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Abstract
We consider the stochastic Cahn–Hilliard equation with additive noise term εγ g Ẇ
(γ > 0) that scales with the interfacial width parameter ε. We verify strong error
estimates for a gradient flow structure-inheriting time-implicit discretization, where
ε−1 only enters polynomially; the proof is based on higher-moment estimates for
iterates, and a (discrete) spectral estimate for its deterministic counterpart. For γ

sufficiently large, convergence in probability of iterates towards the deterministic
Hele–Shaw/Mullins–Sekerka problem in the sharp-interface limit ε → 0 is shown.
These convergence results are partly generalized to a fully discrete finite element based
discretization. We complement the theoretical results by computational studies to pro-
vide practical evidence concerning the effect of noise (depending on its ’strength’ γ )
on the geometric evolution in the sharp-interface limit. For this purpose we compare
the simulations with those from a fully discrete finite element numerical scheme for
the (stochastic) Mullins–Sekerka problem. The computational results indicate that the
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limit for γ ≥ 1 is the deterministic problem, and for γ = 0 we obtain agreement with
a (new) stochastic version of the Mullins–Sekerka problem.

1 Introduction

We consider the stochastic Cahn–Hilliard equation with additive noise

du = �
(

− ε�u + 1

ε
f (u)

)
dt + εγ g dW in DT := (0, T ) × D (1.1a)

∂nu = ∂n�u = 0 on (0, T ) × ∂D , (1.1b)

u(0, ·) = uε
0 on D . (1.1c)

We fix T > 0, γ > 0, and ε > 0 is a (small) interfacial width parameter. For
simplicity, we assume D ⊂ R

2 to be a convex, bounded polygonal domain, with
n ∈ S

2 the outer unit normal along ∂D, and W ≡ {Wt ; 0 ≤ t ≤ T } to be an R-
valued Wiener process on a filtered probability space (�,F, {Ft }t , P). The function
g ∈ C∞(D) is such that

∫
D g dx = 0 to enable conservation of mass in (1.1), and

∂ng = 0 on ∂D. Furthermore, we assume uε
0 ∈ H

1, and impose
∫
D uε

0 dx = 0, for
simplicity; generalization for arbitrary mean values is straightforward.

The nonlinear drift part f in (1.1) is the derivative of the double-well potential
F(u) := 1

4 (u
2 − 1)2, i.e., f (u) = F ′(u) = u3 − u. Associated to the system (1.1) is

the Ginzburg–Landau free energy

E(u) =
∫

D

(ε

2
|∇u|2 + 1

ε
F(u)

)
dx .

The particular case g ≡ 0 in (1.1) leads to the deterministic Cahn–Hilliard equation
which can be interpreted as theH

−1-gradient flowof theGinzburg–Landau free energy.
It is convenient to reformulate (1.1) as

du = �wdt + εγ g dW in DT , (1.2a)

w = −ε�u + 1

ε
f (u) in DT , (1.2b)

∂nu = ∂nw = 0 on (0, T ) × ∂D , (1.2c)

u(0, ·) = uε
0 on D , (1.2d)

where w denotes the chemical potential.
The Cahn–Hilliard equation has been derived as a phenomenological model for

phase separationof binary alloys. The stochastic versionof theCahn–Hilliard equation,
also known as the Cahn–Hilliard–Cook equation, has been proposed in [12,21,22]:
here, the noise term is used to model effects of external fields, impurities in the alloy,
or may describe thermal fluctuations or external mass supply. We also mention [18],
where computational studies for (1.1) show a better agreement with experimental data
in the presence of noise. For a theoretical analysis of various versions of the stochastic
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Cahn–Hilliard equation we refer to [8,9,13,14]. Next to its relevancy in materials sci-
ences, (1.1) is used as an approximation to the Mullins–Sekerka/Hele–Shaw problem;
by the classical result [1], the solution of the deterministic Cahn–Hilliard equation
is known to converge to the solution of the Mullins–Sekerka/Hele–Shaw problem
in the sharp interface limit ε ↓ 0. A partial convergence result for the stochastic
Cahn–Hilliard equation (1.1) has been obtained recently in [3] for a sufficiently large
exponent γ .We extend thiswork to eventually validate uniform convergence of iterates
of the time discretization Scheme 3.1 to the sharp-interface limit of (1.1) for vanish-
ing numerical (time-step k), and regularization (width ε) parameters: hence, the zero
level set of the solution to the geometric interface of the Mullins–Sekerka problem is
accurately resolved via Scheme 3.1 in the asymptotic limit.

It is well-known that an energy-preserving discretization, along with a proper bal-
ancing of numerical parameters and the interface width parameter ε, is required for
accurate simulation of the deterministic Cahn–Hilliard equation; see e.g. [16]: ana-
lytically, this balancing of scales allows to circumvent a straight-forward application
of Gronwall’s lemma in the error analysis, which would otherwise cause a factor in a
corresponding error estimate that grows exponentially in ε−1. The present paper pur-
sues a corresponding goal for a structure-preserving discretization of the stochastic
Cahn–Hilliard equation (1.1); we identify proper discretization scales which allow a
resolution of interface-driven evolutions, and thus avoid a Gronwall-type argument in
the corresponding strong error analysis. This allows for practically relevant scaling
scenarios of involved numerical parameters to accurately approximate solutions of
(1.1) even in the asymptotic regime where ε � 1.

The proof of a strong error estimate for a space–time discretization of (1.1) which
causes only polynomial dependence on ε−1 in involved stability constants uses the
following ideas:

(a) We use the time-implicit Scheme 3.1, whose iterates inherit the basic energy bound
[see Lemma 3.1, (i)] from (1.1). We benefit from a weak monotonicity property
of the drift operator in the proof of Lemma 3.4 to effectively handle the cubic
nonlinearity in the drift part.

(b) For γ > 0 sufficiently large, we view (1.1) as a stochastic perturbation of the deter-
ministic Cahn–Hilliard equation (i.e., (1.1) with g ≡ 0), and proceed analogically
also in the discrete setting. We then benefit in the proof of Lemma 3.4 from (the
discrete version of) the spectral estimate (2.1) from [2,11] for the deterministic
Cahn–Hilliard equation (see Lemma 3.1, v)).

(c) For the deterministic setting [16], an induction argument is used on the discrete
level, which addresses the cubic error term (scaled by ε−1) in Lemma 3.4. This
argument may not be generalized in a straightforward way to the current stochastic
setting where the discrete solution is a sequence of random variables allowing for
(relatively) large temporal variations. For this reason we consider the propagation
of errors on two complementary subsets of�: on the large subset�2 we verify the
error estimate (Lemma 3.5), while we benefit from the higher-moment estimates
for iterates of Scheme 3.1 from (a) to derive a corresponding estimate on the small
set � \ �2 (see Corollary 3.7). A combination of both results then establishes our
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first main result: a strong error estimate for the numerical approximation of the
stochastic Cahn–Hilliard equation (see Theorem3.8), avoidingGronwall’s lemma.

(d) Building on the results from (c), and using anL
∞-bound for the solution of Scheme

3.1 (Lemma 5.1), along with error estimates in stronger norms (Lemma 5.2),
we show uniform convergence of iterates on large subsets of � (Theorem 5.5).
This intermediate result then implies the second main result of the paper: the
convergence in probability of iterates of Scheme 3.1 to the sharp interface limit
in Theorem 5.7 for sufficiently large γ . In particular, we show that the numerical
solution of (1.1) uniformly converges in probability to 1, −1 in the interior and
exterior of the geometric interface of the deterministic Mullins–Sekerka problem
(5.1), respectively. As a consequence we obtain uniform convergence of the zero
level set of the numerical solution to the geometric interface of theMullins–Sekerka
problem in probability; cf. Corollary 5.8.

The error analysis below in particular identifies proper balancing strategies of
numerical parameters with the interface width that allow to approximate the limiting
sharp interfacemodel for realistic problem setups, andmotivates the use of space–time
adaptive meshes for numerical simulations; see e.g. [25]. In Sect. 6, we present com-
putational studies which evidence asymptotic properties of the solution for different
scalings of the noise term. Our studies suggest the deterministic Mullins–Sekerka
problem as sharp-interface limit already for γ ≥ 1; we observe this in simulations for
spatially colored, as well as for the space–time white noise. In contrast, corresponding
simulations for γ = 0 indicate that the sharp-interface limit is a stochastic version of
the Mullins–Sekerka problem; see Sect. 6.4.

To sum up, the convergence analysis presented in this paper is a combination of a
perturbation and discretization error analysis. The latter depends on stability properties
of the proposed numerical scheme: higher-moment energy estimates for the Scheme
3.1, a discrete spectral estimate for the related deterministic variant, and a local error
analysis on the sample set � are crucial ingredients of our approach. The techniques
developed in this paper constitute a general framework which can be used to treat
different and/or more general phase-field models including the stochastic Allen-Cahn
equation, and apply to settings which involve multiplicative noise, driving trace-class
Hilbert-space-valued Wiener processes, and bounded polyhedral domains D ⊂ R

3,
as well.

The paper is organized as follows. Section 2 is dedicated to the analysis of the
continuous problem. The time discretization Scheme 3.1 is proposed in Sect. 3 and
rates of convergence are shown, while Sect. 4 extends this convergence analysis to its
finite-element discretization. The convergence of the numerical discretization to the
sharp-interface limit is studied in Sect. 5. Section 6 contains the details of the imple-
mentation of the numerical schemes for the stochastic Cahn–Hilliard and the stochastic
Mullins–Sekerka problem, respectively, as well as computational experiments which
complement the analytical results.
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2 The stochastic Cahn–Hilliard equation

2.1 Notation

For 1 ≤ p ≤ ∞, we denote by
(
L
p, ‖·‖L

p
)
the standard spaces of p-th order integrable

functions on D. By (·, ·) we denote the L
2-inner product, and let ‖ · ‖ = ‖ · ‖

L
2 . For

k ∈ N we write
(
H

k, ‖ · ‖
H
k

)
for usual Sobolev spaces on D, and H

−1 = (H1)′.
We define L

2
0 := {φ ∈ L

2; ∫D φ dx = 0}, and for v ∈ L
2 we denote its zero mean

counterpart as v ∈ L
2
0, i.e., v := v − 1

|D|
∫
D v dx . We frequently use the isomorphism

(−�)−1 : L
2
0 → H

2 ∩ L
2
0, where w = (−�)−1v is the unique solution of

−�w = v in D, ∂nw = 0 on ∂D.

In particular, (∇(−�)−1v,∇ϕ) = (v, ϕ) for all ϕ ∈ H
1, v ∈ L

2
0. Below, we denote

�−1/2v := ∇(−�)−1v and note that norms ‖v‖
H

−1 and ‖�−1/2v‖ are equivalent
for all v ∈ L

2
0. Throughout the paper, C denotes a generic positive constant that may

depend on D, T , but is independent of ε.

2.2 The problem

We recall the definition of a strong variational solution of the stochastic Cahn–Hilliard
equation (1.1); its existence, uniqueness, and regularity properties have been obtained
in [14, Thm. 8.2], [13, Prop. 2.2].

Definition 2.1 Let uε
0 ∈ L2(�,F0, P; H

1)∩L4(�,F0, P; L
4) and denoteH

2 = {ϕ ∈
H

2, ∂nϕ = 0 on ∂D}. Then, the process

u ∈ L2(�, {Ft }t , P;C([0, T ]; H
1) ∩ L2(0, T ; H

2)
)

∩L4(�, {Ft }t , P;C([0, T ]; L
4)
)

is called a strong solution of (1.1) if it satisfies P-a.s. and for all 0 ≤ t ≤ T

(
u(t), ϕ

) = (uε
0, ϕ) +

∫ t

0

(
− ε�u + 1

ε
f (u),�ϕ

)
ds

+εγ

∫ t

0
(ϕ, g) dW (s) ∀ϕ ∈ H

2.

The following lemma establishes existence and bounds for the strong solution u of
(1.1) and for the chemical potential w from (1.2b); cf. [13, Section 2.3] for a proof
of (i), while (ii) follows similarly as part (i) by the Itô formula and the Burkholder-
Davis-Gundy inequality.

Lemma 2.1 Let T > 0. There exists a unique strong solution u of (1.1), and there hold

(i) E
[
E
(
u(t)

)]+ E

[ ∫ t

0
‖∇w(s)‖2 ds

]
≤ C

(
E(uε

0) + 1
) ∀ t ∈ [0, T ] ,
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(ii) For any p ∈ N there exists C ≡ C(p) > 0 such that

E
[

sup
t∈[0,T ]

E
(
u(t)

)p] ≤ C
(
E(uε

0)
p + 1

)
.

2.3 Spectral estimate

Wedenote by uCH : DT → R the solution of the deterministic Cahn–Hilliard equation,
i.e., (1.1) with g ≡ 0. Let ε0 � 1; throughout the paper we assume that for every
ε ∈ (0, ε0), there exists an arbitrarily close approximation uA ∈ C2(DT ) of uCH which
satisfies the spectral estimate (cf. [1, relation (2.3)])

inf
0≤t≤T

inf
ψ∈H

1, w=(−�)−1ψ

ε‖∇ψ‖2 + 1
ε

(
f ′(uA)ψ,ψ

)

‖∇w‖2 ≥ −C0 , (2.1)

where the constant C0 > 0 does not depend on ε > 0; cf. [1,2,11].

2.4 Error bound between u of (1.1) and uCH of (1.1) with g ≡ 0.

In [3] the authors study the convergence of the solution of the stochastic Cahn–Hilliard
equation (1.1) to the deterministic sharp-interface limit. In particular, they show the
convergence in probability of the solution u of (1.1) to the approximation uA of uCH for
sufficiently large γ > 0. Apart from the spectral estimate (2.1), a central ingredient of
their analysis is the use of a stopping time argument to control the drift nonlinearity.
The stopping time which, in our setting, is defined as

Tε := inf
{
t ∈ [0, T ] : 1

ε

∫ t

0
‖u(s) − uCH(s)‖3

L
3 ds > εσ0

}

for some constant σ0 > 0, enables the derivation of the estimates in Lemma 2.2 below
up to the stopping time Tε on a large sample subset

�1 :=
{
ω ∈ � : εγ sup

t∈[0,Tε]

∣∣∣
∫ t

0

(
u(s) − uCH(s), (−�)−1g dW (s)

)∣∣∣ ≤ εκ0
}

that satisfies P[�1] → 1 for ε ↓ 0, for some constant κ0. On specifying the condition
(A) below it can be shown that Tε ≡ T , which yields Lemma 2.2. In this section we
extend the work [3] by showing a strong error estimate for u − uCH in Lemma 2.3.

In Sect. 3we perform an analogous analysis on the discrete level by using a stopping
index Jε, and a set�2 which are discrete counterparts of Tε and�1, respectively. Both
approaches require a lower bound for the noise strength γ to ensure, in particular,
positive probability of the sets �1 and �2, respectively.

For the analysis in this section we require the following assumptions to hold.
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(A) Let E(uε
0) ≤ C . Assume that the triplet (σ0, κ0, γ ) ∈ [R+]3 satisfies

σ0 > 12 , σ0 > κ0 >
2

3
σ0 + 4 , γ > max

{23
3

,
κ0

2

}
.

Assumption (A) ensures positivity of all exponents in the estimates in the lemmas
of this section. The following lemma relies on the spectral estimate (2.1) and is a
consequence of [3, Theorem 3.10] for p = 3, d = 2, where a slightly different
notational setup is used.

Lemma 2.2 Suppose (A). There exists ε0 ≡ ε0(σ0, κ0) > 0 such that for any ε ≤ ε0
and sufficiently large l > 0

(i) P
[‖u − uA‖2L∞(0,T ;H−1)

≤ Cεκ0
] ≥ 1 − Cε(γ+ σ0+1

3 −κ0)l ,

(ii) P
[
ε‖∇[u − uA]‖2L2(0,T ;L2)

≤ Cε
2σ0
3
] ≥ 1 − Cε(γ+ σ0+1

3 −κ0)l ,

where l and C ≡ C(l) > 0 are independent of γ , σ0, κ0 and ε.

A closer inspection of the proofs in [3] (cf. [3, Lemma 4.3] in particular) reveals that
the parameter l can be chosen arbitrarily large in the above theorem.

We now use Lemma 2.2 to show bounds for the difference u − uCH in different
norms.

Lemma 2.3 Suppose (A), and ε ≤ ε0, for ε0 ≡ ε0(σ0, κ0) > 0 sufficiently small.
There exists C > 0 such that

E

[
‖u − uCH‖2L∞(0,T ;H−1)

+ ε‖∇[u − uCH]‖2L2(0,T ;L2)

]
≤ Cε

2σ0
3 .

Proof By [1, Theorem 2.1] (see also [1, Theorem 4.11 and Remark 4.6]) there exists
uA ∈ C2(DT )∩L

2
0 which satisfies (2.1) and

‖uA − uCH‖2L∞(0,T ;H−1)
+ ‖uA − uCH‖2L2(0,T ;H1)

≤ Cε2γ , (2.2)

and, cf. [1, Theorem 2.3],

‖uA − uCH‖C1(DT ) ≤ Cε . (2.3)

By using the energy bound for uCH and (2.3) we get ‖uA‖L∞(0,T ;H1) ≤ C .

Consider the subset �̃1 ⊂ � (cf. [3, Lemma 4.5, Lemma 4.6]),

�̃1 := {
ω ∈ � : ‖u − uA‖2L∞(0,T ,H−1)

+ ε‖∇[u − uA]‖2L2(0,T ;L2)
≤ Cε

2σ0
3
}
.

By Lemma 2.2, (ii), we have P[�̃c
1] ≤ Cε

(
γ+ σ0+1

3 −κ0

)
l

< 1, for sufficiently large
l > 0. Then using Lemma 2.1, (ii) and (2.3), we estimate the error

ErrA := ‖u − uA‖2L∞(0,T ;H−1)
+ ε‖∇[u − uA]‖2L2(0,T ;L2)

,
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as

E
[
ErrA

] =
∫

�

1�̃1
ErrA dω +

∫

�

1�̃c
1
ErrA dω

≤ Cε
2σ0
3 + C

(
P[�̃c

1]
)1/2(

E

[
sup
[0,T ]

E
(
u(t)

)2]+ ‖uA‖2L∞(0,T ;H1)

)1/2

≤ C
(
ε

2σ0
3 + ε(γ+ σ0+1

3 −κ0)
l
2
)
.

It is due to (A) that γ + σ0+1
3 − κ0 > 0. We now choose l sufficiently large such that(

γ + σ0+1
3 − κ0

)
l
2 > 2

3σ0 and the statement follows from the estimate for ErrA and
(2.2) by the triangle inequality. ��

3 A time discretization Scheme for (1.1)

For fixed J ∈ N, let 0 = t0 < t1 < · · · < tJ = T be an equidistant partition of [0, T ]
with step size k = T

J , and� jW := W (t j )−W (t j−1), j = 1, . . . , J . We approximate
(1.1) by the following scheme:

Scheme 3.1 For every 1 ≤ j ≤ J , find a [H1]2-valued r.v. (X j , w j ) such that P-a.s.

(X j − X j−1, ϕ) + k(∇w j ,∇ϕ) = εγ
(
g, ϕ

)
� jW ∀ϕ ∈ H

1 ,

ε(∇X j ,∇ψ) + 1

ε

(
f (X j ), ψ

) = (w j , ψ) ∀ψ ∈ H
1 ,

X0 = uε
0 ∈ H

1 .

The solvability and uniqueness of {(X j , w j )} j≥1, as well as the P-a.s. conservation
of mass of {X j } j≥1 are immediate.

For the error analysis of Scheme 3.1, we use the iterates
{
(X j

CH, w
j
CH)
}J
j=0 ⊂ [

H
1]2

which solve Scheme 3.1 for g ≡ 0. The following lemma collects the properties of
these iterates from [16,17]. We remark that, compared to [16,17], the results are stated
in a simplified (but equivalent) form,which ismore suitable for the subsequent analysis.

Lemma 3.1 Suppose E(uε
0) ≤ C. Let

{
(X j

CH, w
j
CH)
}J
j=0 ⊂ [

H
1]2 be the solution of

Scheme 3.1 for g ≡ 0. For every 0 < β < 1
2 , ε ∈ (0, ε0), k ≤ ε3, and pCH > 0, there

exist mCH, nCH,C > 0, and lCH ≥ 3 such that

(i) max
1≤ j≤J

E(X j
CH) ≤ E(uε

0) .

Assume moreover ‖uε
0‖H

2 ≤ Cε−pCH , then

(ii) max
1≤ j≤J

‖X j
CH‖H

2 ≤ Cε−nCH ,
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(iii) max
1≤ j≤J

‖X j
CH‖L

∞ ≤ C for k ≤ CεlCH .

Assume in addition ‖uε
0‖H

3 ≤ Cε−pCH . Then for k ≤ CεlCH , and C0 > 0 from (2.1) it
holds

(iv) max
1≤ j≤J

‖uCH(t j ) − X j
CH‖2H−1 +

J∑
j=1

k1+β
∥∥∇[uCH(t j ) − X j

CH

]∥∥2 ≤ C
k2−β

εmCH
,

(v) inf
0≤t≤T

inf
ψ∈H

1, w=(−�)−1ψ

ε‖∇ψ‖2 + 1−ε3

ε

(
f ′(X j

CH)ψ,ψ
)

‖∇w‖2 ≥−(1 − ε3)(C0+1).

Proof The proof of (i), (ii), (iv), (v) is a direct consequence of [16, Lemma 3, Corol-
lary 1, Proposition 2].

To show (iii), we use the Gagliardo–Nirenberg inequality and [16, inequality (76)],
(ii), (iv) to get the following L

∞-error estimate for k ≤ CεlCH , and some lCH > 0,

max
1≤ j≤J

‖X j
CH − uCH(t j )‖L

∞ ≤ ε2 .

Hence, ‖X j
CH‖L

∞ ≤ C since ‖uCH‖L
∞ ≤ C ; cf. [1, proof of Theorem. 2.3] and [17,

Lemma 2.2]. ��
The numerical solution of Scheme 3.1 satisfies the discrete counterpart of the energy
estimate in Lemma 2.1, (i). The time-step constraint in the lemma below is a con-
sequence of the implicit treatment of the nonlinearity; see the last term in (3.2), its
estimate (3.3), and (3.4); the lower bound for admissible γ has the same origin.

Lemma 3.2 Let γ > 3
2 , ε ∈ (0, ε0) and k ≤ ε3. Then the solution of Scheme 3.1

conserves mass along every path ω ∈ �, and there exists C > 0 such that

(i) max
1≤ j≤J

E
[
E(X j )

]+ k

2

J∑
i=1

E
[‖∇wi‖2] ≤ C

(
E(uε

0) + 1
)
,

(ii) E
[
max
1≤ j≤J

E(X j )
] ≤ C

(
E(uε

0) + 1
)
.

For every p = 2r , r ∈ N, there exists C ≡ C(p, T ) > 0 such that

(iii) max
1≤ j≤J

E
[|E(X j )|p] ≤ C

(|E(uε
0)|p + 1

)
,

(iv) E
[
max
1≤ j≤J

|E(X j )|p] ≤ C
(|E(uε

0)|p + 1
)
.

Proof i) Forω ∈ � fixed, we choose ϕ = w j (ω) andψ = [X j −X j−1](ω) in Scheme
3.1. Adding both equations then leads to P-a.s.

ε

2
‖∇X j‖2 − ε

2
‖∇X j−1‖2 + ε

2
‖∇[X j − X j−1]‖2 + k‖∇w j‖2

+1

ε

(
f (X j ), X j − X j−1) = εγ (g, w j )� jW .

(3.1)
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Note that the third term on the left-hand side reflects the numerical dissipativity in the
scheme. We can estimate the nonlinear term as (cf. [15, Section 3.1]),

(
f (X j ), X j − X j−1) ≥ 1

4
‖f(X j )‖2 − 1

4
‖f(X j−1)‖2

+ 1

4
‖f(X j ) − f(X j−1)‖2 − 1

2
‖X j − X j−1‖2 ,

(3.2)

where we employ the notation f(u) := |u|2 − 1, i.e., f (X j ) = f(X j )X j . The third
term on the right-hand side again reflects numerical dissipativity.

By ω ∈ � fixed, and ϕ = (−�)−1[X j − X j−1](ω) in Scheme 3.1, we eventually
have P-a.s.,

‖�−1/2[X j − X j−1]‖2 ≤
(
k‖∇w j‖ + εγ ‖�−1/2g‖|� jW |

)
‖�−1/2[X j − X j−1]‖ ,

which together with ‖�−1/2g‖ ≤ C yields the estimate

‖�−1/2[X j − X j−1]‖2 ≤ 2k2‖∇w j‖2 + Cε2γ |� jW |2 .

Hence, using this estimate, and exploiting again the inherent numerical dissipation
of the scheme we can estimate

1

2ε
‖X j − X j−1‖2 = 1

2ε

(∇(−�)−1[X j − X j−1], ∇[X j − X j−1])

≤ 1

4ε3
‖�−1/2[X j − X j−1]‖2 + ε

4
‖∇[X j − X j−1]‖2

≤ k2

2ε3
‖∇w j‖2 + Cε2γ−3|� jW |2 + ε

4
‖∇[X j − X j−1]‖2 .

(3.3)

We substitute (3.2) along with the last inequality into (3.1) and get

ε

2

(‖∇X j‖2 − ‖∇X j−1‖2)+ ε

4
‖∇[X j − X j−1]‖2

+ 1

4ε

(
‖f(X j )‖2 − ‖f(X j−1)‖2 + ‖f(X j ) − f(X j−1)‖2

)

+ (
k − k2

2ε3
)‖∇w j‖2

≤ εγ (g, w j )� jW + Cε2γ−3|� jW |2 ,

(3.4)

whichmotivates time-steps k < 2ε3.Next, by using the second equation inScheme3.1,
we can rewrite the first term on the right-hand side as
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εγ
(
g, w j )� jW = εγ+1

[(∇[X j − X j−1],∇g
)+ (∇X j−1,∇g

)]
� jW

+ εγ−1
[(

f (X j ) − f (X j−1), g
)+ (

f (X j−1), g
)]

� jW

=: A1 + A2 + A3 + A4 .

(3.5)

Note that E[A2] = E[A4] = 0. Next, we obtain

A1 = εγ+1(∇[X j − X j−1],∇g
)
� jW

≤ ε

8
‖∇[X j − X j−1]‖2 + Cε2γ+1‖∇g‖2|� jW |2

≤ ε

8
‖∇[X j − X j−1]‖2 + Cε2γ+1|� jW |2 .

(3.6)

On recalling f (X j ) = f(X j )X j , we rewrite the remaining term as

A3 = εγ−1( f (X j ) − f (X j−1), g
)
� jW

= εγ−1
([
f(X j ) − f(X j−1)

]
X j , g

)
� jW

+ εγ−1
(
f(X j−1)

[
X j − X j−1], g

)
� jW

=: A3,1 + A3,2 .

(3.7)

Thanks to the embeddings L
s ↪→ L

r (r ≤ s), and the Cauchy-Schwarz and Young’s
inequalities,

A3,1 ≤ 1

16ε
‖f(X j ) − f(X j−1)‖2 + Cε2γ−1‖|X j |2‖

L
1‖g‖2

L
∞|� j W |2

≤ 1

16ε
‖f(X j ) − f(X j−1)‖2 + Cε2γ−1

(
‖f(X j ) − f(X j−1)‖

L
1 + ‖X j−1‖2

)
|� j W |2

≤ 1

8ε
‖f(X j ) − f(X j−1)‖2 + Cε4γ−1|� j W |4 + Cε2γ−1

(
‖f(X j−1)‖2 + 1

)
|� j W |2 .

The leading term may now be controlled by the numerical dissipation term in (3.2).
Finally, by the Poincaré’s inequality, we estimate

A3,2 ≤ ‖f(X j−1)‖2‖g‖2
L

∞|� jW |2 + ε2γ−2‖X j − X j−1‖2
≤ C‖f(X j−1)‖2|� jW |2 + CDε2γ−2‖∇[X j − X j−1]‖2 .

By combining the above estimates for A3,1, A3,2 we obtain an estimate for (3.7).
Next,we insert the estimates (3.5), (3.6), and (3.7) into (3.4), account for 2γ −2 < 1,

sum the resulting inequality over j and take expectations,
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E
[ ε
2
‖∇X j‖2 + 1

4ε
‖f(X j )‖2]+ 1

8ε

j∑
i=1

E
[‖f(Xi ) − f(Xi−1)‖2]

+
( ε

8
− CDε2γ−2

) j∑
i=1

E
[‖∇[Xi − Xi−1]‖2]+ (

k − k2

2ε3

) j∑
i=1

E
[‖∇wi‖2]

≤ E
[ ε
2
‖∇X0‖2 + 1

4ε
‖f(X0)‖2]+ CT

(
ε4γ−1k + ε2γ+1 + ε2γ−1 + ε2γ−3)

+ C(1 + ε2γ−1)k
j−1∑
i=0

E
[‖f(Xi )‖2] .

(3.8)

On noting that ‖F(u)‖
L
1 = 1

4‖f(u)‖2, assertion (i) now follows with the help of the
discrete Gronwall lemma.

(ii) The second estimate can be shown along the lines of the first part of the proof
by applying max j before taking the expectation in (3.8). The additional term that
arises from the terms A2, A4 in (3.5) can be rewritten by using the second equation in
Scheme 3.1,

E

[
max
1≤i≤ j

∣∣∣∣
i∑

�=1

{
εγ−1( f (X�−1), g

)+ εγ+1(∇X�−1,∇g
)}

��W
∣∣∣
]

= E

[
max
1≤i≤ j

∣∣∣
i∑

�=1

εγ
(
w�−1, g

)
��W

∣∣∣
]

= E

[
max
1≤i≤ j

∣∣∣
i∑

�=1

εγ
(
w�−1, g

)
��W

∣∣∣
]

≤ E

[
max
1≤i≤ j

∣∣∣
i∑

�=1

εγ
(
w�−1, g

)
��W

∣∣∣
2]1/2

,

(3.9)

where the equality in the second line follows from the zero mean property of the noise.
The last sum in (3.9) is a discrete square-integrable martingale, and by the indepen-

dence properties of the summands, the Poincaré inequality and the energy estimate (i)
we have

E

[( i∑
�=1

εγ
(
w�−1, g

)
��W

)2] = ε2γ E

[
k

i∑
�=1

(
w�−1, g

)2]

≤ CDε2γ E

[
k

i∑
�=1

∥∥∇w�−1‖2‖g‖2
L

∞
]

≤ Cε2γ .

Therefore, (3.9) can be estimated using the discrete BDG-inequality (see Lemma 3.3)
and part (i) by

≤ Cεγ ‖g‖L
∞E

[
k

J∑
�=1

∥∥w�−1‖2
]1/2 ≤ Cεγ

E

[ J∑
�=1

k
∥∥∇w�−1‖2

]1/2 ≤ Cεγ .
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(iii)We show assertion (iii) for p = 21. By collecting the estimates of the terms in
(3.5) in part (i) (cf. (3.6), 3.7)) we deduce from (3.4) that

E(X j ) − E(X j−1) + ε

4
‖∇[X j − X j−1]‖2 + 1

4ε
‖f(X j ) − f(X j−1)‖2 + k

2
‖∇w j‖2

≤ C
(
εE(X j−1) + 1

)
|� jW |2 + Cε4γ−1|� jW |4 + C(ε2γ+1 + ε2γ−3)|� jW |2

+ εγ+1(∇X j−1,∇g)� jW + εγ−1( f (X j−1), g
)
� j W .

(3.10)

Multiply this inequality with E(X j ) and use the identity (a−b)a = 1
2 [a2 −b2 + (a−

b)2], the estimate ε2γ+1 ≤ ε40ε
2γ−3, Young’s inequality, and the generalized Hölder’s

inequality to conclude

1

2

[
|E(X j )|2 − |E(X j−1)|2 + |E(X j ) − E(X j−1)|2

]
+ ε

4
‖∇[X j − X j−1]‖2E(X j )

≤ C
(
ε|E(X j−1)|2 + E(X j−1)

)
|� j W |2 + Cε2γ−3E(X j−1)|� j W |2

+ C
(
ε2|E(X j−1)|2 + 1 + ε4γ−1E(X j−1) + ε2(2γ−3)

)
|� j W |4 + Cε2(4γ−1)|� j W |8

+ 1

4

∣∣E(X j ) − E(X j−1)
∣∣2

+
[
εγ+1(∇X j−1,∇g)� j W + εγ−1( f (X j−1), g

)
� j W

]
E(X j−1)

+ C max
{‖∇g‖2, ‖g‖2

L
∞
}[

ε2(γ+1)‖∇X j−1‖2 + ε2(γ−1)‖f(X j−1)‖2‖X j−1‖2
]
|� j W |2 .

(3.11)

We note that to get the above estimate we employed the reformulation E(X j ) =
E(X j−1) + (E(X j ) − E(X j−1)) on the right-hand side.

By Poincaré’s inequality, the last term in (3.11) may be bounded as

ε2(γ−1)
[
ε4‖∇X j−1‖2 + ‖f(X j−1)‖2‖X j−1‖2

]
|� jW |2

≤ Cε2(γ−1)
[
ε3E
(
X j−1)+ ∣∣E(X j−1)

∣∣2]|� jW |2 .

After summing-up in (3.11) and taking expectations we get for any j ≤ J that

1

2
E
[
E(X j )2

]+ 1

4

j∑
i=1

E
[∣∣E(Xi ) − E(Xi−1)

∣∣2]

≤ 1

2
E
[
E(X0)2

]+ Ct j + C(ε2γ−3 + 1 + ε4γ−1k)k
j−1∑
i=0

E
[
E(Xi )]

+ C(ε2(γ−1) + ε + ε2k)k
j−1∑
i=0

E
[
E(Xi )2

]
,

(3.12)

where the third term is bounded via (3.8) in part (ii), and the statement then follows
from the discrete Gronwall inequality.
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For p = 2r , r = 2, we may now argue correspondingly: we start with (3.11), which
we nowmultiply with |E(X j )|2. Assertion (iii) now follows via induction with respect
to r .

(iv) The last estimate follows analogously to (ii) from the BDG-inequality and (iii). ��

The error analysis of the implicit Scheme 3.1 in the subsequent Sect. 3.1 involves
the use of a stopping index Jε, and an associated random variable 1{ j≤Jε} that is
measurable w.r.t. the σ -algebraFt j , but not w.r.t.Ft j−1 . This issue prohibits the use of
the standard BDG-inequality since 1{ j≤Jε} is not independent of theWiener increment
� jW . The following lemma contains a discrete BDG-inequality which will be used
in Sect. 3.1. We take {Ft j }Jj=0 to be a discrete filtration associated with the time mesh

{t j }Jj=0 ⊂ [0, T ] on (�,F, P).

Lemma 3.3 For every j = 1, . . . , J , let Fj be an Ft j -measurable random vari-
able, and � jW be independent of Fj−1. Assume that the {Ft j } j -martingale G� :=∑�

j=1 Fj−1� jW (1 ≤ � ≤ J ), with G0 = 0 be square-integrable. Then for any
stopping index τ : � → N0 such that 1{ j≤τ } is Ft j -measurable, it holds that

E

[
max

�=1,...,τ∧J

∣∣
�∑

j=1

Fj−1� jW
∣∣2] ≤ 4E

[ (τ+1)∧J∑
j=1

kF2
j−1

]
,

where τ ∧ J = min{τ, J }.

Proof We start by noting that

(τ+1)∧�∑
j=1

Fj−1� jW =
�∑

j=1

1{ j−1≤τ }Fj−1� jW (1 ≤ � ≤ J ) .

With this identity, we obtain

E

[
max

�=1,...,τ∧J

∣∣
�∑

j=1

Fj−1� jW
∣∣2] ≤ E

[
max

�=1,...,(τ+1)∧J

∣∣
�∑

j=1

Fj−1� jW
∣∣2]

= E

[
max

�=1,...,J

∣∣
�∑

j=1

1{ j−1≤τ }Fj−1� jW
∣∣2] . (3.13)

The random variable 1{ j−1≤τ } is Ft j−1 -measurable, therefore, G� := ∑�
j=1 1{ j−1≤τ }

Fj−1� jW is also a discrete square-integrablemartingale. Hence, by the L2-maximum
martingale inequality, using the independence of 1{ j≤τ }Fj and ��W for j < � it
follows that
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E

[
max

�=1,...,J

∣∣
�∑

j=1

1{ j−1≤τ }Fj−1� jW
∣∣2] ≤ 4E

[∣∣
J∑

j=1

1{ j−1≤τ }Fj−1� jW
∣∣2]

≤ 4E

[ J∑
j=1

(1{ j−1≤τ }Fj−1)
2|� jW |2

]

+8
J∑

i, j=1;i< j

E
[
1{i−1≤τ }Fi−11{ j−1≤τ }Fj−1�iW

]
E
[
� jW

]

= 4
J∑

j=1

E

[
(1{ j−1≤τ }Fj−1)

2
]
E

[
|� jW |2

]
= 4E

[ (τ+1)∧J∑
j=1

F2
j−1k

]
. (3.14)

The assertion of the lemma then follows from (3.13) and (3.14). ��

3.1 Error analysis

Denote Z j := X j − X j
CH, use Scheme 3.1 for a fixed ω ∈ �, and choose ϕ =

(−�)−1Z j (ω), ψ = Z j (ω). We obtain P-a.s.

1

2

(
‖�−1/2Z j‖2 − ‖�−1/2Z j−1‖2 + ‖�−1/2[Z j − Z j−1]‖2

)
+ kε‖∇Z j‖2

+ k

ε

(
f (X j ) − f (X j

CH), Z
j ) = εγ (�−1/2g,�−1/2Z j )� jW .

(3.15)
We use Lemma 3.1, v) to obtain a first error bound.

Lemma 3.4 Assume γ > 3
2 , ‖uε

0‖H
3 ≤ Cε−pCH for ε ∈ (0, ε0), and let k ≤ CεlCH with

lCH ≥ 3 from Lemma 3.1 be sufficiently small. There exists C > 0, such that P-a.s. and
for all 1 ≤ � ≤ J ,

max
1≤ j≤�

‖�−1/2Z j‖2 + ε4k
�∑

j=1

‖∇Z j‖2

≤ Ck

ε

�∑
j=1

‖Z j‖3
L
3+Cεγ max

1≤ j≤�
|

j∑
i=1

((−�)−1g, Zi−1)�iW |+Cε2γ
�∑

j=1

|� jW |2.

(3.16)

Proof 1. Consider the last term on the left-hand side of (3.15). On recalling Z j =
X j − X j

CH, by a property of f , see [17, eq. (2.6)], and Lemma 3.1, (iii), we get for
some C > 0
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(
f (X j ) − f (X j

CH), Z
j ) = (

f (X j
CH) − f (X j ), X j

CH − X j )

≥ (
f ′(X j

CH)[X j
CH − X j ], X j

CH − X j )− 3
(
X j
CH|X j

CH − X j |2, X j
CH − X j )

≥ (1 − ε3)
(
f ′(X j

CH)Z
j , Z j )− C‖Z j‖3

L
3 + ε3

(
f ′(X j

CH)Z
j , Z j ).

(3.17)

2. In order to later keep a portion of ‖∇Z j‖2 on the left-hand side of (3.15) we use
the identity

ε‖∇Z j‖2 + (1 − ε3)

ε

(
f ′(X j

CH)Z
j , Z j )

= (1 − ε3)

(
ε‖∇Z j‖2 + (1 − ε3)

ε

(
f ′(X j

CH)Z
j , Z j )

)

+ε3
(

ε‖∇Z j‖2 + (1 − ε3)

ε

(
f ′(X j

CH)Z
j , Z j )

)
. (3.18)

We apply Lemma 3.1, v) to get a lower bound for the first term on the right-hand side,

≥ −(C0 + 1)‖�−1/2Z j‖2
L
2 .

On noting ε < 1, we estimate the remaining nonlinearities in (3.18) using Lemma 3.1,
(iii),

ε2
(
f ′(X j

CH)Z
j , Z j ) ≤ Cε2‖∇Z j‖‖�−1/2Z j‖ ≤ ε4

4
‖∇Z j‖2 + C‖�−1/2Z j‖2.

3.We insert the estimates from the steps 1. and 2. into (3.15), and use the bound

εγ ((−�)−1g, Z j −Z j−1)� jW ≤ 1

4
‖�−1/2[Z j −Z j−1]‖2+ε2γ |� jW |2‖�−1/2g‖2

(3.19)
to validate

1

2

(
‖�−1/2Z j‖2 − ‖�−1/2Z j−1‖2 + 1

2
‖�−1/2[Z j − Z j−1]‖2 + ε4

4
k‖∇Z j‖2

)

≤ Ck‖�−1/2Z j‖2 + Ck

ε
‖Z j‖3

L
3 + εγ (�−1/2g,�−1/2Z j−1)� jW

+Cε2γ |� jW |2 .

4.We sum the last inequality from j = 1 up to j = �, and consider max j≤�. On noting
Z0 = 0, we obtain P-a.s.

A� ≤ CR� + Ck
�∑

i=1

Ai (1 ≤ � ≤ J ) ,
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where

A� = 1

2
max
1≤ j≤�

‖�−1/2Z j‖2+1

2

�∑
i=1

‖�−1/2[Z j − Z j−1]‖2 + ε4k
�∑

i=1

‖∇Zi‖2 ,

R� = k

ε

�∑
j=1

‖Z j‖3
L
3 + εγ max

1≤ j≤�
|

j∑
i=1

((−�)−1g, Zi−1)�iW | + ε2γ
�∑

i=1

|�iW |2 .

(3.20)
Hence, the implicit version of the discrete Gronwall lemma implies for sufficiently
small k ≤ k0(D) that P-a.s.

A� ≤ CR� ∀ � ≤ J , (3.21)

which concludes the proof. ��
In the deterministic setting (g ≡ 0), an induction argument, along with an inter-

polation estimate for the L
3-norm is used to estimate the cubic error term on the

right-hand side of (3.16); cf. [16]. In the stochastic setting, this induction argument is
not applicable any more, which is why we separately bound errors in (3.16) on two
subsets �2 and � \ �2. In the first step, we study accumulated errors on �2 locally in
time, and therefore mimic a related (time-continuous) argument in [3]. We introduce
the stopping index 1 ≤ Jε ≤ J

Jε := inf
{
1 ≤ j ≤ J : k

ε

j∑
i=1

‖Zi‖3
L
3 > εσ0

}
,

where the constant σ0 > 0 will be specified later. The purpose of the stopping index
is to identify those ω ∈ � where the cubic error term is small enough. In the sequel,
we estimate the terms on the right-hand side of (3.16), putting � = Jε. Clearly, the
part k

ε

∑Jε−1
i=1 ‖Zi‖3

L
3 of RJε in (3.20) is bounded by εσ0 ; the remaining part will be

denoted by R̃Jε := RJε − k
ε

∑Jε−1
i=1 ‖Zi‖3

L
3 , i.e.,

R̃Jε = εγ max
1≤ j≤Jε

∣∣
j∑

i=1

(
(−�)−1g, Zi−1)�iW

∣∣+ ε2γ
Jε∑
j=1

|�Wj |2 + k

ε
‖Z Jε‖3

L
3 .

For 0 < κ0 < σ0, we gather those ω ∈ � in the subset

�2 := {
ω ∈ � : R̃Jε (ω) ≤ εκ0

}

where the error terms in Lemma 3.4 which cannot be controlled by the stopping index
Jε do not exceed the larger error threshold εκ0 . The following lemma quantifies the
possible error accumulation in time on �2 up to the stopping index Jε in terms of
σ0, κ0 > 0, and illustrates the role of k in this matter; it further provides a lower bound
for the measure of �2 correspondingly.

123



522 D. Antonopoulou et al.

Lemma 3.5 Assume γ > 3
2 , 0 < κ0 < σ0, ‖uε

0‖H
3 ≤ Cε−pCH for ε ∈ (0, ε0), and

let k ≤ CεlCH with lCH ≥ 3 from Lemma 3.1 be sufficiently small. Then, there exists
C > 0 such that

(i) max
1≤i≤Jε

‖�−1/2Zi‖2 + ε4k
Jε∑
i=1

‖∇Zi‖2 ≤ Cεκ0 on �2 ,

(ii) E

[
1�2

(
max

1≤i≤Jε
‖�−1/2Zi‖2 + ε4

2
k

Jε∑
i=1

‖∇Zi‖2
)]

≤ C max
{ k2
ε4

, εγ+ σ0+1
3 , εσ0 , ε2γ

}
.

Moreover, P[�2] ≥ 1 − C
εκ0 max

{ k2
ε4

, εγ+ σ0+1
3 , εσ0 , ε2γ

}
.

The proof uses the discrete BDG-inequality (Lemma 3.3), which is suitable for the
implicit Scheme 3.1; we use the higher-moment estimates from Lemma 3.2, (iii) to
bound the last term in R̃Jε .

Proof 1. Estimate (i) follows directly from Lemma 3.4, using the definitions of Jε and
�2.

2. Let �c
2 := � \�2. We use Markov’s inequality to estimate P[�c

2] ≤ 1
εκ0 E[R̃Jε ].

We first estimate the last term in R̃Jε : interpolation of L
3 between L

2 and H
1, then of

L
2 between H

−1 and H
1 (D ⊂ R

2) and the Young’s inequality yield

k

ε
‖Z Jε‖3

L
3 ≤ Ck

ε
‖Z Jε‖

H
−1‖∇Z Jε‖2

L
2 ≤ 1

8
‖�−1/2Z Jε‖2

L
2 + Ck2

ε2
‖∇Z Jε‖4

L
2 .

(3.22)
The leading term on the right-hand side is absorbed on the left-hand side of the inequal-
ity in Lemma 3.4, which is considered on the whole of �; the expectation of the last
term (on the whole of �) is bounded via Lemma 3.2, iv) by Ck2

ε4

(|E(uε
0)|2 + 1

)
.

For the first term in R̃Jε we use the discrete BDG-inequality (Lemma 3.3) to bound
its expectation by

Cεγ
E

[Jε+1∑
i=1

k
(
(−�)−1g, Zi−1)2

] 1
2

.

In order to benefit from the definition of Jε for its estimate, we split the leading
summand,

= Cεγ
E

[ Jε∑
i=1

k|((−�)−1g, Zi−1)|2
] 1

2

+ C
√
kεγ

E
[|((−�)−1g, Z Jε )|2] 12

≤ Cεγ
E

[
k
(Jε−1∑
i=1

‖Zi‖3
L
3

) 2
3
(∑
i≤J

13
) 1
3
] 1

2 + C
√
kεγ

E
[|(∇(−�)−1g,∇(−�)−1Z Jε )|2] 12

≤ Cεγ+ σ0+1
3 + C

√
kεγ

E

[
‖�−1/2Z Jε‖2

] 1
2 ≤ Cεγ+ σ0+1

3 + Ckε2γ + 1

8
E
[‖�−1/2Z Jε‖2] .
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Putting things together leads to E[ 12 AJε ] ≤ C
(
εσ0 + εγ+ σ0+1

3 + ε2γ + k2

ε4

)
. Revisit-

ing (3.22) again then yields from Lemma 3.4

E[R̃Jε ] ≤ C max

{
k2

ε4
, εγ+ σ0+1

3 , εσ0 , ε2γ
}

. (3.23)

3. Consider the inequality in Lemma 3.4 on �2. The estimate (ii) then follows after
taking expectation, using (3.23) and recalling the definition of Jε. ��

The previous lemma establishes local error bounds for iterates of Scheme 3.1 – by
using the stopping index Jε, and the subset �2 ⊂ �; the following lemma identifies
values (γ, σ0, κ0) such that Lemma 3.5 remains valid globally in time on �2.

Lemma 3.6 Let the assumptions in Lemma 3.5 be valid. Assume

σ0 > 10 , σ0 > κ0 >
2

3
(σ0 + 5) .

There exists ε0 ≡ ε0(σ0, κ0), such that for every ε ∈ (0, ε0)

Jε(ω) = J ∀ω ∈ �2 .

Moreover, limε↓0 P[�2] = 1 if

γ > max{19
3

,
κ0

2
} , k2 ≤ Cε4+κ0+β ,

where β > 0 may be arbitrarily small.

Compared to assumption (A), the less restrictive lower bound for γ is due to the use
of the discrete spectral estimate (see Lemma 3.1, v)), which introduces a factor ε−4

that is absorbed into ε
3
2 κ0 in the proof below. Consequently we only need to require

γ ≥ 19
3 in order to ensure positive probability of �2.

Proof 1. Assume that Jε < J on �2; we want to verify that

k

ε

Jε∑
i=1

‖Zi‖3
L
3 ≤ εσ0 on �2 .

Use (3.22), and the estimate Lemma 3.5 (i) to conclude

k

ε

Jε∑
i=1

‖Zi‖3
L
3 ≤ C

ε
max

1≤i≤Jε
‖�−1/2Zi‖

L
2

( Jε∑
i=1

k‖∇Zi‖2
)

≤ Cε−1+ κ0
2 +(κ0−4)

on �2 .

The right-hand side above is below εσ0 for 3κ0
2 > σ0 + 5 and ε < ε0 with sufficiently

small ε0 ≡ ε0(σ0, κ0). The additional condition κ0 < σ0 (which will be required in
step 2. below) imposes that σ0 > 10.
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2. Recall that the last part in Lemma 3.5 yields P[�2] ≥ 1 − Cε−κ0 max
{ k2

ε4
,

εγ+ σ0+1
3 , εσ0 , ε2γ

}
. Hence, to ensure P[�2] > 0 requires γ + σ0+1

3 −κ0 > 0, σ0 > κ0,
γ > κ0

2 and k2 ≤ Cε4+κ0+β , β > 0. In addition, by step 1., κ0 > 2
3 (σ0 + 5), σ0 > 10,

which along with γ + σ0+1
3 − κ0 > 0, σ0 > κ0 implies γ ≥ 19

3 . ��
Next, we bound max1≤i≤J ‖�−1/2Zi‖2 + ε4

2 k
∑J

i=1 ‖∇Zi‖2 on the whole sample
set. We collect the requirements on the analytical and numerical parameters:

(B) Let uε
0 ∈ H

3, E(uε
0) < C . Assume that (σ0, κ0, γ ) satisfy

σ0 > 10, σ0 > κ0 >
2

3
(σ0 + 5), γ ≥ max{19

3
,
κ0

2
} .

For sufficiently small ε0 ≡ (σ0, κ0) > 0 and lCH ≥ 3 from Lemma 3.1, and
arbitrary 0 < β < 1

2 , the time-step satisfies

k ≤ C min
{
εlCH , ε2+

κ0
2 +β

} ∀ ε ∈ (0, ε0).

We note that, except for the higher regularity of the initial condition, the assumption
(B) is less restrictive than the assumption (A) from Sect. 2. Furthermore, the condition
E(uε

0) < C can be weakened to E(uε
0) < Cε−α , α > 0, cf. [17, Assumption (GA2)].

Lemma 3.7 Suppose (B). Then there exists C > 0 such that

E
[
max
1≤ j≤J

‖Z j‖2
H

−1 + ε4k
J∑

i=1

‖∇Zi‖2] ≤
( C

εκ0
max

{k2
ε4

, εγ+ σ0+1
3 , εσ0 , ε2γ

}) 1
2
.

Proof Recall the notation from (3.20), and split E[AJ ] = E[1�2 AJ ] + E[1�c
2
AJ ].

Due to assumption (B) it follows directly from Lemma 3.5, (ii) and Lemma 3.6 that

E[1�2 AJ ] ≤ C max
{k2
ε4

, εγ+ σ0+1
3 , εσ0 , ε2γ

}
. (3.24)

In order to bound E[1�c
2
AJ ], we use the embedding L

4 ⊂ H
−1 which along with

the higher-moment estimate from Lemma 3.2 iv) implies that

E
[
A2
J

] ≤ CE
[|E(X J )|2] ≤ C(|E(u0ε)|2 + 1) .

Next, we note that by Lemma 3.5 it follows that

P[�c
2] ≤ 1 − P[�2] ≤ C

εκ0
max

{k2
ε4

, εγ+ σ0+1
3 , εσ0 , ε2γ

}
.

Hence, using the Cauchy-Schwarz inequality we get

E[1�c
2
AJ ] ≤ (

P[�c
2]
)1/2(

E[A2
J ]
)1/2

≤
( C

εκ0
max

{k2
ε4

, εγ+ σ0+1
3 , εσ0 , ε2γ

}) 1
2 (E(uε

0) + 1
)
. (3.25)
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After inspecting (3.24), (3.25) we note that the statement follows by assumption (B),
since the latter contribution dominates the error. ��

The dominating error contribution in Lemma 3.7 comes from the term E[1�c
2
AJ ].

This is in contrast to Sect. 2 where the error contribution from the set �c
1 can be made

arbitrarily small, due to the additional parameter l > 0 in Lemma 2.2 which can be
chosen arbitrarily large independently of the other parameters.

We are now ready to prove the first main result of this paper.

Theorem 3.8 Let uε
0 ∈ H

3, let u be the strong solution of (1.1), and let
{
X j , j = 1,

. . . , J } solve Scheme 3.1. Suppose (A). Then there exists a constant C > 0 such that
for all 0<β < 1

2

E
[
max
1≤ j≤J

‖u(t j ) − X j‖2
H

−1

]

≤ C max
{
ε

2
3 σ0 ,

(
ε−κ0 max

{k2
ε4

, εγ+ σ0+1
3 , εσ0 , ε2γ

}) 1
2
,
k2−β

εmCH

}
.

Due to condition (A)2 it holds that σ0−κ0 < 1
3σ0. Consequently the contribution ε

2
3σ0

in the error estimate is dominated by ε
σ0−κ0

2 ; it is only stated explicitly to highlight the
error contribution from the difference u − uCH from Sect. 2.

Proof We estimate the error via splitting it into three contributions,

max
1≤ j≤J

‖u(t j ) − uCH(t j )‖2
H

−1 + max
1≤ j≤J

‖uCH(t j )

− X j
CH‖2H−1 + max

1≤ j≤J
‖X j

CH − X j‖2
H

−1 =: I + I I + I I I .

Lemma 2.3 boundsE[I ], Lemma 3.1, iv) yieldsE[I I ] ≤ k2−β

εmCH , andE[I I I ] is bounded
in Lemma 3.7. ��
Remark 3.9 An alternative approach to Theorem 3.8 would be to follow the arguments
in [23] for a related problem, which exploit a weak monotonicity property of the drift
operator in (1.1), and stability of the discretization to obtain a strong error estimate
for Scheme 3.1 of the form

E

[
max
1≤ j≤J

‖u(t j ) − X j‖2
H

−1

]
≤ Cβ exp

(T
ε

)
k1−β (β > 0) . (3.26)

While the error tends to zero for k ↓ 0 in (3.26), this estimate is only of limited practical
relevancy in the asymptotic regime where ε is small, since only prohibitively small
step sizes k � exp(− 1

ε
) are required in (3.26) to guarantee small approximation errors

for iterates from Scheme 3.1. Moreover, the error analysis that leads to (3.26) does
not provide any insight on how to numerically resolve diffuse interfaces via proper
balancing of discretization parameter k and interface width ε—which is relevant in
the asymptotic regime where ε � 1.
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4 Space–time discretization of (1.1)

We generalize the convergence results in Sect. 3 for Scheme 3.1 to its space–time
discretization. For this purpose, we introduce some further notations: let Th be a quasi-
uniform triangulation of D, and Vh ⊂ H

1 be the finite element space of piecewise
affine, globally continuous functions,

Vh := {
vh ∈ C(D); vh

∣∣
K∈ P1(K ) ∀ K ∈ Th

}
,

and V̊h := {
vh ∈ Vh : (vh, 1) = 0

}
. We recall the L

2-projection P
L
2 : L

2 → Vh ,
via

(
P

L
2v − v, ηh

) = 0 ∀ ηh ∈ Vh ,

and the Riesz projection P
H
1 : H

1 ∩ L
2
0 → V̊h , via

(∇[P
H
1v − v],∇ηh

) = 0 ∀ ηh ∈ Vh .

In what follows, we allow meshes Th for which P
L
2 is H

1-stable; see [10]. Also,
we define the inverse discrete Laplacian (−�h)

−1 : L
2
0 → V̊h via

(∇(−�h)
−1v,∇ηh

) = (v, ηh) ∀ ηh ∈ Vh .

We are ready to present the space discretization of Scheme 3.1.

Scheme 4.1 For every 1 ≤ j ≤ J , find a [Vh]2-valued r.v. (X j
h , w

j
h) such that P-a.s.

(X j
h − X j−1

h , ϕh) + k(∇w
j
h ,∇ϕh) = εγ

(
g, ϕh

)
� jW ∀ϕh ∈ Vh ,

ε(∇X j
h ,∇ψh) + 1

ε

(
f (X j

h), ψh
) = (w

j
h , ψh) ∀ψh ∈ Vh ,

X0
h = P

L
2uε

0 ∈ V̊h .

For all 1 ≤ j ≤ J , the solution {(X j
h , w

j
h)}1≤ j≤J satisfies (X j

h , 1) = 0 P-a.s.

Claim 1 {(X j
h , w

j
h)}1≤ j≤J inherits all stability bounds in Lemma 3.2.

Proof i’) In order to verify the corresponding version of (i) for {E(X j
h)}1≤ j≤J , we may

choose ϕh = w
j
h(ω) and ψh = [X j

h − X j−1
h ](ω) in Scheme 4.1, as in part (i) of the

proof of Lemma 3.2. We then obtain a corresponding version of (3.1), and (3.2).

The next argument in the proof of Lemma 3.2 that leads to (3.3) may again be
reproduced for Scheme 4.1 by choosing ϕh = (−�h)

−1[X j
h − X j−1

h ](ω), and using

the definition of (−�h)
−1, as well as X j

h , PL
2g ∈ L

2
0 P-a.s., such that
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‖∇(−�h)
−1[X j

h − X j−1
h ]‖2

≤
(
k‖∇w

j
h‖ + εγ ‖∇(−�h)

−1P
L
2g‖|� jW |

)
‖∇(−�h)

−1[X j
h − X j−1

h ]‖ ,

since ‖∇(−�h)
−1P

L
2g‖ ≤ ‖g‖ ≤ C .

To obtain the first identity in (3.5) for Scheme 4.1, we use εγ (g, w j
h)� jW =

εγ
(
P

L
2g, w

j
h

)
� jW , such that the second equation in Scheme 4.1 with ψh = P

L
2g

may be applied; as a consequence, g has to be replaced by P
L
2g in the rest of equality

(3.5). This modification leads to the term ‖∇P
L
2g‖ in (3.6), which is again bounded

by ‖∇g‖; the bound ‖P
L
2g‖L

∞ ≤ C , which is required to bound the term A3,1 from
(3.7), follows by an approximation result; cf. [7, Chapter 7]. The above steps then
yield the estimate (3.8) for {(X j

h , w
j
h)}1≤ j≤J .

ii’), iii’), iv’) We can follow the argumentation in the proof of Lemma 3.2 without
change. ��

Claim 2. Lemma 3.4 holds for {(X j
h , w

j
h)}1≤ j≤J , i.e.: Z

j
h := X j

h − X j
CH;h satisfies

P-a.s.

max
1≤ j≤�

‖∇(−�h)
−1Z j

h‖2 + cεk
�∑

i=1

‖∇Zi
h‖2

≤ Ck

ε

�∑
i=1

‖Zi
h‖3L3 + Cεγ max

1≤ j≤�
|

j∑
i=1

((−�h)
−1P

L
2g, Zi−1

h )� jW |

+ Cε2γ
�∑

i=1

|�iW |2 ,

for all � ≤ J , provided that additionally

k ≤ C min{εpCH , hq̃CH} , h ≤ C min{1, k2β}εp̃CH (4.1)

for any β > 0, and pCH, q̃CH, p̃CH > 0. The exponents pCH, q̃CH, p̃CH > 0 are chosen
in order to satisfy the assumptions of [16, Corollary 2] and [17, Theorem 3.2]. In
particular (4.1) is required to obtain the fully discrete counterpart of Lemma 3.1, (iii)–
(iv).

Remark 4.1 Requirement (4.1)2 comes from [16, Corollary 2, assumption 4)] (see
also [17, Theorem 3.1, assumption 3)]). More precisely [16, Corollary 2] in the current
setting is applied for γ1 = 1, δ = 1, p = 4, σ1 = 0, N = 2 (where N is the spatial
dimension) which yields the condition for π̂ (defined in [16, Corollary 2]):
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π̂(h, ε, N ) ≤ Ckβ 12−N
4−N

(
1 + ln

1

k

)− 2N
4−N ε− 4+N

4−N .

Hence, (4.1)2 is a consequence of the above condition for N = 2 where for simplicity
we estimate | ln k|−1 ≥ kβ for sufficiently small k. Since β > 0 may be chosen
arbitrarily small, the resulting condition does not severely restrict admissible h > 0.

Proof Again, we here denote by {(X j
CH;h, w

j
CH;h)}1≤ j≤J ⊂ [Vh]2 the solution of

Scheme 4.1 for g ≡ 0, whose stability and convergence properties are studied in
[16,17]. Under the assumption (4.1), [17, Theorem 3.2, (iii)] provides the bound

max
0≤ j≤J

‖X j
CH;h‖L

∞ ≤ C .

We use this bound to adapt estimate (3.17) to the present setting and get

(
f (X j

h) − f (X j
CH;h), Z

j
h

) ≥ (
f ′(X j

CH;h)Z
j
h , Z

j
h

)− C‖Z j
h‖3L3

≥ [1 − ε3]( f ′(X j
CH;h)Z

j
h , Z

j
h

)− C‖Z j
h‖3L3

+ ε3
(
f ′(X j

CH;h)Z
j
h , Z

j
h

)
.

Step 2. of the proof of Lemma 3.4 involves the discrete spectral estimate (see
Lemma 3.1, iv)) for {X j

CH} j to handle the leading term on the right-hand side of

(3.17)—which we do not have for {X j
CH;h} j in the present setting. Therefore, we

perturb the leading term on the right-hand side of the last inequality, and use the
L

∞-bounds for X j
CH, X

j
CH;h , as well as the mean-value theorem to conclude

(
f ′(X j

CH;h)Z
j
h , Z

j
h

) = (
f ′(X j

CH)Z
j
h , Z

j
h

)+
([

f ′(X j
CH;h) − f ′(X j

CH)
]
Z j
h , Z

j
h

))

≥ (
f ′(X j

CH)Z
j
h , Z

j
h

)− C‖Z j
h‖3L3 .

The remaining steps in the proof of Lemma 3.4 now follow with only minor adjust-
ments. ��

Claim 3. Additionally assume (4.1). Then Lemma 3.5 holds for {Z j
h } j , i.e.,

(i) max
1≤i≤Jε

‖∇(−�h)
−1Zi

h‖2 + ε4k
Jε∑
i=1

‖∇Zi
h‖2 ≤ Cεκ0 on �2;h ,

(ii) E

[
1�2;h

(
max

1≤i≤Jε
‖∇(−�h)

−1Zi
h‖2 + ε4

2
k

Jε,h∑
i=1

‖∇Zi
h‖2
)]

≤ C max
{k2
ε4

,

εγ+ σ0+1
3 , εσ0 , ε2γ

}
.
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Moreover, P[�2;h] ≥ 1 − C
εκ0 max

{ k2
ε4

, εγ+ σ0+1
3 , εσ0 , ε2γ

}
, where �2;h := {

ω ∈
�; R̃Jε,h;h(ω) ≤ εκ0

}
, for Jε,h := inf

{
1 ≤ j ≤ J : k

ε

∑ j
i=1 ‖Zi

h‖3L3 > εσ0
}
, and

R̃Jε,h ;h := εγ max
1≤ j≤Jε,h

∣∣
j∑

i=1

(
(−�h)

−1P
L
2g, Zi−1

h

)
�iW

∣∣+ ε2γ
Jε,h∑
j=1

|�Wj |2 + k

ε
‖Z Jε,h

h ‖3
L
3 .

Proof The proof for Lemma 3.5 directly transfers to the present setting. ��
Claim 4. Lemma 3.6 remains valid for {Z j

h }h accordingly, provided that h ≤ Cεp̃CH

and k ≤ Chq̃CH , i.e.: Jε,h = J for all ω ∈ �2;h .

Proof We only need to adapt the interpolation argument for L
3 to the present setting,

starting with the estimate ‖Zi
h‖3L3 ≤ C‖Zi

h‖H
−1‖∇Zi

h‖2. By the definition of the

H
−1-norm, the definition and H

1-stability of the L
2-projection, and again the fact that

(Zi
h, 1) = 0, we deduce

‖Zi
h‖H

−1 = sup
ψ∈H

1

(Zi
h, PL

2ψ)

‖ψ‖
H
1

≤ C sup
ψ∈H

1

(Zi
h, PL

2ψ)

‖∇P
L
2ψ‖

= C sup
ψ∈H

1

(∇((−�h)
−1Zi

h),∇P
L
2ψ)

‖∇P
L
2ψ‖

≤ C‖∇(−�h)
−1Zi

h‖ .

��
Next, we formulate a counterpart of Lemma 3.7 for the fully discrete numerical

solution; as a consequence of the Claims 1 to 4 above the corollary can be proven
analogically to Lemma 3.7 with the assumption (B) complemented by the additional
restriction on the discretization parameters (4.1).

Corollary 4.2 Suppose (B) and (4.1). Then there exists C > 0 such that

E
[
max
1≤ j≤J

‖Z j
h‖2H−1 + ε4k

J∑
i=1

‖∇Zi
h‖2
] ≤

( C

εκ0
max

{k2
ε4

, εγ+ σ0+1
3 , εσ0 , ε2γ

}) 1
2
.

We are now ready to extend Theorem 3.8 to Scheme 4.1.

Theorem 4.3 Let u be the strong solution of (1.1), and
{
X j
h; 1 ≤ j ≤ J

}
the solution

of Scheme 4.1. Assume (B) and (4.1). Then there exists C > 0 such that

E

[
max
1≤ j≤J

‖u(t j ) − X j‖2
H

−1

]

≤ C max
{(

ε−κ0 max
{k2
ε4

, εγ+ σ0+1
3 , εσ0 , ε2γ

}) 1
2
,
k2−β

εmCH
+ h4(1 + k−β)

εm̃CH

}
,

where mCH, m̃CH > 0.
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We note that the exponents mCH, m̃CH > 0 in the above estimate can be determined
on closer inspection of [16, Corollary 2] on assuming (4.1). Furthermore, assump-
tion (4.1), which is a simplified reformulation of assumption 4) in [16, Corollary 2],

guarantees that limε↓0
(
k2−β

εmCH + h4(1+k−β)

εm̃CH

)
= 0.

Proof We split the error into three contributions,

E
[
max
1≤ j≤J

‖u(t j ) − X j
h‖2H−1

]

≤ 3E
[
max
1≤ j≤J

‖u(t j ) − uCH(t j )‖2
H

−1

]

+3 max
1≤ j≤J

‖uCH(t j ) − X j
CH;h‖2H−1 + 3E

[
max
1≤ j≤J

‖X j
h − X j

CH;h‖2H−1

]
.

The first term is bounded by Cε
2
3 σ0 as in Theorem 3.8. The second term is bounded

by C
( k2−β

εmCH + h4(1+k−β)

εm̃CH

)
thanks to [16, Corollary 2] (stated here in a simplified form,

cf. Remark 4.1), provided assumption (4.1) holds. The last term is bounded by

( C

εκ0
max

{k2
ε4

, εγ+ σ0+1
3 , εσ0 , ε2γ

}) 1
2
,

thanks to Corollary 4.2. ��

5 Sharp-interface limit

In this section, we show the convergence of iterates {X j }Jj=1 of Scheme 3.1 to the
solution of a sharp interface problem. Recall that in the absence of noise, the sharp
interface limit of (1.1) is given by the following deterministic Hele–Shaw/Mullins–
Sekerka problem: Find vMS : [0, T ] × D → R and the interface

{
�MS
t ; 0 ≤ t ≤ T

}
such that for all t ∈ (0, T ] the following conditions hold:

−�vMS = 0 in D \ �MS
t , (5.1a)[

∂n�vMS
]
�MS
t

= −2V on �MS
t , (5.1b)

vMS = α κ on �MS
t , (5.1c)

∂nvMS = 0 on ∂D , (5.1d)

�MS
0 = �00 , (5.1e)

where κ is the curvature of the evolving interface �MS
t , and V is the velocity in the

direction of its normal n� , as well as [ ∂vMS
∂n�

]�MS
t

(z) = (
∂vMS,+
∂n�

− ∂vMS,−
∂n�

)(z) for all

z ∈ �MS
t . The constant in (5.1c) is chosen asα = 1

2 cF , where cF = ∫ 1
−1

√
2 F(s) ds =

1
3 2

3
2 , and F is the double-well potential; cf. [1] for a further discussion of the model.
Below, we show that iterates {X j }Jj=1 of Scheme 3.1 converge to the limiting

Mullins–Sekerka problem (5.1); see Theorem 5.7 for a precise specification of the
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convergence result. For this purpose, we need sharper stability and convergence results
than those available from Sect. 3, which also requires to tighten the assumptions (B),
and so to further restrict admissible choices of γ > 0. We note that the stronger
stability estimates below are derived using the (analytically) strong formulation of
Scheme 3.1, i.e., P-a.s., a.e. in D:

X j − X j−1 − k�w j = εγ g� jW ,

−ε�X j + 1

ε
f (X j ) = w j , (5.2)

and ∂n X j = ∂nw
j = 0 a.e. on ∂D. The derivation can be justified rigorously (cf.

Lemma 3.1, ii)) by the regularity of the Neumann Laplace operator, cf. [24, p. 217,
Thm. 4].

Lemma 5.1 Assume (B). For every 2 < p < 3, there exists C ≡ C(p) > 0 such that
the solution {X j }Jj=1 of Scheme 3.1 satisfies

E
[
max
1≤ j≤J

‖X j‖p
L

∞
] ≤ Cε1−pk

2−p
2 .

Proof 1. The second equation in Scheme 3.1 (i.e., (5.2)2) implies
√
k‖�X j (ω)‖ ≤

2
√
k

ε
‖w j (ω)‖ + 2

√
k

ε2
‖ f (X j (ω))‖, for ω ∈ �. Then Lemma 3.2, (ii), and Gagliardo–

Nirenberg and Poincaré inequalities imply

E
[
max
1≤ j≤J

√
k‖�X j‖]

≤ C

ε
E

[(
k

J∑
j=1

‖∇w j‖2
)1/2]+ C

√
k

ε2
E

[
max
1≤ j≤J

(
‖X j‖3

L
6 + ‖X j‖

)]

≤ C

ε
+ C

√
k

ε2
E

[
max
1≤ j≤J

‖X j‖2
L
4‖∇X j‖

]

≤ C

ε
+ C

√
k

ε2
E

[
max
1≤ j≤J

‖X j‖4
L
4

]1/2
E

[
max
1≤ j≤J

‖∇X j‖2
]1/2

, (5.3)

which is bounded by Cε−1 for k ≤ ε4 (which is guaranteed by assumption (B)).
2. Since W

1,p ↪→ L
∞ (p > 2), by Gagliardo–Nirenberg inequality ‖ · ‖L

p ≤
Cp‖ · ‖

2
p

L
2‖ · ‖

p−2
p

H
1 (d = 2, p > 2), Hölder inequality, Lemma 3.2, iv), and step 1., we

get for 2 < p < 3

E

[
max

1≤ j≤J
‖X j‖p

L
∞
]

≤ CE

[
max

1≤ j≤J
‖∇X j‖p

L
p

]
≤ CE

[
max

1≤ j≤J
‖∇X j‖2‖�X j‖p−2

]

≤ CE

[
max

1≤ j≤J
‖∇X j‖ 2

3−p
]3−p

E

[
max

1≤ j≤J
‖�X j‖

]p−2
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≤ Cε−1
E

[
ε2 max

1≤ j≤J
‖∇X j‖4

] 3−p
2(3−p) k− p−2

2 E

[√
k max
1≤ j≤J

‖�X j‖
]p−2

≤ Cε−1k
2−p
2 ε−(p−2) = Cε1−pk− p−2

2

��
The following lemma sharpens the statement of Lemma3.4 for iterates {Z j }Jj=1, where

Z j := X j − X j
CH. It involves the parameter nCH > 0 from Lemma 3.1, (ii).

Lemma 5.2 Suppose (B). There exists C > 0 such that

E
[
max
1≤ j≤J

‖Z j‖2]+ E

[ J∑
j=1

‖Z j − Z j−1‖2 + εk
J∑

j=1

‖�Z j‖2
]

+ k

ε

J∑
j=1

E

[
‖Z j∇Z j‖2 + ‖X j

CH∇Z j‖2
]

≤ F1(k, ε; σ0, κ0, γ ) :=

:= C max
{(max

{ k2
ε4

, εγ+ σ0+1
3 , εσ0 , ε2γ

}

εκ0+10+4nCH

) 1
2
,
(max

{ k2
ε4

, εγ+ σ0+1
3 , εσ0 , ε2γ

}

εκ0+16

) 1
4
}

.

In order to establish convergence to zero (for ε ↓ 0) of the right-hand side in the
inequality of the lemma, we need to impose a stronger assumptions than (B); for
simplicity, we assume nCH ≥ 3

2 in Lemma 3.1:

(C1) Assume (B), and that (σ0, κ0, γ ) also satisfies

σ0 > 10 + κ0 + 4nCH , γ > max
{2κ0 + 19 + 8nCH

3
,
κ0 + 10 + 4nCH

2

}
.

For sufficiently small ε0 ≡ (σ0, κ0) > 0 and lCH ≥ 3 from Lemma 3.1, and
arbitrary 0 < β < 1

2 the time-step satisfies

k ≤ C min
{
εlCH , ε7+

κ0
2 +2nCH+β

} ∀ ε ∈ (0, ε0) .

Compared to assumption (B), only larger values of σ0, and consequently larger values
of γ are admitted, as well as smaller time-steps k.

Proof 1.We subtract Scheme 3.1 [in strong form (5.2)] for g �≡ 0 and g ≡ 0, respec-
tively, fix ω ∈ �, and multiply the first error equation with Z j (ω) and the second
equation with −�Z j (ω). After subtracting the resulting second equation from the
first one and using that (−�w j , Z j ) = (w j ,−�Z j ) we obtain

1

2

(‖Z j‖2 − ‖Z j−1‖2 + ‖Z j − Z j−1‖2)+ εk‖�Z j‖2

+k

ε

(
f (X j ) − f (X j

CH),−�Z j ) = εγ
(
g, Z j )� jW . (5.4)
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We estimate the right-hand side above as

εγ
(
g, Z j )� jW = εγ

(
g, Z j − Z j−1)� jW + εγ

(
g, Z j−1)� jW

≤ 1

4
‖Z j − Z j−1‖2 + ε2γ ‖g‖2|� jW |2 + εγ

(
g, Z j−1)� jW .

We restate the nonlinear term in (5.4) as

k

ε

(
f (X j ) − f (X j

CH),−�Z j )

= k

ε

(
|X j |2X j − (|X j

CH|2X j − |X j
CH|2X j ) − |X j

CH|2X j
CH,−�Z j

)

−k

ε
(Z j ,−�Z j )

= k

ε

(
Z j [Z j + 2X j

CH]X j+|X j
CH|2Z j ,−�Z j

)
− k

ε
‖∇Z j‖2

= k

ε

(|Z j |2Z j ,−�Z j )− k

ε
‖∇Z j‖2

+3k

ε

(|Z j |2X j
CH,−�Z j )+ 3k

ε

(|X j
CH|2Z j ,−�Z j )

=: 3k
ε

‖Z j∇Z j‖2 − k

ε
‖∇Z j‖2 + I1 + I2 ,

where in the last step we used integration by parts
(|Z j |2Z j ,−�Z j

) = 3‖Z j∇Z j‖2.
Next, we apply integration by parts to I1, I2 to estimate

I1 := 3k

ε

(|Z j |2X j
CH,−�Z j ) = 3k

ε

[
2
(
Z j∇Z j X j

CH,∇Z j )+ (
Z j∇Z j , Z j∇X j

CH

)]

≥ −2k

ε

[
C‖X j

CH‖L
∞‖∇Z j‖ + ‖∇X j

CH‖L
4‖Z j‖

L
4

]
‖Z j∇Z j‖ ,

I2 := 3k

ε

(|X j
CH|2Z j ,−�Z j ) ≥ 3k

ε
‖X j

CH∇Z j‖2 − 6k

ε
‖Z j‖

L
4‖∇X j

CH‖L
4‖X j

CH∇Z j‖ .

Hence, using Poincaré, Sobolev and Young’s inequalities, Lemma 3.1, (ii), and
assumption (B), we deduce that

k

ε

(
f (X j )− f (X j

CH),−�Z j ) ≥ k

2ε

[‖Z j∇Z j‖2 + ‖X j
CH∇Z j‖2]− Ck

ε1+2nCH
‖∇Z j‖2 .

2. We insert these bounds into (5.4), sum up over all time-steps, take max j≤J and
expectations,
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1

2
E

[
max
1≤ j≤J

‖Z j‖2
]

+ E

⎡
⎣

J∑
j=1

1

4
‖Z j − Z j−1‖2 + εk

J∑
j=1

‖�Z j‖2
⎤
⎦

+ k

2ε

J∑
j=1

E

[
‖Z j∇Z j‖2 + ‖X j

CH∇Z j‖2
]

≤ Ck

ε1+2nCH

J∑
j=1

E
[‖∇Z j‖2]+ εγ

E

⎡
⎣ max
1≤ j≤J

j∑
i=1

(
g, Zi−1)�iW

⎤
⎦+ Cε2γ . (5.5)

We use the discrete BDG-inequality (Lemma 3.3) and the Poincaré inequality to esti-
mate the last term as follows,

εγ
E

[
max
1≤ j≤J

j∑
i=1

(
g, Zi−1)�iW

)]
≤ Cεγ ‖g‖L

∞E

[
k

J∑
j=1

‖∇Z j−1‖2
] 1
2
.

We now use Lemma 3.7 to bound the right-hand side of (5.5). ��
A crucial step in this section is to establish convergence of max1≤ j≤J ‖Z j‖L

∞ for
ε ↓ 0; it turns out that this can only be validated on large subsets of�, whichmotivates
the introduction of the following (family of) subsets: For every 2 < p < 3, we define

κ ≡ κp :=
[
ε1−pk

2−p
2 ln

(
ε1−p)] 1

p
, (5.6)

and the sequence of sets {�κ, j }Jj=1 ⊂ � via

�κ, j = {
ω ∈ � : max

1≤�≤ j
‖X�‖L

∞ ≤ κ
}

(κ > 0) . (5.7)

Note that �κ, j ⊂ �κ, j−1. Markov’s inequality yields that

P
[
�κ, j

] ≥ 1 − E[max1≤�≤ j ‖X�‖p
L

∞]
κ p

. (5.8)

Clearly, lim
ε↓0 min

1≤ j≤J
P[�κ, j ] = 1 by Lemma 5.1.

We use Lemma 5.2 to show a local error estimate.

Lemma 5.3 Assume (B) and 2 < p < 3. Then there exists C > 0 such that

E
[
max
0≤ j≤J

1�κ, j ‖∇Z j‖2] ≤ F2(k, ε; σ0, κ0, γ ) :=

:= C max
{ (1 + κ2)

ε2
F1
(
k, ε; σ0, κ0, γ

)
,
(1 + κ2)

ε7+2nCH

( 1

εκ0
max

{ k2
ε4

, εγ+ σ0+1
3 , εσ0 , ε2γ

}) 1
4
}
.

In order to establish convergence to zero (for ε ↓ 0) of the right-hand side in the
inequality of the lemma, we impose again a stronger assumptions than (C1):
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(C2) Assume (C1), and that (σ0, κ0, γ ), and k satisfy

lim
ε↓0 F2(k, ε; σ0, κ0, γ ) = 0 . (5.9)

Remark 5.4 A strategy to identify admissible quadruples (σ0, κ0, γ, k) which meet
assumption (C2) is as follows:

(1) assumption (C1) establishes limε↓0 F1(k, ε; σ0, κ0, γ ) = 0, which appears as a
factor in the first term on the right-hand side in Lemma 5.3.

(2) the leading factor in F2 is κ2

ε2
≡ κ2p

ε2
≤ ε

1−3p
p
∣∣ln(ε1−p)

∣∣ 2p k 2−p
p , for 2 < p < 3 via

(5.6). To meet (5.9) therefore additionally requires for some p>2

k
2−p
p F1(k, ε; σ0, κ0, γ )ε

1−3p
p
∣∣ln(ε1−p)

∣∣ 2p → 0 (ε ↓ 0) , (5.10)

and hence [
F1(k, ε; σ0, κ0, γ )ε

1−3p
p
∣∣ln(ε1−p)

∣∣ 2p ]
p

p−2 = o(k) . (5.11)

A proper scenario is k = εα for some α > 0 to meet assumption (C1). We then
sharpen this choice of the time-step to k = εα̃ for some α̃ ≥ α > 0 to have

F1(k, ε; σ0, κ0, γ )ε
1−3p

p ln
2
p
(
ε1−p) ≤ εη

for an arbitrary η > 0. We now choose 2 < p, s.t. p
p−2 � 0 is sufficiently large

to meet (5.11).
(3) We may proceed analogously for the second term on the right-hand side in

Lemma 5.3.

Proof We subtract Scheme 3.1 for g �≡ 0 and g ≡ 0 for a fixed ω ∈ �, and multiply
the first error equation with −�Z j (ω), and the second with �2Z j (ω). We integrate
by parts in the nonlinear term and obtain

1

2

(‖∇Z j‖2 − ‖∇Z j−1‖2 + ‖∇[Z j − Z j−1]‖2)+ εk‖∇�Z j‖2

= k

ε

(∇[ f (X j ) − f (X j
CH)],∇�Z j )+ εγ

(
g,−�Z j )� jW =: I + II.

(5.12)

We proceed as in the proof of Lemma 5.2 and rewrite the nonlinearity on the right-hand
side as

I = k

ε

(∇[|Z j |2Z j ],∇�Z j )+ 3k

ε

(∇[|Z j |2X j
CH],∇�Z j )

+3k

ε

(∇[|X j
CH|2Z j ],∇�Z j )+ k

ε
‖�Z j‖2

=: I1 + I2 + I3 + k

ε
‖�Z j‖2 .
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We estimate

I1 ≤ Ck

ε3
‖Z j‖2

L
∞‖Z j∇Z j‖2 + εk

8
‖∇�Z j‖2 ,

I2 ≤ Ck

ε3

(‖Z j‖2
L

∞‖X j
CH‖2

L
∞‖∇Z j‖2 + ‖Z j‖2

L
∞‖Z j‖2

L
4‖∇X j

CH‖2
L
4

)+ εk

8
‖∇�Z j‖2 ,

I3 ≤ Ck

ε3

(‖X j
CH‖4

L
∞‖∇Z j‖2

L
2 + ‖X j

CH‖2
L

∞‖∇X j
CH‖2

L
4‖Z j‖2

L
4

)+ εk

8
‖∇�Z j‖2 .

We estimate
∑3

�=1 I� on �κ, j via Lemma 3.1, (ii)-(iii) and the embedding H
1 ↪→ L

4

on recalling (5.7)

1�κ, j

3∑
�=1

I� ≤ 1�κ, j

{εk

2
‖∇�Z j‖2 + C(1 + κ2)k

ε3
‖Z j∇Z j‖2 + C(1 + κ2)k

ε3+2nCH
‖∇Z j‖2} .

(5.13)
We multiply (5.12) by 1�κ, j , sum up for 1 ≤ i ≤ j , take max1≤ j≤J and expectation,
employ the identity (recall, 1�κ, j−1 − 1�κ, j ≥ 0)

1

2
E

[
max
0≤ j≤J

j∑
i=1

(
1�κ,i

(‖∇Z j‖2 − ‖∇Zi−1‖2)− (
1�κ,i−1‖∇Zi−1‖2 − 1�κ,i−1‖∇Zi−1‖2)

)]

= 1

2
E

[
max
0≤ j≤J

1�κ, j ‖∇Z j‖2
]

+ 1

2

J∑
j=1

E

[(
1�κ, j−1 − 1�κ, j

)‖∇Z j−1‖2
]
,

use Lemmata 5.2 and 3.7 to estimate (5.13) and obtain

1

2
E

[
max
0≤ j≤J

1�κ, j ‖∇Z j‖2
]

+ 1

2

J∑
j=1

E

[(
1�κ, j−1 − 1�κ, j

)‖∇Z j−1‖2
]

+1

2

J∑
j=1

E

[
1�κ, j

(‖∇[Z j − Z j−1]‖2 + εk‖∇�Z j‖2)
]

≤ max
{C(1 + κ2)

ε2
F1
(
k, ε; σ0, κ0, γ

)
,
C(1 + κ2)

ε7+2nCH

( C

εκ0
max

{ k2
ε4

, εγ+ σ0+1
3 , εσ0 , ε2γ

}) 1
4
}

+εγ
E

[
max
0≤ j≤J

j∑
i=1

1�κ,i

(
g, −�Zi )�i W

]
. (5.14)

To estimate the stochastic term we use ∂ng = 0 on ∂D and proceed as follows,

εγ
E

[
max
0≤ j≤J

j∑
i=1

1�κ,i

(−�g, Zi )�iW
]

= εγ
E

[
max
0≤ j≤J

j∑
i=1

(
1�κ,i

(−�g, Zi − Zi−1)�iW

+1�κ,i−1

(∇g,∇Zi−1)�iW+(1�κ,i − 1�κ,i−1

)(∇g,∇Zi−1)�iW
)]
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≤ εγ

2

J∑
i=1

E

[
‖Zi − Zi−1‖2 + ‖�g‖2|� jW |2

]

+εγ
E

[
max
0≤ j≤J

j∑
i=1

1�κ,i−1

(∇g,∇Zi−1)�iW
]

+1

4

J∑
i=1

E
[(
1�κ,i − 1�κ,i−1

)2‖∇Zi−1‖2]+ Cε2γ k
J∑

i=1

E
[‖∇g‖2] .

The first term on the right-hand side may be bounded by Lemma 5.2, the third term is
absorbed in the left-hand side of (5.14), and for the second term we use the discrete
BDG-inequality (Lemma 3.3) and Lemma 3.7 to estimate

εγ
E

[
max
0≤ j≤J

j∑
i=1

1�κ,i−1

(∇g,∇Zi−1)�iW
]

≤ Cεγ ‖∇g‖L
∞E

[
k

J∑
i=1

‖∇Zi−1‖2
] 1

2 ≤ Cεγ

ε2

( C

εκ0
max

{ k2
ε4

, εγ+ σ0+1
3 , εσ0 , ε2γ

}) 1
4
.

Hence, the statement of the lemma follows from (5.14) and the above estimates on
noting that (1�κ, j − 1�κ, j−1)

2 = 1�κ, j−1 − 1�κ, j ≥ 0. ��
The L

∞-estimate in the next theorem is a crucial ingredient to show convergence
to the sharp-interface limit.

Theorem 5.5 Assume (C2). For any 2 < p < 3, there exists C ≡ C(p) > 0 such that

E

[
max
0≤ j≤J

1�κ, j ‖Z j‖p
L

∞
]

≤ Cε− p
2 k

2−p
2
(
F2(k, ε; σ0, κ0, γ )

)3−p(F1(k, ε; σ0, κ0, γ )
) p−2

2 .

Proof We proceed analogically as in step 2. in the proof of Lemma 5.1. We use the
Sobolev andGagliardo–Nirenberg inequalities, applyHölder inequality twice; thenuse
Lemma 5.3, Lemma 5.2 (i.e., E

[
εk‖�Z j‖2] ≤ C) along with the triangle inequality

in combination with Lemma 3.1 (i), Lemma 3.2 (iv) and get for 2 < p < 3 that

E

[
max
1≤ j≤J

1�κ, j ‖Z j‖p
L

∞
]

≤ CE

[
max
1≤ j≤J

1�κ, j ‖∇Z j‖p
L
p

]
≤ CE

[
max
1≤ j≤J

1�κ, j ‖∇Z j‖2‖�Z j‖p−2
]

≤ CE

[
max
1≤ j≤J

1�κ, j ‖∇Z j‖ 2(3−p)
3−p

]3−p
E

[
max
1≤ j≤J

‖∇Z j‖ 2(p−2)
p−2 ‖�Z j‖

]p−2

≤ C
(
F2(k, ε; σ0, κ0, γ )

)3−p
E

[
max
1≤ j≤J

‖∇Z j‖4
]1/2

(εk)−
p−2
2 E

[
εk‖�Z j‖2

] p−2
2
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≤ C(εk)
2−p
2
(
F2(k, ε; σ0, κ0, γ )

)3−p(F1(k, ε; σ0, κ0, γ )
) p−2

2

ε−1
(

max
1≤ j≤J

ε‖∇X j
CH‖2 + E

[
ε2 max

1≤ j≤J
‖∇X j‖4

]1/2)

≤ Cε− p
2 k

2−p
2
(
F2(k, ε; σ0, κ0, γ )

)3−p(F1(k, ε; σ0, κ0, γ )
) p−2

2 .

��

In order to establish convergence to zero (for ε ↓ 0) of the right-hand side in the
inequality of the theorem, we impose again a stronger assumption than (C2):

(C3) Assume (C2), and that (σ0, κ0, γ ), and k satisfy

lim
ε↓0

[
ε−pk2−p(F2(k, ε; σ0, κ0, γ )

)6−2p(F1(k, ε; σ0, κ0, γ )
)p−2] 12 = 0 .

(5.15)

Remark 5.6 We discuss a strategy to identify admissible quadruples (σ0, κ0, γ, k)
which meet assumption (C3): for this purpose, we limit ourselves to a discussion
of the leading term inside the maximumwhich definesF2 (see Lemma 5.3), and recall
Remark 5.4.

(1) To meet (5.15) instead of (5.10), we have to ensure that for some 2 < p < 3

ε− p
2 k

2−p
2

(
k

2−p
p ε

1−3p
p
∣∣ln(ε1−p)

∣∣ 2p )3−p(
F1(k, ε; σ0, κ0, γ )

) 4−p
2 → 0 (ε ↓ 0)

and hence

[(
F1(k, ε; σ0, κ0, γ )

) 4−p
2

ε− p
2 ε

(1−3p)(3−p)
p

∣∣ln(ε1−p)
∣∣ 2(3−p)

p
] 2p

(2−p)(6−p) = o(k) .

(2) We may now proceed as in (2) in Remark 5.4 to identify proper choices k = εα

(α > 0) and p = 2 + δ, for sufficiently small δ > 0, that guarantee (5.15).

We are now ready to formulate the second main result of this paper, which is
convergence in probability of the solution {X j }Jj=0 of Scheme 3.1 to the solution of
the deterministic Hele–Shaw/Mullins–Sekerka problem (5.1) for ε ↓ 0, provided that
assumption (C3) is valid, and (5.1) has a classical solution; cf. Theorem 5.7 below.
The proof rests on

a) theuniformbounds for {1�κ, j ‖Z j‖p
L

∞}Jj=1 (seeTheorem5.5), and theproperty that

limε↓0 max1≤ j≤J P[�κ, j ] = 1 (in Lemma 5.1) for the sequence {�κ, j }Jj=1 ⊂ �,
and

b) a convergence result for {X j
CH}Jj=0 towards a smooth solution of the Hele–

Shaw/Mullins–Sekerka problem in [17, Section 4].
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For each ε ∈ (0, ε0) we consider below the piecewise affine interpolant in time of the
iterates {X j }Jj=0 of Scheme 3.1 via

Xε,k(t) := t − t j−1

k
X j + t j − t

k
X j−1 for t j−1 ≤ t ≤ t j . (5.16)

Let �00 ⊂ D in (5.1e) be a smooth closed curve, and (vMS, �
MS) be a smooth solution

of (5.1) starting from �00, where �MS := ⋃
0≤t≤T {t} × �MS

t . Let d(t, x) denote the
signed distance function to �MS

t such that d(t, x) < 0 in IMSt , the inside of �MS
t , and

d(t, x) > 0 onOMS
t := D \ (�MS

t ∩IMSt ), the outside of �MS
t . We also define the inside

IMS and the outside OMS,

IMS := {
(t, x) ∈ DT : d(t, x) < 0

}
, OMS := {

(t, x) ∈ DT : d(t, x) > 0
}
.

For the numerical solution Xε,k ≡ Xε,k(t, x), we denote the zero level set at time t
by �

ε,k
t , that is,

�
ε,k
t := {

x ∈ D : Xε,k(t, x) = 0
}

(0 ≤ t ≤ T ) .

We summarize the assumptions needed below concerning the Mullins–Sekerka prob-
lem (5.1).

(D) Let D ⊂ R
2 be a smooth domain. There exists a classical solution (vMS, �

MS)

of (5.1) evolving from �00 ⊂ D, such that �MS
t ⊂ D for all t ∈ [0, T ].

By [1, Theorem 5.1], assumption (D) establishes the existence of a family of smooth
solutions {uε

0}0≤ε≤1 which are uniformly bounded in ε and (t, x), such that if uε
CH is

the corresponding solution of (1.1) with g ≡ 0, then

(i) lim
ε↓0 u

ε
CH(t, x) =

{+1 if (t, x) ∈ OMS ,

−1 if (t, x) ∈ IMS ,
uniformly on compact subsets of DT ,

(ii) lim
ε↓0
( 1
ε
f (uε

CH) − ε�uε
CH

)
(t, x) = vMS(t, x) uniformly on DT .

The following theorem establishes uniform convergence of iterates {X j }Jj=0 from

Scheme 3.1 in probability on the sets IMS, OMS.

Theorem 5.7 Assume (C3) and (D). Let {Xε}0≤ε≤ε0 in (5.16) be obtained via
Scheme 3.1. Then

(i) lim
ε↓0 P

[{‖Xε,k − 1‖C(A) > α for all A � OMS}] = 0 ∀α > 0 ,

(ii) lim
ε↓0 P

[{‖Xε,k + 1‖C(A) > α for all A � IMS
}] = 0 ∀α > 0 .

Proof We decompose DT \ � = IMS ∪ OMS, and consider related errors Xε,k
CH + 1,

Xε,k
CH − 1 and Xε,k − Xε,k

CH .
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1.By [17,Theorem4.2]1, the piecewise affine interpolant Xε,k of {X j
CH}Jj=0 satisfies

i′) Xε,k
CH → +1 uniformly on compact subsets of OMS (ε ↓ 0) ,

ii′) Xε,k
CH → −1 uniformly on compact subsets of IMS (ε ↓ 0) .

2. Since �κ,J ⊂ �κ, j for 1 ≤ j ≤ J , Theorem 5.5 and (C3) imply (2 < p < 3)

E
[
max
0≤ j≤J

1�κ,J ‖Z j‖p
L

∞
] → 0 (ε ↓ 0) .

The discussion around (5.8) shows limε↓0 P[� \ �κ,J ] = 0. Let α > 0. By Markov’s
inequality

P
[{

max
0≤ j≤J

‖Z j‖p
L

∞ ≥ α
}]

≤ P
[{

max
0≤ j≤J

‖Z j‖p
L

∞ ≥ α
} ∩ �κ,J

]+ P
[
� \ �κ,J

]

≤ 1

α
E

[
max
0≤ j≤J

1�κ,J ‖Z j‖p
L

∞
]

+ P
[
� \ �κ,J

] → 0 (ε ↓ 0) .

The statement then follows by the triangle inequality and part 1. ��
A consequence of Theorem 5.7 is the convergence in probability of the zero level

set {�ε,k
t ; t ≥ 0} to the interface �MS

t of the Mullins–Sekerka/Hele–Shaw problem
(5.1).

Corollary 5.8 Assume (C3) and (D). Let {Xε,k}0≤ε≤ε0 in (5.16) be obtained via
Scheme 3.1. Then

lim
ε↓0 P

[{
sup

(t,x)∈[0,T ]×�
ε,k
t

dist(x, �MS
t ) > α

}] = 0 ∀α > 0 .

Proof We adapt arguments from the proof of [17, Theorem 4.3].
1. For any η ∈ (0, 1) we construct an open tubular neighborhood

Nη := {
(t, x) ∈ DT : |d(t, x)| < η

}

of width 2η of the interface �MS and define compact subsets

AI = IMS \ Nη , AO = OMS \ Nη .

1 Note that the mesh requirement k = O(hq ) stated in [17, Theorem 4.2] does not apply for the semi-
discretization in time of (1.1) with g ≡ 0. In fact, in [17]—where the involved parameters k, h, ε tend to
zero simultaneously—the given constraint goes back to requirement [17, Theorem 3.1, 3)] which uses [17,
(3.28)], where we formally send h ↓ 0 first (with μ = ν = δ = 1, N = 2) to address our case.

123



Numerical approximation of the stochastic Cahn–Hilliard… 541

Thanks to Theorem 5.7 there exists ε0 ≡ ε0(η) > 0 such that for all ε ∈ (0, ε0) it
holds that

P
[{|Xε,k(t, x) − 1| ≤ η for (t, x) ∈ AO}] ≥ 1 − η ,

P
[{|Xε,k(t, x) + 1| ≤ η for (t, x) ∈ AI}

] ≥ 1 − η .
(5.17)

In addition, for any t ∈ [0, T ], and x ∈ �
ε,k
t , since Xε(t, x) = 0, we have

∣∣Xε,k(t, x) − 1| = ∣∣Xε,k(t, x) + 1| = 1 . (5.18)

2.We observe that for any η ∈ (0, 1)

P
[{(t, �ε,k

t ); t ∈ [0, T ] ⊂ Nη}
] = P

[{{(t, x) : t ∈ [0, T ], Xε,k(t, x) = 0} ⊂ Nη

}]

= 1 − P
[{∃ (t, x) ∈ DT \ Nη : Xε,k(t, x) = 0

}]

:= 1 − P
[
�̃3
]
. (5.19)

On noting (5.18) we deduce that P[�̃3] ≤ P[�3] where

�3 := {∃ (t, x) ∈ AO : |Xε,k(t, x) − 1
∣∣ > η ∨ ∃ (t, x) ∈ AI : |Xε,k(t, x) + 1

∣∣ > η
}
.

By (5.17), it holds for ε ∈ (0, ε0) that

1 − P[�̃3] ≥ P[� \ �3] = P
[{∀ (t, x) ∈ AO : |Xε,k(t, x) − 1

∣∣ ≤ η

∧ ∀ (t, x) ∈ AI : |Xε,k(t, x) + 1
∣∣ ≤ η

}] ≥ 1 − 2η .

Inserting this estimate into (5.19) yields for all ε ∈ (0, ε0)

P
[{

sup
(t,x)∈[0,T ]×�

ε,k
t

dist(x, �MS
t ) ≤ α

}] ≥ P
[{(t, �ε,k

t ), t ∈ [0, T ]} ⊂ Nη

]

≥ 1 − 2η,

which holds for any α ≥ η. The desired result then follows on noting that η can be
chosen arbitrarily small once we take limε↓0 in the above inequality. ��
Remark 5.9 The numerical experiments in Sect. 6 suggest that the conditions on γ

and k which are required for Theorem 5.7 to hold are too pessimistic; in particular,
they indicate convergence to the deterministic Mullins–Sekerka/Hele–Shaw problem
already for γ = 1, k = O(ε).

6 Computational experiments

The computational experiments are meant to support and complement the theoretical
results in the earlier sections:
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• Convergence to the deterministic sharp-interface limit (5.1) for the space–time
white noise in Sect. 6.3. We study pathwise convergence of the white noise-driven
simulations to the deterministic sharp interface limit, which is a scenario beyond
the one for regular trace-class noise where Theorem 5.7 andCorollary 5.8 establish
convergence in probability.

• Pathwise convergence to the stochastic sharp interface limit (6.4) (introduced in
Sect. 6.2 below) for spatially smooth noise in Sect. 6.4, where we also examine
the sensitivity of numerical simulations with respect to the mesh refinement.

6.1 Implementation and adaptive mesh refinement

For the computations below we employ a mass-lumped variant of Scheme 4.1

(X j
h − X j−1

h , ϕh)h + k(∇w
j
h ,∇ϕh) = εγ

(
g� jW

h, ϕh
)
h ∀ϕh ∈ Vh ,

ε(∇X j
h ,∇ψh) + 1

ε

(
f (X j

h), ψh
)
h = (w

j
h , ψh)h ∀ψh ∈ Vh ,

X0
h = uε,h

0 ∈ Vh ,

(6.1)

where the standard L
2-inner product in Scheme 4.1 is replaced by the discrete (mass-

lumped) inner product (v,w)h = ∫
D Ih(v(x)w(x))dx for v,w ∈ Vh , where Ih :

C(D) → Vh is the standard interpolation operator. In all experiments we take D =
(0, 1)2 ⊂ R

2 and g is taken to be a constant. We note that an implicit Euler finite
element scheme similar to Scheme 6.1 has been used previously in [19], which also
performs simulations to study long time behavior of the system for different strengths
of the (space–time white) noise with fixed ε.

For a given initial interface�00 we construct an ε-dependent family of initial condi-
tions {uε

0}ε>0 as uε
0(x) = tanh( d0(x)√

2ε
), where d0 is the signed distance function to �00.

Consequently, {uε
0}ε>0 have bounded energy and contain a diffuse layer of thickness

proportional to ε along �00, and uε
0(x) ≈ −1, uε

0(x) ≈ 1 in the interior, exterior of
�00, respectively. The construction ensures that

∫
D uε

0 dx → m0 for ε → 0, wherem0
is the difference between the respective areas of the exterior and interior of �00 in D.
For convenience we set uε,h

0 = Ihuε
0.

The discrete increments � jWh = Wh(t j ) − Wh(t j−1) in (6.1) are Vh-valued
random variables which approximate the increments of a Q-Wiener process on a
probability space (�,F, P) which is given by

W (t, x) =
∞∑
i=1

λi ei (x)βi (t) ,

where {ei }i∈N is an orthonormal basis in L
2(D), {βi }i∈N are independent real-valued

Brownian motion, and {λi }i∈N are real-valued coefficients such that Qei = λ2i ei , i ∈
N. In order to preserve mass the noise is required to satisfy P-a.s.

∫
D W (t, x) dx = 0,

t ∈ [0, T ].
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In the experiments below we consider two types of Wiener processes: a smooth
(finite dimensional) noise and a L

2
0-cylindrical Wiener process (space–time white

noise). The smooth noise is given by

� j Ŵ (t, x) = 1

2

64∑
k,�=1

cos(2πkx1) cos(2π�x2)� jβk� x = (x1, x2) ∈ [0, 1]2 ,

where � jβk� = βk�(t j ) − βk�(t j−1) are independent scalar-valued Brownian incre-
ments. The discrete approximation of the smooth noise is then constructed as

� jW
h(x) =

L∑
�=1

� j Ŵ (x�)φ�(x), (6.2)

where φ�(xm) = δ�m , � = 1, . . . , L are the (standard) nodal basis function of Vh , i.e.,
Vh = span{φ�, � = 1, . . . , L}. The space–time white noise (Q = I ) is approximated
as (cf. [5])

� j W̃
h(x) =

L∑
�=1

φ�(x)√
1
3 |suppφ�|

� jβ� ∀ x ∈ D ⊂ R
2 .

In order to preserve the zero mean value property of the noise we normalize the
increments as

� jW
h = � j W̃

h − 1

|D|
∫

D
� j W̃

h dx . (6.3)

The Wiener process is simulated using a standard Monte–Carlo technique, i.e., for
ωm ∈ �, m = 1, . . . , M , we approximate the Brownian increments in (6.2),(6.3) as
� jβ�(ωm) ≈ √

kN j
�(0, 1)(ωm), where N j

�(0, 1)(ωm) is a realization of the Gaussian
random number generator at time level t j . The discrete nonlinear systems related to
(realizations of) the scheme (6.1) are solved using the Newtonmethodwith amultigrid
linear solver.

To increase the efficiency of the computations we employ a pathwise mesh refine-
ment algorithm. For a realization X j

h,m := X j
h(ωm),ωm ∈ � of theVh-valued random

variable X j
h we define ηgrad(x) = max{|∇X j

h,m(x)|, |∇X j−1
h,m (x)|} and refine the finite

element mesh in such a way that h(x) = hmin if εηgrad(x) ≥ 10−2 and h(x) ≈ hmax
if εηgrad(x) ≤ 10−3; the mesh produced at time level j is then used for the compu-

tation of X j+1
h,m . The adaptive algorithm produces meshes with mesh size h = hmin

along the interfacial area and h ≈ hmax in the bulk where u ≈ ±1, see Fig. 3 for a
typical adapted mesh. In our computations we choose hmax = 2−6 and hmin = π

4 ε,
i.e. hmin = hmax for ε ≥ 1/(16π) and hmin scales linearly for smaller values of ε.

In the presented simulations, mesh refinement did not appear to significantly
influence the asymptotic behavior of the numerical solution. This is supported by
comparison with additional numerical simulation on uniform meshes. The observed
robustness of numerical simulations with respect to the mesh refinement can be
explained by the fact that the asymptotics are determined by pathwise properties of
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the solution on a large probability set. This conjecture is supported by the convergence
in probability in Theorem 5.7 and Corollary 5.8. In the present setup the (possible)
bias due to the pathwise adaptive-mesh refinement did not have significant impact on
the results. In general, the use of adaptive algorithms with rigorous control of weak
errors may be a preferable approach, cf. [25].

6.2 Stochastic Mullins–Sekerka problem and its discretization

We consider the following stochastic modification of the Mullins–Sekerka problem
(5.1)

−�v dt = g dW in D \ �t , (6.4a)[
∂n�v

]
�t

= −2V on �t , (6.4b)

v = α κ on �t , (6.4c)

∂nv = 0 on ∂D , (6.4d)

�0 = �00 . (6.4e)

We note that the only difference between (5.1) and (6.4) is in the equations (5.1a),
(6.4a), respectively. Alternatively equation (6.4a) can be stated in an integral form as

−
∫ t

0
�v ds = g

∫ t

0
dW in D \ �t .

For the approximation of the stochastic Mullins–Sekerka problem (6.4), we adapt
the unfitted finite element approximation for the deterministic problem (5.1) from [6].
In particular, let � j−1 be a polygonal approximation of the interface � at time t j−1,

parameterized by Y j−1
h ∈ [Vh(I )]2, where I = R/Z is the periodic unit interval, and

where Vh(I ) is the space of continuous piecewise linear finite elements on I with
uniform mesh size h. Let πh : C(I ) → Vh(I ) be the standard nodal interpolation
operator, and let 〈·, ·〉 denote the L2–inner product on I , with 〈·, ·〉h the corresponding
mass-lumped inner product. Then we find v

j
h ∈ Vh , Y

j
h ∈ [Vh(I )]2 and κ

j
h ∈ Vh(I )

such that

k (∇ v
j
h ,∇ ϕh) − 2

〈
πh
[
Y j
h − Y j−1

h . ν
j−1
h

]
, ϕh ◦ Y j−1

h |[Y j−1
h ]ρ |

〉
= (

g� jW
h, ϕh

)
h

∀ ϕh ∈ Vh , (6.5a)

〈v j
h , χh |[Y j−1

h ]ρ |〉 − α 〈κ j
h , χh |[Y j−1

h ]ρ |〉h = 0 ∀ χh ∈ Vh(I ) , (6.5b)

〈κ j
h ν

j−1
h , ηh |[Y j−1

h ]ρ |〉h + 〈[Y j
h ]ρ, [ηh]ρ |[Y j−1

h ]ρ |−1〉 = 0 ∀ ηh ∈ [Vh(I )]2 . (6.5c)

In the above, ρ denotes the parameterization variable, so that |[Y j−1]ρ | is the length
element on � j−1 and ν

j−1
h ∈ [Vh(I )]2 is a nodal discrete normal vector, see [6] for

the precise definitions.
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6.3 Convergence to the deterministic sharp-interface limit

6.3.1 One circle

We set γ = 1, g = 8π and consider the discrete space–time white noise (6.3).
We note that the considered space–time white noise does not satisfy the smoothness
assumptions required for the theoretical part of the paper (i.e., γ > 1 and tr(�Q) <

∞), however the numerical results indicate that for ε ↓ 0 the computed evolutions
still converge to the deterministic Mullins–Sekerka problem (5.1).

The numerical studies below are performed using the scheme (6.1) with adaptive
mesh refinement. The time-step size for ε = 2−i/(64π), i = 0, . . . , 4 was ki =
2−i10−5. Themotivation of the different choice of the time-step is to eliminate possible
effects of numerical damping and to ensure the convergence of the Newton solver for
smaller values of ε.

For each ε we use the initial condition uε,h
0 that approximates a circle with radius

R = 0.2. Since circles are stationary solutions of the deterministic Mullins–Sekerka
problem, the convergence of the numerical solution for the stochastic Cahn–Hilliard
equation to the solution of the Mullins–Sekerka problem for ε ↓ 0 can be determined
by measuring the deviations of the zero level-set of the solution X j

h , j = 1, . . . , J
from the circle with radius R = 0.2 for a sufficiently large computational time. We
note that the zero level-set of the initial condition uε,h

0 above, exactly approximates the
corresponding stationary solution of the Mullins–Sekerka problem, but it is not a sta-
tionary solution of the corresponding (discrete) deterministic Cahn–Hilliard equation,
i.e., of (6.1) with g ≡ 0. In order to obtain the optimal phasefield profile across the
interfacial region, we let uε,h

0 relax towards the discrete stationary state by computing
with (6.1) for g ≡ 0 for a short time and then use that discrete solution as the actual
initial condition for the subsequent simulations.

The results in Fig. 1 indicate that for decreasing ε the evolution of the zero level set
of the numerical solution approaches the solution of the deterministicMullins–Sekerka
model, which is represented by the stationary circle with radius 0.2. We observe that
the deviations of the interface from the circle are decreasing for smaller ε.

6.3.2 Two circles

In this experimentwe consider the same setup as in the previous onewith an initial con-
dition which consists of two circles with radii R1 = 0.15 and R2 = 0.1, respectively.
The evolution of the solution is more complex than in the previous experiment as the
interface undergoes a topological change. To minimize the Ginzburg–Landau energy,
the left (larger) circle grows, the right (smaller) circle shrinks and the resulting steady
state is a single circle with mass equal to the mass of the two initial circles; see Fig. 2
for an example of a deterministic evolution with ε = 1/(512π). In Fig. 3 we display
the graph of the evolution of the position of the x-coordinate of rightmost point of the
interface along the x-axis (i.e., we consider the rightmost point on the right (smaller)
circle and after the right circle disappears we track the rightmost point of the left circle)
for the deterministic Cahn–Hilliard equation as well as for typical realizations of the
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Fig. 1 Deviation of the interface along the x-axes from the circle for ε = 2−i /(64π), i = 0, . . . , 4

Fig. 2 Numerical solution for ε = 1/(512π) at time t = 0, 0.007, 0.008

stochastic Cahn–Hilliard equation for decreasing values of ε, and of the deterministic
Mullins–Sekerka problem. Here the evolutions for theMullins–Sekerka problemwere
computed with the scheme (6.5) in the absence of noise. We observe that the solution
of the stochastic Cahn–Hilliard equation with the scaled space–time white noise (6.3)
converges to the solution of the deterministicMullins–Sekerka problem for decreasing
values of the interfacial width parameter. In addition, the differences between the the
stochastic and the deterministic evolutions of the Cahn–Hilliard equation diminish for
decreasing values of ε.

6.4 Comparison with the stochastic Mullins–Sekerkamodel

Weuse the numerical scheme (6.1) to study the case of non-vanishing noise, i.e.,γ = 0,
with the discrete approximation of the smooth noise (6.2). The noise is symmetric
across the center of the domain in order to facilitate an easier comparison with the
Mullins–Sekerka problem. The computations below are pathwise, i.e., in the graphs
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Fig. 3 (left) Position of the rightmost point of the interface for the stochastic and the deterministic Cahn–
Hilliard equations with ε = 2−i /(64π), i = 0, . . . , 4, γ = 1 and the deterministic Mullins–Sekerka
problem; the values are shifted by −0.5. (right) Zoom on the adapted mesh around the smaller circle for
ε = 1/(512π) at t = 0.007

below we display results computed for a single realization of the Wiener process. If
not mentioned otherwise we use the time-step size k = 10−5.

The initial condition is taken to be the ε-dependent approximation of a circle with
radius R = 0.2 as in Sect. 6.3.1. In the computations, as before, we first let the initial
condition relax to a stationary state and then use the stabilized profile X0

h := X js
h as an

initial condition for the computation. The zero level-set of the stationary solution X js
h

is a circle with perturbed radius R = 0.2 + O(ε), where in general the perturbation
O(ε) also depends on the finite element mesh. To compensate for the effect of the
perturbation in the initial condition for larger values of ε we represent the interface
by a level set �

j
u�

:= {x ∈ D; X j
h(x) = u�} (i.e., �

j
0 is the zero level set of the

discrete solution at time level t j ) where the values u� = X js (0.2, 0), i.e., it is the

”compensated” level-set for which the stationary profile �
js
u�

coincides with the circle
with radius R = 0.2. The usual value for the ”compensated” level-set was u� ≈ 0.27
in the computations below.

We observe that in order to properly resolve the spatial variations of the noise it is
necessary to use amesh size smaller or equal to hmax = 2−7 for the discretization of the
Cahn–Hilliard equation. The computations for the Mullins–Sekerka problem, using
the scheme (6.5), were more sensitive to the mesh size, and an accurate resolution for
the considered noise required a mesh size hmax = 2−8, cf. Fig. 4 which includes the
results for hmax = 2−8 as well as hmax = 2−7.

In Fig. 4 we compare the evolution for the stochastic Cahn–Hilliard equation for
ε = 1/(32π), ε = 1/(64π) on a uniform mesh with h = 2−7, h = 2−8, respectively,
with the evolution of the stochasticMullins–Sekerka problem (6.4) on uniformmeshes
with h = 2−7, h = 2−8, respectively, for a single realization of the noise. We also
include results for ε = 1/(128π), ε = 1/(512π), where to make the computations
feasible we employ the adaptive algorithm with hmax = 2−8 and hmax = 2−9, hmax =
2−11, respectively. Furthermore, in order to ensure convergence of the Newton solver
for ε = 1/(512π) we decrease the time-step size k = 10−6. To be able to directly
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Fig. 4 Oscillations of the interface along the x-axis (x, 0) on uniform meshes for the stochastic Cahn–
Hilliard equation with ε = 1/(32π), h = 2−7, ε = 1/(64π), h = 2−8, ε = 1/(128π), hmin = 2−9,
ε = 1/(512π), hmin = 2−11 and for the stochastic Mullins–Sekerka problem with h = 2−7 and h = 2−8

with the noise (6.2) (top left); detail of the evolution (top right); evolution of the zero level-set of the solution
(bottom middle)

compare with the results for ε = 1/(512π), we take the values of the realization of
the noise generated with step size k = 10−5, which was used in the other simulations,
and to obtain values at the intermediate time levels we employ linear interpolation in
time. We observe that the results in Fig. 4 for the stochastic Mullins–Sekerka model
are more sensitive to the mesh size, i.e., the graph for the mesh with h = 2−7 differs
significantly from the remaining results. For the mesh with hmin = 2−8 the results for
the stochastic Mullins–Sekerka model are in good agreement with the results for the
stochastic Cahn–Hilliard model. We note that for values smaller than ε = 1/(128π)

we do not observe significant improvements of the approximation of the stochastic
Mullins–Sekerka problem. This is likely caused by the discretization errors in the
numerical approximation of the stochastic Mullins–Sekerka model which, for small
values of ε, are greater than the approximation error w.r.t. ε in the stochastic Cahn–
Hilliard equation.

From the above numerical results we conjecture that for ε ↓ 0 the solution of the
stochastic Cahn–Hilliard equation with a non-vanishing noise term (γ = 0) converges
to the solution of a stochasticMullins–Sekerka problem (6.4). Formally, the stochastic
Mullins–Sekerka problem (6.4) can be obtained as a sharp-interface limit of a gener-
alized Cahn–Hilliard equation where the noise is treated as a deterministic function
G1(t) = g Ẇ (t), cf. (2.3) in [3] and (1.12) in [4].
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Fig. 5 Oscillations of the ”compensated” level-set along the x-axis (x, 0) with adaptive mesh refinement
with hmax = 2−6 for stochastic Cahn–Hilliard equation with ε = 1/(32π), hmin = 2−7, ε = 1/(64π),
hmin = 2−8, ε = 1/(128π), hmin = 2−9, and the stochastic Mullins–Sekerka problem with hmin = 2−8,
hmax = 2−6 with the noise (6.2) (left picture); evolution of the corresponding zero level-set (right picture)

To examine the robustness of previous results with respect to adaptive mesh refine-
ment we recompute the previous problems with the noise (6.2) using the adaptive
mesh refinement algorithm with hmax = 2−6 and hmin = π

4 ε. The stochastic Mullins–
Sekerka model is computed with hmax = 2−6 and the mesh is refined along the
interface � with mesh size hmin = 2−8.

We note that with adaptive mesh refinement the results differ from those computed
using uniform meshes, since the noise (6.2) is mesh dependent. For instance, in the
regions with coarse mesh the noise (6.2) is not properly resolved. The computed
results with the adaptive mesh refinement can be interpreted as replacing the additive
noise (6.2) with a multiplicative type noise that has lower intensity when u ≈ ±1. The
presented computations contain an additional ”geometric” factor in the numerical error
that is due to the fact that the mesh is adapted according to the position of the interface,
as well as due to the fact that the adaptive mesh refinement algorithm for the Mullins–
Sekerka problem is different. Nevertheless, the results are still in good agreement
with the stochastic Mullins–Sekerka problem, see Fig. 5. In particular we observe that
the convergence for smaller values of ε is more obvious for the zero level-set of the
solution than in the case of uniform meshes. In Fig. 5 we also include a graph (’ftilde’
in pink) which was computed using a modification of scheme (6.1) with

(
f (X j

h), ψh
)

replaced by
(
f̃ (X j

h , X
j−1
h ), ψh

)
where f̃ (X j

h , X
j−1
h ) = 1

2 (|X j
h |2 − 1)(X j

h + X j−1
h );

for equal time-step size the modified scheme provides worse approximation of the
Mullins–Sekerka problem due to numerical damping.
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