
Numerische Mathematik (2020) 146:629–659
https://doi.org/10.1007/s00211-020-01150-y

Numerische
Mathematik

Convergence of a Godunov scheme to an
Audusse–Perthame adapted entropy solution for
conservation laws with BV spatial flux

Shyam Sundar Ghoshal1 · Animesh Jana1 · John D. Towers2

Received: 7 December 2019 / Revised: 15 August 2020 / Accepted: 11 September 2020 /
Published online: 26 September 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
In this article we consider the initial value problem for a scalar conservation law
in one space dimension with a spatially discontinuous flux. There may be infinitely
many flux discontinuities, and the set of discontinuities may have accumulation points.
Thus the existence of traces cannot be assumed. In Audusse and Perthame (Proc R Soc
Edinb Sect A 135:253–265, 2005) proved a uniqueness result that does not require the
existence of traces, using adapted entropies. We generalize the Godunov-type scheme
of Adimurthi et al. (SIAM J Numer Anal 42(1):179–208, 2004) for this problem
with the following assumptions on the flux function, (i) the flux is BV in the spatial
variable and (ii) the critical point of the flux is BV as a function of the space variable.
We prove that the Godunov approximations converge to an adapted entropy solution,
thus providing an existence result, and extending the convergence result of Adimurthi,
Jaffré and Gowda.

Mathematics Subject Classification 35L65 · 35B44 · 35A01 · 65M06 · 65M08

1 Introduction

In this articlewe prove existence of an adapted entropy solution in the sense ofAudusse
and Perthame [6], via a convergence proof for aGodunov type finite difference scheme,
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to the following Cauchy problem:

∂t u + ∂x A(u, x) = 0 for (x, t) ∈ R × (0, T ) =: �T , (1)

u(x, 0) = u0 for x ∈ R. (2)

The partial differential equation appearing above is a scalar one-dimensional conser-
vation law whose flux A(u, x) has a spatial dependence that may have infinitely many
spatial discontinuities. In contrast to all but a few previous papers on conservation laws
with discontinuous flux that address the uniqueness question, we make no assumption
about the existence of traces, and so the set of spatial flux discontinuities could have
accumulation points.

Scalar conservation laws with discontinuous flux have a number of applications
including vehicle traffic flow with rapid transitions in road conditions [11], sedimen-
tation in clarifier-thickeners [8,10], oil recovery simulation [20], two phase flow in
porous media [4], and granular flow [16].

Even in the absence of spatial flux discontinuities, solutions of conservation laws
develop discontinuities (shocks). Thus we seek weak solutions, which are bounded
measurable functions u satisfying (1) in the sense of distributions. Closely related to the
presence of shocks is the problem of nonuniqueness. Weak solutions are not generally
unique without an additional condition or conditions, so-called entropy conditions.
For the classical case of a conservation law with a spatially independent flux

ut + f (u)x = 0, (3)

one requires that the Kružkov entropy inequalities hold in the sense of distributions:

∂t |u − k| + ∂x {sgn(u − k)( f (u) − f (k))} ≤ 0, ∀k ∈ R, (4)

and then uniqueness follows from (4).
There are two main difficulties that arise which are not present in the classical

case (3). The first problem is existence, the new difficulty being that getting a T V
bound for the solution with BV initial data may not be possible in general due to the
counter-examples given in [1,12]. More interestingly, a T V bound for the solution is
possible near the interface for non-uniformly convex fluxes (see Reference Ghoshal
[13]). Severalmethods have been used to dealwith the lack of a spatial variation bound,
the main ones being the so-called singular mapping, compensated compactness, and a
local variation bound. In this paper we employ the singular mapping approach, applied
to approximations generated by a Godunov type difference scheme. The singular
mapping technique is used to get a T V bound of a transformed (via the singular
mapping) quantity. Once the T V bound of the transformed quantity is achieved we can
pass to the limit and get a solution satisfying the adapted entropy inequality. Showing
that the limit of the numerical approximations satisfies the adapted entropy inequalities
is not straightforward due to the presence of infinitely many flux discontinuities.

The second problem is uniqueness. The usual Kružkov entropy inequalities do not
apply to the discontinuous case. Also, it turns out that there are many reasonable
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notions of entropy solution [3,5]. One must consider the application in order to decide
on which definition of entropy solution to use.

There have been many papers on the subject of scalar conservation laws with spa-
tially discontinuous flux over the past several decades. Most papers on this subject
that have addressed the uniqueness question have assumed a finite number of flux
discontinuities. Often the case of a single flux discontinuity is addressed, with the
understanding that the results are readily extended to the case of any finite number of
flux discontinuities. The admissibility condition has usually boiled down to a so-called
interface condition (in addition to the Rankine-Hugoniot condition) that involves the
traces of the solution across the spatial flux discontinuity. Often the interface condition
consists of one or more inequalities, and is often derived from some modified version
of the classical Kružkov entropy inequality.

When there are only finitely many flux discontinuities, existence of the required
traces is guaranteed, assuming that u �→ A(u, x) is genuinely nonlinear [17,23].
However if there are infinitely many flux discontinuities, and the subset of R where
they occur has one or more accumulation points, these existence results for traces do
not apply. Thus a definition of entropy solution which does not refer to traces is of
great interest.

A method has been developed first in [7], and then extended in [6], using so-called
adapted entropy inequalities, that provides a notion of entropy solution and does not
require the existence of traces. For the conservation law ut + A(u, x)x = 0 with
x �→ A(u, x) smooth, the classical Kružkov inequality (4) becomes

∂t |u − k| + ∂x {sgn(u − k)(A(u, x) − A(k, x))}
+sgn(u − k)∂x A(k, x) ≤ 0, ∀k ∈ R. (5)

Due to the term sgn(u − k)∂x A(k, x), this definition does not make sense without
modification when one tries to extend it to the case of the discontinuous flux A(u, x)
considered here.

The adapted entropy approach consists of replacing the constants k ∈ Rby functions
kα defined by the equations

A(kα(x), x) = α, x ∈ R.

With this approach the troublesome term sgn(u − k)∂x A(k, x) is not present, and the
definition of adapted entropy solution is

∂t |u − kα| + ∂x {sgn(u − kα)(A(u, x) − α)} ≤ 0. (6)

Baiti and Jenssen [7] used this approach for the closely related problem where u �→
A(u, x) is strictly increasing. They proved both existence and uniqueness, with the
additional assumption that the flux has the form A(u, x) = Ã(u, v(x)). Audusse and
Perthame [6] proved uniqueness for both the unimodal case considered in this paper,
along with the case where u �→ A(u, x) is strictly increasing. The existence question
was left open.
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Recently there has been renewed interest in the existence question for problems
where the Audusse–Perthame uniqueness theory applies. Piccoli and Tournus [19]
proved existence for the problemwhereu �→ A(u, x) is strictly increasing, andwithout
assuming the special functional form A(u, x) = Ã(u, v(x)). This was accomplished
under the simplifying assumption that u �→ A(u, x) is concave. Towers [22] extended
the result of [19] to the case where u �→ A(u, x) is not required to be concave. Panov
[18] proved existence of an adapted entropy solution, under assumptions that include
our setup, by ameasure-valued solution approach. The approach of [18] is quite general
but more abstract than ours, and is not associated with a numerical algorithm.

The Godunov type scheme of this paper is a generalization of the scheme developed
in [2] for the case where the flux has the form

A(u, x) = g(u)(1 − H(x)) + f (u)H(x), (7)

where each of g, f is unimodal and H(·) denotes the Heaviside function. This is a so-
called two-flux problem, where there is a single spatial flux discontinuity. The authors
of [2] proposed a very simple interface flux that extends the classical Godunov flux
so that it properly handles a single flux discontinuity. The singular mapping technique
is used to prove that the Godunov approximations converge to a weak solution of the
conservation law. With an additional regularity assumption about the limit solution
(the solution is assumed to be continuous except for finitely many Lipschitz curves in
R × R+), they also prove uniqueness.

The scheme and results of the present paper improve and extend those of Adimurthi
et al. [2]. By adopting the Audusse–Perthame definition of entropy solution [6], and
then invoking the uniqueness result of [6], we are able to remove the regularity assump-
tion employed in [2], and also the restriction to finitely many flux discontinuities.
Moreover, the scheme of [2] is defined on a nonstandard spatial grid that is specific to
the case of a single flux discontinuity, and would be inconvenient from a programming
viewpoint for the case of multiple flux discontinuities. Our scheme uses a standard
spatial grid, and in fact our algorithm does not require that flux discontinuities be
specifically located, identified, or processed in any special way. Our approach is based
on the observation that it is possible to simply apply the Godunov interface flux at
every grid cell boundary. At cell boundaries where there is no flux discontinuity, the
interface flux automatically reverts to the classical Godunov flux, as desired. This not
only makes it possible to use a standard spatial grid, but also simplifies the analysis
of the scheme.

The remainder of the paper is organized as follows. In Sect. 2 we specify the
assumptions on the data of the problem, give the definition of adapted entropy solution,
and state our main theorem, Theorem 2.5. In Sect. 3 we give the details of the Godunov
numerical scheme, and prove convergence (along a subsequence) of the resulting
approximations. In Sect. 4 we show that a (subsequential) limit solution guaranteed by
our convergence theorem is an adapted entropy solution in the sense of Definition 2.1,
completing the proof of the main theorem.
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2 Main theorem

We assume that the flux function A : R×R → R+ satisfies the following conditions:

H-1 For some r > 0

|A(u1, x) − A(u2, x)| ≤ C |u1 − u2| for u1, u2 ∈ [−r , r ]

where the constant C = C(r) is independent of x .
H-2 There is a BV function a : R → R and a continuous function R : R → R

+
such that

|A(u, x) − A(u, y)| ≤ R(u)|a(x) − a(y)|.

H-3 For each x ∈ R the function u �→ A(u, x) is unimodal, meaning that there
is uM (x) ∈ R such that A(uM (x), x) = 0 and A(·, x) is decreasing on
(−∞, uM (x)] and increasing on [uM (x),∞). We further assume that there
is a continuous function γ : [0,∞) → [0,∞), which is strictly increasing with
γ (0) = 0, γ (+∞) = +∞, and such that

A(u, x) ≥ γ (u − uM (x)) for all x ∈ R and u ∈ [uM (x),∞],
A(u, x) ≥ γ (−(u − uM (x))) for all x ∈ R and u ∈ (−∞, uM (x)]. (8)

H-4 uM ∈ BV (R).

Above we have used the notation BV(R) to denote the set of functions of bounded
variation on R, i.e., those functions ρ : R �→ R for which

TV(ρ) := sup

{
K∑

k=1

|ρ(ξk) − ρ(ξk−1)|
}

< ∞,

where the sup extends over all K ≥ 1 and all partitions {ξ0 < ξ1 < . . . < ξK } of R.
By AssumptionH-3, for each α ≥ 0 there exist two functions k+

α (x) ∈ [uM (x),∞)

and k−
α (x) ∈ (−∞, uM (x)] uniquely determined from the following equations:

A(k+
α (x), x) = A(k−

α (x), x) = α. (9)

Related to the flux A(·, ·) is the so-called singular mapping:

�(u, x) :=
u∫

uM (x)

∣∣∣∣ ∂

∂u
A(θ, x)

∣∣∣∣ dθ. (10)

It is clear that for each x ∈ R the mapping u �→ �(u, x) is strictly increasing.
Therefore for each x ∈ R the map u �→ �(u, x) is invertible and we denote the
inverse map by α(u, x). Notice that α(·, ·) and �(·, ·) satisfy the following relation
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�(α(u, x), x) = u = α(�(u, x), x) for all x ∈ R. (11)

Also, due toAssumptionH-3, (10) is equivalent to�(u, x) = sgn(u−uM (x))A(u, x).

Definition 2.1 A function u ∈ L∞(�T ) ∩ C([0, T ] : L1
loc(R)) is an adapted entropy

solution of the Cauchy problem (1)–(2) if it satisfies the following adapted entropy
inequality in the sense of distributions:

∂t |u − k±
α (x)| + ∂x

[
sgn(u − k±

α (x))(A(u, x) − α)
] ≤ 0 (12)

for all α ≥ 0 or equivalently,∫
R+

∫
R

∂φ

∂t
|u(x, t) − k±

α (x)| dxdt

+
∫
R+

∫
R

∂φ

∂x
sgn(u(x, t) − k±

α (x))(A(u(x, t), x) − α) dxdt

+
∫
R

∣∣u0(x) − k±
α (x)

∣∣ φ(x, 0) dx ≥ 0

(13)

for any 0 ≤ φ ∈ C∞
c (R × [0,∞)).

For uniqueness and stability we will rely on the following result by Panov.

Theorem 2.2 (Uniqueness Theorem [18]) Let u, v be adapted entropy solutions in
the sense of Definition 2.1, with corresponding initial data u0, v0, and assume that
Assumptions (H-1)–(H-4) hold. Then for a.e. t ∈ [0, T ] and any r > 0 we have∫
|x |≤r

|α(u(x, t), x) − α(v(x, t), x)| dx ≤
∫

|x |≤r+L1t

|α(u0(x), x) − α(v0(x), x)| dx

(14)

where L1 := sup{|∂u A(u, x)|; x ∈ R, |u| ≤ max(‖u0‖L∞ , ‖v0‖L∞)} and α is as in
(11).

Though Theorem 2.2 is not stated in [18] but it essentially follows from the tech-
niques used in [18, Theorem 2] and Kružkov’s uniqueness proof [15] for scalar
conservation laws. For sake of completeness we give a sketch of the proof for
Theorem 2.2 in “Appendix”. The main reason to rely on Theorem 2.2 instead of
the uniqueness result in [6] is to exclude the following assumption [6, Hypothe-
sis (H1); page 5] on flux:

• A(u,x) is continuous at all points of R × R \ N where N is a closed set of zero
measure.

Audusse and Perthame [6] presents the following two examples to which their
uniqueness theorem applies.
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Example 2.3

A(u, x) = S(x)u2, S(x) > 0.

In this example uM (x) = 0 for all x ∈ R. Assumptions (H-1)–(H-4) are satisfied if
S ∈ BV (R), and S(x) ≥ ε for some ε > 0.

Example 2.4

A(u, x) = (u − uM (x))2.

Assumptions (H-1)–(H-4) are satisfied for this example also if we assume that uM ∈
BV (R).

Our main theorem is

Theorem 2.5 Assume that the flux function A satisfies (H-1)–(H-4), and that u0 ∈
L∞(R). Then as the mesh size � → 0, the approximations u� generated by the
Godunov scheme described in Sect. 3 converge in L1

loc(�T ) and pointwise a.e in
�T to the unique adapted entropy solution u ∈ L∞(�T ) ∩ C([0, T ] : L1

loc(R))

corresponding to the Cauchy problem (1)–(2) with initial data u0.

3 Godunov scheme and compactness

For �x > 0 and �t > 0 consider equidistant spatial grid points x j := j�x for
j ∈ Z and temporal grid points tn := n�t for integers 0 ≤ n ≤ N . Here N is the
integer such that T ∈ [t N , t N+1). Let λ := �t/�x . We fix the notation χ j (x) for
the indicator function of I j := [x j − �x/2, x j + �x/2), and χn(t) for the indicator
function of I n := [tn, tn+1). Next we approximate initial data u0 ∈ BV (R) by a
piecewise constant function u�

0 defined as follows:

u�
0 :=

∑
j∈Z

χ j (x)u
0
j where u0j = u0(x j ) for j ∈ Z. (15)

Suppose m0
j := max{u0(x); x ∈ I j } and m0

j := min{u0(x); x ∈ I j }. Then, for any
r > 0 we have

∫
[−r ,r ]

∣∣u0(x) − u�
0 (x)

∣∣ dx ≤
∑
j∈Z

∫
I j

∣∣∣m0
j − m0

j

∣∣∣ dx ≤ �xT V (u0) → 0 as �x → 0.

Therefore, u�
0 → u0 in L1

loc(R). Later this argument is also used in Lemma 3.14. The
approximations generated by the scheme are denoted by unj , where u

n
j ≈ u(x j , tn).

The grid function {unj } is extended to a function defined on �T via
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u�(x, t) =
N∑

n=0

∑
j∈Z

χ j (x)χ
n(t)unj . (16)

We use the notation �+,�− as standard difference operator in x variable, that is,
�+v j = v j+1 − v j and �−v j = v j − v j−1. The Godunov type scheme that we
employ is then:

un+1
j = unj − λ�− Ā(unj , u

n
j+1, x j , x j+1), j ∈ Z, n = 0, 1, . . . , N , (17)

where the numerical flux Ā is

Ā(u, v, x j , x j+1) := max
{
A(max(u, uM (x j )), x j ), A(min(v, uM (x j+1)), x j+1)

}
.

(18)

When A(·, x j ) = A(·, x j+1), the flux Ā reduces to the classical Godunov flux that
is used for conservation laws where the flux does not have a spatial dependence.
Otherwise Ā is a generalization of the Godunov flux proposed in [2] for the two-flux
problem where the flux is given by (7). It is readily verified that Ā(u, u, x j , x j ) =
A(u, x j ) and that Ā(u, v, x j , x j+1) is nondecreasing (nonincreasing) as a function of
u (v).

Consider �(·, ·) as in (10). Let

znj = �(unj , x j ), z�(x, t) =
N∑

n=0

∑
j∈Z

χ j (x)χ
n(t)znj .

(19)

We obtain compactness for {u�} via the singular mapping technique, which consists of
first proving compactness for the sequence {z�}, and then observing that convergence
of the original sequence {u�} follows from the fact that u �→ �(u, x) has a continuous
inverse.

For our analysis we will assume that u0 − uM has compact support and u0 ∈
BV(R). We will show in Sect. 4 that the solution we obtain as a limit of numerical
approximations satisfies the adapted entropy inequality (12). Using (14), the resulting
existence theorem is then extended to the case of u0 ∈ L∞(R) via approximations to
u0 that are in BV and are equal to uM outside of compact sets.

Let

ᾱ = sup
x∈R

A(u0(x), x). (20)
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By Assumption H-1, and since ||u0||∞ < ∞ (which follows from u0 ∈ BV(R)),
ᾱ < ∞. Define k±

ᾱ (x) via the equations

A(k−
ᾱ (x), x) = ᾱ, k−

ᾱ (x) ≤ uM (x),

A(k+
ᾱ (x), x) = ᾱ, k+

ᾱ (x) ≥ uM (x).
(21)

Lemma 3.1 The following bounds are satisfied:

sup
x∈R

∣∣k±
ᾱ

∣∣(x) < ∞. (22)

Proof By definition, uM (x) ≤ k+
ᾱ (x). On the other hand, by (8) and (21), we have

γ (k+
ᾱ (x) − uM (x)) ≤ ᾱ for all x ∈ R. (23)

By Assumption H-3, γ −1 is defined on [0,∞). Applying γ −1 to both sides of (23)
yields

k+
ᾱ (x) − uM (x) ≤ γ −1(ᾱ) for all x ∈ R. (24)

Thus

uM (x) ≤ k+
ᾱ (x) ≤ uM (x) + γ −1(ᾱ) for all x ∈ R. (25)

The desired bound for k+
ᾱ (x) then follows from (25), along with the fact that uM ∈

L∞(R) (which follows from uM ∈ BV(R)). The proof for k−
ᾱ (x) is similar. �


Let

M = max
(
supx∈R

∣∣k−
ᾱ (x)

∣∣ , supx∈R ∣∣k+
ᾱ (x)

∣∣) , R̄ = sup{R(u); |u| ≤ M},
L = sup{|∂u A(u, x)| : |u| ≤ M, x ∈ R}. (26)

Note that by AssumptionH-1, L < ∞. Since R is continuous we have R̄ < ∞. Also,
by (21) we have k−

ᾱ (x) ≤ uM (x) ≤ k+
ᾱ (x) for all x ∈ R, implying that ||uM ||∞ ≤ M.

Lemma 3.2 The numerical flux Ā satisfies the following continuity estimates:

∣∣ Ā(û, v, x, y) − Ā(u, v, x, y)
∣∣ ≤ L

∣∣û − u
∣∣ ,∣∣ Ā(u, v̂, x, y) − Ā(u, v, x, y)

∣∣ ≤ L
∣∣v̂ − v

∣∣ ,∣∣ Ā(u, v, x̂, y) − Ā(u, v, x, y)
∣∣ ≤ R(max(u, uM (x̂)))

∣∣a(x̂) − a(x)
∣∣

+ L
∣∣uM (x̂) − uM (x)

∣∣ ,∣∣ Ā(u, v, x, ŷ) − Ā(u, v, x, y)
∣∣ ≤ R(min(v, uM (ŷ)))

∣∣a(ŷ) − a(y)
∣∣

+ L
∣∣uM (ŷ) − uM (y)

∣∣ ,

(27)

for u, û, v, v̂ ∈ [−M,M] and x, x̂, y, ŷ ∈ R.
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Proof These inequalities follow from the definition of Ā along with

|max(a, b) − max(c, b)| ≤ |a − c| , |min(a, b) − min(c, b)| ≤ |a − c| . (28)

More specifically, from (18) and (28) we have

∣∣ Ā(û, v, x, y) − Ā(u, v, x, y)
∣∣ ≤ ∣∣A(max(û, uM (x)), x) − A(max(u, uM (x)), x)

∣∣
≤ L

∣∣max(û, uM (x)) − max(u, uM (x))
∣∣

≤ L
∣∣û − u

∣∣ .
The second inequality in (27) can be proven in a similar manner. By using definition
(18) and inequalities in (28) we have

∣∣ Ā(u, v, x̂, y) − Ā(u, v, x, y)
∣∣

≤ ∣∣A(max(u, uM (x̂)), x̂) − A(max(u, uM (x)), x)
∣∣

≤ ∣∣A(max(u, uM (x̂)), x) − A(max(u, uM (x)), x)
∣∣

+ ∣∣A(max(u, uM (x̂)), x̂) − A(max(u, uM (x̂)), x)
∣∣

≤ L
∣∣max(u, uM (x̂)) − max(u, uM (x))

∣∣
+R(max(u, uM (x̂)))

∣∣a(x̂) − a(x)
∣∣

≤ L
∣∣uM (x̂) − uM (x)

∣∣ + R(max(u, uM (x̂)))
∣∣a(x̂) − a(x)

∣∣ .
The last inequality in (27) can be shown in a similar way. �

Lemma 3.3 Let u ∈ [−M,M] and x, y ∈ R. Then we have

|�(u, x) − �(u, y)| ≤ L |uM (x) − uM (y)| + R(u) |a(x) − a(y)| . (29)

Proof We start with the observation that

�(u, x) − �(u, y) =

⎧⎪⎪⎨
⎪⎪⎩

−A(u, x) + A(u, y) if uM (x) ≥ u and uM (y) ≥ u,

A(u, x) + A(u, y) if uM (x) < u and uM (y) ≥ u,

−A(u, x) − A(u, y) if uM (x) ≥ u and uM (y) < u,

A(u, x) − A(u, y) if uM (x) < u and uM (y) < u.

When uM (x) < u ≤ uM (y) we have

�(u, x) − �(u, y) = A(u, x) + A(u, y)

≤ |A(u, x) − A(uM (x), x)| + |A(u, y) − A(uM (y), y)|
≤ L |uM (x) − uM (y)| .

Similarly, when uM (y) < u ≤ uM (x) we have

�(u, x) − �(u, y) ≤ L |uM (x) − uM (y)| .
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In the other cases we can estimate directly and get

�(u, x) − �(u, y) ≤ R(u) |a(x) − a(y)| .

By symmetry we have

|�(u, x) − �(u, y)| ≤ R(u) |a(x) − a(y)| + L |uM (x) − uM (y)| .

�

Lemma 3.4 The grid functions {k−

ᾱ (x j )} j∈Z and {k+
ᾱ (x j )} j∈Z are stationary solutions

of the difference scheme.

Proof We will prove the lemma for {k+
ᾱ (x j )}. The proof for {k−

ᾱ (x j )} is similar. It
suffices to show that

Ā(k+
ᾱ (x j ), k

+
ᾱ (x j+1), x j , x j+1) = ᾱ, j ∈ Z.

By definition

k+
ᾱ (x j ) ≥ uM (x j ), k+

ᾱ (x j+1) ≥ uM (x j+1).

Thus, referring to (18),

Ā(k+
ᾱ (x j ), k

+
ᾱ (x j+1), x j , x j+1) = max

{
A(k+

ᾱ (x j ), x j ), A(uM (x j+1), x j+1)
}

= max {ᾱ, 0)} = ᾱ.

Recalling the formula for the scheme (17), it is clear from the above that {k+
ᾱ (x j )} j∈Z

is a stationary solution. �

For the convergence analysis that follows we assume that � := (�x,�t) → 0

with the ratio λ = �t/�x fixed and satisfying the CFL condition

λL ≤ 1. (30)

Lemma 3.5 Assume that λ is chosen so that the CFL condition (30) holds.

The scheme is monotone, meaning that if
∣∣∣vnj ∣∣∣ , ∣∣∣wn

j

∣∣∣ ≤ M for j ∈ Z, then

vnj ≤ wn
j , j ∈ Z �⇒ vn+1

j ≤ wn+1
j , j ∈ Z.

Proof We define Hj (u, v, w) as follows

Hj (u, v, w) := v − λ
(
Ā(v,w, x j , x j+1) − Ā(u, v, x j−1, x j )

)
. (31)
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We show that Hj is nondecreasing in each variable. Note that from definition (18) it
is clear that Ā(·, ·, x j , x j+1) is nondecreasing in the first variable and nonincreasing
in the second variable. Therefore, from (31) we have

Hj (u1, v, w) ≤ Hj (u2, v, w) for u1 ≤ u2,

Hj (u, v, w1) ≤ Hj (u, v, w2) for w1 ≤ w2.

Next we define

u∗ ≤ uM (x j ) such that A(u, x j−1) = A(u∗, x j ) when u ≥ uM (x j−1),

w∗ ≥ uM (x j ) such that A(w, x j+1) = A(w∗, x j ) when w ≤ uM (x j+1).

For v1 ≤ v2 we denote I1 = Ā(u, v1, x j−1, x j ) − Ā(u, v2, x j−1, x j ) and I2 =
Ā(v1, w, x j , x j+1) − Ā(v2, w, x j , x j+1) and I = I1 − I2. From (18) we have the
following:

I1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A(v1, x j ) − A(u∗, x j ) if u ≥ uM (x j−1) and v1 ≤ u∗ ≤ v2,

A(v1, x j ) − A(v2, x j ) if u ≥ uM (x j−1) and v1 ≤ v2 ≤ u∗,
A(v1, x j ) − A(v2, x j ) if u ≤ uM (x j−1) and v1 ≤ v2 ≤ uM (x j ),
A(v1, x j ) if u ≤ uM (x j−1) and v1 ≤ uM (x j ) ≤ v2,

0 otherwise.

(32)

I2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A(w∗, x j ) − A(v2, x j ) if w ≤ uM (x j+1) and v1 ≤ w∗ ≤ v2,

A(v1, x j ) − A(v2, x j ) if w ≤ uM (x j+1) and w∗ ≤ v1 ≤ v2,

A(v1, x j ) − A(v2, x j ) if w ≥ uM (x j+1) and uM (x j ) ≤ v1 ≤ v2,

−A(v2, x j ) if w ≥ uM (x j+1) and v1 ≤ uM (x j ) ≤ v2,

0 otherwise.

(33)

From (32) and (33) it follows that I = −I2 if v1 ≥ uM (x j ) and I = I1 if v2 ≤ uM (x j ).
In both the cases we have |I | ≤ L|v1 − v2|. When v1 ≤ uM (x j ) ≤ v2 we have

|I | ≤ |I1| + |I2| ≤ L(|v1 − uM (x j )| + |v2 − uM (x j )|) = L|v1 − v2|. (34)

Therefore we have

Hj (u, v1, w) − Hj (u, v2, w) = v1 − v2 + λI ≤ (1 − λL)(v1 − v2) ≤ 0.

Hence, the proof is completed by invoking the CFL condition (30). �

Lemma 3.6 Assume that the CFL condition (30) holds. Then,∣∣∣unj ∣∣∣ ≤ M, j ∈ Z, n ≥ 0. (35)

Proof From (20), we have

A(u0(x), x) ≤ ᾱ, ∀x ∈ R. (36)
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Applying the two branches of the inverse function A−1(·, x) to (36), and using the
fact that the increasing branch preserves order, while the decreasing branch reverses
order, we have

k−
ᾱ (x) ≤ u0(x) ≤ k+

ᾱ (x), ∀x ∈ R. (37)

By evaluation at x = x j , we also have

k−
ᾱ (x j ) ≤ u0j ≤ k+

ᾱ (x j ), j ∈ Z. (38)

Thus
∣∣∣u0j ∣∣∣ ≤ M for j ∈ Z. It is clear from (26) that also

∣∣k±
ᾱ (x j )

∣∣ ≤ M for j ∈ Z.

We apply a single step of the scheme to all three parts of (38), and due to the bounds∣∣∣u0j ∣∣∣ , ∣∣k±
ᾱ (x j )

∣∣ ≤ M, the scheme acts in a monotone manner (Lemma 3.5), so that the

ordering of (38) is preserved. In addition each of {k−
ᾱ (x j )} and {k+

ᾱ (x j )} is a stationary
solution of the difference scheme, by Lemma 3.4. Thus, after applying the difference
scheme, the result is

k−
ᾱ (x j ) ≤ u1j ≤ k+

ᾱ (x j ), i ∈ Z, (39)

implying that (35) holds at time level n = 1. The proof is completed by continuing
this way from one time step to the next. �

Lemma 3.7 The following bound holds for znj :

∣∣∣znj ∣∣∣ ≤ 2ML, j ∈ Z, n ≥ 0. (40)

Proof From definition (10) of �, (26) and (35) we have

∣∣∣znj ∣∣∣ =
∣∣∣�(unj , x j )

∣∣∣ =

∣∣∣∣∣∣∣
unj∫

uM (x j )

∣∣∣∣∂A∂u
(θ, x j )

∣∣∣∣ dθ

∣∣∣∣∣∣∣ ≤ L
∣∣∣unj − uM (x j )

∣∣∣ ≤ 2ML.

�

Lemma 3.8 The following time continuity estimate holds for unj :

∑
j∈Z

∣∣∣un+1
j − unj

∣∣∣ ≤ 2λ(R̄ TV(a) + L TV(u0) + L TV(uM )). (41)

Proof It is apparent from (18) that

Ā(uM (x j ), uM (x j+1), x j , x j+1) = 0. (42)
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With (42) and the assumption that u0 − uM has compact support, it is clear that
unj − uM (x j ) vanishes for | j | ≥ J (n), for some positive integer J (n), for each n ≥ 0.

In particular, we have
∑

j∈Z
∣∣∣unj − uM (x j )

∣∣∣ < ∞ for n ≥ 0. Moreover, the fact that

unj = uM (x j ) for | j | ≥ J (n), combined with (42), yields

∑
j∈Z

�− Ā(unj , u
n
j+1, x j , x j+1) = 0. (43)

As a consequence of (43) and (17) we have

∑
j∈Z

(un+1
j − uM (x j )) =

∑
j∈Z

(unj − uM (x j )). (44)

Due to the monotonicity property (Lemma 3.5), and the conservation property (44) we
can invoke a straightforward modification of the Crandall-Tartar lemma [14], yielding

∑
j∈Z

∣∣∣un+1
j − unj

∣∣∣ ≤
∑
j∈Z

∣∣∣unj − un−1
j

∣∣∣
...

≤
∑
j∈Z

∣∣∣u1j − u0j

∣∣∣
≤ λ

∑
j∈Z

∣∣∣ Ā(u0j , u
0
j+1, x j , x j+1) − Ā(u0j−1, u

0
j , x j−1, x j )

∣∣∣ .

(45)

The proof will be completed by estimating the last term.

∣∣∣ Ā(u0j , u
0
j+1, x j , x j+1) − Ā(u0j−1, u

0
j , x j−1, x j )

∣∣∣
≤

∣∣∣ Ā(u0j , u
0
j+1, x j , x j+1) − Ā(u0j , u

0
j+1, x j , x j )

∣∣∣
+

∣∣∣ Ā(u0j , u
0
j+1, x j , x j ) − Ā(u0j , u

0
j , x j , x j )

∣∣∣
+

∣∣∣ Ā(u0j , u
0
j , x j , x j ) − Ā(u0j , u

0
j , x j−1, x j )

∣∣∣
+

∣∣∣ Ā(u0j , u
0
j , x j−1, x j ) − Ā(u0j−1, u

0
j , x j−1, x j )

∣∣∣ .

(46)
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Invoking Lemma 3.2, we obtain

∣∣∣ Ā(u0j , u
0
j+1, x j , x j+1) − Ā(u0j , u

0
j+1, x j , x j )

∣∣∣ ≤ R̄
∣∣a(x j+1) − a(x j )

∣∣
+ L

∣∣uM (x j+1) − uM (x j )
∣∣ ,∣∣∣ Ā(u0j , u

0
j+1, x j , x j ) − Ā(u0j , u

0
j , x j , x j )

∣∣∣ ≤ L
∣∣∣u0j+1 − u0j

∣∣∣ ,∣∣∣ Ā(u0j , u
0
j , x j , x j ) − Ā(u0j , u

0
j , x j−1, x j )

∣∣∣ ≤ R̄
∣∣a(x j ) − a(x j−1)

∣∣
+ L

∣∣uM (x j ) − uM (x j−1)
∣∣ ,∣∣∣ Ā(u0j , u

0
j , x j−1, x j ) − Ā(u0j−1, u

0
j , x j−1, x j )

∣∣∣ ≤ L
∣∣∣u0j − u0j−1

∣∣∣ .

(47)

Plugging (47) into (46), and then summing over j ∈ Z, the result is

∑
j∈Z

∣∣∣un+1
j − unj

∣∣∣ ≤ 2λR̄
∑
j∈Z

∣∣a(x j+1) − a(x j )
∣∣

+ 2λL
∑
j∈Z

∣∣∣u0j+1 − u0j

∣∣∣ + 2λL
∑
j∈Z

∣∣uM (x j+1) − uM (x j )
∣∣

≤ 2λ(R̄ TV(a) + L TV(u0) + L TV(uM )).

�

Lemma 3.9 The following time continuity estimate holds for znj :

∑
j∈Z

∣∣∣zn+1
j − znj

∣∣∣ ≤ 2λL(R̄ TV(a) + L TV(u0) + L TV(uM )), n ≥ 0. (48)

Proof The estimate (48) follows directly from time continuity for {unj }, and Lipschitz
continuity of �(·, x j ). Indeed,

|zn+1
j − znj | =

∣∣∣�(un+1
j , x j ) − �(unj , x j )

∣∣∣
=

∣∣∣∣∣∣∣∣
un+1
j∫

unj

∣∣∣∣∂A∂u
(θ, x j ) dθ

∣∣∣∣
∣∣∣∣∣∣∣∣
≤ L

∣∣∣un+1
j − unj

∣∣∣ . (49)

Now (48) is immediate from (41) and (49). �

We next turn to establishing a spatial variation bound for znj . Define

σ+(u, x) =
{
1, u > uM (x),

0, u ≤ uM (x),
σ−(u, x) =

{
1, u < uM (x),

0, u ≥ uM (x).
(50)
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We also use the notation b+, b− as positive and negative part of real number b
defined as b+ = max{b, 0} and b− = min{b, 0}. Proof of the following lemma
follows from Lemma 4.5 of [2] or Lemma 3.3 of [21].

Lemma 3.10 The following inequality holds:

(
�(unj+1, x j ) − �(unj , x j )

)
+

≤ σ−(unj , x j )
∣∣∣ Ā(unj , u

n
j+1, x j , x j ) − Ā(unj−1, u

n
j , x j , x j )

∣∣∣
+ σ+(unj+1, x j )

∣∣∣ Ā(unj+1, u
n
j+2, x j , x j ) − Ā(unj , u

n
j+1, x j , x j )

∣∣∣ .
(51)

Proof Since RHS in (51) is non-negative, it is enough to consider the case when
(�(unj+1, x j ) − �(unj , x j ))+ > 0, that is, �(unj+1, x j ) > �(unj , x j ). As u �→
�(u, x j ) is an increasing function we have unj+1 > unj . Note that G(v,w) :=
Ā(v,w, x j , x j ) for v,w ∈ R is a standard Godunov flux. Hence, G is Lipschitz
continuous function and we have

G(unj , u
n
j+1) − G(unj−1, u

n
j ) =

unj+1∫
unj

∂G

∂w
(unj , w) dw +

unj∫
unj−1

∂G

∂v
(v, unj ) dv, (52)

G(unj+1, u
n
j+2) − G(unj , u

n
j+1) =

unj+2∫
unj+1

∂G

∂w
(unj+1, w) dw +

unj+1∫
unj

∂G

∂v
(v, unj+1) dv.

(53)

Now we observe the following

�(unj+1, x j ) − �(unj , x j ) =
unj+1∫
unj

∣∣∣∣∂A∂u
(u, x j )

∣∣∣∣ du

=
unj+1∫
unj

(
∂A

∂u
(u, x j )

)
+
du −

unj+1∫
unj

(
∂A

∂u
(u, x j )

)
−
du.

(54)
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Next we check the following two inequalities,

σ+(unj+1, x j )
∣∣∣G(unj+1, u

n
j+2) − G(unj , u

n
j+1)

∣∣∣ ≥
unj+1∫
unj

(
∂A

∂u
(u, x j )

)
+
du, (55)

σ−(unj , x j )
∣∣∣G(unj , u

n
j+1) − G(unj−1, u

n
j )

∣∣∣ ≥
unj∫

unj+1

(
∂A

∂u
(u, x j )

)
−
du. (56)

We first show (56). If σ−(unj , x j ) = 0, then unj ≥ uM (x j ). Subsequently, unj+1 >

unj ≥ uM (x j ). Since u �→ A(u, x j ) is increasing for u ≥ uM (x j ), the RHS of (56)
vanishes. Now, if σ−(unj , x j ) = 1, then we have unj < uM (x j ). If unj−1 ≥ uM (x j ) we

get − ∫ unj
unj−1

∂G
∂v

(v, unj ) dv ≥ 0. If unj−1 < uM (x j ), then we have G(unj−1, u
n
j ) =

G(unj , u
n
j ) and, subsequently, it holds − ∫ unj

unj−1

∂G
∂v

(v, unj ) dv = 0. Therefore, for

σ−(unj , x j ) = 1 we have

∣∣∣G(unj , u
n
j+1) − G(unj−1, u

n
j )

∣∣∣ = −
unj+1∫
unj

∂G

∂w
(unj , w) dw −

unj∫
unj−1

∂G

∂v
(v, unj ) dv

≥ −
unj+1∫
unj

∂G

∂w
(unj , w) dw =

unj∫
unj+1

(
∂A

∂u
(u, x j )

)
−
du.

To obtain the last equality we have used the fact that for unj < uM (x j ) and w ≥ unj ,
G(unj , w) = A(min(w, uM (x j )), x j ). This completes the proof of (56). Nowwe show
(55). If σ+(unj+1, x j ) = 0, then we have unj < unj+1 ≤ uM (x j ). Hence, the RHS of
(55) vanishes. Now consider the case when we have σ+(unj+1, x j ) = 1. This says,
unj+1 > uM (x j ). If unj+2 > uM (x j ) we have G(unj+1, u

n
j+2) = G(unj+1, u

n
j+1) or

equivalently,
∫ unj+2

unj+1

∂G
∂w

(unj+1, w) dw = 0. If unj+2 ≤ uM (x j ), we get unj+2 ≤ unj+1
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and subsequently,
∫ unj+2

unj+1

∂G
∂w

(unj+1, w) dw ≥ 0. Hence, for σ+(unj+1, x j ) = 1, we have

∣∣∣G(unj+1, u
n
j+2) − G(unj , u

n
j+1)

∣∣∣ =
unj+2∫

unj+1

∂G

∂w
(unj+1, w) dw +

unj+1∫
unj

∂G

∂v
(v, unj+1) dv

≥
unj+1∫
unj

∂G

∂v
(v, unj+1) dv =

unj+1∫
unj

(
∂A

∂u
(u, x j )

)
+
du.

This guarantees (55). To obtain the last equality we have used the fact that for unj+1 >

uM (x j ) and v ≤ unj+1, G(v, unj+1) = A(max(v, uM (x j )), x j ). Now combining (55),
(56) with (54) we conclude (51). �


We remark that Lemma 3.10 is still true if we replace unj+2 and unj−1 by any two
real number w1, w2.

Lemma 3.11 Let Ān
j+1/2 = Ā(unj , u

n
j+1, x j , x j+1). The following inequality holds:

(
�(unj+1, x j+1) − �(unj , x j )

)
+ ≤ σ−(unj , x j )

∣∣∣ Ān
j+1/2 − Ān

j−1/2

∣∣∣
+ σ+(unj+1, x j )

∣∣∣ Ān
j+3/2 − Ān

j+1/2

∣∣∣
+ �n

j+1/2,

(57)

where
∑

j∈Z �n
j+1/2 ≤ C(TV(a) + TV(uM )) and C is independent of �.

Proof By Lemma 3.3 we have

(
�(unj+1, x j+1) − �(unj , x j )

)
+

≤
(
�(unj+1, x j ) − �(unj , x j )

)
+

+
(
�(unj+1, x j+1) − �(unj+1, x j )

)
+

≤
(
�(unj+1, x j ) − �(unj , x j )

)
+ + L

∣∣uM (x j+1) − uM (x j )
∣∣

+R(unj+1)
∣∣a(x j+1) − a(x j )

∣∣ . (58)
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From (51) we have

(
�(unj+1, x j+1) − �(unj , x j )

)
+

≤ σ−(unj , x j )
∣∣∣ Ā(unj , u

n
j+1, x j , x j ) − Ā(unj−1, u

n
j , x j , x j )

∣∣∣
+σ+(unj+1, x j )

∣∣∣ Ā(unj+1, u
n
j+2, x j , x j ) − Ā(unj , u

n
j+1, x j , x j )

∣∣∣
+R̄

∣∣a(x j+1) − a(x j )
∣∣ + L

∣∣uM (x j+1) − uM (x j )
∣∣ . (59)

We further modify (59) to get the following

(
�(unj+1, x j+1) − �(unj , x j )

)
+

≤ σ−(unj , x j )
∣∣∣ Ān

j+1/2 − Ān
j−1/2

∣∣∣ + σ+(unj+1, x j+1)

∣∣∣ Ān
j+3/2 − Ān

j+1/2

∣∣∣
+R̄

∣∣a(x j+1) − a(x j )
∣∣ + L

∣∣uM (x j+1) − uM (x j )
∣∣

+σ−(unj , x j )
∣∣∣ Ā(unj , u

n
j+1, x j , x j+1) − Ā(unj , u

n
j+1, x j , x j )

∣∣∣
+σ−(unj , x j )

∣∣∣ Ā(unj−1, u
n
j , x j−1, x j ) − Ā(unj−1, u

n
j , x j , x j )

∣∣∣
+σ+(unj+1, x j )

∣∣∣ Ā(unj+1, u
n
j+2, x j , x j ) − Ā(unj+1, u

n
j+2, x j , x j+2)

∣∣∣
+σ+(unj+1, x j )

∣∣∣ Ā(unj+1, u
n
j+2, x j , x j+2) − Ā(unj+1, u

n
j+2, x j+1, x j+2)

∣∣∣
+σ+(unj+1, x j )

∣∣∣ Ā(unj , u
n
j+1, x j , x j+1) − Ā(unj , u

n
j+1, x j , x j )

∣∣∣ . (60)

Next we apply Lemma 3.2 to bound the last five terms of (60) by

R̄
∣∣a(x j ) − a(x j−1)

∣∣ + 3R̄
∣∣a(x j+1) − a(x j )

∣∣ + R̄
∣∣a(x j ) − a(x j+2)

∣∣
+L

∣∣uM (x j ) − uM (x j−1)
∣∣ + 3L

∣∣uM (x j ) − uM (x j+1)
∣∣

+L
∣∣uM (x j ) − uM (x j+2)

∣∣ . (61)

Combining (60) and (61) we get (57) with

� j+1/2 := R̄
∣∣a(x j ) − a(x j−1)

∣∣ + 4R̄
∣∣a(x j+1) − a(x j )

∣∣ + R̄
∣∣a(x j+2) − a(x j )

∣∣
+L

∣∣uM (x j ) − uM (x j−1)
∣∣ + 4L

∣∣uM (x j+1) − uM (x j )
∣∣

+L
∣∣uM (x j+2) − uM (x j )

∣∣ .
�


Lemma 3.12 For each n ≥ 0, there is a positive integer J (n) such that

znj = 0 for | j | ≥ J (n). (62)
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Proof From (10) and (19) we have

znj =
∫ unj

uM (x j )

∣∣∣∣∂A∂u
(θ, x j )

∣∣∣∣ dθ. (63)

As part of the proof of Lemma 3.8 we showed that unj = uM (x j ) for sufficiently large
| j |. The proof is completed by combining this fact with (63). �


Lemma 3.13 The following spatial variation bound holds for n ≥ 0:

∑
j∈Z

∣∣∣znj+1 − znj

∣∣∣ ≤ C, (64)

where C is a �-independent constant.

Proof From Lemma 3.11 we find that

∑
j∈Z

(znj+1 − znj )+ ≤
∑
j∈Z

σ−(unj , x j )
∣∣∣ Ān

j+1/2 − Ān
j−1/2

∣∣∣
+

∑
j∈Z

σ+(unj+1, x j )
∣∣∣ Ān

j+3/2 − Ān
j+1/2

∣∣∣ +
∑
j∈Z

�n
j+1/2

≤ 2
∑
j∈Z

∣∣∣ Ān
j+1/2 − Ān

j−1/2

∣∣∣ +
∑
j∈Z

�n
j+1/2

= 2

λ

∑
j∈Z

∣∣∣un+1
j − unj

∣∣∣ +
∑
j∈Z

�n
j+1/2.

(65)

Invoking Lemma 3.8 and the fact that
∑

j∈Z �n
j+1/2 ≤ C(TV(a) + TV(uM )), the

result is

∑
j∈Z

(znj+1 − znj )+ ≤ C2, (66)

for some �-independent constant C2.
As a result of Lemma 3.12,

∑
j∈Z

(znj+1 − znj ) = 0. (67)

We also have

∑
j∈Z

(znj+1 − znj ) =
∑
j∈Z

(znj+1 − znj )+ +
∑
j∈Z

(znj+1 − znj )−, (68)
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implying that

−
∑
j∈Z

(znj+1 − znj )− =
∑
j∈Z

(znj+1 − znj )+. (69)

From (66) and (69) it follows that

∑
j∈Z

∣∣∣znj+1 − znj

∣∣∣ =
∑
j∈Z

(znj+1 − znj )+ −
∑
j∈Z

(znj+1 − znj )− ≤ 2C2. (70)

�

Lemma 3.14 Definea�(x) := ∑

j∈Z χ j (x)a(x j )andu�
M (x) := ∑

j∈Z χ j (x)uM (x j ).

As � → 0, a� → a and u�
M → uM in L1

loc(R).

Proof We give a proof for a� and it similarly follows for u�
M . Suppose

m j := sup{a(x); x ∈ I j },
m j := inf{a(x); x ∈ I j }.

Then for any σ > 0, we have

∫
[−σ,σ ]

∣∣a(x) − a�(x)
∣∣ dx ≤

∑
j∈Z

∫
I j

(m j − m j ) dx

≤ �x TV(a) → 0 as �x → 0. (71)

�

Lemma 3.15 The approximations u� converge as � → 0, modulo extraction of a
subsequence, in L1

loc(�T ) and pointwise a.e. in �T to a function u ∈ L∞(�T ) ∩
C([0, T ] : L1

loc(R)).

Proof From Lemmas 3.7, 3.9 and 3.13 we have for some subsequence, and some
z ∈ L1(�T ) ∩ L∞(�T ), z� → z in L1(�T ) and pointwise a.e. Define u(x, t) =
�−1(z(x, t), x). We have unj = �−1(znj , x j ), or

u�(x, t) = �−1(z�(x, t), x�) for (x, t) ∈ �T . (72)

By using triangle inequality and Lemma 3.3 we obtain the following

∣∣�(u�(x, t), x) − z(x, t)
∣∣

≤ ∣∣�(u�(x, t), x�) − z(x, t)
∣∣ + ∣∣�(u�(x, t), x) − �(u�(x, t), x�)

∣∣
≤ ∣∣z�(x, t) − z(x, t)

∣∣ + L
∣∣uM (x) − uM (x�)

∣∣ + R̄
∣∣a(x) − a(x�)

∣∣ . (73)

123



650 S. S. Ghoshal et al.

From Lemma 3.14, we have a(x�) = a� → a and uM (x�) = u�
M → uM in L1

loc(R),
therefore up to a subsequence a(x�) → a(x), uM (x�) → u(x) for a.e. x ∈ R. Hence,
�(u�(x, t), x) → z(x, t) as � → 0 for a.e. (x, t) ∈ �T . Fixing a point (x, t) ∈ �T

where �(u�(x, t), x) → z(x, t) and using the continuity of ζ �→ �−1(ζ, x) for each
fixed x ∈ R, we get

u�(x, t) → u(x, t). (74)

Thus u� → u pointwise a.e. in �T . Since u� is bounded in �T independently of �

in�T , we also have u� → u in L1
loc(�T ), by the dominated convergence theorem. In

fact, due to the time continuity estimate (41), we also have u ∈ C([0, T ] : L1
loc(R)).

�


4 Entropy inequality and proof of Theorem 2.5

In this section we show that u satisfies adapted entropy inequality (12), the remaining
ingredient required for the proof of Theorem 2.5.

Lemma 4.1 We have the following discrete entropy inequalities:∣∣∣un+1
j − k±

α, j

∣∣∣ ≤
∣∣∣unj − k±

α, j

∣∣∣ − λ(Fn
j+1/2 − Fn

j−1/2), for all j ∈ Z (75)

where

Fn
j+1/2 = Ā(unj ∨ k±

α, j , u
n
j+1 ∨ k±

α, j+1, x j , x j+1) − Ā(unj ∧ k±
α, j , u

n
j+1

∧k±
α, j+1, x j , x j+1).

Proof The proof is a slightly generalized version of a now classical argument found in
[9] or [14]. Denote the grid function {unj } j∈Z byUn , and write the scheme defined by

(17) as Un+1 = �(Un), i.e., �(·) is the operator that advances the solution from time
level n to n + 1. Let K±

α = {k±
α (x j )} j∈Z. Since the scheme is monotone, we have

�(K±
α ) ∨ �(Un) ≤ �(K±

α ∨Un), �(K±
α ) ∧ �(Un) ≥ �(K±

α ∧Un). (76)

Using the fact that �(K±
α ) = K±

α , it follows from (76) that

Un+1 ∨ K±
α −Un+1 ∧ K±

α ≤ �(K±
α ∨Un) − �(K±

α ∧Un). (77)

The discrete entropy inequality (75) then follows from (77), using the definition of
�(·) in terms of (17) along with the identity a ∨ b − a ∧ b = |a − b|. �

Lemma 4.2 Let

k±,�
α (x) =

∑
j∈Z

χ j (x)k
±
α, j . (78)
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Then

k±,�
α (x) → k±

α (x) in L1
loc(R) and pointwise a.e. in R. (79)

Proof We first show that �(k±,�
α (·), ·) → �(k±

α (·), ·) as � → 0. Observe that

�(k±,�(x), x) =
∑
j∈Z

χ j (x)�(k±
α, j , x).

This yields

∣∣�(k±,�
α (x), x) − �(k±

α (x), x)
∣∣ ≤

∑
j∈Z

χ j (x)
∣∣∣�(k±

α, j , x) − �(k±
α (x), x)

∣∣∣
≤

∑
j∈Z

χ j (x)
∣∣∣�(k±

α, j , x) − �(k±
α, j , x j )

∣∣∣
+

∑
j∈Z

χ j (x)
∣∣∣�(k±

α, j , x j ) − �(k±
α (x), x)

∣∣∣
=

∑
j∈Z

χ j (x)
∣∣∣�(k±

α, j , x) − �(k±
α, j , x j )

∣∣∣
+

∑
j∈Z

χ j (x)
∣∣∣A(k±

α, j , x j ) − A(k±
α (x), x)

∣∣∣
=

∑
j∈Z

χ j (x)
∣∣∣�(k±

α, j , x) − �(k±
α, j , x j )

∣∣∣ .
By virtue of Assumption H-2 we obtain

∣∣�(k±,�
α (x), x) − �(k±

α (x), x)
∣∣ ≤

∑
j∈Z

χ j (x)R(k±
α, j )

∣∣a(x) − a(x j )
∣∣

≤ R̄

∣∣∣∣∣∣a(x) −
∑
j∈Z

χ j (x)a(x j )

∣∣∣∣∣∣ . (80)

By using (71) in (80), we have �(k±,�
α (x), x) → �(k±

α (x), x) as � → 0 for a.e.
x ∈ R. By using continuity of ζ �→ �−1(ζ, x) for each fixed x ∈ R we have
k±,�
α (x) → k±

α (x) as � → 0 for a.e. x ∈ R. �

Lemma 4.3 The (subsequential) limit u guaranteed by Lemma 3.15 satisfies the
adapted entropy inequalities (13).

Proof Fix α ≥ 0. Define

vnj := unj ∨ k±
α, j , wn

j := unj ∧ k±
α, j , (81)
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and

v�(x, t) :=
N∑

n=0

∑
j∈Z

χ j (x)χ
n(t)vnj , w�(x, t) :=

N∑
n=0

∑
j∈Z

χ j (x)χ
n(t)wn

j . (82)

We can rewrite v� and w� as follows

2v�(x, t) = u�(x, t) + k±,�
α (x, t) + ∣∣u�(x, t) − k±,�

α (x, t)
∣∣ ,

2w�(x, t) = u�(x, t) + k±,�
α (x, t) − ∣∣u�(x, t) − k±,�

α (x, t)
∣∣ .

Invoking the convergence results for u� and for k±,�
α , we have

v� → u ∨ k±
α︸ ︷︷ ︸

=:v
, w� → u ∧ k±

α︸ ︷︷ ︸
=:w

(83)

pointwise a.e. and in L1
loc(�T ). From Lemma 4.1 we have

∣∣∣un+1
j − k±

α, j

∣∣∣ ≤
∣∣∣unj − k±

α, j

∣∣∣ − λ(Fn
j+1/2 − Fn

j−1/2), for all j ∈ Z (84)

where

Fn
j+1/2 = Ā(unj ∨ k±

α, j , u
n
j+1 ∨ k±

α, j+1, x j , x j+1)

− Ā(unj ∧ k±
α, j , u

n
j+1 ∧ k±

α, j+1, x j , x j+1).

Let 0 ≤ φ(x, t) ∈ C1
0(R × (0, T )) be a test function, and define φn

j = φ(x j , tn). As
in the proof of the Lax-Wendroff theorem, we multiply (84) by φn

j�x , and then sum
by parts to arrive at

�x�t
N∑

n=0

∑
j∈Z

∣∣∣un+1
j − k±

α, j

∣∣∣ (φn+1
j − φn

j )/�t

+ �x�t
N∑

n=0

∑
j∈Z

Fn
j+1/2(φ

n
j+1 − φn

j )/�x

+ �x
∑
j∈Z

∣∣∣u0j − k±
α, j

∣∣∣φ0
j ≥ 0. (85)

The first and third sums on the left side of (85) converge to
∫
R+

∫
R

∂φ
∂t |u(x, t) −

k±
α (x)| dxdt and ∫

R

∣∣u0(x) − k±
α (x)

∣∣ φ(x, 0) dx , respectively. The crucial part of the
argument is to prove convergence of the second sum on left hand side of (85). It
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suffices to prove that

I1 := �x�t
N∑

n=0

∑
j∈Z

Ā(vnj , v
n
j+1, x j , x j+1)(φ

n
j+1 − φn

j )/�x

→
∫ T

0

∫
R

A(v, x)φx dx dt, (86)

and that

I2 := �x�t
N∑

n=0

∑
j∈Z

Ā(wn
j , w

n
j+1, x j , x j+1)(φ

n
j+1 − φn

j )/�x

→
∫ T

0

∫
R

A(w, x)φx dx dt . (87)

We will prove (86). The proof of (87) is similar. We start with the following identity:

Ā(vnj , v
n
j+1, x j , x j+1) − Ā(vnj , v

n
j , x j , x j )

= Ā(vnj , v
n
j+1, x j , x j+1) − Ā(vnj , v

n
j , x j , x j+1)

+ Ā(vnj , v
n
j , x j , x j+1) − Ā(vnj , v

n
j , x j , x j ).

(88)

Taking absolute values, using Ā(vnj , v
n
j , x j , x j ) = A(vnj , x j ), and (27), we have

∣∣∣ Ā(vnj , v
n
j+1, x j , x j+1) − A(vnj , x j )

∣∣∣ ≤ L
∣∣∣vnj+1 − vnj

∣∣∣ + L
∣∣uM (x j+1) − uM (x j )

∣∣
+ R(min(vnj , uM (x j )))

∣∣a(x j+1) − a(x j )
∣∣ .
(89)
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Thus, with the abbreviation ρn
j := (φn

j+1 − φn
j )/�x ,

�x�t
N∑

n=0

∑
j∈Z

∣∣∣ Ā(vnj , v
n
j+1, x j , x j+1) − A(vnj , x j )

∣∣∣ ρn
j

≤ L �x�t
N∑

n=0

∑
j∈Z

∣∣∣vnj+1 − vnj

∣∣∣ ρn
j

︸ ︷︷ ︸
S1

+ R̄�x�t
N∑

n=0

∑
j∈Z

∣∣a(x j+1) − a(x j )
∣∣ ρn

j

︸ ︷︷ ︸
S2

+ L �x�t
N∑

n=0

∑
j∈Z

∣∣uM (x j+1) − uM (x j )
∣∣ ρn

j

︸ ︷︷ ︸
S3

.

(90)

For S1, we can invoke the Kolmogorov compactness criterion [14] since v� converges
in L1

loc(�T ), and conclude that S1 → 0. By Assumption H-2 and H-4, (a ∈ BV(R)

and uM ∈ BV(R)), we also have S2, S3 → 0. As a result, in order to prove (86) it
suffices to show that

I1 := �x�t
N∑

n=0

∑
j∈Z

A(vnj , x j )(φ
n
j+1 − φn

j )/�x →
∫ T

0

∫
R

A(v, x)φx dx dt . (91)

This limit then follows from the estimate∣∣∣A(vnj , x j ) − A(v, x)
∣∣∣ ≤

∣∣∣A(vnj , x j ) − A(vnj , x)
∣∣∣ +

∣∣∣A(vnj , x) − A(v, x)
∣∣∣

≤ R(vnj )
∣∣a(x j ) − a(x)

∣∣ + L
∣∣∣vnj − v

∣∣∣ ,
(92)

along with the fact that a� → a in L1
loc(R) (Lemma 3.14), and v� → v in L1

loc(�T ).
�


We can now prove Theorem 2.5.

Proof Taken together, Lemmas 3.15 and 4.3 establish that the approximations u�

converge in L1
loc(�T ) and pointwise a.e. in �T , along a subsequence, to a function

u ∈ L∞(�T )∩C([0, T ] : L1
loc(R)), and u is an adapted entropy solution in the sense

of Definition 2.1. By Theorem 2.2, u is the unique solution to the Cauchy problem
(1)–(2) with initial data u0. Moreover, as a consequence of the uniqueness result, the
entire computed sequence u� converges to u, not just a subsequence. The final step of
the proof is to extend the result to the case of u0 ∈ L∞(R), as described in Sect. 3. �
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Appendix

Let g : R → R be defined as g(x) = |x |. Suppose u satisfies entropy condition (12)
then set v(x, t) = �(u(x, t), x) where � is as in (10). We denote inverse of the map
ζ �→ �(ζ, x) by α(·, x). Then we have

∞∫
0

∫
R

[
|α(v(x, t), x) − α(k, x)| ∂φ

∂t
+ sgn(v − k)(g(v) − g(k))

∂φ

∂x

]
dxdt ≥ 0

(93)

for any k ∈ R and 0 ≤ φ ∈ C∞
0 (R × R+).

Lemma 5.1 [18] Let v1, v2 ∈ L∞(R×R+) be two functions satisfying (93). Then we
have

∂

∂t
|α(v1(x, t), x) − α(v2(x, t), x)| + ∂

∂x
sgn(v1 − v2)(g(v1) − g(v2))

≤ 0 in D′(R × R+). (94)

Proof For 0 ≤ φ ∈ C∞
c (R+ × R) and 0 ≤ ψ ∈ C∞

c (R+ × R) we have

∞∫
0

∫
R

[
|α(v1(x, t), x) − α(k, x)| ∂φ

∂t

+sgn(v1 − k)(g(v1) − g(k))
∂φ

∂x

]
dxdt ≥ 0 (95)

and

∞∫
0

∫
R

[
|α(v2(y, s), y) − α(l, y)| ∂ψ

∂s

+sgn(v2 − l)(g(v2) − g(l))
∂ψ

∂ y

]
dyds ≥ 0. (96)

Fix a � ∈ C∞
c (R × R+). Let ηε be Friedrichs mollifiers. Consider

φ(x, t) = �(x, t) ηε (y − x) ηδ (s − t) , (97)

ψ(y, s) = �(x, t) ηε (y − x) ηδ (s − t) . (98)
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Putting k = v2(y, s) and l = v1(x, t) in (95) and (96) respectively and adding the
resultants we get

∫
R×R+

∫
R×R+

P1(x, t, y, s)
∂

∂t
(�(x, t)ηε(y − x)ηδ(s − t)) dtdxdsdy

+
∫

R×R+

∫
R×R+

P2(x, t, y, s)
∂

∂s
(�(x, t)ηε(y − x)ηδ(s − t)) dtdxdsdy

+
∫

R×R+

∫
R×R+

Q(x, t, y, s)ηε(y − x)ηδ(s − t)
∂

∂x
�(x, t), dtdxdsdy ≥ 0

(99)

where

P1(x, t, y, s) := |α(v1(x, t), x) − α(v2(y, s), x)| ,
P2(x, t, y, s) := |α(v1(x, t), y) − α(v2(y, s), y)| ,
Q(x, t, y, s) := sgn(v1(x, t) − v2(y, s))(g(v1(x, t)) − g(v2(y, s))).

Let E0, E1, E2 ⊂ R be three sets such that

E0 := {t ∈ R+; t is a Lebesgue point of v2(x, t) for a.e. x ∈ R} , (100)

E1 := {x ∈ R; x is a Lebesgue point of v2(x, t) for a.e. t ∈ R+} , (101)

E2 :=
{
x; lim

ε→0

∫
ηε (x − y)max|u|≤r

|α(u, x) − α(u, y)| = 0

}
, (102)

where r = max{‖v1‖L∞(R×R+), ‖v2‖L∞(R×R+)}. Since v2 ∈ L∞(R × R+), E0, E1
are measurable sets and meas(R+ \ E0) = meas(R \ E1) = 0. By our assumption,
for a fixed x ∈ R, �(x, ·) is Lipschitz on [−r , r ]. Since C([−r , r ]) is separable, by
Pettis Theorem we have measurability of E2 and meas(R \ E2) = 0. Therefore we
can get

∣∣∣∣
∫
R

P1(x, t, y, s)ηε(y − x) dy − P1(x, t, x, s)

∣∣∣∣
≤

∫
R

|α(v2(y, s), x) − α(v2(x, s), x)| ηε(y − x) dy → 0 (103)

as ε → 0 for x ∈ E1 and a.e. t, s ∈ R+. We can also obtain

∣∣∣∣∣∣
∫
R

P2(x, t, y, s)ηε(y − x)dy − P2(x, t, x, s)

∣∣∣∣∣∣
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≤
∫
R

|α(v2(y, s), x) − α(v2(x, s), x)| ηε(y − x) dy

+2
∫
R

ηε (x − y)max|u|≤r
|α(u, x) − α(u, y)|

→ 0 (104)

as ε → 0 for x ∈ E2 and a.e. t, s ∈ R+. With the help of (103) and (104) and
Lebesgue Dominated Convergence Theorem we have

lim
ε→0

∫
R
2+

∫
R
2+

(
P1(x, t, y, s)

∂

∂t
(�(x, t)ηδ(s − t))

+P2(x, t, y, s)
∂

∂s
(�(x, t)ηδ(s − t))

)
(105)

ηε(y − x) dtdxdsdy =
∫
R
2+

∫
R+

P1(x, t, x, s)ηδ(s − t)
∂

∂t
�(x, t) dtdxds. (106)

In a similar way we can show

lim
δ→0

∫
R
2+

∫
R+

P1(x, t, x, s)ηδ(s − t)
∂

∂t
�(x, t) dtdxds

=
∫
R
2+

P1(x, t, x, t)
∂

∂t
�(x, t) dtdx . (107)

Similarly we have ∣∣∣∣∣∣
∫
R

Q(x, t, y, s)ηε(y − x) dy − Q(x, t, x, s)

∣∣∣∣∣∣
≤

∫
R

|v2(y, s) − v2(x, s)| ηε(y − x) dy → 0 (108)

as ε → 0 for x ∈ E1 and a.e. t, s ∈ R+. Then by Lebesgue Dominated Convergence
Theorem we have

lim
ε→0

∫
R
2+

∫
R
2+

Q(x, t, y, s)ηε(y − x)ηδ(s − t)
∂

∂x
� dtdxdsdy

=
∫
R
2+

∫
R+

Q(x, t, x, s)ηδ(s − t)
∂

∂x
� dtdxds. (109)
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We also have for a.e. x ∈ R and t ∈ E0∣∣∣∣∣∣∣
∫
R+

Q(x, t, x, s)ηδ(s − t) ds − Q(x, t, x, t)

∣∣∣∣∣∣∣
≤

∫
R+

|v2(x, t) − v2(x, s)| ηδ(s − t) ds → 0 (110)

as δ → 0. This yields

lim
ε→0,δ→0

∫
R
2+

∫
R
2+

Q(x, t, y, s)ηε(y − x)ηδ(s − t)
∂

∂x
� dtdxdsdy

=
∫
R
2+

Q(x, t, x, t)
∂

∂x
� dtdx . (111)

This completes the proof. �

Observe the following

g(v(x, t)) = g(�(u(x, t), x)) = A(u(x, t), x) = A(α(v(x, t), x), x). (112)

From Lemma 5.1 we can prove the following by a similar argument as in [15].

Lemma 5.2 Let v1, v2 ∈ C([0, T ], L1
loc(R))∩L∞(R×R+) be two function satisfying

(93). Then for a.e. t ∈ [0, T ] and any r > 0 we have∫
|x |≤r

|α(v1(x, t), x) − α(v2(x, t), x)| dx

≤
∫

|x |≤r+L1t

|α(v1(x, 0), x) − α(v2(x, 0), x)| dx (113)

swhere L1 := sup{∂u A(u, x); x ∈ R, |u| ≤ max(‖v1(x, 0)‖L∞ , ‖v2(x, 0)‖L∞)}.
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