negligible compared to uk ,

|lk | < tol · |uk |. (6.7)

123

398 C. Ferreira, B. Parlett

Deflation (n ← n − 2)
We use the same criterion for deflation (n ← n − 2), but because lk+2 = ln = 0

there is a common factor det2 on each side of (6.6). Deflate the trailing 2×2 submatrix
when

|ln−2| < tol · |un−2| (6.8)

and

|ln−2(un−3 + ln−3)| < tol · |un−3(un−2 + ln−2) + ln−3ln−2| . (6.9)

We omit the role of acshi f t here because it makes the situation more complicated.
We have to recall that 3dqds uses restoring shifts and acshi f t is always real. So, for
complex shifts, det2 is not going to zero. In fact

|det2| ≥ |�(λ)|2

where λ is an eigenvalue of J2.
When n = 3 these criteria simplify a lot. Both reduce to

|l1| < tol · |u1|.

6.3 Shift strategy

As with LR, the dqds algorithm with no shift gradually forces large entries to the top
and brings small entries towards the bottom. We want to use a shift as soon as the
trailing 2× 2 principal submatrix appears to be converging. We use the size of the last
two entries of L to make the judgement. The code executes a dqds transform with a
zero shift if

ln−1 > 10−2 and ln−2 > 10−2.

Otherwise, a 3dqds transform is executed with

sum = ln−1 + (un−1 + un), prod = un−1un,

the trace and the determinant of the trailing 2 × 2 submatrix of UL . This will let us
converge to either two real eigenvalues in the bottom 2 × 2 or a single 2 × 2 block
with a complex conjugate pair of eigenvalues.

An unexpected reward for having both transforms available is to copewith a rejected
transform.Our strategy is simply to use the other transformwith the current shift.More
precisely, given sum and prod, if 3dqds(sum,prod) is rejected we try dqds(un); if
dqds(0) is rejected, we try 3dqds(δ, δ) with δ = √

ε. We have to admit the possibility
of a succession of rejections and in this case we don’t want to move away from
the previous shift too much, just a small amount so that the transformation does not

123

A real triple dqds algorithm for the nonsymmetric… 399

breakdown. See Algorithm 4 in “AppendixB” for details. The number of rejections is
recorded and added to the total number of iterations.

7 Factored forms

7.1 Eigenvectors from twisted factorizations of the balanced form1T

A salient property of an unreduced real tridiagonal matrix C = tr idiag(b, a, c) (no
off-diagonal entry vanishes) is that it can be balanced by a diagonal similarity easily
and, once the matrix is balanced, it can be made real symmetric by changing the
signs of certain rows. However, changing the signs is not a similarity transformation
and would not preserve the eigenvalues. It is accomplished by premultiplying by a
so-called signature matrix � = diag(δ1, . . . , δn), δi = ±1. So we can write

�T = SCS−1 (7.1)

where T is real symmetric and S is diagonal positive definite, S = diag(s1, . . . , sn)

with s1 = 1, si = (|c1c2 · · · ci−1|/|b1b2 · · · bi−1|
)1/2, i = 2, . . . , n. See [11, Section

2.2.3]
Let λ be a simple eigenvalue of �T with eigenvector equations

�T x = xλ, y∗�T = λ y∗. (7.2)

Recall that x, y and λ may be complex and y∗x �= 0, since λ is simple. An attraction
of the �T representation is that the row eigenvector y∗ is determined by the right (or
column) eigenvector x. Transpose �T x = xλ and insert I = �2 to find

(xT�)�T = λ(xT�). (7.3)

Compare with y∗�T = λ y∗ to see that y∗ = xT�. See [13,30].
The so-called twisted factorizations generalize the lower and upper bidiagonal fac-

torizations. These factorizations gained new popularity as they were used for the
purpose of computing eigenvectors of symmetric tridiagonal matrices [10,22]. The
idea is to begin both a top-to-bottom and a bottom-to-top factorization until they meet
at, say, the k-th row, where they will have to be glued together. The index k is called
the twist index or the twist position.

Observe that the eigenvector equations �T x = xλ and (xT�)�T = λ(xT�) are
equivalent to

(T − λ�)x = 0 and xT(T − λ�) = 0

where T − λ� is symmetric. Now suppose that we have λ̃ as an approximation to
an eigenvalue λ of �T and that T − λ̃� admits both lower and upper bidiagonal
factorizations, starting the Gaussian elimination at the first row and at the last row,
respectively,

123

400 C. Ferreira, B. Parlett

T − λ̃� = LDLT = URU T,

where L is unit lower bidiagonal and U is unit upper bidiagonal. Matrices D and R
are the diagonals holding the pivots of the elimination process. Let (L)i+1,i = 	i ,
(U)i,i+1 = ui , i = 1, . . . , n − 1, and D = diag(d1, . . . , dn), R = diag(r1, . . . , rn),
i = 1, . . . , n. Then, for each twist index k = 1, . . . , n, we can construct a twisted
factorization of T − λ̃� as

T − λ̃� = NkGkN
T
k (7.4)

where

Nk =

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

1
	1 1

. . .
. . .

	k−1 1 uk+1
1 uk+2

. . .
. . .

1 un
1

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

, Gk =

⎡

⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

d1
. . .

dk−1
γk

rk+1
. . .

rn

⎤

⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

.

The only new quantity is the twist element γk = (Gk)k,k and one formula for it is

γk = dk + rk − (T − λ̃�)k,k (7.5)

and another is

γ1 = r1, γn = dn, γk+1 = γkrk+1/dk, k = 1, . . . , n − 1. (7.6)

These formulae are not difficult to obtain. See [35].
A very useful feature of these twisted factorizations is that they can deliver a very

accurate approximation to the column eigenvector x (and row eigenvector xT�). Since
N−1
k ek = ek and G−1

k γkek = ek , solving a system of the form

NkGkN
T
k z = γkek (7.7)

is equivalent to solving

N T
k z = ek (7.8)

which leads to the recurrence

zk = 1,

zi = −	i zi+1, i = k − 1, k − 2, . . . , 1,

zi = −ui zi−1, i = k + 1, k + 2, . . . , n.

(7.9)

123

A real triple dqds algorithm for the nonsymmetric… 401

The above is just inverse iteration to obtain z (and zT�) as an approximation to λ’s
eigenvector x (and xT�) with residual norm

‖(T − λ̃�)z‖
‖z‖ = |γk |

‖z‖ .

Therefore a natural choice for the twist index would be k such that

|γk | = min
i=1,...,n

|γi |.

This strategy to choose an initial guess for the eigenvector provides, as a by-product,
the diagonal entries of (T − λ̃�)−1 since

[
(T − λ̃�)−1

]
k,k = γ −1

k . See [35, Lemma
2.3].

If � is definite, one important result presented in [7,8] is that we can always find a
twist index k such that

|γk | ≤ √
n |̃λ − λ|.

Since (7.9) uses only multiplications, the computed vector will be very good provided
that λ̃ is accurate enough. In the general case, to judge the accuracy of the eigenvectors,
we compute column (and row) residual norm relative to the eigenvalue,

‖�T z − λ̃z‖
|̃λ|‖z‖ = ‖(T − λ̃�

)
z‖

|̃λ|‖z‖ = ‖zT(T − λ̃�
)‖

|̃λ|‖zT�‖ . (7.10)

This is a stricter measure than the usual
‖�T z − λ̃z‖
‖z‖‖�T ‖ .

In [24]we show that unique tridiagonal “backward error”matrices canbedesignated
for an approximate pair of complex eigenvectors (column and row) or two approximate
real eigenvectors.

7.2 Relative eigenvalue condition numbers

The condition number of every eigenvalue of a real symmetric matrix is 1, but only in
the absolute sense. The relative condition number can vary. In the unsymmetric case
even the absolute condition numbers can rise to ∞ and little is known about relative
errors. In [13] several relative condition numbers with respect to eigenvalues were
derived. Some of themuse bidiagonal factorizations instead of thematrix entries and so
they shed light onwhen eigenvalues are less sensitive to perturbations of factored forms
than to perturbations of the matrix entries. These condition numbers are measures of
relative sensitivity, i.e., measures of the relative variation of an eigenvalue with respect
to the largest relative perturbation of each of the nonzero entries of the representation of
thematrix. So the perturbations we consider are of the form |δ pi | ≤ η|pi |, 0 < η � 1.
In this section we present the relative condition number for the entries of the matrix
C and for the LU factorization of the J -form.

123

402 C. Ferreira, B. Parlett

Assume that λ �= 0 is a simple eigenvalue of real tridiagonal matrix
C = tr idiag(b, a, c). Let �T = SCS−1 be the balanced form (7.1) of C and(
λ, x, xT�

)
be an eigentriple of �T ,

�T x = xλ, (xT�)�T = λ(xT�), λ �= 0, (7.11)

and recall that �T and C eigenvectors are simply related by

C
(
S−1x

) = (S−1x
)
λ,

(
xT�S

)
C = λ

(
xT�S

)
. (7.12)

The relative condition number with respect to λ for the entries of C is

relcond(λ;C) =
∣∣xT�S

∣∣ |C | ∣∣S−1x
∣∣

|λ| ∣∣(xT�S
)(
S−1x

)∣∣ ,

where |M |i j = |Mi j |, for any matrix M . Since S is diagonal it follows that

relcond(λ;C) =
∣∣xT�

∣∣ |S| |C | ∣∣S−1
∣∣ |x|

|λ||xT�x| =
∣∣xT�

∣∣ |�T | |x|
|λ||xT�x| = relcond(λ;�T).

(7.13)

We have just shown that, in general, for any scaling matrix X invertible and diagonal,
the expression for relcond(λ;C) yields relcond(λ; XCX−1) = relcond(λ;C). See
[13, Lemma 6.2].

When C is unreduced it is also diagonally similar to a J -form,

J = DCD−1 = tr idiag(b, a, 1)

where D = diag(1, c1, c1c2, . . . , c1c2 · · · cn−1) and b = diag(b1c1, b2c2, . . . ,
bn−1cn−1). Now assume that J permits bidiagonal factorization J = LU and write

�T = F J F−1, F = SD−1, (7.14)

to obtain

LU
(
F−1x

)
=
(
F−1x

)
λ,

(
xT�F

)LU = λ
(
xT�F

)
, λ �= 0.

Recall that L = I + L̊ and U = diag(u1, . . . , un)
(
I + Ů

)
with

L̊ =

⎡

⎢⎢
⎢⎢⎢
⎣

0
l1 0

. . .
. . .

ln−2 0
ln−1 0

⎤

⎥⎥
⎥⎥⎥
⎦

and Ů =

⎡

⎢⎢
⎢⎢⎢
⎣

0 u−1
1
0 u−1

2
. . .

. . .

0 u−1
n−1
0

⎤

⎥⎥
⎥⎥⎥
⎦

.

123

A real triple dqds algorithm for the nonsymmetric… 403

For the cost of solving two bidiagonal linear systems,

vT
(
I + Ů

)
= (xT�F

)
for vT and Lw = L̊

(
F−1x

)
for w,

we obtain the following expression of the relative condition number for the entries of
L and U ,

relcond(λ; L,U) := |v|T|F−1x| + |xT�F ||w|
|xT�x| . (7.15)

See [13, Section 6.3]. Next we deal with a case of a simple zero eigenvalue. Although
the right hand side of (7.15) is a nonzero finite number for a simple eigenvalue λ = 0,
observe that the perturbations we consider for U , that is, |δui | ≤ η|ui |, produce
un + δun = 0 whenever un = 0. This means that singularity is preserved or, equiv-
alently, that the zero eigenvalue is preserved. Therefore, it seems appropriate to set
relcond(0; L,U) = 0.

We use eigenvalue approximation λ̃ from Rayleigh Quotient Iteration (RQI) and
eigenvector approximations z and zT� obtained from (7.8) to compute the relative
condition numbers (7.13) and (7.15). The residual norms for �T are given by (7.10)
but for J = LU , with eigenvector approximations F−1z and zT�F , by

‖F−1
(
T − λ̃�

)
z‖

|̃λ|‖F−1z‖ and
‖zT(T − λ̃�

)
F‖

|̃λ|‖zT�F‖ . (7.16)

7.3 Generalized Rayleigh quotient iteration

In addition to computing both column and row eigenvector approximations from
twisted factorizations of �T , the algorithm described in Sect. 7.1 can also be used to
improve the accuracy of the eigenvalue approximation λ̃ by performing a Rayleigh
Quotient Iteration. So, our code will return an eigenpair approximation (S−1z, zT�S)

for C together with an improved eigenvalue estimate, the generalized Rayleigh quo-
tient,

(
zT�S

)
C
(
S−1z

)

(
zT�S

)(
S−1z

) =
(
zT�

)
�T z

zT�z
= λ̃ +

(
zT�

)(
�T − λ̃I

)
z

zT�z
. (7.17)

Given the twisted factorization in (7.4) and (7.7), the Rayleigh quotient correction is
given by

ρ :=
(
zT�

)(
�NkGkN T

k

)
z

zT�z
= zTγkek

zT�z
= γk

zT�z
,

since zk = 1, where γk is given in (7.6) and (7.5).
Recall that for x ∈ C,�(x) denotes the real part of x . The following lemma extends

Lemma 12 in [8, pg. 886] to the unsymmetric case.

123

404 C. Ferreira, B. Parlett

Lemma 7.1 Let T − λ̃� = NkGkN T
k and NkGkN T

k z = γkek , zk = 1. Then the
Rayleigh quotient ρ with respect to �T − λ̃I is

ρ = γk

zT�z

and

∥∥(�T − (̃λ + ρ)I
)
z
∥∥

‖z‖ = |γk |
‖z‖

(|zT�z|2 − ωk

|zT�z|2
)1/2

(7.18)

where ωk = 2δk�(zT�z) − ‖z‖2.
Proof Let � = diag(δ1, . . . , δn), δi = ±1. Since

(
�T − (̃λ + ρ)I

)
z = (�T − λ̃I

)
z − ρ z = �NkGkN

T
k z − ρ z = δkγkek − ρ z,

then

∥∥(�T − (̃λ + ρ)I
)
z
∥∥2 = ‖δkγkek − ρ z‖2 = (δkγkek − ρ z)T · (δkγkek − ρ z)

= |γk |2 + |ρ|2‖z‖2 − 2δk�(γ kρ)

= |γk |2 + |γk |2
|zT�z|2 ‖z‖2 − 2δk |γk |2

|zT�z|2 �(zT�z)

= |γk |2
|zT�z|2

(
|zT�z|2 + ‖z‖2 − 2δk�(zT�z)

)
.

Thus,

∥∥(�T − (̃λ + ρ)I
)
z
∥∥

‖z‖ = |γk |
‖z‖

(
|zT�z|2 − (2δk�(zT�z) − ‖z‖2)

|zT�z|2
)1/2

.

Observe that, since zk = 1,

|zT�z|2 + ‖z‖2 − 2δk�(zT�z) = ‖z‖2 + |zT�z − δk |2 − 1 > 0.

If the easily checked condition

ωk := 2δk�(zT�z) − ‖z‖2 > 0 (7.19)

is satisfied, we obtain a decrease in the residual norm by using the Rayleigh quotient;
the pair (̃λ + ρ, z) is a better approximate eigenpair than (̃λ, z). ��

When� = I (symmetrizable case) the condition (7.19) reduces to 2‖z‖2−‖z‖2 =
‖z‖2 > 0 and the Rayleigh quotient correction always gives an improvement. In this
case (7.18) simplifies to

123

A real triple dqds algorithm for the nonsymmetric… 405

∥∥(T − (̃λ + ρ)I
)
z
∥∥

‖z‖ = |γk |
‖z‖

(‖z‖4 − ‖z‖2
‖z‖4

)1/2

= |γk |
‖z‖

(‖z‖2 − 1

‖z‖2
)1/2

. (7.20)

Given an approximation λ̃ to an eigenvalue λ of �T we compute the twisted fac-
torization of T − λ̃� and use inverse iteration (7.8) to obtain λ’s column and row
eigenvector approximations, z and zT�. The Rayleigh quotient correction (7.17) gives
a new approximation λ̃+ρ for λ. Wemay repeat this process until there is no improve-
ment in the residual (7.18). Although RQI can misbehave for non-normal matrices,
we can use (7.19) to judge improvement (see [15,34]). Our code 3dqds examines ωk

and whenever it is greater than zero we apply RQI, otherwise not.

8 Numerical examples

The need for a tridiagonal eigensolver is admirably covered in Bini, Gemignani and
Tisseur [1], many parts of which have been of great help to us. We refer to the Ehrlich-
Aberth algorithm (see Sect. 2.5) as BGT and to our code simply as 3dqds, although
we combine 3dqds with real dqds as described in Sect. 6.3.

Here the exact eigenvalue λi is computed in quadruple precision, using Matlab
Symbolic Math Toolbox with variable-precision arithmetic, and λ̃i denotes the com-
puted eigenvalue in double precision (unit roundoff 2.2 10−16).We compare our 3dqds
algorithmwith its explicit version, refered as ex3dqds (the three steps of dqds are com-
puted explicitly in complex arithmetic, see Fig. 1), with aMatlab implementation of
BGT and with the QR algorithm on an upper Hessenberg matrix (Matlab function
eig).

All the experiments were performed in Matlab (R2020b) on a LAPTOP-
KVSVAUU8 with an Intel(R) Core(TM) i5-8250U CPU@ 1.60GHz and 8 GB RAM,
under Windows 10 Home. No parallel operations were used. We acknowledge that the
Matlab tests do not reflect Fortran performance, but even in Matlab environment
the ratio of elapsed times is an important feature.

8.1 Bessel matrix

Bessel matrices, associated with generalized Bessel polynomials [25], are nonsym-
metric tridiagonal matrices defined by B(a,b)

n = tridiag(β,α, γ) with

α1 = −b

a
, γ1 = −α1, β1 = α1

a + 1
,

α j := −b
a − 2

(2 j + a − 2)(2 j + a − 4)
, j = 2, . . . , n,

γ j := b
j + a − 2

(2 j + a − 2)(2 j + a − 3)
,

β j := −b
j

(2 j + a − 1)(2 j + a − 2)
, j = 2, . . . , n − 1.

123

406 C. Ferreira, B. Parlett

Table 3 Relative errors for computed eigenvalues from B(−8.5,2)
n , B(12,2)

n , and (B(−4.5,2)
n with one RQI)

(a, b); n eig BGT 3dqds

relmin relmax relmin relmax relmim relmax

(−8.5, 2); 18 1.6 10−6 2.7 10−1 7.1 10−7 2.3 10−1 5.9 10−7 2.3 10−1

(−8.5, 2); 25 2.5 10−1 1.9 100 1.3 10−1 1.9 100 2.4 10−1 1.8 100

(−4.5, 2); 20 4.1 10−7 3.2 10−1 1.0 10−7 2.1 10−1 1.5 10−8 1.2 10−1

(−4.5, 2); 25 2.0 10−1 1.3 100 5.7 10−2 1.2 100 2.0 10−1 7.3 10−1

(12, 2); 40 3.3 10−15 1.3 10−1 1.1 10−15 1.9 10−1 2.1 10−15 1.7 10−1

(12, 2); 50 7.0 10−15 3.5 10−1 8.5 10−16 4.3 10−1 6.5 10−15 3.4 10−1

Parameter b is a scaling factor and most authors take b = 2 and so do we. The case
a ∈ R is the most investigated in literature. The eigenvalues of B(a,b)

n , well separated
complex eigenvalues, suffer from ill-conditioning that increases with n - close to a
defective matrix. In Pasquini [25] it is mentioned that the ill-conditining seems to
reach its maximum when a ranges from −8.5 to −4.5. We pay a lot of attention to
these matrices because they are an interesting family for our purposes. Each picture
teaches us a lot about the behavior of eigenvalues.

Our examples take B(−8.5,2)
n , B(−4.5,2)

n and B(12,2)
n for n = 40, 50.We showpictures

for Matlab (double precison), BGT and 3dqds to illustrate the extreme sensitivity
of some of the eigenvalues. The results of ex3dqds are visually identical to 3dqds, so
we don’t show them. In exact arithmetic the spectrum lies on an arc in the interior of
the moon-shaped region. Our pictures show this region and the eigenvalues computed
in quadruple precision (labeled as exact).

Table 3 shows the minimum and maximum relative errors, respectively, relmin =
mini |λi − λ̃i |/|λi | and relmax = maxi |λi − λ̃i |/|λi |. The relative condition numbers
relcond(λ;C) and relcond(λ; L,U) (see (7.13) and (7.15)) and residual norms (see
(7.10) and (7.16)) are shown in Table 4. We show both condition numbers because
Matlab and BGT only use matrix entries and 3dqds uses L,U factors.

The results for B(−8.5,2)
18 , n = 18, 25, are shown in Fig. 3, without RQI (Rayleigh

Quotient Iteration) and with one RQI. Observe on the real line that our approximations
with oneRQI (c) lie on top of the BGT approximations.We include the pictures (b) and
(d) to show well the extreme sensitivity of the eigenvalues. Note how the eigenvalues
move out of the moon-shaped inclusion region.

In Fig. 4 we show the results for B(−4.5,2)
n , n = 20, 25, and B(12,2)

n , n = 40, 50,
without RQI. The reader is invited to see the large effect of changing n from 20 to 25,
in (a) and (b), and from 40 to 50, in (c) and (d). Notice that our results are slightly but
consistently better than those of the other two methods.

8.2 Clementmatrix

The so-called Clement matrices (see [3])

C = tr idiag(b, 0, c)

123

A real triple dqds algorithm for the nonsymmetric… 407

Table 4 Relative condition numbers and residual norms for B(−8.5,2)
n , B(−4.5,2)

n , and B(12,2)
n

(a, b); n relcond(λ; L,U) relcond(λ;C) max residuals

min max min max J = LU �T

(−8.5, 2); 18 4.3 108 6.6 1013 1.5 1010 2.2 1015 2.1 10−14 1.8 10−14

(−8.5, 2); 25 8.0 1010 4.3 1013 4.3 1012 2.6 1015 3.9 10−14 1.2 10−14

(−4.5, 2); 20 8.1 107 3.5 1014 3.5 109 1.7 1016 3.5 10−14 3.1 10−14

(−4.5, 2); 25 6.3 108 2.6 1014 4.6 1010 1.9 1016 4.5 10−14 5.0 10−14

(12, 2); 40 9.3 101 7.0 1015 1.4 102 1.8 1016 1.3 10−15 4.6 10−14

(12, 2); 50 1.8 102 1.1 1016 2.7 102 3.8 1016 1.9 10−15 7.7 10−15

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Exact (o), 3dqds(+), Matlab (x) and BGT (.)

(a) n = 18; no RQI

-0.15 -0.1 -0.05 0 0.05

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Exact (o), 3dqds(+), Matlab (x) and BGT (.)

(b) n = 25; no RQI

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Exact (o), 3dqds(+), Matlab (x) and BGT (.)

(c) n = 18; one RQI

-0.15 -0.1 -0.05 0 0.05

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Exact (o), 3dqds(+), Matlab (x) and BGT (.)

(d) n = 25; one RQI

Fig. 3 Eigenvalues of B(−8.5,2)
n , n = 18, 25

with b j = j and c j = bn− j , j = 1, . . . , n − 1, have real eigenvalues,

± n − 1, n − 3, . . . , 1, for n even,

± n − 1, n − 3, . . . , 0, for n odd.

123

408 C. Ferreira, B. Parlett

-0.15 -0.1 -0.05 0 0.05
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
Exact (o), 3dqds(+), Matlab (x) and BGT (.)

a, b) = (−4.5, 2); n = 20

-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Exact (o), 3dqds(+), Matlab (x) and BGT (.)

a, b) = (−4.5, 2); n = 25

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

Exact (o), 3dqds(+), Matlab (x) and BGT (.)

a, b) = (12, 2); n = 40

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

Exact (o), 3dqds(+), Matlab (x) and BGT (.)

(a) ((b) (

(c) ((d) (a, b) = (12, 2); n = 50

Fig. 4 Eigenvalues of B(−4.5,2)
n and B(12,2)

n (without RQI)

These matrices posed no serious difficulties. The initial zero diagonal obliges the dqds
based methods to take care when finding an initial LU factorization.

The 3dqds and ex3dqds codes use only real shifts as they should and the accuracy
(approximately the same) is less than BGT but satisfactory. One RQI reduces errors
to O(ε).

Our numerical tests have n = 50, 100, 200, 400, 800. The relative condition num-
ber relcond(λ;C) ranges from100 to 4 102 and it is smaller at the ends of the spectrum.
The maximum residual norm for C is O(10−11). The minimum and maximum rela-
tive errors, relmin and relmax , are shown in Table 5. Note the poor performance of
Matlab’s eig (so much for backward stability).

The CPU elapsed times are presented in Table 6. We put (+) whenever a RQI is
used. Since we compare Matlab versions of all the codes we acknowledge that the
elapsed times are accurate to only about 0.02 seconds. However, this is good enough
to show the striking time ratios between BGT and the dqds codes.

We draw the readers attention that for n = 400 our algorithm is about 200 times
faster than BGT but when n rises to 1000 it is over 600 times faster. This is finding the

123

A real triple dqds algorithm for the nonsymmetric… 409

Table 5 Relative errors for Clement matrices (without RQI)

n eig BGT 3dqds

relmin relmax relmin relmax relmim relmax

50 4.4 10−16 7.4 10−11 0 0 1.7 10−16 4.7 10−15

100 1.6 10−15 1.6 10−3 0 1.8 10−16 0 2.1 10−14

200 4.3 10−16 1.6 101 0 1.1 10−15 0 9.4 10−14

400 5.7 10−16 5.5 101 0 5.6 10−16 0 7.6 10−13

800 2.7 10−15 4.4 102 0 1.2 10−15 0 1.8 10−12

Table 6 CPU time in seconds
for Clement matrices

n eig BGT ex3dqds (+) 3dqds (+)

100 0.011 0.83 0.014 0.009

200 0.097 2.01 0.020 0.014

400 0.28 8.33 0.036 0.025

800 0.90 35.70 0.080 0.066

1000 1.49 67.02 0.120 0.094

eigenvalues to the same accuracy, namely O(ε). In addition we provide eigenvectors
and condition numbers.

An important further comment which illustrates challenges of the unsymmetric
eigenvalue problem is that in these examples for n ≥ 200 the scaling matrices F used
above (see (7.14)) are not representable. This limitation indicates why we use the �T
form for computing the eigenvectors. The overflow problem, which also arises for
S−1 (see (7.12)), although not so quickly, explains why BGT confines its attention to
n = 50, but we go further because of our approach.

8.3 Matrix with clusters

Matrix in Test 5 in [1],

C = D−1tr idiag(1,α, 1), D = diag(β), α,β ∈ R
n

αk = 105(−1)k · (−1)�k/4�, βk = (−1)�k/3�, k = 1, . . . , n,

seems to be a challenging test matrix. It was designed to have large, tight clusters of
eigenvalues around 10−5,−105 and 105. Half the spectrum is around 10−5 and the rest
is divided unevenly between −105 and 105. The diagonal alternates between entries
of absolute value 105 and 10−5 and so, for dqds codes, there is a lot of rearranging to
do. When n ≥ 100 it is not clear what is meant by accuracy.

The matrix has a repetitive structure and the diagonal entries are a good guide
to the eigenvalues. For n = 100 and for the large real eigenvalues near ±105 the
eigenvectors have spikes (−10−5,−1, 10−5) (complex conjugate pairs have spikes
(10−5, 1,−10−7,−1, 10−5), at the appropriate places, and negligible elsewhere.

123

410 C. Ferreira, B. Parlett

Hence the numerical supports for many eigenvectors are disjoint. The essential struc-
ture of the matrix is exhibited with n = 10,

C =

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

10−5 1
1 105 1

−1 −10−5 −1
−1 105 −1

−1 10−5 −1
1 −105 1

1 −10−5 1
1 105 1

−1 −10−5 −1
−1 −105

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

and it has 5 eigenvalues near 0, 3 eigenvalues near 105 and 2 near −105. All the
eigenvalues are well-conditioned and the three codes obtain the correct number of
eigenvalues in each cluster.

When n = 20 there are 10 eigenvalues near 10−5, 6 near −105 and 4 near 105;
relcond(λ;C) and relcond(λ; L,U) are all less than 1.2 101; the maximum residual
norm for C and J = LU is O(10−2). For the eigenvalues with small modulus, BGT
and 3dqds (with 2 RQI, in average) compute approximations with relative errors of
O(ε), whereas eig yield larger relative errors, as large as 10−6. See Table 7.

Table 7 Relative errors for the three clusters in Test 5, with n = 20

λ eig BGT 3dqds (+ +)

relmin relmax relmin relmax relmim relmax

λ ≈ −105 2.0 10−20 1.9 10−15 2.0 10−20 7.1 10−17 2.0 10−20 8.6 10−11

λ ≈ 105 5.0 10−31 2.2 10−13 5.0 10−31 2.2 10−14 5.0 10−31 1.0 10−10

|λ| ≈ 10−5 1.2 10−8 2.0 10−6 3.0 10−17 2.7 10−16 8.0 10−17 2.0 10−16

8.4 Other scaled test matrices

Herewe consider other test matrices from [1]. The eigenvalues of thesematrices have a
variety of distributions, in particular, the eigenvalues in Test 4 and Test 7 are distributed
along curves. See Fig. 5. All these matrices are given in the form

C = D−1tr idiag(1,α, 1), D = diag(β), α,β ∈ R
n .

123

A real triple dqds algorithm for the nonsymmetric… 411

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
105

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Test 1

(a)

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05
Test 4

(b)

-800 -600 -400 -200 0 200 400 600 800 1000
-200

-150

-100

-50

0

50

100

150

200
Test 7

(c)

-3 -2 -1 0 1 2 3
-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025
Test 9

(d)

Fig. 5 Eigenvalues of matrices in Tests 1, 4, 7 and 9 for n = 400

Test 1 : αk = (−1)�k/8�, βk = (−1)k/k, k = 1, . . . , n.

Test 3 : αk = k, βk = n − k + 1, k = 1, . . . , n.

Test 4 : αk = (−1)k, βk = 20 · (−1)�k/5�, k = 1, . . . , n.

Test 6 : αk = 2, βk = 1, k = 1, . . . , n.

Test 7 : αk = 1

k
+ 1

n − k + 1
, βk = 1

k
(−1)�k/9�, k = 1, . . . , n.

Test 9 : αk = 1, k = 1, . . . , n; βk =
{
1 if k < n/2

−1ifk ≥ n/2
.

(8.1)

The extreme relative errors, condition numbers and residual norms for the three
codes, Matlab’s eig, BGT and 3dqds, are shown in Tables 8 and 9.

Table 10 reports theCPU time in seconds required by 3dqds versus the time required
by Matlab’s eig, BGT and ex3dqds with n ranging from 400 to 1000. Examples
were chosen to represent the best, worst, and average efficiency of BGT .

123

412 C. Ferreira, B. Parlett

Table 8 Relative errors for matrices in (8.1) for n = 100

Test eig BGT 3dqds

relmin relmax relmin relmax relmim relmax

1 2.3 10−17 3.3 10−13 9.8 10−19 2.8 10−16 9.8 10−19 1.0 10−15 (+)

3 0 1.1 10−14 0 1.1 10−14 0 1.1 10−14 (+)

4 2.8 10−16 5.5 10−15 4.3 10−18 1.1 10−16 6.6 10−18 1.4 10−16 (+ +)

6 2.8 10−18 4.5 10−13 3.0 10−19 1.3 10−13 3.0 10−19 3.3 10−14 (+)

7 2.2 10−17 6.1 10−14 1.9 10−18 3.5 10−16 1.5 10−18 8.0 10−16 (+)

9 3.1 10−17 1.2 10−14 1.4 10−18 6.7 10−16 1.4 10−18 3.2 10−15 (+)

Table 9 Relative condition numbers and residual norms for matrices in (8.1) for n = 100

Test relcond(λ; L,U) relcond(λ;C) max residuals

min max min max J = LU �T

1 1.0 100 3.8 102 1.0 100 1.6 102 4.8 10−12 1.8 10−11

3 1.0 100 2.3 100 1.0 100 1.1 101 4.9 10−14 1.3 10−12

4 1.3 100 2.8 100 1.3 100 2.4 101 3.5 10−8 1.3 10−7

6 1.0 100 5.0 101 1.0 100 4.1 103 1.3 10−10 1.3 10−10

7 1.5 100 5.5 102 1.3 100 2.4 101 3.0 10−10 1.5 10−9

9 1.1 100 7.2 102 1.0 100 2.1 102 3.3 10−9 3.3 10−9

Table 10 CPU time in seconds
for matrices in Tests 3, 6 and 9

Test;n eig BGT ex3dqds (+) 3dqds (+)

3; 400 0.11 3.12 0.07 0.03

6; 400 0.003 53.0 0.04 0.03

9; 400 0.39 19.5 0.52 0.32

3; 800 0.34 13.5 0.13 0.08

6; 800 0.01 360.2 0.12 0.08

9; 800 1.28 84.5 1.28 0.94

3; 1000 0.77 18.76 0.14 0.10

6; 1000 0.02 443.3 0.14 0.09

9; 1000 2.12 145.0 1.68 1.31

8.5 Liumatrix

Liu [16] devised an algorithm to obtain one-point spectrum unreduced tridiagonal
matrices of arbitrary dimension n × n. These matrices have only one eigenvalue, zero
with multiplicity n, the Jordan form consists of one Jordan block and so the eigenvalue
condition number is infinite. Our code 3dqds computes this eigenvalue exactly (and
also the generalized eigenvectors) using the following method which is part of the
prologue. See [12].

123

A real triple dqds algorithm for the nonsymmetric… 413

The best place to start looking for eigenvalues of a tridiagonal matrix
C = tr idiag(b, a, c) is at the arithmetic mean which we know (μ = trace(C)/n).
Before converting to J -form and factoring, we check whether μ is an eigenvalue by
using the 3-term recurrence to solve

(μI − C)x = en pn(μ)/

n−1∏

i=1

ci .

Here

x1=1, x2=(μ − a2)/c1, x j+1= 1

c j

[
(μ−a j)x j −b j−1x j−1

]
, j =2, . . . , n−1,

and

υ := (μ − an)xn − bn−1xn−1

(

= pn(μ)/

n−1∏

i=1

ci

)

.

If, by chance, υ vanishes, or is negligible compared to ‖x‖, thenμ is an eigenvalue (to
working accuracy) and x is an eigenvector. To check its multiplicity we differentiate
with respect to μ and solve

(μI − C) y = x

with y1 = 0, y2 = 1 = x ′
2 (= x1). If

υ ′ = p′
n(μ)/

n−1∏

i=1

ci := (μ − an)yn − bn−1yn−1 + xn

vanishes, or is negligible w.r.t. ‖ y‖, then we continue the same way until the system
is inconsistent or there are n generalized eigenvectors.

Usually υ �= 0 and the calculation appears to have been a waste. This is not quite
correct. In exact arithmetic, triangular factorization of μI − C or μI − J , where
J = DCD−1, will break down if, and only if, x j vanishes for 1 < j < n. So our
code examines min j |x j | and if it is too small w.r.t. its neighbors and w.r.t. ‖x‖ then
we do not choose μ as our initial shift. Otherwise we do obtain initial L and U from
J − μI = LU .

For comparison purposes, we ignored our prologue and give to our 3dqds code the
Liu matrices for n = 14 and n = 28, tr idiag(1,αn, γ n) defined by

α14 = [0, 0, 0, 0, 0, 0,−1, 1, 0, 0, 0, 0, 0, 0
]
,

γ 14 = [−1, 1, 1,−1, 1,−1,−1,−1, 1,−1, 1, 1,−1
]
,

123

414 C. Ferreira, B. Parlett

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08
Exact (o), 3dqds(+), Matlab (x) and BGT (.)

(a) n = 14

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
-0.3

-0.2

-0.1

0

0.1

0.2

0.3
Exact (o), 3dqds(+), Matlab (x) and BGT (.)

(b) n = 28

-1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Exact (o), 3dqds(+), Matlab (x) and BGT (.)

(c) n = 28

-1.5 -1 -0.5 0 0.5

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Exact (o), 3dqds(+), Matlab (x) and BGT (.)

(d) n = 56

Fig. 6 Eigenvalues of Liu matrices (a, b), and glued Liu matrices (c, d)

and

α28=[0, 0, 0, 0, 0, 0,−1, 1, 0, 0, 0, 0, 0,−1, 1, 0, 0, 0, 0, 0, 1,−1, 0, 0, 0, 0, 0, 0
]
,

γ 28=
[−1, 1, 1,−1, 1,−1,−1,−1, 1,−1, 1, 1,−1,
−1,−1, 1, 1,−1, 1,−1,−1,−1, 1,−1, 1, 1,−1

]
.

The accuracy of the approximations delivered by 3dqds is as good as the accuracy of
those provided by Matlab and BGT . The absolute errors are O(10−2) for n = 14
andO(10−1) for n = 28. The number of iterations needed for 3dqds to converge is less
than 3n. See Fig. 6a, b. We show the numerical results along with the circles z = n

√
ε.

We also considered glued Liu matrices which are defined as the direct sum of
two Liu matrices, shifting one of them by

√
2 and letting the glue between them be

ε. Roundoff will give us two clusters, one around 0, the other around
√
2. This is

not a one-point spectrum matrix and all three methods give the results expected by
perturbation theory. See Fig. 6c, d. This is a very unstable example, the condition
numbers all exceed 1010.

123

A real triple dqds algorithm for the nonsymmetric… 415

9 Conclusions

Following the broad success of the HQR algorithm to compute eigenvalues of real
square matrices it seems natural to use a sequence of similarity transforms to reduce
an initial real matrix to eventual triangular form and also deflate eigenvalues from
the bottom of the matrix as they converge. Any real (unreduced) tridiagonal matrix is
easily put into J -form (all superdiagonal entries are 1) and suchmatrices ask for the use
of the LR (not QR) algorithm since it preserves the J -form. The potential breakdown
of the LR transform, from a 0 pivot, was a strong deterrent in the early days (1960s)
[20] but today is a mild nuisance as explained in Sect. 5.1. A further incentive is that
the whole procedure can be carried out in real arithmetic since complex conjugate
pairs of eigenvalues are determined from 2× 2 submatrices that converge and may be
deflated in a manner similar to real eigenvalues. The more recent success of the dqds
transform in computing singular values of bidiagonal matrices encouraged us to keep
out J matrices in factored form: J−σ I = LU , Ĵ = UL , because, in exact arithmetic,
the two algorithms, LR and dqds, are equivalent. In addition the dqds transform of
today is numerically superior to the original, and seminal, qd transform discovered by
Rutishauser [26] and which gave rise to the LR algorithm itself.

In order to hasten convergence we will need to apply complex conjugate pairs of
shifts to our current LU = J matrix. It is well known how to do this entirely in real
arithmetic in the context of the LR algorithm. To the best of our knowledge this has not
been tried in the context of dqds. The main contribution of this paper is the solution
to this challenge. We realized that three, not two, transforms are required to return to
real factors L andU when complex shifts are applied consecutively. This is the nature
of our explicit version, a local detour invoking complex arithmetic. We went further
and produced a subprogram 3dqds that accomplishes the same goal but in (exact) real
arithmetic. This implicit version is more efficient than the explicit but is sensitive to
roundoff error in its initial step. Experts will recall the papers on “washout of the shift”
in the implicit shift HQR algorithm in the 1980s. We can not prove that our algorithm
is backward stable. In fact we dought that it is. However we do show that the three
parts of the inner loop separately enjoy high mixed relative stability.

In the process of implementing our new features we were led to a novel and detailed
criterion for deciding when our J = LU matrix has split into two or more unreduced
submatrices.We check for splits at every iteration. Our new subprogramsmust only be
applied to unreducedmatrices.We also gave attention to the choice of a new shift when
a factorization fails and when to start using the bottom 2 × 2 submatrix for shifting.

We save a lot of space by confining our eigenvector calculations to the �T form
so that only one vector need be stored. From it we can compute the relative condition
numbers that we need. Instructions are given how to generate the eigenvectors for the
original and the J -form representions.

Acknowledgements The authors would like to thank Associate Editor Martin H. Gutknecht and the anony-
mous referees for forcing us to look more deeply into an error analysis of our triple dqds algorithm (first
version) and to give a clearer presentation of its mathematical analysis and implemention details (last
version).

123

416 C. Ferreira, B. Parlett

AppendixA 3dqds algorithm

[̂l, û] = 3dqds(l, u,sum,prod)

% sum = (σ1 + σ2); prod = σ1σ2
% l = [l1, l2, . . . , ln−1]; u = [u1, u2, . . . , un]
% ̂l = [̂l1, l̂2, . . . , l̂n−1]; û = [̂u1, û2, . . . , ûn]
% step 1
xr = 1; yr = l1; zr = 0
% the effect of Z1
xr = xr ∗ u1 + yr
% the matrix L−1

1
xl = (u1 + l1)2 + u2l1 − sum(u1 + l1) + prod
yl = −u2l1u3l2/xl
xl = −u2l1(u1 + l1 + u2 + l2 − sum)/xl
% the effect of L1
û1 = xr − xl ;
xr = yr − xl ; yr = zr − yl − xl ∗ l2;
zr = −yl ∗ l3
% the matrix Y−1

1
xr = xr/û1; yr = yr/û1; zr = zr/û1
% the effect of Y−1

1
l̂1 = xl + yr + xr ∗ u2
xl = yl + zr + yr ∗ u3; yl = zr ∗ u4
% the effect of Y1
xr = 1 − xr ; yr = l2 − yr ; zr = −zr

% steps 2 to n-3
for i = 2, . . . , n − 3

% the effect of Zi

xr = xr ∗ ui + yr
% the matrix L−1

i
xl = −xl /̂li−1; yl = −yl /̂li−1;
% the effect of Li

ûi = xr − xl ;
xr = yr − xl ; yr = zr − yl − xl ∗ li+1;
zr = −yl ∗ li+2

% the matrix Y−1
i

xr = xr/ûi ; yr = yr/ûi ; zr = zr/ûi
% the effect of Y−1

i
l̂i = xl + yr + xr ∗ ui+1
xl = yl + zr + yr ∗ ui+2; yl = zr ∗ ui+3
% the effect of Yi
xr = 1 − xr ; yr = li+1 − yr ; zr = −zr

end for

% step n-2
% the effect of Zn−2
xr = xr ∗ un−2 + yr
% the matrix L−1

n−2
xl = −xl /̂ln−3; yl = −yl /̂ln−3;
% the effect of Ln−2
ûn−2 = xr − xl ;
xr = yr − xl ; yr = zr − yl − xl ∗ ln−1

% the matrix Y−1
n−2

xr = xr/ûn−2; yr = yr/ûn−2

% the effect of Y−1
n−2

l̂n−2 = xl + yr + xr ∗ un−1
xl = yl + yr ∗ un
% the effect of Yn−2
xr = 1 − xr ; yr = ln−1 − yr

% step n-1
% the effect of Zn−1
xr = xr ∗ un−1 + yr
% the matrix L−1

n−1
xl = −xl /̂ln−2
% the effect of Ln−1
ûn−1 = xr − xl ;
xr = yr − xl
% the matrix Y−1

n−1
xr = xr/ûn−1

% the effect of Y−1
n−1

l̂n−1 = xl + xr ∗ un
% the effect of Yn−1
xr = 1 − xr

% step n
% the effect of Zn
xr = xr ∗ un
% the matrix L−1

n = I
% the effect of Ln
ûn = xr ;
% the matrix Y−1

n = I

123

A real triple dqds algorithm for the nonsymmetric… 417

AppendixB Pseudocode for the whole algorithm

Algorithm 1 wrapper for 3dqds
Input: vectors a, b, c
Output: eigenvalues of tr idiag(b, a, c)

top = 1 � code works on submatrix top : n
split(1) = top � vector split saves all active top’s
indsplit = 1 � index for split
nits = 0 � number of iterations
itmax = 100n � maximum number of iterations
acshift = 0 � accumulated shift; simple dqds is not restoring

find l and u of J form [Algorithm 5] � vectors l and u for J = LU
while

(
top + 1 < n and its < itmax

)
do � code should mantain top + 1 < n

deflate as warranted [Algorithm 2] � deflation may reduce n
find splits, if any [Algorithm 3] � splits may increase top
if
(
ln−1 > 10−2 and ln−2 > 10−2) then � entries at the bottom are not small
[l1, u1,fail] = dqds(l(top : n), u(top : n), 0) � simple dqds with zero shift
if fail then � fail is a boolean for failure

[l1, u1,shift,fail] = recover(l(top : n), u(top : n)) [Algorithm 4]
end if

else
sum = ln−1 + (un−1 + un)

prod = un−1un
[l1, u1,fail] = 3dqds(l(top : n), u(top : n),sum,prod) � triple dqds
if fail then

[l1, u1,shift,fail] = recover(l(top : n), u(top : n),sum,prod)

end if
end if
if fail then

return “too many failures, no convergence.”
end if
l = l1; u = u1
acshift=acshift+shift � update accumulated shift
its=its+1

end while

123

418 C. Ferreira, B. Parlett

Algorithm 2 deflation body

� deflate as warranted; deflation may reduce n

tol = 10ε � tolerance for deflation; ε = roundoff unit

repeat
if cri teria2×2 then � deflation 2 × 2 criteria (9.8) and (9.9)

ssum = (ln−1 + (un−1 + uu))/2

disc = ((ln−1 + (un−1 − uu))/2
)2 + unln−1 � discriminant

t = √|disc|
if disc < 0 then � complex conjugate pair

x1 = ssum + i t
x2 = ssum − i t � no use of complex arithmetic

else if ssum == 0 then � real pair
x1 = t
x2 = −t

else
x1 = sign(ssum) ∗ (|ssum| + t

) � no subtractions
x2 = un−1un/x1

end if
eigvals([n − 1, n]) = [x1, x2] + acshift � eigvals stores the eigenvalues
n = n − 2

else if cri teria1×1 then � deflation 1 × 1 criteria (6.1) – (6.4)
eigvals(n) = acshift un + acshift
n = n − 1

end if
until deflation criteria not met

Algorithm 3 splitting body

� find splits, if any, define top after a split

tol = 10ε � tolerance for splitting; ε = roundoff unit

if n > top + 2 then
k = n − 3
while

(
k > top and cri teriaspli t not met

)
do � splitting criteria (9.6) and (9.7)

k = k − 1
end while
if k > top then � there is a split

indsplit = indsplit + 1
split(indsplit) = top
lk = acshift � lk saves accumulated shift of the previous segment
top = k + 1

end if � if the condition for splitting is not met, there is nothing to do
end if

123

A real triple dqds algorithm for the nonsymmetric… 419

Algorithm 4 recover
Input: vectors l, u, real sum, prod (or vectors l, u)
Output: vectors l1, u1, real shift, boolean fail

δ = √
ε � shift increment; ε = roundoff unit

if nargin == 2 then � nargin = number of input arguments
simple = true � failure in dqds with zero shift
sum = δ � sum and prod for 3dqds
prod = δ

shift = 0 � in case of successive failures
else

simple = f alse � failure in 3dqds
shift = un � shift for simple dqds

end if

fail=true � boolean for failure
nfail = 0 � number of failures
maxfail = 10n � maximum number of failures allowed

while
(
fail and nfail < maxfail

)
do � increase shift and reverse choice of transform

if simple then
sum = sum(1 + δ)

prod = prod(1 + δ)2

[l1, u1,fail] = 3dqds(l, u,sum,prod) � switch to 3dqds
simple = false
if fail==false then � successful recovery with 3dqds

shift = 0
end if

else
shift = shift + δ

[l1, u1,fail] = dqds(l, u,shift) � switch to simple dqds
simple = true

end if
nfail=nfail+1

end while � after a failure the oposite transform is used next

123

420 C. Ferreira, B. Parlett

Algorithm 5 initial LU factorization
Input: vectors a, b, c � LU factorization of tr idiag(b, a, c) in J form
Output: vectors l, u, real shift, boolean fail

nfail = 0 � number of failures
maxfail = 10n � maximum number of failures allowed
b = b · ∗c � element-wise product; off-diagonal of J
delta = min

(
1/2, 2 ∗ min(abs(a(a∼ = 0)))

) � shift increment in case of failure
� one eight of the minimum nonzero diagonal element

shift = 0 � in case of failure take J − shift · I = LU
[l, u,fail] = LUfact(a, b,shift) [Algorithm 6] � LU factorization of J
while

(
fail and nfail < maxfail

)
do

nfail=nfail+1
shift = shift + delta � after a failure the shift is increased
[l, u,fail] = LUfact(a, b,shift)

end while

if fail then
return “Too many failures, no initial factorization.”

end if

Algorithm 6 LUfact
Input: vectors a, b, real shift � LU factorization of J = tr idiag(b, a, 1) without pivoting
Output: vectors l, u, boolean fail

tolg = 1/
√

ε � tolerance for element growth; ε = roundoff unit
fail=false � boolean for failure

u(1) = a(1)
for i = 1 : n − 1 do

l(i) = b(i)/u(i)
u(i + 1) = a(i + 1) − l(i)

end for

if
(
any(isnan([l, u])) or any(abs([l, u])) >tolg

)
then � checking for element growth

fail=true
end if

References

1. Bini, D.A., Gemignani, L., Tisseur, F.: The Ehrlich–Aberth method for the nonsymmetric tridiagonal
eigenvalue problem. SIAM J. Matrix Anal. Appl. 27(1), 153–175 (2005)

2. Bunse-Gerstner, A.: An analysis of the HR algorithm for computing the eigenvalues of a matrix. Linear
Algebra Appl. 35, 155–173 (1981)

3. Clement, P.A.: A class of triple-diagonal matrices for test purposes. In: SIAM Review, vol. 1 (1959)
4. Cullum, J.K.: A QL procedure for computing the eigenvalues of complex symmetric tridiagonal matri-

ces. SIAM J. Matrix Anal. Appl. 17(1), 83–109 (1996)
5. Day, D.: Semi-duality in the Two-sided Lanczos Algorithm. Ph.D Thesis, University of California,

Berkeley (1993)
6. Demmel, J.W.: Applied Numerical Linear Algebra, Society for Industrial and Applied Mathematics

(1997)
7. Dhillon, I.S., Parlett, B.N.: Multiple representations to compute orthogonal eigenvectors of symmetric

tridiagonal matrices. Linear Algebra Appl. 387, 1–28 (2004)

123

A real triple dqds algorithm for the nonsymmetric… 421

8. Dhillon, I.S., Parlett, B.N.: Orthogonal eigenvectors and relative gaps. SIAM J. Matrix Anal. Appl. 25,
858–899 (2004)

9. Fernando, K.V., Parlett, B.: Accurate singular values and differential QD algorithms. Numer. Math.
67, 191–229 (1994)

10. Fernando, K.V.: On computing an eigenvector of a tridiagonal matrix. Part I: basic results. SIAM J.
Matrix Anal. Appl. 18, 1013–1034 (1997)

11. Ferreira, C.: The Unsymmetric Tridiagonal Eigenvalue Problem. Ph.D Thesis, University of Minho
(2007). http://hdl.handle.net/1822/6761

12. Ferreira, C., Parlett, B.: Convergence of LR algorithm for a one-point spectrum tridiagonal matrix.
Numer. Math. 113(3), 417–431 (2009)

13. Ferreira, C., Parlett, B., Froilán,M.D.: Sensitivity of eigenvalues of an unsymmetric tridiagonal matrix.
Numer. Math. (2012). https://doi.org/10.1007/s00211-012-0470-z

14. Francis, J.G.F.: The QR transformation—a unitary analogue to the LR transformation, parts I and II.
Comput. J. 4, 265–272; 332–245 (1961/1962)

15. Kahan, W., Parlett, B.N., Jiang, E.: Residual bounds on approximate eigensystems of non-normal
matrices. SIAM J. Numer. Anal. 19, 470–484 (1982)

16. Liu, Z.A.: On the extended HR algorithm. Technical Report PAM-564, Center for Pure and Applied
Mathematics, University of California, Berkeley, CA, USA (1992)

17. Parlett, B.N., Reinsch, C.: Balancing a matrix for calculation of eigenvalues and eigenvectors. Numer.
Math. 13, 292–304 (1969)

18. Parlett, B.N.: TheRayleigh quocient iteration and some generalizations for non-normalmatrices.Math.
Comput. 28(127), 679–693 (1974)

19. Parlett, B.N.: The contribution of J. H.Wilkinson to numerical analysis. In: Nash, S.G. (ed.), A History
of Scientific Computing, ACM Press, p. 25 (1990)

20. Parlett, B.N.: Reduction to tridiagonal form and minimal realizations. SIAM J. Matrix Anal. Appl. 13,
567–593 (1992)

21. Parlett, B.N.: The new QD algorithms. Acta Numer 4, 459–491 (1995)
22. Parlett, B.N., Dhillon, I.S.: Fernandos solution to Wilkinsons problem: an application of double fac-

torization. Linear Algebra Appl. 267, 247–279 (1997)
23. Parlett, B.N., Marques, O.A.: An implementation of the DQDS algorithm. Linear Algebra Appl. 309,

217–259 (2000)
24. Parlett, B., Dopico, F.M., Ferreira, C.: The inverse eigenvector problem for real tridiagonal matrices.

SIAM J. Matrix Anal. Appl. 37, 577–597 (2016)
25. Pasquini, L.: Accurate computation of the zeros of the generalized Bessel polynomials. Numerische

Mathematic 86, 507–538 (2000)
26. Rutishauser, H.: DerQuotienten-Differenzen-Algorithmus. Z.Angew.Math. Physik 5, 233–251 (1954)
27. Rutishauser, H.: Der Quotienten-Differenzen-Algorithmus. Mitt. Inst. Angew. Math. ETH, vol. 7,

Birkhäuser, Basel (1957)
28. Rutishauser, H.: Solution of eigenvalue problems with the LR-transformation. Natl. Bur. Stand. Appl.

Math. Ser. 49, 47–81 (1958)
29. Rutishauser, H., Schwarz, H.R.: The LR transformation method for symmetric matrices. Numer. Math.

5, 273–289 (1963)
30. Slemons, J.: Toward the Solution of the Eigenproblem: Nonsymmetric Tridiagonal Matrices. Ph.D

Thesis, University of Washington, Seattle (2008)
31. Slemons, J.: The result of two steps of the LR algorithm is diagonally similar to the result of one step

of the HR algorithm. SIAM J. Matrix Anal. Appl. 31(1), 68–74 (2009)
32. Trefethen, L.N., Embree, M.: Spectra and pseudospectra. In: The Behavior of Nonnormal Matrices

and Operators, Princeton University Press (2005)
33. Watkins, D.S.: QR-like algorithms—an overview of convergence theory and practice. Lect. Appl.

Math. 32, 879–893 (1996)
34. Watkins,D.S., Elsner, L.: Convergence of algorithms of decomposition type for the eigenvalue problem.

Linear Algebra Appl. 143, 19–47 (1991)
35. Willems, P.R., Lang, B.: Twisted factorizations and QD-type transformations for theMR3 algorithm—

new representations and analysis. SIAM J. Matrix Anal. Appl. 33(2), 523–553 (2012)
36. Wu. Z.: The Triple DQDS Algorithm for Complex Eigenvalues. Ph.D Thesis, University of California,

Berkeley (1996)

123

http://hdl.handle.net/1822/6761
https://doi.org/10.1007/s00211-012-0470-z

422 C. Ferreira, B. Parlett

37. Xu, H.: The relation between the QR and LR algorithms. SIAM J. Matrix Anal. Appl. 19(2), 551–555
(1998)

38. Yao, Y.: Error Analysis of the QDs and DQDs Algorithms. Ph.D Thesis, University of California,
Berkeley (1994)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	A real triple dqds algorithm for the nonsymmetric tridiagonal eigenvalue problem
	Abstract
	1 Introduction
	2 Other methods relevant to 3dqds
	2.1 2 steps of LR = 1 step of QR
	2.2 Cullum's complex QR algorithm
	2.3 Liu's HR algorithm
	2.4 Complex dqds
	2.5 Ehrlich–Aberth algorithm

	3 LR and dqds
	3.1 LU factorization
	3.2 LR transform with shift
	3.3 The dqds algorithm
	3.3.1 Advantages of the factored form
	3.3.2 Disadvantages of the factored form

	3.4 Implicit shifted LR for J matrices
	3.4.1 Double shift LR algorithm
	3.4.2 Connection to dqds algorithm
	3.4.3 Single shift LR and double dqds

	4 Triple dqds algorithm
	4.1 Chasing the bulges
	4.2 Details of 3dqds
	4.3 Comparison of dqds and 3dqds

	5 Error analysis
	5.1 dqds
	5.2 3dqds

	6 Implementation details
	6.1 Deflation (n leftarrown-1)
	6.2 Splitting and deflation (n leftarrown-2)
	6.3 Shift strategy

	7 Factored forms
	7.1 Eigenvectors from twisted factorizations of the balanced form ΔT
	7.2 Relative eigenvalue condition numbers
	7.3 Generalized Rayleigh quotient iteration

	8 Numerical examples
	8.1 Bessel matrix
	8.2 Clement matrix
	8.3 Matrix with clusters
	8.4 Other scaled test matrices
	8.5 Liu matrix

	9 Conclusions
	Acknowledgements
	AppendixA 3dqds algorithm
	AppendixB Pseudocode for the whole algorithm
	References

