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Abstract
The development of methods able to extract hidden features from non-stationary and
non-linear signals in a fast and reliable way is of high importance in many research
fields. In this work we tackle the problem of further analyzing the convergence of
the Iterative Filtering method both in a continuous and a discrete setting in order to
provide a comprehensive analysis of its behavior. Based on these results we provide
a new efficient implementation of Iterative Filtering algorithm, called Fast Iterative
Filtering, which reduces the original iterative algorithm computational complexity by
utilizing, in a nontrivial way, Fast Fourier Transform in the computations.

Mathematics Subject Classification 65B99 · 65F15 · 65T50 · 15A18 · 15B05 · 15B51 ·
94A12

1 Introduction

Non-stationary and non-linear signals are ubiquitous in applications. Standard tech-
niques like Fourier or wavelet transform prove to be inadequate in capturing properly
their hidden features [10]. For this reason Huang et al. proposed in 1998 a new kind
of algorithm, called Empirical Mode Decomposition (EMD) [41], which allows to
unravel the hidden features of a non-stationary signal s(x), x ∈ R, by iteratively
decomposing it into a finite sequence of simple components, called Intrinsic Mode
Functions (IMFs). Such IMFs fulfill two properties: the number of extrema and the
number of zero crossings must either equal or differ at most by one; considering upper
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and lower envelopes connecting respectively all the local maxima and minima of the
function, their mean has to be zero at any point.

The EMD, over the last two decades, has attracted the attention of many researchers
from a wide variety of applied fields. We mention here geophysical studies [6,42,
70], with applications in Seismology (data denoising and/or detrending [5,37,73],
pre-seismic signal analysis [3,7,78], earthquake-induced co/post-seismic anomalies
analysis [8]), Exploration Seismology (for improving signal-to-noise ratio in seismic
data processing routines [4,9] or for seismic interpretation [76]), Geomagnetism [43,
63,91], Engineering Seismology (mainly for analysing ground motion data [39,52,87,
92,93]), climate, atmospheric and oceanographic sciences [21–25,45]. Its use is also
common in Physics (for data analysis [32,40,56,71], data denoising and/or detrending
[31,77], to assess causal relationships between two time series [86], or to extract
information on multiple time scales [18]); Medicine and Biology [16,19,29,30,35,
49,82,85,97]; Engineering [2,46,51,59,65,81]; Economics and Finance [89,94,95];
Computer vision [1,47,84], just to mention a few. The impact of this technique is
testified also by the high number of citations1 that the original paper by Huang et al.
[41] has received so far.

However, while the EMD method proves to be extremely powerful in extracting
simple components from a given signal, it is unstable to perturbations [83] and suscep-
tible to mode splitting and mode mixing [75]. These are the reasons why the Ensemble
Empirical Mode Decomposition (EEMD) method [83] first, and then several alterna-
tive noise-assisted EMD-based methods (e.g. the complementary EEMD [88], the
complete EEMD [72], the partly EEMD [96], the noise assisted multivariate EMD
(NA-MEMD) [74], and fast multivariate EMD (FMEMD) [44]) have been proposed.
While these newly developed methods are based on EMD, they all address the so
called mode mixing problem and guarantee the stability of the decomposition with
respect to noise [38]. However, mode splitting is still an open problem for all these
methods and, more importantly, their mathematical analysis is by no means complete
[38].

For all these reasons many alternative methods have been proposed recently, like,
for instance, the sparse TF representation [33,34], the Geometric mode decomposition
[90], the Empirical wavelet transform [28], the Variational mode decomposition [20],
and similar techniques [54,62,64].

All of these methods are based on optimization. The only alternative technique
proposed so far in the literature which is based on iterations, like the EMD-based
methods, is the so called Iterative Filtering (IF) method proposed by Lin et al. in [50].
In recent years, this alternative iterative method has been used in a wide variety of
applied fields like, for instance, in Engineering [48,55,65], Chemistry [15], Economy
[60], Medicine [66], and Physics [26,27,53,57,58,61,67,68].

The mathematical analysis of IF has been tackled by several authors in the last few
years [11,12,14,36,79,80], even for 2D or higher dimensional signals [17]. However
several problems regarding this technique are still unsolved. In particular it is not yet
clear how the stopping criterion used to discontinue the calculations of the IF algorithm

1 The original work by Huang et al. [41] as received so far, by itself, more than 14600 unique citations,
according to Scopus.
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influences the decomposition. Furthermore all the aforementioned analyses focused
on the convergence of IF when applied to the extraction of a single IMF from a given
signal, the so called inner loop. Regarding the decomposition of all the IMFs contained
in a signal, which is related to the outer loop convergence and potential finiteness of
the decomposition itself, nothing has been said so far. In this work we further analyze
the IF technique addressing these and other questions.

The rest of this work is organized as follows: in Sect. 2 we review the details and
properties of themethod in the continuous setting andwe provide new results regarding
its inner loop convergence in presence of a stopping criterion as well as the outer loop
convergence and finiteness. In Sect. 3 we address the convergence analysis in the
discrete setting for both the inner and outer loop of the algorithm. Based on these
results in Sect. 4 we propose a new algorithm, called Fast Iterative Filtering (FIF),
which produces the very same results as IF, but at consistently lower computational
cost.

2 IF algorithm in the continuous setting

The key idea behind this decomposition technique is separating simple oscillatory
components contained in a signal s(x), x ∈ R, the so called IMFs, by approximating
the moving average of s and subtracting it from s itself. The approximated moving
average is computed by convolution of s with a window/filter function w.

Definition 1 A filter/window w is a nonnegative and even function in C0 ([−L, L]),
L > 0, and such that

∫
R

w(z)dz = ∫ L
−L w(z)dz = 1.

We point out that the idea of iteratively subtracting the moving average comes from
the Empirical Mode Decomposition (EMD) method [41] where the moving average
was computed as a local average between an envelope connecting the maxima and one
connecting the minima of the signal under study. The use of envelopes in an iterative
way is the reason why the EMD algorithm is still lacking a rigorous mathematical
framework.

The pseudocode of IF is given in Algorithm 1 where wm(t) is a nonnegative and
compactly supported window/filter with area equal to one and support in [−lm, lm],
where lm is called filter length and represents the half support length.

The IF algorithm contains two loops: the inner and the outer loop, the second and
first while loop in the pseudocode respectively. The former captures a single IMF,
while the latter produces all the IMFs embedded in a signal.

Assuming s1 = s, the key step of the algorithm consists in computing the moving
average of sm as

Lm(sm)(x) =
∫ lm

−lm
sm(x + t)wm(t)dt, (1)

which represents the convolution of the signal itself with the window/filter wm(t).
The moving average is then subtracted from sm to capture the fluctuation part as

Mm(sm) = sm − Lm(sm) = sm+1 (2)
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Algorithm 1 Iterative Filtering IMF = IF(s)
IMF = {}
while the number of extrema of s ≥ 2 do

s1 = s
while the stopping criterion is not satisfied do

compute the filter length lm for sm (x)

sm+1(x) = sm (x) − ∫ lm−lm
sm (x + t)wm (t)dt

m = m + 1
end while
IMF = IMF∪ {sm }
s = s − sm

end while
IMF = IMF∪ {s}

The first IMF, IMF1, is computed repeating iteratively this procedure on the signal
sm ,m ∈ N, until a stopping criterion is satisfied, as described in the following section.

To produce the 2-nd IMF we apply the same procedure to the remainder signal
r = s − IMF1. Subsequent IMFs are produced iterating the previous steps.

The algorithm stops when r becomes a trend signal, meaning it has at most one
local extremum.

We observe that, even thought the algorithm allows potentially to recompute the
filter length lm at every step of each inner loop, in practice we always compute the filter
length only at the first step of an inner loop and then we keep it constant throughout
the subsequent iterations. Hence lm = l1 = l for every m ≥ 1.

Following [50], one possible way of computing the filter length l is given by the
formula

l := 2

⌊

ν
N

k

⌋

(3)

where N is the total number of sample points of a signal s(x), k is the number of
its extreme points, ν is a tuning parameter usually fixed around 1.6, and �·� rounds a
positive number to the nearest integer closer to zero. In doing so we are computing
some sort of average highest frequency contained in s.

Another possible way could be the calculation of the Fourier spectrum of s and
the identification of its highest frequency peak. The filter length l can be chosen to be
proportional to the reciprocal of this value.

The computation of the filter length l is an important step of the IF technique.
Clearly, l is strictly positive and, more importantly, it is based solely on the signal
itself. This last property makes the method nonlinear.

In fact, if we consider two signals p and q where p �= q, assuming IMFs(•)

represent the decomposition of a signal into IMFs by IF, the fact that we choose the
half support length based on the signal itself implies that in general

IMFs(p + q) �= IMFs(p) + IMFs(q)

Regarding the convergence analysis of the Iterative Filtering inner loop we recall
here the following theorem
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Theorem 1 (Convergence of the Iterative Filtering method [14,36]) Given the filter
function w(t), t ∈ [−l, l] be L2, symmetric, nonnegative,

∫ l
−l w(t)dt = 1 and let

s(x) ∈ L2(R).
If |1 − ŵ(ξ)| < 1 or ŵ(ξ) = 0, where ŵ(ξ) is the Fourier transform of w computed
at the frequency ξ ,

Then {Mm(s)} converges and

IMF1 = lim
m→∞Mm(s)(x) =

∫ ∞

−∞
ŝ(ξ)χ{ξ∈R|ŵ(ξ)=0}e2π iξ xdξ (4)

where χ{A} represents the indicator function of the subset A of R.
We observe here that given h : [− l

4 ,
l
4 ] → R, z 
→ h(z), nonnegative, symmetric,

with
∫
R
h(z)dz = ∫ l

4

− l
4
h(z)dz = 1, if we construct the window w1 as the convolution

of h with itself and we fix wm = w1 throughout all the steps m of an inner loop,
then the method converges for sure to the limit function (4) which depends only on
the shape of the filter function chosen and the support length selected by the method
[13,14].

In general we can assume that the filter functionswm(u) are defined as some scaling
of an a priori fixed filter shape w : [−1, 1] → R. In particular we define the scaling
function

gm : [−1, 1] → [−lm, lm], t 
→ u = gm(t), (5)

where gm is assumed tobe invertible andmonotone, such thatwm(u) = Cmw(g−1
m (u)) =

Cmw(t), where t = g−1
m (u), u = gm(t) and Cm is a scaling coefficient which is

required to ensure that
∫
R

wm(u)du = ∫ lm
−lm

wm(u)du = 1.
We point out that, from Theorem 1, it is clear that the choice of the filter function

w(t) can have an important influence in the decomposition produced by the IF algo-
rithm. This is an important direction of research, which has never been explored in
the literature so far, to best of our knowledge. However its analysis is out of the scope
of this work. We plan to study it in a future work.

Regarding the computation of the scaling coefficient Cm , from the observation that
du = g′

m(t)dt , it follows that

∫ lm

−lm
wm(u)du =

∫ lm

−lm
Cmw(g−1

m (u))du = Cm

∫ 1

−1
w(t)|g′

m(t)|dt (6)

hence

Cm = 1
∫ 1
−1 w(t)|g′

m(t)|dt (7)

and

wm(u) = Cmw(g−1
m (u)) = w(g−1

m (u))
∫ 1
−1 w(t)|g′

m(t)|dt (8)

As an example of a scaling functionwe can consider, for instance, linear or quadratic
scalings: gm(t) = lmt and gm(t) = lmt2 respectively.
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6 A. Cicone, H. Zhou

In the case of linear scaling we have that g−1
m (u) = u

lm
, g′

m(t) = lm ≥ 0, for every

t ∈ R, and Cm = 1
lm
. Hence

wm(u) =
w
(

u
lm

)

lm
. (9)

2.1 IF inner loop convergence in presence of a stopping criterion

In Algorithm 1 the inner loop has to be iterated infinitely many times. In numerical
computations, however, some stopping criterion has to be introduced. One possible
stopping criterion follows from the solution of

Problem 1 For a given δ > 0 we want to find the value N0 ∈ N such that

‖MN (s)(x) − MN+1(s)(x)‖L2 < δ ∀N ≥ N0

Applying the aforementioned stopping criterion, the inner loop of Algorithm 1
converges in finite steps to an IMF whose explicit form is given in the following
theorem where ŝ(ξ) represents the Fourier transform of s at frequency ξ .

Theorem 2 Given s ∈ L2(R) and w obtained as the convolution w̃ ∗ w̃, where w̃ is a
filter/window, Definition 1, and fixed δ > 0.

Then, for the minimum N0 ∈ N such that the following inequality holds true

N N0
0

(N0 + 1)N0+1 <
δ

‖̂s(ξ)‖L2
∀ξ ∈ R (10)

we have that
∥
∥MN (s)(x) − MN+1(s)(x)

∥
∥
L2 < δ ∀N ≥ N0 and the first IMF is

given by

IMFSC
1 = MN (s)(x) =

∫

R

(1 − ŵ(ξ))N ŝ(ξ)e2π iξ xdξ ∀N ≥ N0 (11)

Proof From the hypotheses on the filter w it follows that its Fourier transform is in
the interval [0, 1], see [14]. Furthermore from the linearity of the Fourier transform
it follows that

̂MN (s)(x)(ξ) = (1 − ŵ(ξ))N ŝ(ξ) =
{
ŝ(ξ) if ŵ(ξ) = 0
(1 − ŵ(ξ))N ŝ(ξ) if |1 − ŵ(ξ)| < 1

since the Fourier Transform is a unitary operator, by the Parseval’s Theorem, it
follows that

∥
∥
∥MN (s)(x) − MN+1(s)(x)

∥
∥
∥
L2

=
∥
∥
∥ ̂MN (s)(x)(ξ) − ̂MN+1(s)(x)(ξ)

∥
∥
∥
L2

=
∥
∥
∥(1 − ŵ(ξ))N [1 − (1 − ŵ(ξ))] ŝ(ξ)

∥
∥
∥
L2
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=
∥
∥
∥(1 − ŵ(ξ))N ŵ(ξ )̂s(ξ)

∥
∥
∥
L2

We point out that this formula can also be interpreted as the L2-norm of the moving
average of MN which is given by the convolution MN ∗ w.

For a fixed N we can compute the maximum of the function (1 − ŵ(ξ))N ŵ, for
ŵ ∈ [0, 1], that is attained for ŵ(ξ) = 1

N+1 . Therefore

∥
∥
∥(1 − ŵ(ξ))N ŵ(ξ )̂s(ξ)

∥
∥
∥
L2

≤
∥
∥
∥
∥
∥

(

1 − 1

N + 1

)N 1

N + 1
ŝ(ξ)

∥
∥
∥
∥
∥
L2

=
∥
∥
∥
∥

NN

(N + 1)N+1 ŝ(ξ)

∥
∥
∥
∥
L2

< δ

Hence we consider the smallest N0 ∈ N such that

NN0
0

(N0 + 1)N0+1 <
δ

‖̂s(ξ)‖L2
.

��
Equation (11) provides a valuable insight on how the implemented algorithm is

actually decomposing a signal into IMFs.We recall that without any stopping criterion
each IMF of a signal s is given by the inverse Fourier transform of ŝ computed at the
frequencies corresponding to zeros of ŵ, as stated in (4).

Therefore, from the observation that ŵ is a function not compactly supported and
with isolated zeros, the IMFs produced with IF are given by the summation of pure
and well separated tones.

Whereas, when we enforce a stopping criterion, we end up producing IMFs con-
taining amuch richer spectrum. In fact from (11) we discover that an IMF is now given
by the inverse Fourier transform of ŝ computed at every possible frequency in R, each
multiplied by the coefficient (1 − ŵ(ξ))N . Since, by construction, 0 ≤ ŵ(ξ) ≤ 1,
∀ξ ∈ R, then (1 − ŵ(ξ))N is equal to 1 if and only if ŵ(ξ) = 0, whereas for all the
other frequencies it is smaller than 1 and it tends to zero as N grows. The (1− ŵ(ξ))N

quantity represents in practice the percentage with which each frequency is contained
in the reconstruction of an IMF from the Fourier transform of the original signal. The
higher is the number of iterations N the narrower are the intervals of frequencies that
are almost completely captured in each IMF. And as N → ∞ such intervals coalesce
into isolated points corresponding to the zeros of ŵ.

2.1.1 Convergence with a threshold

We start recalling a few properties regarding the filter functions w. Assuming w(x),
x ∈ R, is a filter function supported on (−1, 1), if we use the linear scaling described
in (9), then we can construct

wa(x) = 1

a
w
( x

a

)
(12)
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8 A. Cicone, H. Zhou

where wa(x) is supported on (−a, a).
If we define ŵ(ξ) = ∫ +∞

−∞ w(x)e−iξ x2πdx , then

ŵa(ξ) =
∫ +∞

−∞
1

a
w
( x

a

)
e−iξ x

a a2πdx = ŵ(aξ) (13)

Therefore, if ξ0 is a root of ŵ(ξ) = 0, then ξ0
a is a root of ŵa(ξ) = 0 because

ŵa
(

ξ0
a

)
= ŵ

(
a ξ0

a

)
= ŵ(ξ0) = 0.

We remind that, sincew are compactly supported functions, their Fourier transform
are defined on R and they have zeros which are isolated points.

Given 0 < γ < 1, we identify the set

Iw,γ,N =
{
ξ ∈ R : ŵ(ξ) ≤ 1 − N

√
1 − γ

}
. (14)

As N → ∞ the quantity 1 − N
√
1 − γ → 0, therefore Iw,γ,N coalesces into isolated

points corresponding to the zeros of ŵ.
If we consider filters like the Fokker-Planck filters [14] or any filter with smooth

finite support properties we must have that, for a fixed N ∈ N and γ > 0, there exists
Ξ0 > 0 such that

ŵ(ξ) ≤ 1 − N
√
1 − γ < 1 for all |ξ | ≥ Ξ0 (15)

In fact, since
∫ |w(x)|2dx < +∞ with w(x) smooth function, then

∫ |ŵ(ξ)|2dξ <

+∞ which implies that ŵ(ξ) decays as |ξ | → ∞.
So for a filter w with smooth finite support properties the set Iw,γ,N is made up of

a finite number of disjoint compact intervals, containing zeros of ŵ, together with the
intervals (−∞, −Ξ0] and [Ξ0, ∞).

Furthermore if we scale these filters using a linear scaling with coefficient a > 1
it follows from the previous observations that Ξ0 → 0 and, as a consequence, Iw,γ,N

converges to R\{0}.
As an example of a compactly supported filter we can consider the triangular filter

function

w(x) =
{ 1

L − 1
L2 |x | for |x | ≤ L

0 otherwise
(16)

whose Fourier transform is

ŵ(ξ) = 1

L

sin2 (Lπξ)

(πξ)2
. (17)

The triangular filter and its Fourier transform are depicted in Fig. 1.
Given the threshold value 1 − N

√
1 − γ depicted in the right panel of Fig. 1 and

the triangular filter (16) with L = 1, the set Iw,γ,N is made up of four intervals:
two compactly supported and centered around 1/2 and − 1/2, and other two starting
around 0.8 and − 0.8 and ending at infinity and minus infinity, respectively.
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Fig. 1 Left panel, triangular filter (16) with L = 1. Right panel, in black the Fourier transform (17) and in
red the threshold value 1 − N√1 − γ

We can use the threshold value 1 − N
√
1 − γ in the computation of an IMF as

follows: given (11), whenever (1 − ŵ(ξ))N ≥ 1 − γ , we substitute ŵ(ξ) with zero.
This is equivalent to setting ŵ(ξ) = 0 whenever ξ ∈ Iw,γ,N .

Therefore, using the previously described thresholding and based on Theorem 2,
Algorithm 1 converges to

IMFTH1 =
∫

R\Iw,γ,N

(1 − ŵ(ξ))N ŝ(ξ)e2π iξ xdξ +
∫

Iw,γ,N

ŝ(ξ)e2π iξ xdξ ∀N ≥ N0

(18)
where Iw,γ,N is defined in (14).

We are now ready to prove the following

Proposition 1 Assuming that all the hypotheses of Theorem 2 are fulfilled, then for
every ε > 0 there exist a stopping criterion value δ > 0 and a threshold 0 < γ < 1
such that ∥

∥IMF1 − IMFTH
1

∥
∥ ≤ ε

2
,

∥
∥IMFTH

1 − IMFSC
1

∥
∥ ≤ ε

2
(19)

and ∥
∥IMF1 − IMFSC

1

∥
∥ ≤ ε (20)

where IMF1, IMFSC
1 , and IMFTH

1 are defined in (4), (11), and (18) respectively.

Proof First of all we have that

∥
∥
∥IMF1 − IMFSC1

∥
∥
∥ ≤

∥
∥
∥IMF1 − IMFTH1

∥
∥
∥+

∥
∥
∥IMFTH1 − IMFSC1

∥
∥
∥

where

∥
∥
∥IMF1 − IMFTH1

∥
∥
∥

≤
∥
∥
∥
∥

∫

R

ŝ(ξ)χ{ξ∈R | ŵ(ξ)=0}e2π iξ xdξ

−
∫

R\Iw,γ,N

(1 − ŵ(ξ))N ŝ(ξ)e2π iξ xdξ −
∫

Iw,γ,N

ŝ(ξ)e2π iξ xdξ

∥
∥
∥
∥
∥

123



10 A. Cicone, H. Zhou

≤
∥
∥
∥
∥
∥

∫

R\Iw,γ,N

(1 − ŵ(ξ))N ŝ(ξ)e2π iξ xdξ

∥
∥
∥
∥
∥

+
∥
∥
∥
∥
∥

∫

Iw,γ,N \{ξ∈R | ŵ(ξ)=0}
ŝ(ξ)e2π iξ xdξ

∥
∥
∥
∥
∥

(21)

and

∥
∥
∥IMFTH1 − IMFSC1

∥
∥
∥ ≤

∥
∥
∥
∥
∥

∫

R\Iw,γ,N

(1 − ŵ(ξ))N ŝ(ξ)e2π iξ xdξ

+
∫

Iw,γ,N

ŝ(ξ)e2π iξ xdξ −
∫

R

(1 − ŵ(ξ))N ŝ(ξ)e2π iξ xdξ

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

∫

Iw,γ,N

[
1 − (1 − ŵ(ξ))N

]
ŝ(ξ)e2π iξ xdξ

∥
∥
∥
∥
∥

(22)

From (14) and the fact that
∫
Iw,γ,N

ŝ(ξ)e2π iξ xdξ → ∫
{ξ∈R | ŵ(ξ)=0} ŝ(ξ)e2π iξ xdξ as

γ → 0 or N → ∞, it follows that there exist N1 ∈ N big enough and 0 < γ1 < 1
small enough such that

∥
∥
∥
∥
∥

∫

Iw,γ1,N1\{ξ∈R | ŵ(ξ)=0}
ŝ(ξ)e2π iξ xdξ

∥
∥
∥
∥
∥

≤ ε

4

Furthermore there exist 0 < γ2 < 1 small enough and a N2 ∈ N so that

∥
∥
∥
∥
∥

∫

Iw,γ2,N2

[
1 − (1 − ŵ(ξ))N2

]
ŝ(ξ)e2π iξ xdξ

∥
∥
∥
∥
∥

≤ ε

2

in fact as γ2 → 0 the interval Iw,γ2,N2 tends to the set of frequencies corresponding
to the zeros of ŵ(ξ). Given γ = min {γ1, γ2}, then there exists N3 ∈ N big enough
such that (1 − ŵ(ξ))N3 is small enough in order to have

∥
∥
∥
∥
∥

∫

R\Iw,γ,N

(1 − ŵ(ξ))N3 ŝ(ξ)e2π iξ xdξ

∥
∥
∥
∥
∥

≤ ε

4

If we consider N0 = max {N1, N2, N3} there exists δ > 0 such that (10) holds
true for every N ≥ N0. ��

This proposition implies that IMFTH1 can be as close as we like to both IMFSC1 and
IMF1 if we choose wisely the stopping criterion value δ and the threshold γ .

2.2 IF outer loop convergence

We do have now all the tools needed to study the Iterative Filtering outer loop conver-
gence.
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Numerical analysis for iterative filtering with new… 11

Definition 2 (Significant IMFswith respect to η > 0) Fixed η > 0 and given a signal s
and its decomposition in IMFs obtained using Algorithm 1, then we define significant
IMFs with respect to η all the IMFs whose L∞-norm is bigger than η.

Theorem 3 Given a signal s ∈ L2(R)∩L∞(R), whose continuous frequency spectrum
is compactly supported with upper limit B > 0 and lower limit b > 0, and such that
‖̂s‖∞ = c < ∞, chosen a filter w produced as convolution of a filter with itself, fixed
δ > 0 and η > 0.
Then the inner loop of Algorithm 1 converges to (11) and the outer loop produces only
a finite number M ∈ N of significant IMFs whose norm is bigger than η.

Proof Let us consider the Fourier transform of the signal s. From the hypotheses it
follows that |̂s(ξ)| = 0 for every ξ ≥ B.

We can assume that Algorithm 1 in the first step of its outer loop starts selecting a
filter w1 such that the zero of ŵ1 with smallest frequency is at B. We recall in fact that
one of the possible way to choose the filter length is based on the Fourier transform
of s, as explained in Sect. 2. Given δ > 0 we can identify N1 ∈ N such that (10) is
fulfilled for every N ≥ N1.

Now, from the hypothesis that ‖̂s‖∞ = c < ∞ it follows there exists the upper
bound c on ŝ(ξ) uniformly on ξ ∈ R. From the hypotheses on the filter function it
follows that 0 < ŵ1 < 1, ref. end of Sect. 2 in [14]. Furthermore, from the assumption
on the lower bound b and upper bound B of the continuous frequency spectrum of s,
the fact that

∥
∥e2π iξ x

∥
∥∞ ≤ 1 for every x, ξ ∈ R, by definition of the interval Iw1,γ,Ñ1

,

and for every Ñ1 ≥ N1 and 0 < γ <
η

2c(B−b) , it follows that

∥
∥
∥IMFSC1 − IMFTH1

∥
∥
∥∞

≤
∥
∥
∥
∥
∥

∫

[b, B]∩Iw1,γ,Ñ1

[
1 − (1 − ŵ1(ξ))Ñ1

]
ŝ(ξ)e2π iξ xdξ

∥
∥
∥
∥
∥∞

≤
∫

[b, B]∩Iw1,γ,Ñ1

∥
∥
∥
[
1 − (1 − ŵ1(ξ))Ñ1

]∥∥
∥∞ ‖̂s(ξ)‖∞

∥
∥
∥e2π iξ x

∥
∥
∥∞ dξ

≤ c
∫

[b, B]∩Iw1,γ,Ñ1

∥
∥
∥
[
1 − (1 − ŵ1(ξ))Ñ1

]∥
∥
∥∞ dξ ≤ cγ (B − b) <

η

2
(23)

In particular we point out that Iw1,γ,Ñ1
, defined as in (14), covers the interval of

frequencies [B − r1, B + r1], for some r1 > ε > 0.
This last inequality follows from the fact that if we scale linearly the filter functionw

to enlarge its support, as in (12) fora > 1, its Fourier transform is proportionally shrunk
(13). However the signal s does have a lower bound b in the continuous frequency
spectrum which implies that the filter function w1 cannot have a too wide support
and as a consequence its Fourier transform cannot be too much squeezed. Therefore
it does exist ε > 0 which lower bounds the radius r1.

If
∥
∥IMFTH1

∥
∥∞ <

η
2 then we can for sure regard this component as not significant

because
∥
∥IMFSC1

∥
∥∞ ≤ ∥

∥IMFSC1 − IMFTH1
∥
∥∞ + ∥

∥IMFTH1
∥
∥∞ < η. Otherwise, assum-
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12 A. Cicone, H. Zhou

ing
∥
∥IMFTH1

∥
∥∞ ≥ η

2 , if
∥
∥IMFSC1

∥
∥∞ ≥ η, then IMFSC1 represents the first significant

IMF in the decomposition. This conclude the first step of the outer loop inAlgorithm 1.
In the second step of the outer loop Algorithm 1 iterates the previous passages using

now the remainder signal s2 = s − IMFSC1 and selecting a filter w2 such that the zero
of ŵ2 with smallest frequency is at B − r1.

Also in this case, given δ > 0, we can identify N2 ∈ N such that (10)

is fulfilled for every N ≥ N2. Furthermore ŝ2(ξ) = ŝ(ξ) − ÎMF
SC
1 (ξ) =[

1 − (1 − ŵ2(ξ))Ñ1
]
ŝ(ξ), ∀ξ ∈ R which implies that

‖̂s2‖∞ ≤
∥
∥
∥
[
1 − (1 − ŵ2(ξ))Ñ1

]∥∥
∥∞ ‖̂s(ξ)‖∞ ≤ ‖̂s(ξ)‖∞ (24)

since ŵ2(ξ) ∈ [0, 1], ∀ξ ∈ R [14]. Hence ŝ2 has the same uniform upper bound c
over all ξ ∈ R

+ as ŝ(ξ).
Therefore

∥
∥
∥IMFSC2 − IMFTH2

∥
∥
∥∞ ≤

∥
∥
∥
∥
∥

∫

Iw2,γ,Ñ2

[
1 − (1 − ŵ2(ξ))Ñ2

]
ŝ2(ξ)e2π iξ xdξ

∥
∥
∥
∥
∥

∞
≤ cγ (B − b) <

η

2
(25)

for every Ñ2 ≥ N2 and 0 < γ <
η

2c(B−b) .
Furthermore Iw2,γ,Ñ2

covers the interval of frequencies [B − r2, B + r2], for some
r2 > ε > 0. This last inequality follows from the same reasoning as before and the
fact that the lower bound on the continuous frequency spectrum of s2 is again b, by
construction of s2, the fact that γ is fixed for every IMF and the Fourier transform of
the scaled filter w2 is a squeezed version of ŵ, ref. equation (13).

If
∥
∥IMFTH2

∥
∥∞ <

η
2 then we can regard this component as not significant. If instead∥

∥IMFTH2
∥
∥∞ ≥ η

2 and
∥
∥IMFSC2

∥
∥∞ ≥ η, then IMFSC2 represents another significant IMF

in the decomposition.
The subsequent outer loop steps follow similarly. The existence of the lower limit

ε for all rk > 0, k ≥ 1, ensures that we can have a finite coverage of the interval
of frequencies [b, B]. In particular the algorithm generates a set {rk}Rk=1 such that
∑R

k=1 rk = B − b and there exists a natural number 0 ≤ M ≤ R which represents the
number of significant IMFs with respect to η. ��

We point out that this theorem holds true also if we consider the L2-norm instead
of the L∞-norm thanks to the inclusion of L p spaces on a finite measure space.

From this Theorem it follows that IF with a stopping criterion allows to decompose
a signal into a finite number of components given by (11) each of which contains
frequencies of the original signal filtered in a smart way.

We observe also that this theorem, together with Theorems 1 and 2 , allow to
conclude that the IF method can not produce fake oscillations. Each IMF is in fact
containing part of the oscillatory content of the original signal, as described in (4) and
(11).
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Numerical analysis for iterative filtering with new… 13

3 IF algorithm in the discrete setting

Real life signals are discrete and compactly supported, therefore we want to analyze
the IF algorithm discretization and study its properties.

Consider a signal s(x), x ∈ R, we assume for simplicity it is supported on [0, 1],
sampled at n points x j = j

n−1 , with j = 0, . . . , n − 1, with a sampling rate which
allows to capture all its fine details, so that aliasing will not play any role. The goal is
to decompose the vector

[
s(x j )

]n−1
j=0 into vectorial IMFs. Without loosing generality

we can assume that ‖ [s(x j )
] ‖2 = 1.

From now on, to simplify the formulas, we use the notation s = [
s(x j )

]n−1
j=0.

Furthermore, if not specified differently, we consider as matrix norm the so called

Frobenius norm ‖A‖2 =
√∑n−1

i, j=0

∣
∣ai j

∣
∣2 which is unitarily invariant.

Definition 3 A vector w ∈ R
n , n odd number, is called a filter if its values are

symmetric with respect to the middle, nonnegative, and
∑n

p=1 wp = 1.

We assume that a filter shape has been selected a priori, like one of the Fokker-
Planck filters described in [14], and that some invertible andmonotone scaling function
gm has been chosen so that wm(ξ) can be computed as described in (8). Therefore,
assuming s1 = s, the main step of the IF method becomes

sm+1(xi ) = sm(xi ) −
∫ xi+lm

xi−lm
sm(y)wm(xi − y)dy ≈ sm(xi )

−
xi+lm∑

x j=xi−lm

sm(x j )wm(xi − x j )
1

n
, j = 0, . . . , n − 1 (26)

In matrix form we have
sm+1 = (I − Wm)sm (27)

where

Wm =
[

wm(xi − x j ) · 1
n

]n−1

i, j=0
=
[

w(g−1
m (xi − x j ))

∑1
zr=−1 w(zr )|g′

m(zr )|Δzr
· 1
n

]n−1

i, j=0

(28)

Algorithm 2 provides the discrete version of Algorithm 1.
We remind that the first while loop is called outer loop, whereas the second one

inner loop.
The first IMF is given by IMF1 = limm→∞(I − Wm)sm , where we point out that

the matrix Wm = [wm(xi − x j )]n−1
i, j=0 depends on the half support length lm at every

step m.
However in the implemented code the value lm is usually computed only in the first

iteration of each inner loop and then kept constant in the subsequent steps, so that the
matrix Wm is equal to W for every m ∈ N. So the first IMF is given by

IMF1 = lim
m→∞(I − W )ms (29)
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14 A. Cicone, H. Zhou

Algorithm 2 Discrete Iterative Filtering IMF = DIF(s)
IMF = {}
while the number of extrema of s ≥ 2 do

s1 = s
while the stopping criterion is not satisfied do

compute the function wm (ξ), whose half support length lm is based on the signal
[
sm (xi )

]n−1
i=0

sm+1(xi ) = sm (xi ) −∑n−1
j=0 sm (x j )wm (|xi − x j |) 1n , i = 0, . . . , n − 1

m = m + 1
end while
IMF = IMF∪ {sm }
s = s − sm

end while
IMF = IMF∪ {s}

Furthermore in the implemented algorithm we do not letm to go to infinity, instead
we use a stopping criterion as described in Sect. 2.1. For instance, we can define the
following quantity

SD := ‖sm+1 − sm‖2
‖sm‖2 (30)

and we can stop the process when the value SD reaches a certain threshold. Another
possible option is to introduce a limit on the maximal number of iterations for all the
inner loops. It is always possible to adopt different stopping criteria for different inner
loops.

If we consider the case of linear scaling, making use of (9), the matrixWm becomes

Wm =
⎡

⎣
w
(
xi−x j
lm

)

lm
· 1
n

⎤

⎦

n−1

i, j=0

=
⎡

⎣
w
(

i− j
(n−1)lm

)

lm
· 1
n

⎤

⎦

n−1

i, j=0

(31)

We point out that the previous formula represent an ideal Wm , however we need to
take into account the quadrature formula we use to compute the numerical convolution
in order to build the appropriate Wm to be used in the DIF algorithm.

For instance, if we use the rectangle rule, we need to substitute the exact value of
w(y) at y with its average value in the interval of length 1

n centered in y and multiply
this value for the length of interval itself. Furthermore we should handle appropriately
the boundaries of the support of w(y), in fact the half length of the support is, in
general, a non integer value. This can be done by handling separately the first and last
interval in the quadrature formula. In fact we can scale the value of the integral on
these two intervals proportionally to the actual length of the intervals themselves.

If we take into account all the aforementioned details we can reproduce a matrix
Wm which is row stochastic.

We observe that in the implemented code we simply scale each row of Wm by its
sum so that the matrix becomes row stochastic.
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Numerical analysis for iterative filtering with new… 15

3.1 Spectrum ofWm

Since Wm ∈ R
n×n represents the discrete convolution operator, it can be a circulant

matrix, Toeplitz matrix or it can have a more complex structure. Its structure depends
on the way we extend the signal outside its boundaries.

From now on we assume for simplicity that n is an odd natural number, and that we
have periodic extension of signals outside the boundaries, therefore Wm is a circulant
matrix given by

Wm =

⎡

⎢
⎢
⎢
⎣

c0 cn−1 . . . c1
c1 c0 . . . c2
...

...
. . .

...

cn−1 cn−2 . . . c0

⎤

⎥
⎥
⎥
⎦

(32)

where c j ≥ 0, for every j = 0, . . . , n − 1, and
∑n−1

j=0 c j = 1. Each row contains a
circular shift of the entries of a chosen vector filterwm . For the non periodic extension
case we refer the reader to [12].

Denoting by σ(Wm) the spectrum of the matrix, in the case of a circulant matrix it
is well known that the eigenvalues λ j ∈ σ(Wm), j = 0, . . . , n − 1 are given by the
formula

λ j = c0 + cn−1ω j + · · · + c1ω
n−1
j , for j = 0, . . . , n − 1 (33)

where i = √−1, and ω j = e
2π i j
n j-th power of the n-th root of unity, for j =

0, . . . , n − 1.
Since we construct the matrices Wm using symmetric filters wm , we have that

cn− j = c j for every j = 1, . . . , n−1
2 . Hence Wm is circulant, symmetric and

λ j = c0 + c1
(
ω j + ωn−1

j

)
+ c2

(
ω2

j + ωn−2
j

)
· · · + c n−1

2

(

ω
n−1
2

j + ω
n+1
2

j

)

= c0 +
n−1
2∑

k=1

ck
(
ωk

j + ωn−k
j

)
= c0 +

n−1
2∑

k=1

ck
(
e
2π i j
n k + e

2π i j
n (n−k)

)

= c0 +
n−1
2∑

k=1

ck
(
e
2π i j
n k − e

2π i j
n ke2π i j

)
(34)

Therefore

λ j = c0 + 2

n−1
2∑

k=1

ck cos

(
2π jk

n

)

, for j = 0, . . . , n − 1 (35)

It is evident that, for any j = 0, . . . , n − 1, λ j is real and σ(Wm) ⊆ [−1, 1] since
Wm is a stochastic matrix.
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16 A. Cicone, H. Zhou

Furthermore, if wemake the assumption that the filter half supports length is always
lm ≤ n−1

2 , then the entries c j of the matrix Wm are going to be zero at least for any
j ∈ [ n−1

4 , 3
4 (n − 1)].

We observe that the previous assumption is reasonable since it implies that we can
study oscillations with periods at most equal to half of the length of a signal.

Theorem 4 Considering the circulant matrix Wm given in (32), assuming that n > 1,∑n−1
j=0 c j = 1, c j ≥ 0, and cn− j = c j , for every j = 1, . . . , n − 1.
Then Wm is non-defective, diagonalizable and has real eigenvalues.
Furthermore, if the filter half supports length lm is small enough so that c0 = 1

and c j = 0, for every j = 1, . . . , n − 1, then we have n eigenvalues λ j all equal 1.
Otherwise, if the filter half supports length lm is big enough so that c0 < 1 and the

values ck correspond to the discretization of a function with compact and connected
support, then there is one and only one eigenvalue equal to 1, which is λ0, all the other
eigenvalues λ j are real and strictly less than one in absolute value. So they belong to
the interval (−1, 1).

Proof First of all we recall that symmetric matrices are always non-defective, diago-
nalizable and with a real spectrum.

In the case of c0 = 1 the conclusion follows immediately from the observation that
Wm reduces to an identity matrix.

When c0 < 1 from (35) it follows that λ0 = 1 and all the other eigenvalues
belong to the interval [−1, 1]. Let us assume, by contradiction, that there exists another
eigenvalue λd = 1 for some d ∈ {1, 2, . . . , n − 1}. We assume for simplicity that n
is odd. The proof in the even case works in a similar way.

From (35) and the fact that cn− j = c j , for every j = 1, . . . , n−1
2 , it follows that

λd = c0 + 2

n−1
2∑

k=1

ck cos

(
2πdk

n

)

, for d ∈ {1, 2, . . . , n − 1} (36)

In the right hand sidewehave among the terms ck ,which by themselveswould addup to
1, at least c1 > 0which is multiplied by cos

( 2πd
n

)
< 1 for any d ∈ {1, 2, . . . , n − 1}.

Therefore the right hand side will never add up to 1. Hence we have a contradiction.
From (35) it follows also that λd �= −1 for any d ∈ {1, 2, . . . , n − 1} because λd

is given by a convex combination of cosines and +1.
So all the eigenvalues of Wm except λ0 are real and strictly less than one in

modulus. ��
Weobserve that in the discrete iterative filtering algorithm the entries ck derive from

the discretization of a filter function which is by Definition 1 compactly supported.
Furthermore, since the filter function is used to compute the moving average of a
signal, it is reasonable to require its support to be connected.

Form this theorem it follows that

Corollary 1 Considering the matrix Wm given in the previous theorem, assuming c0 <

1 and that Wm is constructed using a filter wm that is produced as convolution of a
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Numerical analysis for iterative filtering with new… 17

symmetric filter hm with itself, then there is one and only one eigenvalue equal to 1,
all the other eigenvalues belong to the interval [0, 1).
Proof The proof follows directly from the previous theorem and the fact that the
matrix Wm = W̃ T

m ∗ W̃m = W̃ 2
m , where W̃m is a circulant symmetric convolution

matrix associated with the filter w̃m . ��
Corollary 2 Assuming c0 < 1, the eigenvector of Wm corresponding to λ0 = 1 is a
basis for the kernel of the matrix (I − Wm), which has dimension one.

Before presenting the main proposition we recall that, given a circulant matrix
C = [

cpq
]
p, q=0,...,n−1, its eigenvalues are

λp =
n−1∑

q=0

c1qe
−2π i p q

n p = 0, . . . , n − 1 (37)

and the corresponding eigenvectors are

u p = 1√
n

[
1, e−2π i p 1

n , . . . , e−2π i p n−1
n

]T
p = 0, . . . , n − 1 (38)

which form an orthonormal set.
We recall that an eigenvalue of a matrix is called semisimple whenever its algebraic

multiplicity coincides with its geometric multiplicity.

Proposition 2 Given a matrix Wm, assuming that all the assumptions of Theorem 4
and Corollary 1 hold true, and assuming that Wm = W for any m ≥ 1. Given{
λp
}
p=0,...,n−1, semisimple eigenvalues of W, and the corresponding eigenvectors

{
u p
}
p=0,...,n−1, we define thematrixU having as columns the eigenvectors u p. Assum-

ing that W has k zero eigenvalues, where k is a number in the set ∈ {0, 1, . . . , n−1},
Then

lim
m→∞(I − W )m = UZUT (39)

where U is unitary and Z is a diagonal matrix with entries all zero except k elements
in the diagonal which are equal to one.

Proof From Theorem 4 we know that W is diagonalizable, therefore the matrix U
is orthogonal and all the eigenvalues of W are semisimple. Furthermore, since the
eigenvectors of W are orthonormal, it follows that U is a unitary matrix. Hence W =
UDUT , where D is a diagonal matrix containing in its diagonal the eigenvalues ofW .
From the assumption thatW is associated with a double convolved filter it follows that
the spectrum ofW is contained in [0, 1], ref. Corollary 1. Therefore also the spectrum
of (I − W ) is contained in [0, 1]. Furthermore

(I − W ) = U (I − D)UT
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18 A. Cicone, H. Zhou

and I − D is a diagonal matrix whose diagonal entries are in the interval (0, 1) except
the first one which equals 0, ref. Corollary 2, and k entries that are equal to 1. Hence

lim
m→∞(I − W )m = lim

m→∞U (I − D)mUT = UZUT

where Z is a diagonal matrix with entries all zero except k elements in the diagonal
which are equal to one. ��

From the previous proposition it follows

Corollary 3 Given a signal s ∈ R
n, assuming that we are considering a doubly con-

volved filter, and the half filter support length is constant throughout all the steps of
an inner loop,

Then the first outer loop step of the DIF method converges to

IMF1 = lim
m→∞(I − W )ms = UZUT s (40)

So theDIFmethod in the limit produces IMFs that are projections of the given signal
s onto the eigenspace of W corresponding to the zero eigenvalue which has algebraic
and geometric multiplicity k ∈ {0, 1, . . . , n − 1}. Clearly, if W has only a trivial
kernel then themethod converges to the zero vector.We point out that since (37) is also
the Discrete Fourier Transform (DFT) formula of the sequence {c1q}q=0,...,n−1, where
C = [cpq ] is a circulant matrix, it follows that the eigenvalues ofW , can be computed
directly as the DFT of the sequence {w1q}q=0,...,n−1, by means of the Fast Fourier
Transform (FFT). If we regard the DFT as a discretization of the Fourier Transform
of the filter function w it becomes clear that, since the latter has only isolated zeros, in
many cases we will not have eigenvalues exactly equal to zero. So in general W has
only a trivial kernel and (40) converges to the zero vector. In order to ensure that the
method produces a non zero vector we need to discontinue the calculation introducing
some stopping criterion.

3.2 DIF inner and outer loop convergence in presence of a stopping criterion

If we assume that the half support length lm is computed only in the beginning of each
inner loop, then the first IMF is given by (29) and (40).

In order to have a finite time method we may introduce a stopping criterion in the
DIF algorithm, like the condition

‖sm+1 − sm‖2 < δ ∀m ≥ N0 (41)

for some fixed δ > 0.
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Then, based on Corollary 3, we produce an approximated first IMF given by

IMF1 = (I − W )N0s = U (I − D)N0UT s. (42)

Theorem 5 Given s ∈ R
n, we consider the convolutionmatrix W defined in (32), asso-

ciatedwith afilter vectorw givenas a symmetric filter h convolvedwith itself. Assuming
that W has k zero eigenvalues, where k is a number in the set ∈ {0, 1, . . . , n − 1},
and fixed δ > 0,

Then, calling s̃ = UT s, for the minimum N0 ∈ N such that it holds true the
inequality

N N0
0

(N0 + 1)N0+1 <
δ

‖̃s‖∞
√
n − 1 − k

(43)

we have that ‖sm+1 − sm‖2 < δ ∀m ≥ N0 and the first IMF is given by

IMF1 = U (I − D)N0UT s = U P

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
(1 − λ1)

N0

. . .

(1 − λn−1−k)
N0

1
. . .

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

PTUT s

(44)
where P is a permutation matrix which allows to reorder the columns of U, which cor-
respond to eigenvectors of W , so that the corresponding eigenvalues {λp}p=1,..., n−1
are in decreasing order.

Proof

‖sm+1 − sm‖2 = ‖(I − W )m+1 − (I − W )m‖2 = ‖U (I − D)m(I − D − I )UT s‖2
= ‖(I − D)m(I − D − I )UT s‖2 = ‖(I − D)m(I − D − I )̃s‖2

(45)

since U is a unitary matrix and where s̃ = UT s.
Given a permutation matrix P such that the entries of the diagonal PDPT are the

eigenvalues ofW in decreasingorder ofmagnitude, starting fromλ0 = 1, and assuming
that W has k zero eigenvalues, where k is a number in the set ∈ {0, 1, . . . , n − 1},
then
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‖(I − D)m(I − D − I )̃s‖2

≤

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

P

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
(1 − λ1)

mλ1
. . .

(1 − λn−1−k)
mλn−1−k

0
. . .

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

PT

⎡

⎢
⎣

‖̃s‖∞
...

‖̃s‖∞

⎤

⎥
⎦

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
2

≤ √
n − 1 − k

(

1 − 1

m + 1

)m 1

m + 1
‖̃s‖∞ = √

n − 1 − k
mm

(m + 1)m+1 ‖̃s‖∞

(46)

because the function (1 − λ)mλ achieves its maximum at λ = 1
m+1 for λ ∈ [0, 1].

Hence the stopping criterion (41) is fulfilled for N0 minimum natural number such
that 43 holds true. ��

We observe that, as we mentioned earlier, since (37) is also the Discrete Fourier
Transform (DFT) formula of the sequence {c1q}q=0,...,n−1, it follows that the eigenval-
ues ofW = [

wpq
]
p, q=0,...,n−1, can be computed directly as the DFT of the sequence

{w1q}q=0,...,n−1, by means of the Fast Fourier Transform (FFT). This calculation can
be done “off line”, in fact, once the filter shape w has been fixed, we can compute and
store its FFT for different values of the size of its support. This fact, together with other
previous results, can be used to improve the efficiency of the method as explained in
the following section.

It is interesting to notice that each IMF is generated as a linear combination of
elements in an orthonormal basis. Therefore we can regard the IMFs as elements of
a frame which allows to decompose a given signal into a few significant components.
From this prospective the IF algorithm can be viewed as a method that automatically
produces elements of a frame associated with a signal. The possible connections
between IF and the frame theory are fascinating, but out of the scope of the present
work. We plan to follow this direction of research in a future work.

Regarding the DIF outer loop convergence they hold true the same results described
in Sect. 2.2 for the continuous setting. In fact, while the inner loop of the IF algorithm
requires a discretization to deal with discrete signals, the outer loop does not require
any form of discretization and it works the very same as in the continuous setting.

4 Efficient implementation of the DIF algorithm

In this section we present an efficient implementation of the DIF algorithm applied to
the decomposition of a signal s of length n, named Fast Iterative Filtering algorithm.
This approach assumes implicitly that the signal at the boundaries is periodical. This
is clearly a limitation, since most signals are far from being periodical at the edges,
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but it can be treated by pre-extending the signal and making it periodical at the new
boundaries [12,69].

We start from Theorem 5 which allows to compute each IMF as fast as the FFT. In
fact, we can compute the IMF using (44) where the eigenvalues {λk}k=1, 2,..., n can be
evaluated using (37), or bymeans of the Fast Fourier Transform since (37) is equivalent
to the Discrete Fourier Transform of the sequence {w1q}q=0,...,n−1. Furthermore we
recall thatUT s is the DFT of s that can be computed using the FFT algorithm, whose
computational complexity is n log(n), and that multiplying on the left by the matrix
U = [uk] is equivalent to computing the inverse DFT (iDFT) which can be done using
the inverse FFT. Hence the following corollary holds true and provides an explicit
formula for the calculation of each IMF.

Corollary 4 Given a signal s ∈ R
n, and a filter vector w derived from a symmetric

filter h convolved with itself. Fixed δ > 0, then, for the minimum N0 ∈ N such that

the stopping criterion SD = ‖sN0+1−sN0‖2
‖sN0‖2 < δ is satisfied, the first IMF contained in

s is given by

IMF =
n−1∑

k=0

uk(1 − λk)
N0σk = iDFT

(
(I − D)N0DFT(s)

)
(47)

where σk represents the k-th element of the DFT of the signal s, and D is a diagonal
matrix containing as entries the eigenvalues of the convolution matrix W defined in
(32), associated with the filter vector w.

We exploit this theoretical new result in the so called Fast Iterative Filtering (FIF)
method implemented forMatlab and available online.2 The pseudocode of FIF is given
in Algorithm 3.

Algorithm 3 Fast Iterative Filtering IMF = FIF(s)
IMF = {}
while the number of extrema of s ≥ 2 do

compute the filter length l for s(x) and the corresponding filter w

compute the DFT of the signal s and of the filter w

while the stopping criterion is not satisfied do
ŝm+1 = (I − diag (DFT(w)))mDFT(s)
m = m + 1

end while
IMF = IMF∪ {iDFT (̂sm )}
s = s − iDFT (̂sm )

end while
IMF = IMF∪ {s}

In FIF method we speed up the calculations significantly by computing the convo-
lution as product in the frequency domain via FFT, as suggested by Corollary 4. In the
recently published paper [11] several tests and a comparison of the standard DIF and

2 www.cicone.com.
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Table 1 Computational times
versus the number of sample
points n for the decomposition
of both artificial and real life
signals via DIF and FIF method

n (NIMF) DIF (ave. num. it.) FIF (ave. num. it.)

1.6 · 103 (1) 0.0448 (8) 0.0049 (8)

1.6 · 104 (5) 5.58 (6) 0.079 (6)

2 · 104 (22) 81.77 (17) 0.512 (17)

1.2 · 107 (5) 3329.7 (4) 40.72 (4)

In between parentheses the number of IMFs NIMF, and the average
number of iterations needed to compute each IMF. All tests were con-
ducted on a laptop equipped with an Intel Core i7-8550U CPU, 1.80
GHz, 16.0 GB RAM, Windows 10 Pro, Matlab R2018a. The DIF and
FIF Matlab codes are freely available at www.cicone.com. Details on
the signals and their decompositions can be found in [11]

the newly proposed FIF method have been conducted on both artificial and real life
signals. The results obtained in those examples show, as expected, that the two tech-
niques produces decompositions that are identical, up to machine precision. However,
based on those tests, the newly proposed FIF method proves to be roughly three order
of magnitudes faster, from a computational time prospective, than the standard DIF
method, when applied to signals containing 104 sample points or more, Table 1.

We point out that other approaches can be implemented and explored to further
speed up the computational cost of the FIF method. For instance, one possibility is the
precomputation of the number of iterations needed to achieve the required accuracy δ

in the computation of a certain IMF. This number of iterations can be approximated
by the minimum N0 ∈ N satisfying the inequality (43).

Another idea that can be implemented is the identification of the appropriate number
of iteration via a bisection approach. The FIF algorithm inner loop can be initiated, in
fact, with a reasonable big value of m and then, via a bisection approach, the minimal
value of m which allows to satisfy the stopping criterion can be identified.

To speed up the FIF computation it is also possible to precompute the eigenvalues
λk corresponding to any possible scaling of a filter w. In doing so we can reduce even
more the computational time of the algorithm.

The FIF algorithm further acceleration is, however, out of the scope of this paper,
whose focus is the numerical analysis of the IF method. The interested reader can find
more ideas and details in this direction of research in the recently published paper
[11].

5 Conclusions and outlook

In this work we tackle the problem of a complete analysis of the IF algorithm both
in the continuous and discrete setting. In particular in the continuous setting we show
how IF can decompose a signal into a finite number of so called IMFs and that each
IMF contains frequencies of the original signal filtered in a “smart way”.

In the discrete setting we prove that the DIF method is also convergent and, in the
case of periodic extension at the boundaries of the given signal, we provide an explicit
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formula for the a priori calculation of each IMF. From this equation it follows that
each IMF is a smart summation of eigenvectors of a circulant matrix.

We show that no fake oscillations can be produced neither in the continuous nor in
the discrete setting.

From the properties of the DIF algorithm and the explicit formula for the IMFs
produced by this method and derived in this work, we propose new ideas that has been
directly incorporated in the implemented algorithm in order to increase its efficiency
and reduce its computational complexity. The result is the so called FIF method which
allows to quickly decompose a signal by means of the FFT. This is an important result
in this area of research which opens the doors to an almost instantaneous analysis of
non stationary signals.

There are several open problems that remain unsolved. First of all from the proposed
analysis it is clear that different filter functions have different Fourier transform and
hence the decomposition produced by IF and DIF algorithms is directly influenced
by this choice. In a future work we plan to study more in details the connections
between the shape of the filters and the quality of the decomposition produced by
these methods.

In the current work we analyzed the DIF assuming a periodic extension of the
signals at the boundaries. We plan to study in a future work the behavior of the DIF
method in the case of reflective, anti-reflective and other boundaries extensions of a
signal.

Based on the numerical evidence [14,17]we claim that the IterativeFilteringmethod
is stable under perturbations of the signal. We plan to study rigorously such stability
in a future work.

The results about the DIF algorithm convergence suggest that the method allows,
in general, to automatically generate a frame associated with a given signal. We plan
to further analyze this connection in a future work.

Finally we recall that it is still an open problem how to extend all the results
obtained for the Iterative Filtering technique to the case of the Adaptive Local Iterative
Filtering method, whose convergence and stability analysis is still under investigation
[13,14,61].
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