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Abstract
This work focuses on the study of partial differential equation (PDE) based basis func-
tion for Discontinuous Galerkin methods to solve numerically wave-related boundary
value problems with variable coefficients. To tackle problems with constant coef-
ficients, wave-based methods have been widely studied in the literature: they rely
on the concept of Trefftz functions, i.e. local solutions to the governing PDE, using
oscillating basis functions rather than polynomial functions to represent the numeri-
cal solution. Generalized Plane Waves (GPWs) are an alternative developed to tackle
problems with variable coefficients, in which case Trefftz functions are not available.
In a similar way, they incorporate information on the PDE, however they are only
approximate Trefftz functions since they don’t solve the governing PDE exactly, but
only an approximated PDE. Considering a new set of PDEs beyond the Helmholtz
equation, we propose to set a roadmap for the construction and study of local interpo-
lation properties of GPWs. Identifying carefully the various steps of the process, we
provide an algorithm to summarize the construction of these functions, and establish
necessary conditions to obtain high order interpolation properties of the corresponding
basis.

Mathematics Subject Classification 65N30 · 65N80 · 68W25

B Lise-Marie Imbert-Gérard
lmig@math.arizona.edu

Guillaume Sylvand
guillaume.sylvand@airbus.com

1 Department of Mathematics, The University of Arizona, Tucson, AZ, USA

2 Central R&T, Airbus, AIRBUS Central R&T / XRV, 22 Rue du Gouverneur Général EBOUÉ,
92130 Issy Les Moulineaux, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00211-021-01220-9&domain=pdf
https://orcid.org/0000-0002-5701-277X


88 L.-M. Imbert-Gérard, G. Sylvand

1 Introduction

Trefftz methods are Galerkin type of methods that rely on function spaces of local
solutions to the governing partial differential equations (PDEs). They were initially
introduced in [27,35], and the original idea was to use trial functions which satisfy the
governing PDE to derive error bounds. They have been widely used in the engineering
community [20] since the 60s, for instance for Laplace’s equation [30], to the bihar-
monic equation [33] and to elasticity [23]. Later the general idea of taking advantage
of analytical knowledge about the problem to build a good approximation space was
used to develop numerical methods: in the presence of corner and interface singu-
larities [10,34], boundary layers, rough coefficients, elastic interactions [2,3,28,29],
wave propagation [2,9]. In the context of boundary value problems (BVPs) for time-
harmonic wave propagation, several methods have been proposed following the idea
of functions that solves the governing PDE [13], relying on incorporating oscillating
functions in the function spaces to derive and discretize a weak formulation. Wave-
based numerical methods have received attention from several research groups around
the world, from the theoretical [13] and computational [14] point of view, and the pol-
lution effect of plane wave Discontinuous Galerkin (DG) methods was studied in [11].
Such methods have also been implemented in industry codes,1 for acoustic applica-
tions. The use of Plane Wave (PW) basis functions has been the most popular choice,
while an attempt to use Bessel functions was reported in [25]. In [24], the authors
present an interesting comparison of performance between high order polynomial and
wave-based methods. More recently, application to space-time problems have been
studied in [4,21,22,31,32].

In this context, numerical methods rely on discretizing a weak formulation via a
set of exact solutions of the governing PDE.When no exact solutions to the governing
PDE are available, there is no natural choice of basis functions to discretize the weak
formulation. This is in particular the case for variable coefficient problems. In order
to take advantage of Trefftz-type methods for problems with variable coefficients,
Generalized Plane Waves (GPWs) were introduced in [17], as basis functions that
are local approximate solutions—rather than exact solutions—to the governing PDE.
GPWswere designed addinghigher order terms in the phase of classical PWs, choosing
these higher order terms to ensure the desired approximation of the governing PDE.
In [15], the construction and interpolation properties of GPWs were studied for the
Helmholtz equation

− �u + β(x, y))u = 0, (1)

with a particular interest for the case of a sign-changing coefficient β, including prop-
agating solutions (β < 0), evanescent solutions (β > 0), smooth transition between
them (β = 0) called cut-offs in the field of plasma waves. The interpolation properties
of a set V spanned by resulting basis functions, namely ‖(I − PV)u‖ where PV is
the orthogonal projector on V while u is the solution to the original problem, play a
crucial role in the error estimation of the corresponding numerical method [5]. For this

1 http://www.waveller.com/Waveller_Acoustics/waveller_acoustics.shtml.
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same equation the error analysis of a modified Trefftz method discretized with GPWs
was presented in [18]. In [19], Generalized Plane Waves (GPWs) were used for the
numerical simulation of mode conversion modeled by the following equation:

(
∂2x + (d + d)∂x∂y + |d|2∂2y

)
F + (d − d)x∂y F

−
(
1 + 1

μ
+ x(x + y)

)
F = 0. (2)

In the present work, we answer questions related to extending the work on GPW
developed in [15]—the construction of GPWs on the one hand, and their interpolation
properties on the other hand—from the Helmholtz operator −� + β to a wide range
of partial differential operators. A construction process valid for some operators of
order two or higher is presented, while a proof of interpolation properties is limited to
some operators of order two. We propose a road map to identify crucial steps in our
work:

1. Construction of GPWs ϕ such that Lϕ ≈ 0

(a) Choose an ansatz for ϕ (Sect. 2).
(b) Identify the corresponding Ndof degrees of freedom and Neqn constraints

(Sect. 2.1).
(c) Choose the number of degrees of freedom adequately Ndof ≥ Neqn (Sect. 2.1).
(d) Study the structure of the resulting system and identify Ndof −Neqn additional

constraints (Sects. 2.2, 2.3).
(e) Compute the remaining Neqn degrees of freedom at minimal computational

cost (Sect. 2.4).

2. Interpolation properties

(a) Study the properties of the remaining Neqn degrees of freedom with respect to
the Ndof − Neqn additional constraints

(b) Identify a simple reference case depending only on the Ndof −Neqn additional
constraints (Sect. 3).

(c) Study the interpolation properties of this reference case (Sect. 4.1).
(d) Relate the general case to the reference case (Sects. 3.1, 3.2).
(e) Prove the interpolation properties of the GPWs from those of the reference

case (Sect. 4.2).

Wewill consider linear partial differential operators with variable coefficients, defined
as follows.

Definition 1 A linear partial differential operator of order M ≥ 2, in two dimensions,
with a given set of complex-valued coefficients α={αk,�−k,(k, �)∈N

2, 0≤k≤�≤M}
will be denoted hereafter as

LM,α :=
M∑

�=0

�∑
k=0

αk,�−k (x, y) ∂kx ∂
�−k
y .
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90 L.-M. Imbert-Gérard, G. Sylvand

Our goal is to build a basis of functions well suited to approximate locally any
solution u to a given homogeneous variable-coefficient partial differential equation

LM,αu = 0 on a domain � ⊂ R
2,

where by locally we mean piecewise on a mesh Th of�. Such interpolation properties
are a building block for the convergence proof of Galerkin methods. For a constant
coefficient operator, it is natural to use the same basis on each element K ∈ Th .
However, with variable coefficients, it cannot be optimal to expect a single basis to
have good approximation properties on the whole domain � ⊂ R

2. For instance,
for the Helmholtz equation with a sign-changing coefficient, it can not be optimal
to look for a single basis that would give a good approximation of solutions both in
the propagating region and in the evanescent region. Therefore it is natural to think
of local bases defined on each K ∈ Th : with GPWs we focus on local properties
around a given point (x0, y0) ∈ R

2 rather than on a given domain �. A simple
idea would then be freezing the coefficients of the operator, that is to say studying,
instead of LM,α , the constant coefficient operator LM,ᾱ with constant coefficients
ᾱ = {αk,l(x0, y0), 0 ≤ k+ l ≤ M}. However, as observed in [15,16], this leads to low
order approximation properties, while we are interested in high order approximation
properties. This is why new functions are needed to handle variable coefficients. This
work will focus on two aspects: the construction and the interpolation properties of
GPWs.

We follow the GPW design proposed in [15,17]. Retaining the oscillating feature
while aiming for higher order approximation, GPWwere designed with Higher Order
Terms (HOT ) in the phase function of a plane wave. These higher order terms are to
be defined to ensure that a GPW function ϕ is an approximate solution to the PDE:

{
φ(x, y) = exp iκ(cos θx + sin θ y)[
−� − κ2

]
φ = 0

versus

{
ϕ(x, y) = exp (iκ(cosθx + sin θ y) + HOT )

LM,αϕ ≈ 0
(3)

In Sect. 2, the construction of a GPW ϕ(x, y) = eP(x,y) will be described in detail,
then a precise definition of GPW will be provided under the following hypothesis:

Hypothesis 1 Consider a given point (x0, y0) ∈ R
2, a given approximation parameter

q ∈ N, q ≥ 1, a given M ∈ N, M ≥ 2, and a partial differential operatorLM,α defined
by a given set of complex-valued coefficients α = {αk,l , 0 ≤ k + l ≤ M}, defined in
a neighborhood of (x0, y0), satisfying

• αk,l is Cq−1 at (x0, y0) for all (k, l) such that 0 ≤ k + l ≤ M ,
• αM,0(x0, y0) �= 0.

This construction is equivalent to the construction of the bi-variate polynomial

P(x, y) =
∑

0≤i+ j≤dP

λi j (x − x0)
i (y − y0)

j ,

and is performed by choosing the degree dP , and providing an explicit formula
for the set of complex coefficients {λi j }{(i, j)∈N2,0≤i+ j≤dP}, in order for ϕ to satisfy
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LM,αϕ(x, y) = O (‖(x, y) − (x0, y0)‖q). An algorithm to construct a GPW is pro-
vided. In Sect. 3 properties of the λi j s are studied, while the interpolation properties
of the corresponding set of basis functions are studied for the case M = 2 in Sect. 4,
under the following hypothesis:

Hypothesis 2 Under Hypothesis 1 we consider only operators LM,α such that M is
even and the terms of order M satisfy

M∑
k=0

αk,M−k(x0, y0)X
kY M−k = (γ1X

2 + γ2XY + γ3Y
2)

M
2

for some complex numbers (γ1, γ2, γ3) such that there exists (μ1, μ2)∈C
2,μ1μ2 �= 0,

a non-singular matrix A ∈ C
2×2 satisfying � = At DA where � =

(
γ1 γ2/2

γ2/2 γ3

)

and D =
(

μ1 0
0 μ2

)
, and therefore

M∑
k=0

αk,M−k(x0, y0)X
kY M−k =

(
μ1(A11X + A12Y )2 + μ2(A21X + A22Y )2

) M
2

.

For instance, these matrices are � = D = I d for LH := −� − κ2(x, y) or
LB := �LH , and � = D = c(x0, y0)I d for LC := −∇ · (c(x, y)∇) − κ2(x, y).
Note that if � is real, this is simply saying that its eigenvalues are non-zero. Finally,
corresponding numerical results are then provided, for various operatorsLM,α of order
M = 2 in Sect. 5.

Our previous work was limited to the Helmholtz equation (1) for propagating and
evanescent regions, transition between the two, absorbing regions, as well as caustics.
The interpolation properties presented here covermore general secondorder equations,
in particular equations that can be written as

∇ · (A∇u) + d · ∇u + k2mu = 0, (4)

with variable coefficients A matrix-valued, real and symmetric with non-zero eigen-
values, d vector-valued and m scalar-valued. It includes for instance

• Helmholtz equation with absorption corresponding to A = I with 
(m) > 0 and
�(m) �= 0;

• the mild-slop equation [8] modeling the amplitude of the free-surface water waves
corresponding to m = cpcg being the product of cp the phase speed of the waves
and cg the group speed of the waves with A = mId;

• if μ is the permeability and ε the permittivity, then the transverse-magnetic mode
of Maxwell’s equations for A = 1

μ
I and m = ε, while the transverse-electric

mode of Maxwell’s equations for A = 1
ε
I and m = μ.

Throughout this article, we will denote byN the set of non-negative integers, byN∗
the set of positive integers, by R

+ = [0;+∞) the set of non-negative real numbers,
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92 L.-M. Imbert-Gérard, G. Sylvand

and by C[z1, z2] the space of complex polynomials with respect to the two variables
z1 and z2. As the first part of this work is dedicated to finding the coefficients λi j ,
we will reserve the word unknown to refer to the λi, j s. The length of the multi-index
(i, j) ∈ N

2 of an unknown λi j , |(i, j)| = i+ j , will play a crucial role in what follows.

2 Construction of a GPW

The task of constructing a GPW is attached to a homogeneous PDE, it is not global
on R

2 but it is local as it is expressed in terms of a Taylor expansion. It consists in
finding a polynomial P ∈ C[x, y] such that the corresponding GPW, namely ϕ := eP ,
is locally an approximate solution to the PDE.

Consider M = 2, β = {β0,0, β0,1 = β1,0 = β1,1 = 0, β0,2 ≡ −1, β2,0 ≡ −1}, and
the corresponding the operator L2,β = −∂2x − ∂2y + β0,0(x). Then for any polynomial
P ∈ C[x, y]:

L2,βe
P(x,y) =

(
−∂2x P − (∂x P)2 − ∂2y P − (∂y P)2 + β0,0(x, y)

)
eP(x,y),

so the construction of an exact solution to the PDEwould be equivalent to the following
problem:

Find P ∈ C[x, y] such that

∂2x P(x, y) + (∂x P)2(x, y) + ∂2y P(x, y) + (∂y P)2(x, y) = β0,0(x, y). (5)

Consider then the following examples.

• If β0,0(x, y) is constant, then it is straightforward to find a polynomial of degree
one satisfying Problem (5);β0,0 being negative this would correspond to a classical
plane wave.

• If β0,0(x, y) = x , then there is no solution to (5), since the total degree of the
polynomial ∂2x P + (∂x P)2 + ∂2y P + (∂y P)2 is always even.

• If β0,0(x, y) is not a polynomial function, it is also straightforward to see that no
polynomial P can satisfy Problem (5).

From these trivial examples we see that in general there is no such function,
ϕ(x, y) = eP(x,y), P being a complex polynomial, solution to a variable coeffi-
cient partial differential equation exactly. It could seem that the restriction for P to be
a polynomial is very strong. However since we are interested in approximation and
smooth coefficients, rather than looking for a more general phase function we restrict
the identityLϕ = 0 on� into an approximation on a neighborhood of (x0, y0) ∈ R

2 in
the following sense. We replace the too restrictive cancellation of LM,αeP(x,y) by the
cancellation of the lowest terms of its Taylor expansion around (x0, y0). So this section
is dedicated to the construction of a polynomial P ∈ C[x, y], under Hypothesis 1, to
ensure that the following local approximation property

LM,αe
P(x,y) = O(‖(x − x0, y − y0)‖q) (6)
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is satisfied. The parameter q will denote throughout this work the order of approxi-
mation of the equation to which the GPW is designed. In summary, the construction
is performed:

• for a partial differential operator LM,α of order M defined by a set of smooth
coefficients α,

• at a point (x0, y0) ∈ R
2,

• at order q ∈ N
∗,

• to ensure that LM,αeP(x,y) = O(|(x − x0, y − y0)|q).
Even though the construction of aGPWwill involve a non-linear systemwe propose

to take advantage of the structure of this system to construct a solution via an explicit
formula. In this way, even though a GPW ϕ := eP is a PDE-based function, the
polynomial P can be constructed in practice from this formula, and therefore the
function can be constructed without solving numerically any non-linear—or even
linear—system. This remark is of great interestwith respect to the use of such functions
in a Discontinuous Galerkin method to solve numerically boundary value problems.

In order to illustrate the general formulas that will appear in this section, wewill use
the specific case L2,γ where γ = {γ0,0, γ1,0, γ0,1, γ2,0 ≡ −1, γ1,1, γ0,2}, for which
we can write explicitly many formulas is a compact form. In order to simplify certain
expressions that will follow we propose the following definition.

Definition 2 Assume (i, j) ∈ N
2 and (x0, y0) ∈ R

2. We define the linear partial
differential operator D(i, j) by

D(i, j): f ∈ Ci+ j �→ 1

i ! j !∂
i
x∂

j
y f .

A precise definition of GPW will be provided at the end of this section.

2.1 From the Taylor expansion to a non-linear system

We are seeking a polynomial P(x, y) =∑0≤i+ j≤dP λi j (x − x0)i (y− y0) j satisfying
the Taylor expansion (6). Defining such a polynomial is equivalent to defining the
set {λi j ; (i, j) ∈ N

2, 0 ≤ i + j ≤ dP}, and therefore we will refer to the λi j s as
the unknowns throughout this construction process. The goal of this subsection is to
identify the set of equations to be satisfied by these unknowns to ensure that P satisfies
the Taylor expansion (6), and in particular to choose the degree of P so as to guarantee
the presence of linear terms in each equation of the system.

According to the Faa di Bruno formula, the action of the partial differential operator
LM,α on a function ϕ(x, y) = eP(x,y) is given by

LM,αe
P(x,y) =eP(x,y)

(
α0,0(x, y)

+
M∑

�=1

�∑
k=0

αk,�−k (x, y) k!(� − k)!
∑

1≤μ≤�

�∑
s=1

∑
ps ((k,�−k),μ)
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94 L.-M. Imbert-Gérard, G. Sylvand

s∏
m=1

1

km !
(
D(im , jm )P(x, y)

)km )
,

where the linear order ≺ on N
2 is defined by

∀(μ, ν) ∈ (N2)2, μ ≺ ν ⇔ 1. μ1 + μ2 < ν1 + ν2; or
2. μ1 + μ2 = ν1 + ν2 and μ1 < μ2,

and where ps((i, j), μ) is equal to

{
(k1, . . . , ks; (i1, j1), . . . , (is, js)): ki > 0, 0 ≺ (i1, j1) ≺ · · · ≺ (is, js),

s∑
l=1

kl = μ,

s∑
l=1

kl il = i,
s∑

l=1

kl jl = j

}
.

For the operator L2,γ the Faa di Bruno formula becomes

L2,γ e
P = eP

(
− ∂2x P + γ1,1∂x∂y P + γ0,2∂

2
y P − (∂x P)2

+ γ1,1∂x P∂y P + γ0,2(∂y P)2

+ γ1,0∂x P + γ0,1∂y P + γ0,0

)
.

In order to single out the terms depending on P in the right hand side, this leads to
the following definition.

Definition 3 Consider a givenM ∈ N,M ≥ 2, a given set of complex-valued functions
α = {αk,l , 0 ≤ k + l ≤ M}, and the corresponding partial differential operator LM,α .
We define the partial differential operator LA

M,α associated to LM,α as

LA
M,α =

M∑
�=1

�∑
k=0

k!(� − k)!αk,�−k

∑
1≤μ≤�

�∑
s=1

∑
ps ((k,�−k),μ)

s∏
m=1

1

km !
(
D(im , jm )(·)

)km
,

or equivalently, since the exponential of a bounded quantity is bounded away from
zero:

LA
M,α: f ∈ CM �→ LM,αe f

e f
− α0,0.

For the operator L2,γ this gives

LA
2,γ P = −∂2x P + γ1,1∂x∂y P + γ0,2∂

2
y P − (∂x P)2 + γ1,1∂x P∂y P

+ γ0,2(∂y P)2 + γ1,0∂x P + γ0,1∂y P.
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Since, for any polynomial P , the function eP is locally bounded, and since
LM,α[eP ] = (

LA
M,αe

P + α0,0
)
eP , then for a polynomial P to satisfy the approxi-

mation property (6), it is sufficient to satisfy

LA
M,αP(x, y) = −α0,0(x, y) + O(|(x − x0, y − y0)|q). (7)

Therefore, the problem to be solved is now:

Find P ∈ C[x, y], s.t. ∀(I , J ) ∈ N
2, 0 ≤ I + J < q,

D(I ,J )LA
M,αP(x0, y0) = −D(I ,J )α0,0(x0, y0). (8)

In order to define a polynomial P(x, y) =∑0≤i+ j≤dP λi j (x − x0)i (y − y0) j , the
degree dP of the polynomial determines the number of unknowns: there are Ndof =
(dP+1)(dP+2)

2 unknowns to be defined, namely the {λi, j }{(i, j)∈N,0≤i+ j≤dP . In order to
design a polynomial P satisfying Eq. (7), the parameter q determines the number of
equations to be solved: there are Neqn = q(q+1)

2 terms to be canceled from the Taylor
expansion. The first step toward the construction of a GPW is to define the value of
dP for a given value of q.

At this point it is clear that if dP ≤ q − 1, then the resulting system is over-
determined. Our choice for the polynomial degree dP relies on a careful examination
of the linear terms in LA

M,αP . We can already notice that, under Hypothesis 1, in

LA
M,αP there is at least one non-zero linear term, namely αM,0(x0, y0)∂M

x P , and there

is at least one non-zero non-linear term, namely αM,0(x0, y0)(∂x P)M . This non-linear
term corresponds to the following parameters from the Faa di Bruno formula:μ = M ,
s = 1, (k1, (i1, j1)) = (M, (1, 0)). The linear terms can only correspond to s = 1,
μ = 1 and p1((k, � − k), 1) = {(1, (k, � − k))}, see Definition 3. We can then split
LA

M,α into its linear and non-linear parts.

Definition 4 Consider a givenM ∈ N,M ≥ 2, a given set of complex-valued functions
α = {αk,l , 0 ≤ k + l ≤ M}, and the corresponding partial differential operator
LM,α . The linear part of the partial differential operator LA

M,α is defined by LL
M,α :=

LM,α − α0,0∂
0
x ∂

0
y , or equivalently

LL
M,α =

M∑
�=1

�∑
k=0

αk,�−k∂
k
x ∂

�−k
y ,

and its non-linear part LN
M,α := LA

M,α − LL
M,α can equivalently be defined by

LN
M,α =

M∑
�=1

�∑
k=0

k!(� − k)!αk,�−k

∑
2≤μ≤�

�∑
s=1

∑
ps ((k,�−k),μ)

s∏
m=1

1

km !
(
D(im , jm )(·)

)km
.
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96 L.-M. Imbert-Gérard, G. Sylvand

For the operator L2,γ this gives respectively

{
LL
2,γ P = −∂2x P + γ1,1∂x∂y P + γ0,2∂

2
y P + γ1,0∂x P + γ0,1∂y P,

LN
2,γ P = −(∂x P)2 + γ1,1∂x P∂y P + γ0,2(∂y P)2.

Consider the (I , J ) coefficients of the Taylor expansion of LL
M,αP for (I , J ) ∈ N

2

and 0 ≤ I + J < q:

D(I ,J )
[
LL

M,αP
]
(x0, y0) =

M∑
�=1

�∑
k=0

D(I ,J )
[
αk,�−k∂

k
x ∂

�−k
y P

]
(x0, y0),

so that in order to isolate the derivatives of highest order, i.e. of order M + I + J , we
can write

D(I ,J )
[
LL

M,αP
]
(x0, y0)

= 1

I !J !
M∑
k=0

αk,M−k(x0, y0)∂
k+I
x ∂M−k+J

y P(x0, y0)

+
M∑
k=0

I−1∑

ĩ=0

J−1∑

j̃=0

1

ĩ ! j̃ !D
(I−ĩ,J− j̃)αk,M−k(x0, y0)∂

k+ĩ
x ∂

M−k+ j̃
y P(x0, y0)

+
M−1∑
�=1

�∑
k=0

I∑

ĩ=0

J∑

j̃=0

1

ĩ ! j̃ !D
(I−ĩ,J− j̃)αk,�−k(x0, y0)∂

k+ĩ
x ∂

�−k+ j̃
y P(x0, y0). (9)

Back to Problem (8), the (I , J ) terms (9) a priori depend on the unknowns
{λi, j , (i, j) ∈ N

2, 0 ≤ i + j ≤ dP}. Since

∀(i, j) ∈ N
2,D(i, j)P(x0, y0) =

{
λi, j if i + j ≤ dP,

0 otherwise,

then under Hypothesis 1 any (I , J ) term in System (8) has at least one non-zero linear
term, as long as I + J ≤ dP − M , namely (M+I )!

I ! αM,0(x0, y0)λM+I ,J , while it does
not necessarily have any linear term as soon as I + J > dP − M . Avoiding equations
with no linear terms is natural, and it will be crucial for the construction process
described hereafter.

Choosing the polynomial degree to be dP = M + q − 1 therefore guarantees the
existence of at least one linear term in every equation of System (8). Therefore, from
now on the polynomial P will be of degree dP = M + q − 1 and the new problem to
be solved is
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I axis

J axis

q − 1

q − 1

q − 1 + n

i axis

j axis

q − 1

q − 1

q − 1 + n

Fig. 1 Representation of the indices involved in the nonlinear system (10), for q = 6 and n = 4. Each cross
in the (I , J ) plane corresponds to the equation (I , J ) in System (10) (Left panel), while each cross in the
(i, j) plane corresponds to the unknown λi j (Right panel)

Find {λi, j , (i, j) ∈ N
2, 0 ≤ i + j ≤ M + q − 1} such that

P(x, y) :=
M+q−1∑
i=0

M+q−1−i∑
j=0

λi, j (x − x0)
i (y − y0)

j ∈ C[x, y], satisfies

∀(I , J ) ∈ N
2, 0 ≤ I + J < q,D(I ,J )LA

M,αP(x0, y0) = −D(I ,J )α0,0(x0, y0).

(10)

As a consequence the number of unknowns is Ndof = (M+q)(M+q+1)
2 , and the system

is under-determined : Ndof − Neqn = Mq + M(M+1)
2 . See Fig. 1 for an illustration of

the equation and unknown count.
Note that this system is always non-linear. Indeed, under Hypothesis 1, the

(0, 0) equation of the system always includes the non-zero non-linear term
αM,0(x0, y0)(λ1,0)M , corresponding to the following parameters from theFaa diBruno
formula: μ = M , s = 1, (k1, (i1, j1)) = (M, (1, 0)).

The key to the construction procedure proposed next is a meticulous gathering of
unknowns λi, j with respect the length of their multi-index i + j . As we will now see,
this will lead to splitting the system into a hierarchy of simple linear sub-systems.

2.2 From a non-linear system to linear sub-systems

The different unknowns appearing in each equation of System (10) can now be stud-
ied. A careful inspection of the linear and non-linear terms will reveal the underlying
structure of the system, and will lead to identify a hierarchy of simple linear subsys-
tems.

The inspection of the linear terms is very straightforward thanks to Eq. (9). The
description of the unknowns in the linear terms is summarized here.

Lemma 1 Consider a point (x0, y0) ∈ R
2, a given q ∈ N

∗, a given M ∈ N, M ≥ 2, a
given set of complex-valued functions α = {αk,l ∈ Cq−1 at (x0, y0), 0 ≤ k + l ≤ M},
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and the corresponding partial differential operator LM,α . In each equation (I , J ) of
System (10), the linear terms can be split as follows:

• a set of unknowns with length of the multi-index equal to M+ I+ J , corresponding
to � = M and (ĩ, j̃) = (I , J ),

• a set of unknowns with length of the multi-index at most equal to M + I + J − 1.

Under Hypothesis 1, both sets are never empty.

Proof In terms of unknowns {λi, j , (i, j) ∈ N
2, 0 ≤ i + j ≤ M + q − 1}, Eq. (9)

reads:

∂0x ∂
0
y

[
LL

M,αP
]
(x0, y0)

=
M∑
k=0

(k)!(M − k)!αk,M−k(x0, y0)λk,M−k

+
M−1∑
�=1

�∑
k=0

(k)! (� − k)!αk,�−k(x0, y0)λk,�−k; (11)

∀J > 0, D(0,J )
[
LL

M,αP
]
(x0, y0)

= 1

J !
M∑
k=0

k!(M − k + J )!αk,M−k(x0, y0)λk,M−k+J

+
M∑
k=0

J−1∑

j̃=0

k!
(
M − k + j̃

)
!

j̃ ! D(0,J− j̃)αk,M−k(x0, y0)λk,M−k+ j̃

+
M−1∑
�=1

�∑
k=0

J∑

j̃=0

k!
(
� − k + j̃

)
!

j̃ ! D(0,J− j̃)αk,�−k(x0, y0)λk,�−k+ j̃ ; (12)

∀I > 0, D(I ,0)
[
LL

M,αP
]
(x0, y0)

= 1

I !
M∑
k=0

(k + I )!(M − k)!αk,M−k(x0, y0)λk+I ,M−k

+
M∑
k=0

I−1∑

ĩ=0

(
k + ĩ

)
!

ĩ ! (M − k)!D(I−ĩ,0)αk,M−k(x0, y0)λk+ĩ,M−k

+
M−1∑
�=1

�∑
k=0

I∑

ĩ=0

(
k + ĩ

)
!

ĩ ! (� − k)!D(I−ĩ,0)αk,�−k(x0, y0)λk+ĩ,�−k; (13)

∀(I , J ), I J �= 0, D(I ,J )
[
LL

M,αP
]
(x0, y0)

= 1

I !J !
M∑
k=0

(k + I )!(M − k + J )!αk,M−k(x0, y0)λk+I ,M−k+J
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+
M∑
k=0

I−1∑

ĩ=0

J−1∑

j̃=0

(
k + ĩ

)
!

ĩ !

(
M − k + j̃

)
!

j̃ ! D(I−ĩ,J− j̃)αk,M−k(x0, y0)λk+ĩ,M−k+ j̃

+
M−1∑
�=1

�∑
k=0

I∑

ĩ=0

J∑

j̃=0

(
k + ĩ

)
!

ĩ !

(
� − k + j̃

)
!

j̃ ! D(I−ĩ,J− j̃)αk,�−k(x0, y0)λk+ĩ,�−k+ j̃ .

(14)

The result is immediate for I = J = 0 from (11). The following comments are valid
for the right hand sides of (12)–(14): the third term only contains unknowns with a
length of themulti-index equal to �+ ĩ+ j̃ ≤ M−1+ I+ J , while the second term only
contains unknownswith a length of themulti-index equal toM+ĩ+ j̃ ≤ M+ I+ J−2;
as to the first term, it only contains unknowns with a length of the multi-index equal
to M + I + J . This proves the claim. ��

We then focus on the inspection of the non-linear terms. Each non-linear term in
LA

M,αP reads from the definition of LN
M,α

αk,�−k

s∏
m=1

(
∂ imx ∂

jm
y P

)km
with

s∑
m=1

km > 1 (15)

andyields a sumofnon-linear termswith respect to theunknowns {λi j }{(i, j),0≤i+ j≤M+q−1},
implicitly given by the following formula:

D(I ,J )

[
αk,�−k

s∏
m=1

(
∂ imx ∂

jm
y P

)km
]

(x0, y0)

=
I∑

ĩ=0

J∑

j̃=0

D(I−ĩ,J− j̃)αk,�−k(x0, y0)D
(ĩ, j̃)

[
s∏

m=1

(
∂ imx ∂

jm
y P

)km
]

(x0, y0).

(16)

Therefore coming from the term (15), only a restricted number of unknowns contribute
to the (I , J ) equation of Problem (10).

In order to identify the unknowns contributing to (16), here are two simple yet
important reminders are provided in “Appendix C”.

It is now straightforward to describe the unknowns λi, j appearing in the non-linear
terms of the equation (I , J ) of System (10), unwinding formula (16).

Lemma 2 Consider a point (x0, y0) ∈ R
2, a given q ∈ N

∗, a given M ∈ N, M ≥ 2, a
given set of complex-valued functions α = {αk,l ∈ Cq−1 at (x0, y0), 0 ≤ k + l ≤ M},
and the corresponding partial differential operator LM,α . In each equation (I , J ) of
System (10), the unknowns λi, j appearing in the non-linear terms have a length of the
multi-index i + j < M + I + J .
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Proof Each term ∂ ĩx∂
j̃
y

[∏s
m=1

(
∂
im
x ∂

jm
y P

)km]
inLA

M,αP is a polynomial, and its con-

stant coefficient contains coefficients of the polynomial
∏s

m=1

(
∂
im
x ∂

jm
y P

)km
with a

length of the multi-index length of the multi-index at most equal to ĩ + j̃ , that is to say
coefficients of the polynomials ∂

im
x ∂

jm
y P with a length of the multi-index length of the

multi-index at most equal to ĩ + j̃ for every (im, jm) from the Faa di Bruno’s formula,
so coefficients λi, j of the polynomial P with a length of the multi-index at most equal
to ĩ+ j̃+ im + jm . Since the indices are such that ĩ ≤ I , j̃ ≤ J , and im + jm ≤ � < M ,

the unknowns λi, j appearing in each term ∂ ĩx∂
j̃
y

[∏s
m=1

(
∂
im
x ∂

jm
y P

)km]
(x0, y0) have

a length of the multi-index at most equal to M + I + J − 1. It is therefore true for any
linear combination such as (16). ��

From the two previous Lemmas, we see that, in each equation (I , J ) of System
(10), unknowns with a length of the multi-index equal to M + I + J appear only in
linear terms, namely in

n∑
k=0

(k + I )!
I !

(M − k + J )!
J ! αk,M−k(x0, y0)λk+I ,M−k+J ,

whereas all the remaining unknowns have a length of the multi-index at most equal
to M + I + J − 1. It is consequently natural to subdivide the set of unknowns with
respect to the length of their multi-index M + L, for L between 0 and q − 1 in order
to take advantage of this linear structure.

2.3 Hierarchy of triangular linear systems

Our goal is now to construct a solution to the non-linear system (10), and our under-
standing of its linear part will lead to an explicit construction of such a solutionwithout
any need for any approximation.

The crucial point of our construction process is to take advantage of the underlying
layer structure with respect to the length of the multi-index: it is only natural now
to gather into subsystems all equations (I ,L − I ) for I between 0 and L, while
gathering similarly all unknowns with length of the multi-index equal to M + L. In
the subsystem of layer L, we know that the unknowns with a length of the multi-index
equal to M + I + J only appear in linear terms, and we rewrite each equation (I , J )

as

n∑
k=0

(k + I )!
I !

(M − k + L − I )!
(L − I )! αk,M−k(x0, y0)λk+I ,M−k+L−I

= −D(I ,J )α0,0(x0, y0) − D(I ,J )LA
M,αP(x0, y0)

+
n∑

k=0

(k + I )!
I !

(M − k + L − I )!
(L − I )! αk,M−k(x0, y0)λk+I ,M−k+L−I .
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For the sake of clarity, the resulting right-hand side terms can defined as follows.

Definition 5 Consider a point (x0, y0) ∈ R
2, a given q ∈ N

∗, a givenM ∈ N,M ≥ 2, a
given set of complex-valued functions α = {αk,l ∈ Cq−1 at (x0, y0), 0 ≤ k + l ≤ M},
and the corresponding partial differential operator LM,α .

We define the quantity NI ,J from Equation (I , J ) from (10) as

N0,0 := −
M−1∑
�=1

�∑
k=0

(k)! (� − k)!αk,�−k(x0, y0)λk,�−k

− LN
M,αP(x0, y0) − α0,0(x0, y0);

(17)

∀J > 0, N0,J :=
M∑
k=0

J−1∑

j̃=0

(
k + ĩ

)
!
(
M − k + j̃

)
!

j̃ ! D(0,J− j̃)αk,M−k(x0, y0)λk,M−k+ j̃

+
M−1∑
�=1

�∑
k=0

J∑

j̃=0

(k)!
(
� − k + j̃

)
!

j̃ ! D(0,J− j̃)αk,�−k(x0, y0)λk,�−k+ j̃

− D(0,J )
[
LN

M,αP
]
(x0, y0) − D(0,J )α0,0(x0, y0);

(18)

∀I > 0, NI ,0 :=
M∑
k=0

I−1∑

ĩ=0

(
k + ĩ

)
!

ĩ ! (M − k)!D(I−ĩ,α)
k,M−k (x0, y0)λk+ĩ,M−k

+
M−1∑
�=1

�∑
k=0

I∑

ĩ=0

(
k + ĩ

)
!

ĩ ! (� − k)!D(I−ĩ,0)αk,�−k(x0, y0)λk+ĩ,�−k

− D(I ,0)
[
LN

M,αP
]
(x0, y0) − D(I ,0)α0,0(x0, y0);

(19)

∀(I , J ), I J �= 0, NI ,J

:= −
M∑
k=0

I−1∑

ĩ=0

J−1∑

j̃=0

(
k + ĩ

)
!
(
M − k + j̃

)
!

ĩ ! j̃ ! D(I−ĩ,J− j̃)αk,M−k(x0, y0)λk+ĩ,M−k+ j̃

−
M−1∑
�=1

�∑
k=0

I∑

ĩ=0

J∑

j̃=0

(
k + ĩ

)
!
(
� − k + j̃

)
!

ĩ ! j̃ ! D(I−ĩ,J− j̃)αk,�−k(x0, y0)λk+ĩ,�−k+ j̃

− D(I ,J )
[
LN

M,αP
]
(x0, y0) − D(I ,J )α0,0(x0, y0). (20)
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[EX] For the operatorL2,γ the non-linear terms in N0,0, N1,0 and N0,1 are respectively

LN
2,γ P(x0, y0) = −λ21,0 + γ1,1(x0, y0)λ1,0λ0,1 + γ0,2(x0, y0)λ

2
0,1,

∂x [LN
2,γ P](x0, y0) = −2λ2,0λ1,0 + γ1,1(x0, y0)

(
2λ2,0λ0,1 + λ1,0λ1,1

)

+ 2γ0,2(x0, y0)λ1,1λ0,1
+ ∂xγ1,1(x0, y0)λ1,0λ0,1 + ∂xγ0,2(x0, y0)λ

2
0,1,

∂y[LN
2,γ P](x0, y0) = −2λ1,1λ1,0 + γ1,1(x0, y0)

(
λ1,1λ0,1 + 2λ1,0λ2,0

)

+ 2γ0,2(x0, y0)λ0,2λ0,1
+ ∂yγ1,1(x0, y0)λ1,0λ0,1 + ∂yγ0,2(x0, y0)λ

2
0,1.

We now consider the following subsystems for given L between 0 and q − 1:

Find {λi, j , (i, j) ∈ N
2, i + j = M + L} such that

∀(I , J ) ∈ N
2, I + J = L,

M∑
k=0

(k + I )!(M − k + J )!
I !J ! αk,M−k(x0, y0)λk+I ,M−k+J = NI ,J . (21)

The layer structure follows from our understanding of the non-linearity of the original
system:

Corollary 1 Consider a point (x0, y0) ∈ R
2, a given q ∈ N

∗, a given M ∈ N, M ≥ 2, a
given set of complex-valued functions α = {αk,l ∈ Cq−1 at (x0, y0), 0 ≤ k + l ≤ M},
and the corresponding partial differential operator LM,α . For any (I , J ) ∈ N

2 such
that I + J < q, the quantity NI ,J only depends on unknowns λi, j with length of the
multi-index at most equal to M + I + J − 1.

Proof The result is straightforward from Lemmas 1 and 2 . ��
Assuming that all unknowns λi, j with length of the multi-index at most equal to

M + I + J −1 are known, then (21) is a well-defined linear under-determined system
with

• L linear equations, namely the (I , J ) = (I ,L − I ) equations from System (10)
for I between 0 and L;

• M + L + 1 unknowns, namely the λi j for i + j = M + L.

Therefore, if all unknowns λi, j with length of the multi-index at most equal to M +
I + J − 1 are known, we expect to be able to compute a solution to the subsystem
L; this is the layer structure of our original problem (10). Figure 2 highlights the link
between the layers of unknowns and equations of the initial nonlinear system on the
one hand, and the layers unknowns and equations of the linear subsystems on the other
hand.

At this stage, we have identified a hierarchy of under-determined linear subsystems,
for increasing values of L from 0 to q − 1, and we are now going to propose one
procedure to build a solution to each subsystem. There is no unique way to do so,
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I axis

J axis

q − 1

q − 1

q − 1 + n

i axis

j axis

q − 1

q − 1

q − 1 + n

Fig. 2 Representation of the indices of equations and unknowns from the initial nonlinear system (10)
divided up into linear subsystems (21). For q = 6 and M = 4, each shape of marker corresponds to one
value of L: the indices (I , J ) satisfying I + J = L correspond to the subsystem’s equations (Left panel),
while the indices (i, j) satisfying i + j = L + M correspond to the subsystem’s unknowns (Right panel)

i axis

j axis

q − 1

q − 1 + n

I

J

I + n

J + n

i axis

j axis

q − 1

q − 1 + n

I
J

I + n

J + n

Fig. 3 Representation of the indices of unknowns involved in two equations (I , J ) of the subsystem (21).
For q = 6, for M = 4, and L = 4, each filled blue square marker corresponds in the (i, j) plane to an
unknown λi j , involved in the (I , J ) = (1, 3) equation (Left panel), or in the (I , J ) = (4, 0) equation (Right
panel) (colour figure online)

however if either αM,0(x0, y0) �= 0 or α0,M (x0, y0) �= 0 it provides a natural way
to proceed. Indeed, the unknowns involved in an equation (I , J ) = (I ,L − I ) are
{λi,M+L−i ; i ∈ N, I ≤ i ≤ I + M}; and the coefficient of the unknown λI+M,L−I is
proportional to αM,0(x0, y0), which is non-zero under Hypothesis 1. Figure 3 provides
two examples, in the (i, j) plane, of the indices of one equation’s unknowns: for each
equation, the coefficient of the term corresponding to the rightmost marker is non-
zero. By adding M constraints corresponding to fixing the values of λi,M+L−i for
0 ≤ i < M , that is the unknowns corresponding in the (i, j) plane to first M markers
on the left at level M +L, we therefore guarantee that for increasing values of I from
0 to L we can compute successively λI+M,L−I .

We can easily recast this in terms of matrices. At each level L, numbering the
equations with increasing values of I and the unknowns with increasing values of
i highlights the band-limited structure of each subsystem, while the entries of the
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M th super diagonal are all proportional to αM,0(x0, y0), and therefore non-zero under
Hypothesis 1. The matrix of the square linear system at level L is then constructed
from the first M lines of the identity, corresponding to the additional M constraints,
placed on top of the matrix of the subsystem.

Definition 6 Consider a point (x0, y0) ∈ R
2, a given q ∈ N

∗, a given M ∈ N, M ≥ 2,
a given set of complex-valued functions α ={αk,l ∈Cq−1 at(x0, y0), 0≤ k + l ≤ M},
and the corresponding partial differential operator LM,α . For a given level L ∈
N with L < q, we define the matrix of the square system of level L, TL ∈
C

(M+L+1)×(M+L+1), as

⎧⎪⎪⎨
⎪⎪⎩

TLk+1,k+1 = 1, ∀k s.t . 0 ≤ k ≤ M − 1,

TLI+M+1,I+k+1 = (I + k)!(M − k + L − I )!
I !(L − I )! αk,M−k (x0, y0), ∀(k, I ) s.t . 0 ≤ k ≤ M, 0 ≤ I ≤ L,

TLk,k′ = 0, otherwise,

or equivalently

TL :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1

�
0,L
0 A0 · · · · · · �

0,L
M AM

. . .
. . .

. . .
. . .

�
L,L
0 A0 · · · · · · �

L,L
M AM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with

{
�
i,L
k := (k+i)!(M−k+L−i)!

i !(L−i)! ,

Ak := αk,M−k (x0, y0).

Assuming that all unknowns λi, j with length of the multi-index at most equal to
M + I + J −1 are known, then, as expected, a solution to the linear under-determined
system (21) can be computed as follows.

Proposition 1 Consider a point (x0, y0) ∈ R
2, a given q ∈ N

∗, a given M ∈ N,
M ≥ 2, a given set of complex-valued functions α = {αk,l ∈ Cq−1 at (x0, y0), 0 ≤
k + l ≤ M}, and the corresponding partial differential operator LM,α . For a given
level L ∈ N with L < q, under Hypothesis 1, the matrix TL ∈ C

(M+L+1)×(M+L+1)

is non-singular.
We now assume that the unknowns {λi, j , (i, j) ∈ N

2, i + j < M + L} are known,
so that the terms NI ,L−I for I from 0 to L can be computed. Consider any vector
BL ∈ C

M+L+1 satisfying

BLM+1+I = NI ,L−I ,∀I s.t . 0 ≤ I ≤ L.

Then independently of the first M components of BL, solving the linear system

TLXL = BL (22)

by forward substitution provides a solution to (21) for

λi,M+L−i = XLi+1, ∀i ∈ N such that 0 ≤ i ≤ M + L.
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Proof The matrix TL is lower triangular, therefore its determinant is

det TL =
L∏
I=0

(
(I + M)!(L − I )!

I !(L − I )! αM,0(x0, y0)

)
=
⎛
⎝

L∏
I=0

(I + M)!
I !

⎞
⎠(αM,0(x0, y0)

)L+1
,

which can not be zero underHypothesis 1. The second part of the claim derives directly
from the definition of TL and BL and the fact that the system is lower triangular, and
can be illustrated as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1

�
0,L
0 A0 · · · · · · �

0,L
M AM

. . .
. . .

. . .
. . .

�
L,L
0 A0 · · · · · · �

L,L
M AM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
TL

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ0,L+M
...

λM−1,L+1

λM,L
...

λL+M,0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
XL

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗
...

∗
N0,L

...

NL,0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
BL

��
To summarize, we have defined for increasing values of L a hierarchy of linear

systems, each of which has the following characteristics:

• its unknowns are {λi,M+L−i ; ∀i ∈ N such that 0 ≤ i ≤ M + L};
• its matrix TL ∈ C

(M+L+1)×(M+L+1) is a square, non-singular, and triangular;
• its right-hand side depends both on {λi, j ; ∀(i, j)∈N

2 such that 0≤ i+ j <M+L}
and on M additional parameters.

At each levelL, assuming that the unknowns of inferior levels are known and provided
M given values for λi,M+L−i for 0 ≤ i < M , Proposition 1 provides an explicit
formula to compute λi,M+L−i for M ≤ i ≤ M + L.

2.4 Algorithm

Thenon-linear system (10) had N (10)
dof = (M+q)(M+q+1)

2 unknowns and N (10)
eqn = q(q+1)

2
equations, whereas each linear triangular system introduced in the previous subsection
has NT

dof = M + L + 1 unknowns and NT
eqn = M + L + 1 equations for each level

L such that 0 ≤ L ≤ q − 1. Therefore the hierarchy of triangular systems has a total
of NH

dof = (M + 1)q + q(q−1)
2 unknowns and NH

eqn = N (10)
eqn + Mq = Mq + q(q+1)

2

equations, including the q(q+1)
2 equations of the initial non-linear system (10).

The remaining N (10)
dof − NT

dof = M(M+1)
2 unknowns, which are unknowns of none

of the triangular systems but appear only on the right hand side of these systems, are
the {λi, j , (i, j) ∈ N

2, 0 ≤ i + j < M}. These are the unknowns with length of the
multi-index at most equal to M − 1, and the corresponding indices (i, j) are the only
ones that are not marked on the right panel of Fig. 2. It is therefore natural to add
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106 L.-M. Imbert-Gérard, G. Sylvand

M(M+1)
2 constraints corresponding to fixing the values of the remaining unknowns

{λi, j , (i, j) ∈ N
2, 0 ≤ i + j < M}. The final system we consider consists of these

M(M+1)
2 constraints, guaranteeing that the unknowns {λi, j , (i, j) ∈ N

2, 0 ≤ i + j <

M} are known, together with the hierarchy of triangular systems (22) for increasing
values of L from 0 to q − 1; it has NF

dof = (M+q)(M+q+1)
2 unknowns, namely the

unknowns of the original system (10), and NF
eqn = (M+q)(M+q+1)

2 equations, namely
the equations of the original system split into linear subsytems together with a total of
M(M+1)

2 +qM additional constraints. A counting summary is presented here: Thanks

Number of unknowns Number of equations

Original non-linear system (10) N (10)
dof = (M+q)(M+q+1)

2 N (10)
eqn = q(q+1)

2
Subsystem at level L (21) NL

dof = M + L + 1 NL
eqn = L + 1

Triangular system at level L (22) NT
dof = M + L + 1 NT

eqn = M + L + 1

Hierarchy of triangular systems for L
from 0 to q − 1

NH
dof = (M + 1)q + q(q−1)

2 NH
eqn = Mq + q(q+1)

2

Final system
(initial constraints + triangular systems)

NF
dof = (M+q)(M+q+1)

2 NF
eqn = (M+q)(M+q+1)

2

to the M(M+1)
2 constraints, for increasing values of L from 0 to q − 1, the hypothesis

of Proposition 1 is satisfied, the right hand side BL can be evaluated and the triangular
system (22) can be solved. So the unknowns {λi,M+L−i ; ∀i ∈ N such that 0 ≤ i ≤
M + L} can be computed by induction on L, constructing a solution to the initial
non-linear system (10) by induction on L.

The following algorithm requires the value of M(M+1)
2 + qM parameters, to fix

initially the set of unknowns {λi, j , (i, j) ∈ N
2, 0 ≤ i + j < M} and then at each

level L the set of unknowns {λi,M+L−i , i ∈ N, 0 ≤ i < M}. Under Hypothesis 1, the
algorithm presents a sequence of steps to construct explicitly a solution to Problem
(10) and requires no approximation process.

Algorithm 1 Constructing a solution to Problem (10)
1: Fix {λi, j , (i, j) ∈ N

2, 0 ≤ i + j < M} � M(M+1)
2 unknowns

2: forL from 0 to q − 1 do � q times

3: Fix {λi,M+L−i , i ∈ N, 0 ≤ i < M} � M unknowns

4: for I from 0 toL do � L + 1 times

5: λI+M,L−I := 1

TLI+M+1,I+M+1

⎛
⎝BLI+M+1 −

M−1∑

k=0

TLI+M+1,I+k+1λI+k,M+L−I−k

⎞
⎠ � 1 unknown

From the definitions of TL and BL we immediately see that the step 5 boils down
to
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λI+M,L−I = I !
(I + M)!αM,0(x0, y0)

×
(
NI ,L−I −

M−1∑
k=0

(I + k)!(M − k + L − I )!
I !(L − I )! αk,M−k(x0, y0)λI+k,M+L−I−k

)

(23)

If the set of unknowns {λi, j , (i, j) ∈ N
2, 0 ≤ i+ j < M+q−1} is computed from

Algorithm 1, then the polynomial P(x, y) :=∑0≤i+ j≤q+M−1 λi, j (x − x0)i (y− y0) j

is a solution to Problem (10), and therefore the function ϕ(x) := exp P(x) satisfies
(6). This is true independently of the values fixed in lines 1.1 and 1.3 of the algorithm.

Remark 1 It is interesting to notice that the algorithm applies to a wide range of partial
differential operators, including type changing operators such as Keldysh operators,
LK = ∂2x + y2m+1∂2y+ lower order terms, or Tricomi operators, LT = ∂2x +x2m+1∂2y+
lower order terms, that change fromelliptic to hyperbolic type along a smooth parabolic
curve.

To conclude this section, we provide a formal definition of a GPW associated to an
partial differential operator at a given point.

Definition 7 Consider a point (x0, y0) ∈ R
2, a given q ∈ N

∗, a givenM ∈ N,M ≥ 2, a
given set of complex-valued functions α = {αk,l ∈ Cq−1 at (x0, y0), 0 ≤ k + l ≤ M},
and the corresponding partial differential operator LM,α . A Generalized Plane Wave
(GPW) associated to the differential operator LM,α at the point (x0, y0) is a function
ϕ satisfying

LM,αϕ(x, y) = O(‖(x − x0, y − y0)‖q).

Under Hypothesis 1, a Generalized PlaneWave (GPW) can be constructed as func-
tion ϕ(x, y) = exp P(x, y), where the coefficients of the polynomial P are computed
by Algorithm 1, independently of the values fixed in the algorithm.

The crucial feature of the construction process is the exact solution provided in
the algorithm: in practice, a solution to the initial non-linear rectangular system is
computed without numerical resolution of any system, with an explicit formula.

The choice of the fixed values inAlgorithm1will be discussed in the next paragraph.
Even though these values does not affect the construction process, and the fact that the
correspondingϕ(x, y) = exp P(x, y) is aGPW, itwill be key to prove the interpolation
properties of the corresponding set of GPWs.

Remark 2 Under the hypothesis α0,M (x0, y0) �= 0 it would be natural to fix the values
of {λi, j , 0 ≤ j ≤ M − 1, 0 ≤ i ≤ q + M − 1 − j} instead of those of {λi, j , 0 ≤
i ≤ M − 1, 0 ≤ j ≤ q + M − 1 − i}, and an algorithm very similar to Algorithm 1,
exchanging the roles of i and j would construct the polynomial coefficients of a GPW.

123



108 L.-M. Imbert-Gérard, G. Sylvand

3 Normalization

We will refer to normalization as the choice of imposed values in Algorithm 1. The
discussion presented in this section will be summarized in Definition 8.

Within the construction process presented in the previous section, only the design of
the function ϕ as the exponential of a polynomial is related to wave propagation, while
Algorithm 1 works for partial differential operators not necessarily related to wave
propagation. In particular, the property LM,αϕ(x, y) = O (‖(x, y) − (x0, y0)‖q) of
GPWs is independent of the choice of (λ1,0, λ0,1). However, the normalization process
described here carries on the idea of adding higher order terms to the phase function
of a plane wave, see (3), as was proposed in [15].

We will now restrict our attention to a smaller set of partial differential operators
that include several interesting operators related to wave propagation, thanks to an
additional hypothesis on the highest order derivatives in LM,α , namely Hypothesis 2.
Under this hypothesiswewill be able to study the interpolation properties of associated
GPWs in a unified framework. As we will see in this section, choosing only two non-
zero fixed values in Algorithm 1 is sufficient to generate a set of linearly independent
GPWs. It is then natural to study how the rest of the λi j s depend on those two values,
and the related consequences of Hypothesis 2. These rely on Hypothesis 2 extending
the fact that for classical PWs (iκ cos θ)2 + (iκ sin θ)2 = −κ2 is independent of θ .

3.1 For every GPWs

In Algorithm 1, the number of prescribed coefficients is M(M+1)
2 + Mq, and the set of

coefficients to be prescribed is the set {λi, j , 0 ≤ i ≤ M −1, 0 ≤ j ≤ q + M −1− i}.
For the sake of simplicity, it is natural to choose most of these values to be zero.

Since the unknown λ0,0 never appears in the non-linear system, there is nothing more
natural than setting it to zero: this ensures that any GPW ϕ will satisfy ϕ(x0, y0) = 1.
Concerning the subset of Mq unknowns corresponding to step 1.3 in Algorithm 1,
setting these values to zero simply reduces the amount of computation involved in step
1.5 in the algorithm: indeed for I = 0 then

∑M−1
k=0 TLI+M+1,I+k+1λI+k,M+L−I−k = 0,

while for 0 < I < M then

M−1∑
k=0

TLI+M+1,I+k+1λI+k,M+L−I−k =
M−1∑

k=M−L

TLI+M+1,I+k+1λI+k,M+L−I−k .

As for the unknowns λ1,0 and λ0,1, they will be non-zero to mimic the classical
plane wave case, and their precise choice will be discussed in the next subsection. For
the remaining unknowns to be fixed, that is to say the set {λi, j , 2 ≤ i + j ≤ M − 1},
their values are set to zero, here again in order to reduce the amount of computation
in computing the right hand side entries BL

M+1+I and in applying 1.5.
For the operator L2,γ the non-linear terms in N1,0 and N0,1 respectively become

with this normalization
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∂x [LN
2,γ P](x0, y0) = −2λ2,0λ1,0 + γ1,1(x0, y0)2λ2,0λ0,1

+ ∂xγ1,1(x0, y0)λ1,0λ0,1 + ∂xγ0,2(x0, y0)λ
2
0,1,

∂y[LN
2,γ P](x0, y0) = γ1,1(x0, y0)2λ1,0λ2,0 + ∂yγ1,1(x0, y0)λ1,0λ0,1.

Since all but two of the unknowns to be fixed in Algorithm 1 are set to zero, it
is now natural to express the λi, j unknowns computed from 1.5 in the algorithm as
functions of the two non-zero prescribed unknowns, λ1,0 and λ0,1.

Lemma 3 Consider a point (x0, y0) ∈ R
2, a given q ∈ N

∗, a given M ∈ N, M ≥ 2, a
given set of complex-valued functions α = {αk,l ∈ Cq−1 at (x0, y0), 0≤ k + l ≤ M},
and the corresponding partial differential operator LM,α . Under Hypothesis 1 con-
sider a solution to Problem (10) constructed thanks to Algorithm 1 with all the
prescribed values λi, j such that i < M and i + j �= 1 set to zero. Each λi+M, j

can be expressed as an element of C[λ1,0, λ0,1].
Proof The fact that λi+M, j can be expressed as a polynomial in two variables with
respect to λ1,0 and λ0,1 is a direct consequence from the explicit formula in step 1.5
in Algorithm 1 combining with setting λi, j such that i < M and i + j �= 1 to zero. ��

Since unknowns are expressed as elements of C[λ1,0, λ0,1], we will now study the
degree of various terms fromAlgorithm 1 as polynomials with respect to λ1,0 and λ0,1.
To do so, we will start by inspecting the product terms appearing in Faa di Bruno’s
formula.

Lemma 4 Consider a point (x0, y0) ∈ R
2, a given q ∈ N

∗, a given M ∈ N, M ≥ 2, a
given set of complex-valued functions α = {αk,l ∈ Cq−1 at (x0, y0), 0 ≤ k + l ≤ M},
and the correspondingpartial differential operatorLM,α . Consider agivenpolynomial
P ∈ C[x, y]. The non-linear terms LN

M,αP, expressed as linear combinations of

products of derivatives of P, namely
∏s

m=1

(
∂
im
x ∂

jm
y P

)km
, contain products of up to

M derivatives of P, namely ∂
im
x ∂

jm
y P, counting repetitions. The only products that

have exactly M terms are (∂x P)k(∂y P)M−k for 0 ≤ k ≤ M, whereas all the other
products have less than M terms.

Proof Since the operatorLN
M,α is defined via Faa di Bruno’s formula, we will proceed

by careful examination of the summation and product indices in the latter.
The number of terms in the product term is s, with possible repetitions counted

thanks to the kms, and the total number of terms counting repetitions isμ =∑s
m=1 km .

Since in LN
M,α the indices are such that 1 ≤ μ ≤ � ≤ M , there cannot be more than

M terms counting repetitions in any of the
∏s

m=1

(
∂
im
x ∂

jm
y P

)km
.

For s = 1, in the set p1((k, � − k), μ), (i1, j1) ∈ N
2 are such that i1 + j1 ≥ 1

and k1 ∈ N is such that k1(i1 + j1) = �. Since � ≤ M , such a term appears in Faa di
Bruno’s formula as a product of μ = M terms if and only if � = M , k1 = M , and
therefore i1 + j1 = 1. There are then only two possibilities: either (i1, j1) = (1, 0)
corresponding to the term (∂x P)M , or (i1, j1) = (0, 1) corresponding to the term
(∂y P)M .
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For s = 2, in the set p2((k, �−k), μ), (i1, j1, i2, j2) ∈ N
4 are such that i1+ j1 ≥ 1,

i2 + j2 ≥ 1, (i1, j1) ≺ (i2, j2), and (k1, k2) ∈ N
2 is such that μ = k1 + k2 and

k1(i1 + j1) + k2(i2 + j2) = �. Since � = k1(i1 + j1) + k2(i2 + j2) ≥ k1 + k2 = μ

and � ≤ M such a term appears in Faa di Bruno’s formula as a product of μ = M
terms if and only if � = M and k1 +k2 = M . There are then two possible cases: either
i2 + j2 > 1, then M = k1(i1 + j1) + k2(i2 + j2) > k1 + k2 = M , so there is no such
term in the sum, or i2+ j2 = 1, then necessarily (i1, j1) = (0, 1) and (i2, j2) = (1, 0),
corresponding to the terms (∂x P)k(∂y P)M−k for any k from 0 to M .

For s ≥ 3, in the set ps((k, � − k), μ), for all m ∈ N such that 1 ≤ m ≤ s,
(im, jm) ∈ N

2 and km ∈ N are such that im + jm ≥ 1,
∑s

m=1 km(im + jm) = �,
μ = ∑s

m=1 km and (i1, j1) ≺ (i2, j2) ≺ (i3, j3). Because of this last condition, it is
clear that i3 + j3 > 1. Since � ≤ M and � = ∑s

m=1 km(im + jm) ≥ ∑s
m=1 km = μ,

such a term appears in Faa di Bruno’s formula as a product ofμ = M terms if and only
if � = M and

∑s
m=1 km = M . But then M =∑s

m=1 km(im + jm) >
∑s

m=1 km = M ,
so there is no such term in the sum.

The claim is proved. ��

Lemma 5 Consider a point (x0, y0) ∈ R
2, a given q ∈ N

∗, a given M ∈ N, M ≥ 2, a
given set of complex-valued functions α = {αk,l ∈ Cq−1 at (x0, y0), 0≤ k + l ≤ M},
and the corresponding partial differential operator LM,α . Consider a given poly-
nomial P ∈ C[x, y]. The quantity ∂

I0
x ∂

J0
y LN

M,αP is a linear combination of terms

∂
I0
x ∂

J0
y

(∏s
m=1

(
∂
im
x ∂

jm
y P

)km)
, where the indices come from Faa di Bruno’s for-

mula. Each of these ∂
I0
x ∂

J0
y

(∏s
m=1

(
∂
im
x ∂

jm
y P

)km)
can be expressed as a linear

combination of products
∏t

m=1(∂
am
x ∂

bm
y P)cm where the indices satisfy∑t

m=1 cm(am + bm) ≤ I0 + J0 + M.

Proof Thanks to the product rule, the derivative ∂ I0
x ∂ J0

y

(
s∏

m=1

(
∂ imx ∂

jm
y P

)km
)
can be

expressed as a linear combination of several terms
s∏

m=1

∂ Im
x ∂ Jm

y

[(
∂ imx ∂

jm
y P

)km]
, where

t∑
m=1

Im = I0 and
∑t

m=1 Jm = J0.

We can prove by induction on k that ∂ I
x ∂ J

y

[(
∂ ix∂

j
y P
)k]

can be expressed, for all

(i, j, I , J ) ∈ N
4, as a linear combination of products

M∏
m=1

(∂amx ∂bmy P)cm where the

indices satisfy
M∑

m=1

cm(am + bm) ≤ I + J + k(i + j):

1. it is evidently true for k = 1;

123



A roadmap for Generalized Plane Waves and their… 111

2. suppose that it is true for k0 ≥ 1, then for any (i, j, I , J ) ∈ N
4 the product rule

applied to ∂ ix∂
j
y P ×

(
∂ ix∂

j
y P
)k0

yields

∂ I
x ∂ J

y

[(
∂ ix∂

j
y P
)k0+1

]
=

I∑

ĩ=0

J∑

j̃=0

(
I
ĩ

)(
J
j̃

)
∂ i+I−ĩ
x ∂

j+J− j̃
y P∂ ĩx∂

j̃
y

[(
∂ ix∂

j
y P
)k0]

,

where byhypothesis each ∂ ĩx∂
j̃
y

[(
∂ ix∂

j
y P
)k0]

can be expressed as a linear combina-

tion of products
∏M

m=1(∂
am
x ∂

bm
y P)cm with

∑M
m=1 cm(am +bm) ≤ ĩ+ j̃+k0(i+ j),

so that each term in the double sum can be expressed as a linear combination of
products

∏M+1
m=1 (∂

am
x ∂

bm
y P)cm where aM+1 := i + I − ĩ , bM+1 := j + J − j̃ and

cM+1 := 1, which yields
∑M+1

m=1 cm(am + bm) =∑M
m=1 cm(am + bm) + (i + I −

ĩ + j + J − j̃) and therefore
∑M+1

m=1 cm(am + bm) ≤ k0(i + j) + (i + I + j + J ).
This concludes the proof by induction.

Finally the derivative ∂
I0
x ∂

J0
y

(∏s
m=1

(
∂
im
x ∂

jm
y P

)km)
can be expressed as a linear

combination of several terms
∏s

m=1
∏M

m̃=1(∂
am̃
x ∂

bm̃
y P)cm̃ , with

∑M
m̃=1 cm̃(am̃ +bm̃) ≤

Im + Jm + km(im + jm), in other words it can be expressed as a linear combination
of several terms

∏Ms
m=1(∂

am
x ∂

bm
y P)cm , with

∑Ms
m=1 cm(am + bm) ≤∑s

m=1 Im + Jm +
km(im + jm) = I0+ J0+∑s

m=1 km(im + jm). For any ∂
I0
x ∂

J0
y

(∏s
m=1

(
∂
im
x ∂

jm
y P

)km)

coming from ∂
I0
x ∂

J0
y LN

M,αP , the summation indices from Faa di Bruno’s formula

satisfy
∑s

m=1 km(im + jm) = �, so the products
∏Ms

m=1(∂
am
x ∂

bm
y P)cm are such that∑Ms

m=1 cm(am + bm) ≤ I0 + J0 + M . ��

The two following results now turn to λi+M, j computed in Algorithm 1.

Proposition 2 Consider a point (x0, y0) ∈ R
2, given q ∈ N

∗ and M ∈ N, with M ≥ 2,
a set of complex-valued functions α = {αk,l ∈ Cq−1 at (x0, y0), 0 ≤ k + l ≤ M},
and the corresponding partial differential operator LM,α . Under Hypothesis 1 con-
sider a solution to Problem (10) constructed thanks to Algorithm 1 with all the fixed
values λi, j such that i < M and i + j �= 1 set to zero. As an element of C[λ1,0, λ0,1],
λM,0 is of degree equal to M.

Proof The formula to compute λM,0 in Algorithm 1 comes from the (I , J ) = (0, 0)
equation in System (10), that is to say LA

M,αP(x0, y0) = −α0,0(x0, y0). It reads

λM,0 = 1

T0M+1,M+1

(
B0M+1 −

M−1∑
k=0

T0M+1,k+1λk,M−k

)
,
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and the sum is actually zero since the λk,M−k unknowns are prescribed to zero for
k < M . The definitions of B0 and L0 then give

λM,0 = 1

M !αM,0(x0, y0)

(
−

M−1∑
�=0

�∑
k=0

k!(� − k)!αk,�−k(x0, y0)λk,�−k

−LN
M,αP(x0, y0) − α0,0(x0, y0)

)
.

Since the λk,�−k unknowns are prescribed to zero for all 1 < � < M − 1 and all k, the
double sum term reduces to α0,1(x0, y0)λ0,1 + α1,0(x0, y0)λ1,0. The non-linear terms
from LN

M,αP , namely
∏s

m=1(∂
im
x ∂

jm
y P)km , are products of at most M terms, counting

repetitions, according to Lemma 4. So LN
M,αP(x0, y0) is a linear combination of

product terms reading
∏s

m=1(λim , jm )km with at most M factors. Moreover, since P is
constructed thanks to Algorithm 1, from Corollary 1 we know that these λim , jm s have
a length of the multi-index at most equal to M − 1, so they are either λ1,0 or λ0,1 or
prescribed to zero. This means that in C[λ1,0, λ0,1] each one of these λim , jm is at most
of degree one. So in C[λ1,0, λ0,1] each ∏s

m=1(λim , jm )km is a product of at most M
factors each of them of degree at most one, the product is therefore of degree at most
M . As a result

λM,0 = 1

M !αM,0(x0, y0)

(−α0,1(x0, y0)λ0,1 − α1,0(x0, y0)λ1,0

−LN
M,αP(x0, y0) − α0,0(x0, y0)

)

as an element of C[λ1,0, λ0,1] is of degree at most M .
Finally, the term (∂x P)M from LN

M,αP identified in Lemma 4 corresponds to a

term αM,0(x0, y0)(λ1,0)M in the expression of λM,0, and this term is non-zero under
Hypothesis 1. As a conclusion λM,0 as an element of C[λ1,0, λ0,1] is of degree equal
to M . ��
Proposition 3 Consider a point (x0, y0) ∈ R

2, given q ∈ N
∗ and M ∈ N, with M ≥ 2,

a given set of complex-valued functions α = {αk,l ∈Cq−1at(x0, y0), 0≤ k + l ≤ M},
and the corresponding partial differential operator LM,α . Under Hypothesis 1 con-
sider a solution to Problem (10) constructed thanks to Algorithm 1 with all the fixed
values λi, j such that i < M and i + j �= 1 set to zero. As an element of C[λ1,0, λ0,1],
each λi+M, j has a total degree at most equal to the length of its multi-index i + j +M.

Proof The formula to compute λI+M,L−I in Algorithm 1 comes from the (I , J ) =
(I ,L − I ) equation in System (10), that is to say ∂ I

x ∂L−I
y LA

M,αP(x0, y0) =
−∂ I

x ∂L−I
y α0,0(x0, y0). It reads

λI+M,L−I = 1

TLI+M+1,I+M+1

(
BLI+M+1 −

M−1∑
k=0

TLI+M+1,I+k+1λI+k,M+L−I−k

)
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= I !
(M + I )!αM,0(x0, y0)(
NI ,L−I −

M−1∑
k=0

(I + k)!(M − k + L − 1)!
I !(L − I )!

αk,M−k(x0, y0)λI+k,M+L−I−k

)
. (24)

We will proceed by induction on L:

1. the result has been proved to be true for L = 0 in Proposition 2;
2. suppose the result is true for L ∈ N as well as for all L̃ ∈ N such that L̃ ≤ L, then

all the linear terms in NI ,L+1−I have a length of the multi-index at most equal
to M + L so by hypothesis their degree as elements of C[λ1,0, λ0,1] is at most
equal to M + L, and thanks to Lemma 5 all the non-linear terms in NI ,L+1−I
can be expressed as a linear combination of products

∏t
m=1(λam ,bm )cm where the

indices satisfy
∑t

m=1 cm(am + bm) ≤ L+ 1+ M so by hypothesis their degree as
elements of C[λ1,0, λ0,1] is at most equal to M + L + 1; the last step is to prove
that the λI+k,M+L+1−I−k are also of degree at most equal to M + L + 1, and we
will proceed by induction on I :

(a) for I = 0, all λI+k,M+L+1−I−k for 0 ≤ k ≤ M − 1 satisfy the two conditions
I + k < M and I + k + M +L+ 1− I − k = M +L+ 1 �= 1 so they are all
prescribed to zero and their degree as element of C[λ1,0, λ0,1] is at most equal
to M + L + 1 that;

(b) suppose that, for a given I ∈ N, the λ Ĩ+k,M+L+1− Ĩ−k for all Ĩ ∈ N such that

Ĩ ≤ I are also of degree at most equal to M + L + 1 then it is clear from
Eq. (24) that λI+1+M,L−I−1 is also of degree at most equal to M + L + 1.

This concludes the proof. ��
As explained from an algebraic viewpoint in Sect. 3.2 in [15], the degree of λi+M, j

as an element of C[λ1,0, λ0,1] will be affected by the choice of the last two prescribed
values, namely λ1,0 and λ0,1. Indeed if λ1,0 and λ0,1 satisfy a polynomial identity
Pl(λ1,0, λ0,1) = 0, then we can consider the quotient ring C[λ1,0, λ0,1]/(Pl).

Note that choosing to set {λi, j , 1 < i + j ≤ M − 1} to values different from zero
may be useful to treat operators that do not satisfy Hypothesis 2 but this is not our
goal here.

3.2 For each GPW

In order to obtain a set of linearly independent GPWs, the values of λ1,0 and λ0,1 will
be chosen different for each GPW. However the values of λ1,0 and λ0,1 will satisfy a
common property for every GPWs. Very much as the coefficients of any plane wave
of wavenumber κ satisfy (λ1,0)

2 + (λ0,1)
2 = −κ2, independently of the direction

of propagation θ since λ1,0 = ıκ cos θ and λ0,1 = ıκ sin θ , under Hypothesis 2 the
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coefficients of each GPW will be chosen for the quantity
M∑
k=0

αk,M−k(x0, y0)(λ1,0)
k(λ0,1)

M−k =
((

λ1,0
λ0,1

)t

�

(
λ1,0
λ0,1

)) M
2

to be identical for everyGPWs, aswewill see in the following proposition and theorem.
This will be crucial to prove interpolation properties of the corresponding set of

functions, which will result from the consequence of this common property on the
degree of each λi+M, j as an element ofC[λ1,0, λ0,1]. As the plane wave case suggests,
we will see that λi+M, j can be expressed as a polynomial of lower degree thanks to a
judicious choice for λ1,0 and λ0,1.

We first need an intermediate result concerning the polynomial LN
M,αP .

Lemma 6 Consider a point (x0, y0) ∈ R
2, a given q ∈ N

∗, a given M ∈ N, M ≥ 2,
a given set of complex-valued functions α = {αk,l ∈ Cq−1 at (x0, y0), 0 ≤ k +
l ≤ M}, and the corresponding partial differential operator LM,α . Consider a given
polynomial P ∈ C[x, y]. For any L ∈ N and any I ∈ N such that I ≤ L + 1, the

quantity ∂ I
x ∂L+1−I

y

[
LN

M,αP
]
can be expressed as a linear combination of products

∏μ
t=1 ∂

it+It
x ∂

jt+Jt
y P, with

∑μ
t=1 It = I ,

∑μ
t=1 Jt = L + 1 − I ,

∑μ
t=1 it = k, and∑μ

t=1 jt = � − k. Moreover, for each product term, there exists t0 ∈ N, 1 ≤ t0 ≤ μ

such that It0 �= 0 or Jt0 �= 0.

Proof The quantityLN
M,αP can be expressed, from Faa di Bruno’s formula, as a linear

combination of products
∏s

m=1

(
∂
im
x ∂

jm
y P

)km
, with (im1 , jm1) �= (im2 , jm2) for all

m1 �= m2,
∑s

m=1 km = μ,
∑s

m=1 kmim = k, and
∑s

m=1 km jm = � − k. Therefore
LN

M,αP can also be expressed, repeating terms, as a linear combination of products∏μ
t=1 ∂

it
x ∂

jt
y P , with possibly (im1 , jm1) = (im2 , jm2) for m1 �= m2,

∑μ
t=1 it = k, and∑μ

t=1 jt = � − k. So the quantity ∂ I
x ∂L+1−I

y

[
LN

M,αP
]
can be expressed, from Leib-

niz’s rule, as a linear combination of products
∏μ

t=1 ∂
it+It
x ∂

jt+Jt
y P , with

∑μ
t=1 It = I

and
∑μ

t=1 Jt = L + 1 − I .

Consider such a given product term
∏μ

t=1 ∂
it+It
x ∂

jt+Jt
y P , and suppose that for all

t It = Jt = 0. Then I = ∑μ
t=1 It = 0 and L + 1 − I = ∑μ

t=1 Jt = 0, which is
impossible since L + 1 > 0. ��

The two following results gather the consequences of this choice on λi+M, j s com-
puted in Algorithm 1.

Proposition 4 Consider a point (x0, y0) ∈ R
2, given q ∈ N

∗ and M ∈ N, with M ≥ 2,
a given set of complex-valued functions α = {αk,l ∈Cq−1at(x0, y0), 0≤ k + l ≤ M},
and the corresponding partial differential operator LM,α . Under Hypotheses 1 and
2 consider a solution to Problem (10) constructed thanks to Algorithm 1 with all the
prescribed values λi, j such that i < M and i + j �= 1 set to zero, and

(
λ1,0
λ0,1

)
= iκA−1D−1/2

(
cos θ

sin θ

)
(25)
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for some θ ∈ R and κ ∈ C
∗. As an element of C[λ1,0, λ0,1], λM,0 can be expressed as

a polynomial of degree at most equal to M − 1, and its coefficients are independent
of θ .

Note that once we impose this condition on λ1,0, λ0,1 any element of C[λ1,0, λ0,1]
can be expressed by different polynomials, possibly with different degrees, simply
because under Hypothesis 2 and (25) we have

M∑
k=0

αk,M−k(x0, y0)λ
k
1,0λ

M−k
0,1 =

(
−κ2

) M
2

.

See paragraph 3.2 in [15] for an algebraic view point on this comment.

Proof Since

λM,0 = 1

M !αM,0(x0, y0)

(
− α0,1(x0, y0)λ0,1 − α1,0(x0, y0)λ1,0

−LN
M,αP(x0, y0) − α0,0(x0, y0)

)
, (26)

again the term to investigate is LN
M,αP(x0, y0). Lemma 4 identifies products of M

terms in LN
M,αP , and from the definition of LN

M,α they appear in the following linear
combination

M∑
k=0

k!(M − k)!αk,M−k
(∂x P)k

k!
(∂y P)M−k

(M − k)! =
M∑
k=0

αk,M−k(∂x P)k(∂y P)M−k .

Back to the expression of λM,0, and thanks to Hypothesis 2, the only possible terms
of degree M therefore appear in the following linear combination:

M∑
k=0

αk,M−k(x0, y0)(λ1,0)
k(λ0,1)

M−k

=
(

(λ1,0 λ0,1)�

(
λ1,0
λ0,1

)) M
2 =

(
(iκ)2(λ1,0 λ0,1)A

t DA

(
λ1,0
λ0,1

)) M
2

=
(

−κ2(cos θ sin θ)

(
cos θ

sin θ

)) M
2 = (−κ)M

Finally thanks to (25), the only terms of degree M in (26) can be expressed as a
polynomial of degree at most equal M − 1. ��
Proposition 5 Consider a point (x0, y0) ∈ R

2, given q ∈ N
∗ and M ∈ N, with M ≥ 2,

a given set of complex-valued functions α = {αk,l ∈Cq−1at(x0, y0), 0≤ k + l ≤ M},
and the corresponding partial differential operator LM,α . Under Hypotheses 1 and
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2 consider a solution to Problem (10) constructed thanks to Algorithm 1 with all the
fixed values λi, j such that i < M and i + j �= 1 set to zero, and

(
λ1,0
λ0,1

)
= iκA−1D−1/2

(
cos θ

sin θ

)

for some θ ∈ R and κ ∈ C
∗. As an element of C[λ1,0, λ0,1], each λi+M, j can be

expressed as a polynomial of degree at most equal to i+ j+M−1, and its coefficients
are independent of θ .

Proof From Algorithm 1 the expression of λI+M,L−I reads

λI+M,L−I = 1

TLI+M+1,I+M+1

(
BLI+M+1 −

M−1∑
k=0

TLI+M+1,I+k+1λI+k,M+L−I−k

)

= I !
(M + I )!αM,0(x0, y0)

(
NI ,L−I

−
M−1∑
k=0

(I + k)!(M − k + L − 1)!
I !(L − I )! αk,M−k(x0, y0)λI+k,M+L−I−k

)
.

(27)

We will proceed again by induction on L:

1. the result has been proved to be true for L = 0 in Proposition 4;
2. suppose the result is true for L ∈ N as well as for all L̃ ∈ N such that L̃ ≤ L, then

we focus on NI ,L+1−I , given by

N0,L+1 =
M∑
k=0

L∑

j̃=0

(
k + ĩ

)
!
(
M − k + j̃

)
!

j̃ ! D(0,L+1− j̃)αk,M−k (x0, y0)λk,M−k+ j̃

+
M−1∑
�=1

�∑
k=0

L+1∑

j̃=0

(k)!
(
� − k + j̃

)
!

j̃ ! D(0,L+1− j̃)αk,�−k (x0, y0)λk,�−k+ j̃

− D(0,L+1)
[
LN
M,α P

]
(x0, y0) − D(0,L+1)α0,0(x0, y0) for I = 0; and

NI ,L+1−I

= −
M∑
k=0

I−1∑

ĩ=0

L−I∑

j̃=0

(
k + ĩ

)
!
(
M − k + j̃

)
!

ĩ ! j̃ ! D(I−ĩ,L+1−I− j̃)αk,M−k (x0, y0)λk+ĩ,M−k+ j̃

−
M−1∑
�=1

�∑
k=0

I∑

ĩ=0

L+1−I∑

j̃=0

(
k + ĩ

)
!
(
� − k + j̃

)
!

ĩ ! j̃ ! D(I−ĩ,L+1−I− j̃)αk,�−k (x0, y0)λk+ĩ,�−k+ j̃

− D(I ,L+1−I )
[
LN
M,α P

]
(x0, y0) − D(I ,L+1−I )α0,0(x0, y0) otherwise;
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all the linear terms in NI ,L+1−I , as elements of C[λ1,0, λ0,1], by hypothesis have
degree at most equal to (I+M)+(L+1− I )−1 = M+L, and thanks to Lemma 6
all the non-linear terms in NI ,L+1−I can be expressed as a linear combination of
products

∏μ
t=1 λat ,bt where the indices satisfy

∑μ
t=1(at + bt ) ≤ L + 1 + M ;

in each such product, as element of C[λ1,0, λ0,1], each λat ,bt is either of degree
at + bt = 1 if (at , bt ) ∈ {(0, 1), (1, 0)}, or of degree at most equal to at + bt − 1
otherwise by hypothesis; fromLemma 6 there is at least one t0 such that (at0 , bt0) /∈
{(0, 1), (1, 0)}, therefore each product∏μ

t=1 λat ,bt , as element ofC[λ1,0, λ0,1], can
be expressed as a polynomial of degree at most

(∑μ
t=1(at + bt )

) − 1 ≤ L + M ;
so all terms in NI ,L+1−I , as elements of C[λ1,0, λ0,1], have degree at most equal
to M + L; the last step is to prove that the λI+k,M+L+1−I−k are also of degree at
most equal to M + L, and we will proceed by induction on I :

(a) for I = 0, all λI+k,M+L+1−I−k for 0 ≤ k ≤ M − 1 satisfy the two conditions
I + k < M and I + k + M +L+ 1− I − k = M +L+ 1 �= 1 so they are all
prescribed to zero and their degree as element of C[λ1,0, λ0,1] is at most equal
to M + L that;

(b) suppose that, for a given I ∈ N, the λ Ĩ+k,M+L+1− Ĩ−k for all Ĩ ∈ N such that

Ĩ ≤ I are also of degree at most equal to M + L then it is clear from Eq. (27)
that λI+1+M,L−I−1 is also of degree at most equal to M + L.

This concludes the proof. ��
Finally, since we are interested in the local approximation properties of GPWs, it is

natural to study their Taylor expansion coefficients, and how they can be expressed as
elements ofC[λ1,0, λ0,1]. In particular we will find what is the link between the Taylor
expansion coefficients of a GPW, ∂ ix∂

j
yϕ (x0, y0) /(i ! j !), and that of the corresponding

PW, (λ0,1) j (λ1,0)i/(i ! j !).
Proposition 6 Consider a point (x0, y0) ∈ R

2, given q ∈ N
∗ and M ∈ N, with M ≥ 2,

a given set of complex-valued functions α = {αk,l ∈Cq−1at (x0, y0), 0≤k + l≤M},
and the corresponding partial differential operator LM,α . Under Hypotheses 1 and
2 consider a solution to Problem (10) constructed thanks to Algorithm 1 with all the
fixed values λi, j such that i < M and i + j �= 1 set to zero, and

(
λ1,0
λ0,1

)
= iκA−1D−1/2

(
cos θ

sin θ

)
,

for some θ ∈ R and κ ∈ C
∗, and the corresponding

ϕ(x, y) = exp
∑

0≤i+ j≤q+1 λi j (x − x0)i (y − y0) j . Then for all (i, j) ∈ N
2 such

that i + j ≤ q + 1 the difference

Ri, j := ∂ ix∂
j
yϕ (x0, y0) − (λ0,1)

j (λ1,0)
i (28)

can be expressed as an element of C[λ1,0, λ0,1] such that

• its total degree satisfies dRi, j ≤ i + j − 1,
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• its coefficients only depend on i , j , and on the derivatives of the PDE coefficients
α evaluated at (x0, y0) but do not depend on θ .

Proof Applying the chain rule introduced in “Appendix A.2. to the GPW ϕ one gets
for all (i, j) ∈ N

2,

∂ ix∂
j
yϕ (x0, y0) = i ! j !

i+ j∑
μ=1

i+ j∑
s=1

∑
ps ((i, j),μ)

s∏
l=1

(λil , jl )
kl

kl ! ,

where ps((i, j), μ) is the set of partitions of (i, j) with length μ:

{
(kl , (il , jl))l∈[[1,s]] : kl ∈ N

∗, 0 ≺ (i1, j1)

≺ · · · ≺ (il , jl),
s∑

l=1

kl = μ,

s∑
l=1

kl(il , jl) = (i, j)

}
.

For each partition (kl , (il , jl))l∈[[1,s]] of (i, j), the corresponding product term,
considered as an element of C[λ1,0, λ0,1], has degree Deg

∏s
l=1(λil , jl )

kl =∑s
l=1 kl Deg λil , jl . Combining Proposition 5 and the fact that λi, j = 0 for all (i, j)

such that 1 < i + j < M , we can conclude that this degree is at most equal to

∑
il=0, jl=1

kl jl +
∑

il=1, jl=0

kl il +
∑

1<il+ jl<M

kl · 0 +
∑

il+ jl≥M

kl(il + jl − 1). (29)

The partition with two terms (i, j) = j(0, 1) + i(1, 0) corresponds to the term
(λ0,1)

j (λ1,0)
i , which is the leading term in ∂ ix∂

j
yϕ (x0, y0). Indeed, any other partition

will include at least one term such that il + jl > 1, and the degree corresponding to
this term within the product is either kl · 0 or kl(il + jl − 1), and in both case it is
at most equal to kl(il + jl) − 1. As a result, the degree of the product term in (29)
is necessarily less than

∑s
l=1 kl(il + jl) = i + j . So Ri, j , which is defined as the

difference between ∂ ix∂
j
yϕ (x0, y0) and its leading term (λ0,1)

j (λ1,0)
i , is as expected

of degree less than i + j .
Finally, the coefficients of Ri, j share the same property as the coefficients of λi j s

from Propositions 5. ��

Remark 3 As mentioned in Remark 2, under the hypothesis α0,M (x0, y0) �= 0, an
algorithm very similar to Algorithm 1 would construct the polynomial coefficients of
a GPW, fixing the values of {λi, j , 0 ≤ j ≤ M − 1, 0 ≤ i ≤ q + M − 1 − j}. The
corresponding version of Proposition 6 could then be proved essentially by exchanging
the roles of i and j in all the proofs.
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3.3 Local set of GPWs

At this point for a given value of θ ∈ R we can construct a GPW as a function
ϕ = exp P where the polynomial P is a solution to Problem (10) constructed thanks
to Algorithm 1 with all the fixed values λi, j such that i < M and i + j �= 1 set to
zero, and

(
λ1,0
λ0,1

)
= iκA−1D−1/2

(
cos θ

sin θ

)
.

This parameter θ is then equivalent to the direction a classical plane wave, while |κ|
is equivalent to the wave number of a classical plane wave, and θ will now be used to
construct a set of GPWs. Under Hypotheses 1 and 2 , by choosing p different angles
{θl , l ∈ N

∗, l ≤ p} ∈ R
p, we can consider p solutions to Problem (10) to construct p

GPWs.

Definition 8 Consider a point (x0, y0) ∈ R
2, a given q ∈ N

∗, a givenM ∈ N,M ≥ 2, a
given set of complex-valued functions α = {αk,l ∈ Cq−1 at (x0, y0), 0 ≤ k + l ≤ M},
and the corresponding partial differential operator LM,α . Let p ∈ N

∗ be the number
of desired basis functions. Under Hypotheses 1 and 2 , consider the normalization λi, j
such that i < M and i + j �= 1 set to zero, and

(
λl1,0
λl0,1

)
= κA−1D−1/2

(
cos θl
sin θl

)
, for {θl ∈ [0, 2π),

∀l ∈ N
∗, l ≤ p, θl1 �= θl2 ∀l1 �= l2, κ ∈ C

∗}.

The set of corresponding GPWs constructed from Algorithm 1 will be denoted here-
after by

V
0
α,p,q = {ϕl := exp Pl ,∀l ∈ N

∗, l ≤ p}.

4 Interpolation properties

This section is restricted to operators of order M = 2.
Wenowhavebuilt tools to turn to the interpolation properties ofGPWs. In particular,

since the GPWs are constructed locally, and will be defined separately on each mesh
element,we focus on local interpolation properties.Given a partial differential operator
L, a point (x0, y0) ∈ R

2 and an integer n ∈ N, the question is whether we can find a
finite dimensional space Vh ⊂ C∞, with the following property:

∀u satisfying Lu = 0, ∃ua ∈ Vh s. t.

∀(x, y) ∈ R
2, |u(x, y) − ua(x, y)| ≤ C‖(x, y) − (x0, y0)‖n+1, (30)

that is to say there exists an element ofVh whose Taylor expansion at (x0, y0)matches
the Taylor expansion of u at (x0, y0) up to order n, for any solution u of the PDE
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Lu = 0. If { fi , i ∈ N
∗, i ≤ p} is a basis ofVh , this can be expressed in terms of linear

algebra. Consider the vector space F and the matrix M ∈ C
(n+1)(n+2)/2×p defined as

follows:

F :=
{
F ∈ C

(n+1)(n+2)/2, ∃u satisfying Lu = 0 s.t.

F (k1+k2)(k1+k2+1)
2 +k+2+1

= ∂k1x ∂k2y u(x0, y0)/(k1!k2!)
}

,

M (k1+k2)(k1+k2+1)
2 +k2+1,i

:= ∂k1x ∂k2y fi (x0, y0)/(k1!k2!). (31)

Then (30) is equivalent to

∀F ∈ F, ∃X ∈ C
p s.t. MX = F, (32)

and the choice of p, the number of basis functions, will be crucial to our study.
Our previous work on GPWs was focused on the Helmholtz equation, i.e. corre-

sponding to the operator L = −� + β(x, y), and in that case the classical PWs are
exact solutions to the PDE if the coefficient is constant β(x, y) = −κ2. However,
even though the proof of the interpolation properties of GPWs relies strongly on that
of classical PWs, it is not required, in order to obtain the GPW result, for classical PW
to be solutions of the constant coefficient equation [15]. Indeed, what will be central
to the proof that follows is the rank of the matrix M associated to a set of reference
functions—not necessarily classical PWs—that are not required to satisfy any PDE.
For the Helmholtz equation, the reference functions used in [15] were classical PWs
if β(x0, y0) < 0 and real exponentials if β(x0, y0) > 0, and the structure of the proof
provides useful guidelines for what follows.

4.1 Comments on a standard reference case

Interpolation properties of classical plane waves were already presented for instance
in [15], and in [5], however the link between desired order of approximation n and
number p of basis functions was simply provided as p = 2n + 1. We present here
a new perspective, focusing on properties of trigonometric functions, to justify this
choice. The corresponding set of trigonometric functions will constitute the reference
case at the heart of the GPWs interpolation properties.

Definition 9 Consider a given n ∈ N
∗ and a given p ∈ N

∗. Considering for some
κ ∈ R

∗ a space V
κ
h = Span{exp iκ(cos θl(x − x0) + sin θl(y − y0)), 1 ≤ l ≤ p,

θl ∈ [0, 2π), θl1 �= θl2 ∀l1 �= l2} of classical PWs, we define the corresponding matrix
(31) for the plane wave functions spanning V

κ
h , denoted MC , as well as the reference

matrix MR , by

∀(k1, k2) ∈ N
2, k1 + k2 ≤ n,

{ (
MC

n

)
(k1+k2)(k1+k2+1)

2 +k2+1,l
:= (iκ)k1+k2 (cos θl )

k1 (sin θl )
k2/(k1!k2!),(

MR
n

)
(k1+k2)(k1+k2+1)

2 +k2+1,l
:= (cos θl)

k1 (sin θl )
k2/(k1!k2!).
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If we denote by DRC
n = diag(dRC

k , k from 1 to n + 1) the block diagonal matrix with
blocks of increasing size dRC

k = (iκ)k−1 Ik ∈ C
k×k , it is evident that MC

n = DRC
n MR

n ,
therefore trigonometric functions are closely related to interpolation properties of
PWs.

Consider the two sets of functions

Fn = {θ �→ cosk θ sinK−k θ/(k!(K − k)!), 0 ≤ k ≤ K ≤ n},
and Gn = {θ �→ exp ikθ,−n ≤ k ≤ n}.

The first one, Fn , is a set of (n + 1)(n + 2)/2 functions. The second one, Gn , is a set
of 2n+ 1 linearly independent functions: indeed, any null linear combination of these
functions

∑
−n≤k≤n νk exp(ikθ) would define a function f (x) =∑−n≤k≤n νk xk that

would be uniformly null on the circle |x | = 1, implying that the polynomial xn . f (x)
has an infinite number of roots; hence all its coefficients νk are null. Moreover since

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

cos(θ)k sin(θ)K−k =
(
eiθ + e−iθ

2

)k (
eiθ − e−iθ

2i

)K−k

= 1

2K i K−k

k∑
l=0

K−k∑
L=0

(
k
l

)(
K − k
L

)
ei(2l+2L−K )θ ,

with − K ≤ 2l + 2L − K ≤ K ⇒ Fn ⊂ Span Gn ,

exp±ikθ =
k∑

s=0

(
k
s

)
(±i)s(cos θ)k−s(sin θ)s ⇒ Gn ⊂ Span Fn,

we then have that Span Fn = Span Gn , and in particular the space spanned by Fn is
of dimension 2n + 1.

Consider anymatrixAF ∈ C
(n+1)(n+2)/2×Np defined for some {θl}1≤l≤Np ∈ (R)Np ,

with Np > 2n + 1, by

AF
il = fi (θl), where fi denotes the elements of Fn (independently of their numbering).

Its rank is at most 2n + 1. This is a simple consequence of the fact that the dimension
of Span Fn is 2n + 1 < (n + 1)(n + 2)/2: indeed, this implies that there exists a
matrix C ∈ C

((n+1)(n+2)/2−2n−1)×(n+1)(n+2)/2 of rank (n+1)(n+2)/2−2n−1 such
that

∀i ∈ N, 1 ≤ i ≤ (n + 1)(n + 2)/2 − 2n − 1,
(n+1)(n+2)/2∑

j=1

Ci j f j = 0,

and therefore CAF = 0((n+1)(n+2)/2−2n−1)×Np ; as a result the Np columns of AF

belong to the kernel of C, which is of dimension 2n + 1; so the rank of AF is at most
2n + 1. In particular the matrix MR

n introduced in Definition 9 is such a matrix AF,
and is therefore of rank at most 2n + 1.

We know thatMC
n = DRC

n MR
n and DRC

n is non-singular, so rk(MC
n ) = rk(MR

n ). The
rank ofMC

n is at most equal to 2n + 1 for any choice of angles {θl ∈ R, 1 ≤ l ≤ p}. It
was previously proved in Lemma 2 from [15] that for p = 2n + 1 and directions such
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that {θl ∈ [0, 2π), 1 ≤ l ≤ p, l1 �= l2 ⇒ θl1 �= θl2} the matrix MC
n has rank 2n + 1.

A trivial corollary of this proof is that, for any choice of p distinct angles in [0, 2π),

rk(MC
n ) = 2n + 1 = rk(MR

n ) ⇔ p ≥ 2n + 1. (33)

In [15] we also proved that the space F for the constant coefficient Helmholtz
operator is equal to the range ofMC

n for the corresponding wave number κ . As a direct
consequence, a spaceVκ

h = Span{exp iκ(cos θl(x − x0)+ sin θl(y− y0)), 1 ≤ l ≤ p}
for any choice of distinct angles in [0, 2π) satisfies the interpolation property (30) for
the Helmholtz equation if and only if p ≥ 2n + 1.

4.2 Generalized PlaneWave case

In order to prove that a GPW space Span V
0
α,p,q (introduced in Definition 8) satisfies

the interpolation property (30), we will rely on Proposition 6 to study the rank of the
matrix (31) built from GPWs. As in the Helmholtz case, the proof relates the GPW
matrix to the reference matrix, but here via an intermediate transition matrix.

Definition 10 Consider a point (x0, y0) ∈ R
2, a given q ∈ N

∗, a givenM ∈ N,M ≥ 2,
a given set of complex-valued functionsα = {αk,l ∈ Cq−1 at (x0, y0), 0 ≤ k+l ≤ M},
and the corresponding partial differential operator LM,α . For the corresponding set of
GPWs, V0

α,p,q = {ϕl := exp Pl ,∀l ∈ N
∗, l ≤ p, θl ∈ [0, 2π), θl1 �= θl2 ∀l1 �= l2, κ ∈

C
∗}, we define the corresponding matrix (31), denoted Mn , as well as the transition

matrix MTr
n , by

⎧⎨
⎩

(
MTr

n

)
(k1+k2)(k1+k2+1)

2 +k2+1,l
:= (λl1,0)

k1(λl0,1)
k2/(k1!k2!),

(Mn) (k1+k2)(k1+k2+1)
2 +k2+1,l

:= ∂
k1
x ∂

k2
y ϕl(x0, y0)/(k1!k2!).

We first relate the transition matrix MTr
n to the reference matrix MR

n .

Lemma 7 Consider an open set�⊂R
2, (x0, y0)∈�, a given (M,n,p,q)∈(N∗)4, M≥

2, and a given set of complex-valued functionsα={αk1,k2 ∈Cq−1(�), 0≤k1+k2≤M},
the corresponding partial differential operator LM,α and set of GPWs V0

α,p,q . There

exists a block diagonal non-singular matrix DRT
n such thatMTr

n = DRT
n MR

n , indepen-
dently of the number p of GPWs in V0

α,p,q .

Proof As long as there are four complex numbers a, b, c, d such that

∀p ∈ N, 1 ≤ l ≤ p,

(
λl1,0
λl0,1

)
=
(
a b
c d

)(
cos θl
sin θl

)
,

then the diagonal blocks of DRT
n = diag(dRT

K , K from 0 to n) of increasing size
dRT
K ∈ C

(K+1)×(K+1) can be built thanks to the following binomial formula

(λl1,0)
K−k(λl0,1)

k
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=
K−k∑
i=0

k∑
j=0

(
K − k

i

)(
k
j

)
ai c j bK−k−i dK−k− j (cos θl)

i+ j (sin θl)
K−i− j

since the coefficient of this linear combination of trigonometric functions are inde-
pendent on l. ��

The following step is naturally to relate the GPWmatrixMn to the reference matrix(
R
2
)
.

Proposition 7 Consider an open set � ⊂ R
2, a point (x0, y0) ∈ �, a given

(M, n, p, q) ∈ (N∗)4, M ≥ 2, q ≥ n−1, and a given set of complex-valued functions
α = {αk1,k2 ∈ Cmax(n,q−1)(�), 0 ≤ k1+k2 ≤ M}, the corresponding partial differen-
tial operatorLM,α and set of GPWsV0

α,p,q . There exists a lower triangular matrix L
R
n ,

whose diagonal coefficients are equal all non-zero and whose other non-zero coeffi-
cients depend only on derivatives of the PDE coefficients α evaluated at (x0, y0), such
that

Mn = LRn · MR
n .

As a consequence rk(Mn) = rk(MR
n ) independently of the number p of GPWs in

V
0
α,p,q , and both ‖LRn ‖ and ‖(LRn )−1‖ are bounded by a constant depending only on

the PDE coefficients α.

Remark 4 If n = 1, then the various matrices M belong to C
3×3, and we have the

identity M1 = MTr
1 independently of the value of q.

Proof Let’s first relate Mn to MTr
n . The polynomials Ri, j ∈ C[X ,Y ] obtained in

Proposition 6 have degree dRi, j ≤ i + j − 1 and satisfy

∀(i, j) ∈ N
2, i + j ≤ q + 1,∀ϕl ∈ V

0
α,p,q , ∂

i
x∂

j
yϕl(x0, y0)

= (λl1,0)
i (λl1,0)

j + Ri, j (λ
l
1,0, λ

l
1,0). (34)

In order to apply this to all entries in the matrix Mn , it is sufficient for q to satisfy
n ≤ q + 1, which explains the assumption on q. Therefore each entry (i, j) of the
matrixMn can be written as the sum of the (i, j) entry ofMTr

n and a linear combination
of entries (k, j) of MTr

n for k < i . In other words, the existence of a lower triangular
matrix LTn , whose diagonal coefficients are 1 and whose other non-zero coefficients
depend only on the derivatives of the coefficients α evaluated at (x0, y0), such that
Mn = LTn · MTr

n is guaranteed since the coefficients of Ri, j are independent of l and
any monomial in Ri, j (λ1,0, λ1,0) has a degree lower than i + j .

As a consequence, the existence of LRn is guaranteed by Lemma 7 since the matrix
LRn := LTn · DRT

n satisfies the desired properties. ��
Everything is now in place to state and finally prove the necessary and sufficient

condition on the number p of GPWs for the space V0
α,p,q to satisfy the interpolation

property (30). We here turn to the specific case of second order operators.
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Theorem 1 Consider an open set � ⊂ R
2, a point (x0, y0) ∈ �, M = 2, a given

(n, p, q) ∈ (N∗)3, n ≥ M, q ≥ n − 1 and a given set of complex-valued functions
α = {αk1,k2 ∈ Cn(�), 0 ≤ k1 + k2 ≤ M}, the corresponding partial differential
operator LM,α and set of GPWs V0

α,p,q . The space V
G
h := spanV0

α,p,q satisfies the
property

∀u ∈ Cn+2(�) satisfying L2,αu = 0, ∃ua ∈ V
G
h , ∃ a constant C(�, n) s. t.

∀(x, y) ∈ �, |u(x, y) − ua(x, y)| ≤ C(�, n)‖(x, y) − (x0, y0)‖n+1,
(35)

if and only if p ≥ 2n + 1.

Proof According to the discussion displayed in the introduction of Sect. 4, the proof
focuses on the linear system (32) for the linear differential operator L2,α . Indeed,
defining the vector space

Fα :=
{
F ∈ C

(n+1)(n+2)/2, ∃v ∈ Cn+2(�) satisfying L2,αv = 0

s.t. F (k1+k2)(k1+k2+1)
2 +k2+1

= ∂k1x ∂k2y v(x0, y0)/(k1!k2!)
}

and considering Mn ∈ C
(n+1)(n+2)

2 ×p defined in (31) for a GPW basis VG
h , then (35) is

equivalent to

∀F ∈ Fα, ∃X ∈ C
p s.t. MnX = F. (36)

Naturally, the two aspects of this proof are then associated to (1) the rank of Mn with
respect to the choice of p, and (2) the relation between the right hand side and the
range of the matrix.

Combining the fact that rk(MR
n ) = 2n + 1 ⇔ p ≥ 2n + 1 from (33) with the fact

that rk(Mn) = rk(MR
n ) for q ≥ n − 1 from Proposition 7, we see immediately that,

as long as q ≥ n − 1, rk(Mn) = 2n + 1 if and only if p ≥ 2n + 1.
It is then sufficient to prove that the space Fα belongs to the range of Mn , R(Mn).

To this end, we now define the space

K :=
{
K ∈ C

(n+1)(n+2)/2, ∃ f ∈ Cn(�) satisfying L2,α f (x, y) = O(‖(x, y) − (x0, y0)‖n−1)

s.t. K (k1+k2)(k1+k2+1)
2 +k2+1

= ∂k1x ∂k2y f (x0, y0)/(k1!k2!)
}

.

We can now see that

• R(Mn) ⊂ K independently of the value of p, since by construction of GPWs, as
long as q ≥ n − 1, each column of Mn belongs to K;

• Fα ⊂ K, by definition of Fα;
• dimK = 2n + 1, since - from the condition involving the Taylor expansion coef-
ficients of L2,α f of order up to n − 2 at (x0, y0) set to zero - K ⊂ C

(n+1)(n+2)/2

is the kernel of a matrix A ∈ C
n(n−1)/2×(n+1)(n+2)/2 with

∀(i, j) ∈ N
2, i + j < n − 1,A (i+ j)(i+ j+1)

2 + j+1, (i+ j+2)(i+ j+3)
2 + j+1
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= α2,0(x0, y0) �= 0 from Hypothesis 1,

∀(ĩ, j̃) ∈ N
2, ĩ + j̃ < n − 1, if ĩ + j̃ > i + j or if ĩ + j̃ = i + j, j̃ > j

A (i+ j)(i+ j+1)
2 + j+1, (ĩ+ j̃+2)(ĩ+ j̃+3)

2 + j̃+1
= 0,

so that A is of maximal rank while its kernel has dimension (n+1)(n+2)
2 − n(n−1)

2 =
2n + 1.

Therefore, if p ≥ 2n+1,weobtain thatR(Mn) = K and as a consequenceFα ⊂ R(Mn)

as expected. This concludes the proof. ��

The necessary and sufficient condition on the number p of GPWs for the space
V
0
α,p,q to satisfy the interpolation property (30) when M > 2 are still unknown.

Remark 5 As in [15], the theorem holds in particular for the Helmholtz equation with
sign changing.

5 Numerical experiments

In [15], GPWs where constructed and studied for the Helmholtz equation (1) with a
variable and sign-changing coefficient β. The numerical experiments presented there
were restricted to the Helmholtz equation at one point (x0, y0) ∈ R

2, but considered
a propagative case i.e. β(x0, y0) < 0, an evanescent case i.e. β(x0, y0) > 0, a cut-off
case i.e. β(x0, y0) = 0. They also considered a case not covered by the convergence
theorem, but important for future applications: considering GPWs centered at points
(x0, y0) at a distance h from the cut-off.

Here, we are interested in illustrating the results presented in Theorem 1. Since the
well known case of classical PW for the constant-coefficient Helmholtz equation is
included by the hypotheses of the theorem, we cannot expect any improvement on
the required number of basis functions p. However, we are interested in exploring the
impact of the order of approximation q on the convergence of (35), in particular for
anisotropic problems.

5.1 Test cases

Wepropose here four different test cases. Each test case consists of a partial differential
operator of second order L, an exact solution u of the equation Lu = 0, as well as a
computational domain� ⊂ R

2, such that Hypotheses 1 and 2 hold at all (x0, y0) ∈ �.
The characteristics of the partial differential operators that we consider here are:

• polynomial coefficients α,
• non-polynomial coefficients α,
• anisotropy in the first order terms as −→a (x, y) · ∇ for a vector-valued function −→a ;
• anisotropy in the second order terms as∇·(A(x, y)∇) for amatrix-valued function

A.
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TheAd est caseWe consider an isotropic partial differential operator with polynomial
coefficients:

⎧⎨
⎩
LAd := −� + 2(x + y),
uAd : (x, y) �→ Ai(x + y),
�Ad := (−2, 2)2.

We have LAduAd = 0 on R
2, all the coefficients of LAd belong to C∞ (

R
2
)
and the

coefficients {αAd
k,2−k; k = 0, 1, 2} satisfy

2∑
k=0

αAd
k,2−k(x0, y0)X

kY 2−k = X2 + Y 2 ∀(x0, y0) ∈ R
2,

so LAd satisfies Hypotheses 1 and 2 on R
2. Note that the sign of the coefficient

αAd
0,0(x, y) = 2(x+y) changes in the computational domain along the curve x+y = 0.

The Jc test case We consider a partial differential operator with non-polynomial
coefficients of the terms of order 1 and 0, and anisotropy in the first order term:

⎧⎪⎪⎨
⎪⎪⎩

LJc := ∇ · (x2∇) +
( −x
cos y

)
· ∇ + (ν2 − 2x2 − sin y),

uJc : (x, y) �→ J1(x) cos y,
�Jc := (1, 4) × (0, 2π).

We have LJcu Jc = 0 on (0,∞) × R, all the coefficients of LJc belong to
(
R

+ × R
)

and the coefficients {α Jc
k,2−k; k = 0, 1, 2} satisfy

2∑
k=0

α Jc
k,2−k(x0, y0)X

kY 2−k = x20 (X
2 + Y 2) ∀(x0, y0) ∈ R

2,

so LJc satisfies Hypotheses 1 and 2 as long as x > 0.
The JJ test case We consider a partial differential operator with polynomial coeffi-
cients and anisotropy in the first and second order terms:

⎧⎪⎪⎨
⎪⎪⎩

LJ J := ∇ ·
(
x2 0
0 y2

)
∇ −

(
x
y

)
· ∇ + (x2 + y2 − 1),

uJ J : (x, y) �→ J0(x)J1(y),
�J J := (1, 3) × (1, 3).

We have LJ J u J J = 0 on (R+)2, all the coefficients of LJ J belong to C∞ ((R+)2
)

and the coefficients {α J J
k,2−k; k = 0, 1, 2} satisfy

2∑
k=0

α J J
k,2−k(x0, y0)X

kY 2−k = x20 X
2 + y20Y

2 ∀(x0, y0) ∈ R
2,
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Fig. 4 Exact solutions of the four test cases

so LJ J satisfies Hypotheses 1 and 2 as long as xy �= 0.
The cs test caseFinallywe consider a partial differential operatorwith non-polynomial
coefficients and anisotropy in the second order term:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Lcs := ∇ ·
(

1 0.1 cos x sin y
0.1 cos x sin y −2

)
∇ − 0.1

(
cos x( cos y)
siny(− sin x)

)
· ∇ + (0.2 sin x cos y − 1),

Lcs : = ∂2x + 0.2 cos x sin y ∂x∂y − 2∂2y + (0.2 sin x cos y − 1),
ucs : (x, y) �→ cos x sin y,
�cs := (−1, 1)2.

We have Lcsucs = 0 on R
2, all the coefficients of Lcs belong to C∞ (

R
2
)
and the

coefficients {αcs
k,2−k; k = 0, 1, 2} satisfy

2∑
k=0

αcs
k,2−k(x0, y0)X

kY 2−k =
(
1 − (0.1)2

2
cos2 x0 sin

2 y0

)
X2

− 2

(
Y − 0.1

2
cos x0 sin y0X

)2

∀(x0, y0) ∈ R
2,

so Lcs satisfies Hypotheses 1 and 2 on R2.
For reference, Fig. 4 displays the four solutions to the test cases.
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5.2 Implementation of the construction algorithm

For a linear second order operator

L2,α = α2,0∂
2
x + α1,1∂x∂y + α0,2∂

2
y + α1,0∂x + α0,1∂y + α0,0

the associated operator LA
2,α is defined by

LA
2,αP = α2,0∂

2
x P + α1,1∂x∂y P + α0,2∂

2
y P︸ ︷︷ ︸

T1

+ α2,0(∂x P)2 + α1,1∂x P∂y P + α0,2(∂y P)2︸ ︷︷ ︸
T2

+α1,0∂x P + α0,1∂y P︸ ︷︷ ︸
T3

.

The implementation of Algorithm 1 simply requires, at each level L, the evaluation
of {NI ,L−I , 0 ≤ I ≤ L} to apply formula (23). At each level L the coefficients
{μi j , (i, j) ∈ N

2, i + j ≤ q + 1} of QL :=∑0≤i+ j≤M+L−1 λi, j (x − x0)i (y − y0) j

are computed as

μi, j :=
{

λi, j if i + j ≤ L + 1
0 otherwise,

and for 0 ≤ I ≤ L the different contributions to NI ,L−I can be described as follows:

• the linear contributions from first order terms T3

−
I∑

i=0

L−I∑
j=0

(
D(I−i,L−I− j)α1,0(x0, y0)(i + 1)μi+1, j

+D(I−i,L−I− j)α0,1(x0, y0)( j + 1)μi, j+1

)

• the non-linear contributions from the terms T2

−
I∑

i1=0

L−I∑
j1=0

i1∑
i2=0

j1∑
j2=0(

D(I−i1,L−I− j1)α2,0(x0, y0)(i1 − i2 + 1)(i2 + 1) μi1−i2+1, j1− j2μi2+1, j2

+D(I−i1,L−I− j1)α1,1(x0, y0)(i1 − i2 + 1)( j2 + 1)μi1−i2+1, j1− j2μi2, j2+1

+D(I−i1,L−I− j1)α0,2(x0, y0)( j1 − j2 + 1)( j2 + 1)μi1−i2, j1− j2+1μi2, j2+1

)
,
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• the linear contributions from the second order terms T1

−
I∑

i=0

L−I∑
j=0

(
D(I−i,L−I− j)α2,0(x0, y0)(i + 2)(i + 1)μi+2, j

+D(I−i,L−I− j)α1,1(x0, y0)( j + 1)(i + 1)μi+1, j+1

+D(I−i,L−I− j)α0,2(x0, y0)( j + 2)( j + 1)μi, j+2

)
,

• the contribution from the zeroth order term α0,0

−D(I ,L−I )α0,0(x0, y0).

Moreover, all experiments are conducted with the following choice of angles θl and
κ parameters to build the GPW space V0

α,p,q :

{
θl := π

6 + 2(l−1)π
p , ∀l ∈ N, 1 ≤ l ≤ p,

κ = √−α0,0(x0, y0).

All exact solutions of the test cases are either products of a function of x by a function
of y, or a function of x + y. Our particular choice of angles for the basis functions is
made to avoid the unrealistically favorable case of having a basis function propagating
in a direction aligned with the x direction, the y direction or the x + y direction.

5.3 Construction of a solution to system (36)

In order to construct of a solution to System (36), we follow [15] in defining a matrix

(Pn)n±k+1, k(k+1)
2 +s+1 = (±i)s,

and actually solving the square system

(PnMn)X = PnF.

5.4 Numerical results

The h-convergence results presented in Theorem 1 are stated as local properties at a
given point. In order to illustrate them, for each test case, we consider the following
procedure.

• At each of 50 random points (x0, y0) in the computational domain �

1. Construct the set of GPWs from Algorithm 1 with the normalization proposed
in Sect. 3.

2. Compute ua the linear combination of GPWs studied in the theorem’s proof,
matching its Taylor expansion to that of the exact solution.
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• Estimate as a function of h the maximum L∞ error on a disk of radius h centered
at the random point: max(x0,y0)∈� ‖u − ua‖L∞({(x,y)∈R2,|(x,y)−(x0,y0)|<h}).

We always consider a space V0
α,p,q of p = 2n + 1 GPWs. According to the theorem,

we expect to observe convergence of order n + 1 if the approximation parameter q
in the construction of the basis functions is at least equal to n − 1. For each of the
four test cases proposed, we present: on the one hand results for n from 1 to 5 with
q = max(1, n − 1) (Left panel); on the other hand results for q from 1 to 4 with
n = 4 (Right panel). Hence with the first choice of parameters the theorem predicts
convergence of order n + 1, while with the second choice the theorem does not cover
these cases.

The results are presented in Fig. 5 for the approximation of uAd , Fig. 6 for the
approximation of uJc, Fig. 7 for the approximation of uJ J , and Fig. 8 for the approx-
imation of ucs . We observe on Figs. 5 and 8 the effect of the large condition number
of the matrix PnMn on the accuracy of the approximation of u by ua : even though the
expected orders of convergence are observed for large values of h, when n increases
the error stagnates at an increasing threshold for smaller values of h. Approximate con-
dition number of the matrix PnMn for the corresponding Ad and cs cases are provide
in the following table.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 4 n = 4 n = 4 n = 4
q = 1 q = 1 q = 2 q = 3 q = 4 q = 1 q = 2 q = 3 q = 4

cond PnMAd
n 4.8 · 100 4.8 · 100 4.5 · 101 3.2 · 104 6.9 · 105 4.8 · 100 6.4 · 102 3.2 · 104 5.9 · 105

cond PnMcs
n 1.5 · 100 1.5 · 100 2.0 · 101 7.8 · 104 1.6 · 105 1.5 · 100 2.0 · 101 7.8 · 104 1.4 · 104

Such problems of conditioning are inherent to wave-like bases, and for larger values
of n, the condition number may become a limitation to compute accurate solutions.
Techniques similar to the QR factorization proposed in [1] could be investigated in
the future to improve the accuracy of this computation.

We also observe, on the left panels of Figs. 5, 6 and 7 , that these three test cases the
constant C(�, n) from (35) in Theorem 1 does not seem to depend on n, even though
the Theorem predicts that it does. The situation seems different on the left panel of
Fig. 8.

We summarize in the following table the orders of convergence observed, always
using V

0
α,p,q with p = 2n + 1. The bold entries correspond to cases covered by

Theorem 1 i.e. n + 1 for q ≤ n − 1, and the red entries correspond to cases with order
of convergence observed higher than the theorem predicts.

q\n 1 2 3 4 5

1 2 3 3 3/4 3
2 2 3 4 ≥ 4 ≥ 4
3 2 3 4 ≥ 5 5
4 2 3 4 ≥ 5 6
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Fig. 5 GPW approximation of uAd by ua ∈ V
0
α,p,q with p = 2n + 1. We represent the L∞ error

max(x0,y0)∈� ‖uAd − ua‖L∞({(x,y)∈R2,|(x,y)−(x0,y0)|<h}), for 50 random points (x0, y0) ∈ �Ad . We
compare results for parameters satisfying Theorem 1 hypotheses i.e. q = max(1, n − 1) (Left panel), and
for varying q with fixed n (Right panel)
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Fig. 6 GPW approximation of u Jc by ua ∈ V
0
α,p,q with p = 2n + 1. We represent the L∞ error

max(x0,y0)∈� ‖u Jc − ua‖L∞({(x,y)∈R2,|(x,y)−(x0,y0)|<h}), for 50 random points (x0, y0) ∈ �Jc . We
compare results for parameters satisfying Theorem 1 hypotheses i.e. q = max(1, n − 1) (Left panel), and
for varying q with fixed n (Right panel)

We can see from this table that in all cases covered by the theorem, we observe a
convergence rate equal or slightly better than predicted. But it would seem that the
hypotheses of the theorem are sharp.

6 Conclusion

In this work we have considered local properties in the neighborhood of a point
(x0, y0) ∈ R

2, for an operatorLM,α . To summarize, we followed the steps announced
in the introduction:

1. construction of GPWs ϕ such that LM,αϕ(x, y) = O (‖(x, y) − (x0, y0)‖q)
(a) choose an ansatz for ϕ(x, y) = exp

∑
0≤i+ j≤dP λi j (x − x0)i (y − y0) j
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Fig. 7 GPW approximation of u J J by ua ∈ V
0
α,p,q with p = 2n + 1. We represent the L∞ error

max(x0,y0)∈� ‖u J J − ua‖L∞({(x,y)∈R2,|(x,y)−(x0,y0)|<h}), for 50 random points (x0, y0) ∈ �J J . We
compare results for parameters satisfying Theorem 1 hypotheses i.e. q = max(1, n − 1) (Left panel), and
for varying q with fixed n (Right panel)
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Fig. 8 GPW approximation of ucs by ua ∈ V
0
α,p,q with p = 2n + 1. We represent the L∞ error

max(x0,y0)∈� ‖ucs − ua‖L∞({(x,y)∈R2,|(x,y)−(x0,y0)|<h}), for 50 random points (x0, y0) ∈ �cs . We
compare results for parameters satisfying Theorem 1 hypotheses i.e. q = max(1, n − 1) (Left panel), and
for varying q with fixed n (Right panel)

(b) identify the corresponding Ndof = (dP+1)(dP+2)
2 degrees of freedom, and

Neqn = q(q+1)
2 constraints, namely respectively

{λi j ; (i, j) ∈ N
2, 0 ≤ i + j ≤ dP},

{D(I ,J )LM,αϕ(x0, y0) = 0; (I , J ) ∈ N
2, 0 ≤ I + J < q}.

(c) for dP = q + M − 1, the number of degrees of freedom is Ndof =
(M+q)(M+q+1)

2 > Neqn and this ensures that there are linear terms in all the
constraints

(d) identify Ndof − Neqn = Mq + M(M+1)
2 additional constraints, namely

Fixing {λi, j , (i, j) ∈ N
2, i + j < q + M and i < M}
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to obtain a global system that can be split into a hierarchy of linear triangular
subsystems

(e) compute the remaining Neqn degrees of freedom by forward substitution for
each triangular subsystem, therefore at minimal computational cost

2. interpolation properties

(a) thanks to the normalization, in particular {λi, j = 0, (i, j) ∈ N
2, i + j <

M + q and i < M, i + j �= 1}, study the properties of the remaining Neqn

degrees of freedom, that is {λi, j , (i, j) ∈ N
2, i + j < M + q and i ≥ M},

with respect to (λ1,0, λ0,1)

(b) identify a simple reference case depending only on two parameters, that is
basis functions φ(x, y) = exp λ1,0(x − x0) + λ0,1(y − y0) depending only on
the choice of (λ1,0, λ0,1), independently of φ being an exact solution to the
constant coefficient equation

(c) study the interpolation properties of this reference case with classical PW
techniques

(d) relate the general case to the reference case thanks to 2a
(e) prove the interpolation properties of the GPWs from those of the reference

case

This construction process guarantees that the GPW function ϕ satisfies the approxi-
mate Trefftz property LM,αϕ(x, y) = O (‖(x, y) − (x0, y0)‖q) independently of the
normalization, that is the values chosen for {λi, j , (i, j) ∈ N

2, i + j < M}, while the
proof of interpolation properties heavily rely on the normalization.

This work focuses on interpolation of solutions of a PDE, and is limited to local
results, in the neighborhood of a given point. In order to address the convergence
of a numerical method for a boundary value problem on a domain � with a GPW-
discretized Trefftz method, on a mesh Th of �, we will consider a space Vh of GPWs
built element-wise, at the centroid (x0, y0) = (xK , yK ) of each element K ∈ Th , to
study interpolation properties on �. In particular, meshing the domain � to respect
any discontinuity in the coefficients, the interpolation error on �, ‖(I − PVh )‖, will
converge at the same order as the local interpolation error on each element, and the
crucial point will be to investigate the behavior of the constant C(�, n) from Theo-
rem 1. Related computational aspects of the construction of GPWs proposed in this
work are currently under study.

We are also currently considering extensions to 3D problems. We expect to be
able to follow a similar roadmap to construct GPWs and study their interpolation
properties. However, even if we expect a similar layer structure for the system obtained
to construct GPWs, the subsystems won’t have a natural numbering making obvious
their triangularity. We will therefore need new tools to construct solutions to the
subsystems. Moreover, in 3D, choosing appropriate directions for the normalization
of GPWs is challenging, and we anticipate that the study of interpolation properties
will be more intricate.

Acknowledgements Thismaterial is based uponwork supported by the National Science Foundation under
Grants No. DMS-1818747 and DMS-2105487.
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A Chain rule in dimension 1 and 2

For the sake of completeness, this section is dedicated to describing the formula to
derive a composition of two functions, in dimensions one and two.Awide bibliography
about this formula is to be found in [26]. It is linked to the notion of partition of an
integer or the one of a set. The 1D version is not actually used in this work but is
displayed here as a comparison with a 2D version, mainly concerning this notion of
partition.

A.1 Faa Di Bruno formula

Faa Di Bruno formula gives the mth derivative of a composite function with a single
variable. It is named after Francesco Faa Di Bruno, but was stated in earlier work of
Louis F.A. Arbogast around 1800, see [7].

If f and g are functions with sufficient derivatives, then

dm

dxm
f (g(x)) = m!

∑
f (
∑

k bk )(g(x))
m∏

k=1

1

bk !

(
g(k)(x)

k!

)bk

,

where the sum is over all different solutions in nonnegative integers (bk)k∈[[1,m]] of∑
k kbk = m. These solutions are actually the partitions of m.

A.2 Bivariate version

Themultivariate formula has beenwidely studied, the version described here is the one
from [6] applied to dimension 2. A linear order on N2 is defined by: ∀(μ, ν) ∈ (N2

)2
,

the relation μ ≺ ν holds provided that

1. μ1 + μ2 < ν1 + ν2; or
2. μ1 + μ2 = ν1 + ν2 and μ1 < ν1.

If f and g are functions with sufficient derivatives, then

∂ ix∂
j
y f (g(x, y))

= i ! j !
∑

1≤μ≤i+ j

f μ(g(x, y))
i+ j∑
s=1

∑
ps ((i, j),μ)

s∏
l=1

1

kl !
(

1

il ! jl !∂
il
x ∂

jl
y (g(x, y))

)kl
,

where the partitions of (i, j) are defined by the following sets: ∀μ ∈ [[1, i + j]],
∀s ∈ [[1, i + j]], ps((i, j), μ) is equal to

{(k1, . . . , ks; (i1, j1), . . . , (is, js)): ki > 0, 0 ≺ (i1, j1)

≺ · · · ≺ (is, js),
s∑

l=1

kl = μ,

s∑
l=1

kl il = i,
s∑

l=1

kl jl = j

}
.
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See [12] for a proof of the formula interpreted in terms of collapsing partitions.

B Faa di Bruno

Themultivariate formula has beenwidely studied, the version described here is the one
from [6] applied to dimension 2. A linear order on N2 is defined by: ∀(μ, ν) ∈ (N2

)2
,

the relation μ ≺ ν holds provided that

1. μ1 + μ2 < ν1 + ν2; or
2. μ1 + μ2 = ν1 + ν2 and μ1 < ν1.

If f and g are functions with sufficient derivatives, then

∂ ix∂
j
y f (g(x, y)) = i ! j !

∑
1≤μ≤i+ j

f (μ)(g(x, y))
i+ j∑
s=1

∑
ps ((i, j),μ)

s∏
l=1

1

kl !
(

1

il ! jl !∂
il
x ∂

jl
y (g(x, y))

)kl
,

∂kx ∂
�−k
y eP(x,y) = k!(� − k)!

∑
1≤μ≤�

eP(x,y)
�∑

s=1

∑
ps ((k,�−k),μ)

s∏
m=1

1

km !
(

1

im ! jm !∂
im
x ∂

jm
y P(x, y)

)km
,

where the partitions of (i, j) are defined by the following sets: ∀μ ∈ [[1, i + j]],
∀s ∈ [[1, i + j]], ps((i, j), μ) is equal to

{(k1, . . . , ks; (i1, j1), · · · , (is, js)) : ki > 0, 0 ≺ (i1, j1)

≺ · · · ≺ (is, js),
s∑

l=1

kl = μ,

s∑
l=1

kl il = i,
s∑

l=1

kl jl = j

}
.

Note that s is the number of different terms appearing in the product, while μ is the
number of terms in the product counting multiplicity, km is the multiplicity of the mth
term in the product, while ps represents the possible partitions of (i, j).

Note that since km > 0, the condition
∑s

m=1 km = μ implies thatμ =∑s
m=1 km ≥∑s

m=1 1 = s.

C Polynomial formulas

Here are two important comments. The first one concerns the product of polynomials.
Assume that min(D1, D2) ≥ q. Then the product of two polynomials, respectively of
degree D1 and D2, satisfies:
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⎛
⎝

D1∑
i1=0

D1−i1∑
j1=0

pi1, j1x
i1 y j1

⎞
⎠
⎛
⎝

D2∑
i2=0

D2−i2∑
j2=0

qi2, j2x
i2 y j2

⎞
⎠

=
q−1∑
i=0

q−1−i∑
j=0

⎛
⎝

i∑

ĩ=0

j∑

j̃=0

pi−ĩ, j− j̃ qĩ, j̃

⎞
⎠ xi y j + O(hq).

Since in particular the summation indices are such that 0 ≤ ĩ ≤ i , 0 ≤ i − ĩ ≤ i ,
0 ≤ j̃ ≤ j , and 0 ≤ j − j̃ ≤ j , the only coefficients pi, j and qi, j appearing in the
(I0, J0) coefficient of the product have a length of the multi-index i + j ≤ I0 + J0. As
a consequence, the only coefficients of several polynomials appearing in the (I0, J0)
coefficient of the product these several polynomials have a length of the multi-index
i + j ≤ I0 + J0. The second comment turns to the derivative of a polynomial:

∂ I
x ∂ J

y

⎛
⎝

D∑
i=0

D−i∑
j=0

pi, j x
i y j

⎞
⎠ =

D−I−J∑
i=0

D−I−J−i∑
j=0

(i + I )!
i !

( j + J )!
j ! pi+I , j+J x

i y j .

In particular the only coefficients pi, j appearing in the (I0, J0) coefficient of the
derivative has a length of the multi-index i + j = I + J + I0 + J0.
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