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Abstract
This article concerns second-order time discretization of subdiffusion equations with
time-dependent diffusion coefficients. High-order differentiability and regularity esti-
mates are established for subdiffusion equations with time-dependent coefficients.
Using these regularity results and a perturbation argument of freezing the diffusion
coefficient, we prove that the convolution quadrature generated by the second-order
backward differentiation formula, with proper correction at the first time step, can
achieve second-order convergence for both nonsmooth initial data and incompatible
source term. Numerical experiments are consistent with the theoretical results.

Mathematics Subject Classification 65M15 · 65M12

1 Introduction

Let Ω ⊂ R
d (d = 1, 2, 3) be a convex polygonal domain with a boundary ∂Ω .

Consider the following subdiffusion equation
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⎧
⎪⎨

⎪⎩

∂α
t u(x, t) − ∇ · (a(x, t)∇u(x, t)) = f (x, t), (x, t) ∈ Ω × (0, T ],
u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ],
u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where a(x, t) : Ω × (0, T ) → R
d×d is a positive definite matrix-valued function, f

and u0 are the source term and initial value, respectively, and

∂α
t u(x, t) := 1

Γ (1 − α)

∫ t

0
(t − s)−α∂su(x, s)ds, (1.2)

denotes the Caputo fractional time derivative of order α ∈ (0, 1) [19, p. 70].
In recent years, there has been a growing interest in the mathematical and numer-

ical analysis of subdiffusion models due to their diverse applications in describing
subdiffusion processes arising from physics, engineering, biology and finance. In a
subdiffusion process, the mean squared particle displacement grows only sublinearly
with time, instead of growing linearly with time as in a normal diffusion process.
At a microscopic level, such processes can be adequately described by continuous
time random walk, and accordingly, at a macroscopical level, the probability density
function of the particle appearing at certain time t and location x is described by
a subdiffusion model of the form (1.1). We refer interested readers to [29,30] for a
long list of applications arising in biology and physics. In the physical literature, a
time-dependent diffusion coefficient is often employed to study complex systems, e.g.,
turbulence system [9,13,20] and cooling process in geology [6,10]; see also [11,32]
for its connection with birth-death processes.

The numerical analysis of the subdiffusion problem has been the topic of many
recent investigations. In particular, a large number of time-stepping schemes for
approximating the Caputo derivative have been developed. The most popular ones
include convolution quadrature [2,5,14,16], piecewise polynomial approximation
[1,23,27,36], and discontinuous Galerkin method [28]. For a given smooth source
term f and initial value u0, these schemes generally exhibit only first-order conver-
gence due to the inherent weak singularity of the solution at t = 0. If the solution
u is smooth, then higher-order convergence may be achieved, otherwise some modi-
fications of the schemes [5,14,16] or locally refined meshes [22,28,35] (see also [3]
for related works in the context of Volterra integral equations) can be used; see the
recent survey [15] for further references. All these works focus on subdiffusion with
a time-independent coefficient, i.e., a(x, t) ≡ a(x).

When the diffusion coefficient a(x, t) is time-dependent, the analysis of regular-
ity of solutions and the development and convergence analysis of numerical schemes
are rather limited, despite its obvious practical importance. Many existing analytical
techniques, e.g., Laplace transform and separation of variables, are not directly appli-
cable, due to the time-dependency of the coefficient a(x, t). Kubica and Yamamoto
[21] proved the existence and uniqueness of a weak solution, and also several regu-
larity results. In this work, we present new regularity estimates in Theorems 1 and 2.
For example, for u0 ∈ L2(Ω) and f ≡ 0, under suitable conditions on a(x, t), there
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holds ‖ dk

dtk
(tku(t))‖L2(Ω) ≤ c‖u0‖L2(Ω). Such an estimate provides one crucial tool

for the error analysis of high-order time-stepping schemes.
So far there are very few works on the numerical approximation of the model

(1.1) [18,31]. Mustapha [31] analyzed a spatially semidiscrete Galerkin finite element
method (FEM) for the homogeneous problem, and showed optimal order convergence
by a novel energy argument. In essence, the approach extends the argument in [26] for
standard parabolic problems to the fractional case. In the authors’ prior work [18], we
developed a different approach to analyze the spatially semidiscrete Galerkin scheme,
as well as a fully discrete scheme based on convolution quadrature (CQ) generated
by backward Euler method (and L1 scheme), and showed optimal order convergence
rates for both semidiscrete and fully discrete schemes (up to a logarithmic factor),
based on a perturbation argument and new regularity results. However, the discrete
scheme in [18] is only first order accurate in time. To the best of our knowledge, there is
no proven second- or higher-order accurate time-stepping scheme for the subdiffusion
model with a time-dependent coefficient and nonsmooth problem data in the literature.
This contrasts sharply with the case of time-independent elliptic operators, for which
there are several strategies for devising high-order schemes, e.g., initial correction
[16]. These observations motivate the present work.

In this article, we propose a second-order time-stepping scheme for problem (1.1)
with nonsmooth initial data and incompatible source term. It is based on the CQ
generated by the second-order backward differentiation formula (BDF2), with suitable
correction at the first step. The correction is inspired by the recent works [5,14,16] and
essential for restoring the second-order convergence. Further, we present a complete
error analysis in Sect. 4, and prove a convergence rate O(τ 2) with τ being the time
stepsize, for any fixed tn > 0, of the scheme for both nonsmooth initial data and
incompatible source term. The error analysis relies heavily on new temporal regularity
results for the model (1.1) in Sect. 3 and a refined perturbation argument, which
substantially extends the prior work [18]. Specifically, the error analysis relies on
suitable nonstandard bounds for problem data in the space Ḣ−γ (Ω) (cf., Lemma 4
and Theorem 5), and perturbation estimates at both t = 0 and t = tm (cf., the proof of
Lemma 7), which are substantially different from the one in [18] which only requires
estimates at t = tm for problem data in L2(Ω). The new scheme, regularity results
and time discretization errors represent the main contributions of this work.

In the context of the standard parabolic counterpart with L2(Ω)-initial data and zero
forcing term, Luskin and Rannacher [26] analyzed a fully discrete scheme based on
Galerkin FEM in space and the backwardEulermethod in time, and proved a first-order
temporal convergence. Somewhat surprisingly, Sammon [34] proved that for standard
parabolic problems with L2(Ω) initial data, generally only second-order convergence
can be achieved for a class of single step and linear multi-step time stepping schemes
(by ignoring the errors at starting steps). The design and analysis of schemes with
higher order accuracy remain largely elusive for standard parabolic models with time-
dependent elliptic operators and nonsmooth data. Thus, the development and analysis
of high-order time-stepping schemes for the model (1.1) with general problem data is
still very challenging; see Sect. 2 for further discussions.
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The rest of the paper is organized as follows. In Sect. 2, we describe the proposed
time-stepping scheme. In Sect. 3, we prove new temporal regularity results, and in
Sect. 4, we give a complete error analysis for both smooth and nonsmooth data. Finally
in Sect. 5, we present numerical results to complement the error analysis. Throughout,
the notation c denotes a generic constant which may differ at each occurrence, but it
is always independent of the time stepsize τ , but may depend on the final time T .

2 Derivation of the numerical scheme

In this section, we construct a second-order time-stepping scheme for problem (1.1)
using CQ generated by BDF2 with initial correction, derived from a perturbation
argument. For notational simplicity, we shall denote by v(t) = v(·, t) for a function v

defined on Ω × (0, T ].
Since theRiemann-Liouville derivative is equivalent to theCaputo one for functions

with zero initial value, we rewrite problem (1.1) as

R∂α
t (u(t) − u0) + A(t)u(t) = f (t), (2.1)

where the Riemann-Liouville derivative R∂α
t ϕ(t) is defined by R∂α

t ϕ(t) = d
dt

1
Γ (1−α)∫ t

0 (t − s)−αϕ(s)ds, and the time-dependent elliptic operator A(t) : H1
0 (Ω) ∩

H2(Ω) → L2(Ω) is defined by

A(t)φ = −∇ · (a(x, t)∇φ).

Let tn = nτ , n = 0, 1, . . . , N , be a uniform partition of the interval [0, T ] with a
time stepsize τ = T /N . BDF2–CQ approximates the Riemann-Liouville derivative
R∂α

t ϕ(t) at the time t = tn by

∂̄α
τ ϕn := 1

τα

n∑

j=0

b jϕ
n− j with ϕn = ϕ(tn), (2.2)

where the weights {b j }∞j=0 are the coefficients in the power series expansion

δτ (ζ )α = 1

τα

∞∑

j=0

b jζ
j with δτ (ζ ) := ζ 2 − 4ζ + 3

2τ
(2.3)

If the function ϕ is smooth and has sufficiently many vanishing derivatives at t = 0,
then BDF2–CQ is second-order accurate pointwise in time [24] [25, Theorem 3.1].

By employing (2.2) to discretize the term R∂α
t (u(t) − u0) in (2.1), we obtain a

BDF2–CQ scheme for (1.1): given u0 = u0, find un such that

∂̄α
τ (u − u0)

n + A(tn)u
n = f (tn), n = 1, 2 . . . , N . (2.4)
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This scheme generally has only first-order accuracy, instead of second-order accuracy,
due to the low regularity of the solution u(t) at t = 0, unless restrictive compatibility
conditions on the initial data u0 and f are satisfied (which guarantee good solution
regularity at t = 0). This has been observed for many different time-stepping schemes
for subdiffusion with a time-independent diffusion coefficient [5,14,16]. Hence, the
vanilla BDF2–CQ scheme (2.4) has to be modified in order to achieve second-order
convergence for general data.

In this work, we propose the following time-stepping scheme:

{
∂̄α
τ (u − u0)

1 + A(t1)u
1 + 1

2 A(0)u0 = f (t1) + 1
2 f (0),

∂̄α
τ (u − u0)

n + A(tn)u
n = f (tn), n = 2, 3, . . . , N ,

(2.5)

which is obtained by first rewriting problem (1.1) into

R∂α
t (u − u0) + A(0)u(t) = F(t) with F(t) = f (t) + (A(0) − A(t))u(t),

and then following [14,16] to modify the first step as

∂̄α
τ (u − u0)

1 + A(0)u1 + 1
2 A(0)u0 = F(t1) + 1

2 F(0).

Then substituting the expression of F(t) and collecting terms yield the correction in
(2.5). In (2.5), the term A(0)u0 should be interpreted in a distributional sense for weak
initial data, e.g., u0 ∈ L2(Ω).

Note that F ′(0) is generally not defined in L2(Ω). Hence, the existing correction
methods in [16] for higher-order BDFs cannot be applied directly. It is still very
challenging to develop higher-order time discretization methods for problem (1.1)
with nonsmooth problem data. This seems to be open even for the standard parabolic
counterpart [34].

3 Regularity of solutions

We assume that the diffusion coefficient a(x, t) : Ω × (0, T ) → R
d×d satisfies that

for some real number λ ≥ 1, integer K ≥ 2 and i, j = 1, . . . , d:

λ−1|ξ |2 ≤ a(x, t)ξ · ξ ≤ λ|ξ |2, ∀ ξ ∈ R
d , ∀ (x, t) ∈ Ω × (0, T ], (3.1)

| ∂
∂t ai j (x, t)| + |∇x

∂k

∂tk
ai j (x, t)| ≤ c, ∀ (x, t) ∈ Ω × (0, T ], k = 0, . . . , K + 1,

(3.2)

where · and | · | denote the standard Euclidean inner product and norm, respectively.
Under these conditions, there holds D(A(t)) = H1

0 (Ω) ∩ H2(Ω) for all t ∈ [0, T ].
By the complex interpolation method [38], this implies

D(A(t)γ ) = Ḣ2γ (Ω), ∀ t ∈ [0, T ], ∀ γ ∈ [0, 1],
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where Ḣ2γ (Ω) = (L2(Ω), H1
0 (Ω) ∩ H2(Ω))[γ ] denotes the complex interpolation

space between L2(Ω) and H1
0 (Ω)∩H2(Ω). Equivalently, it can be defined via spectral

decomposition of the operator A(t) [37, Chapter 3]. Let {(λ j , ϕ j )}nj=1 be the eigenpairs

of A(t)withmultiplicity counted and {ϕ j }∞j=1 be an orthonormal basis in L2(Ω). Then

the space Ḣγ (Ω) can be defined as

Ḣγ (Ω) =
{
v ∈ L2(Ω) :

∞∑

j=1

λ
γ

j (v, ϕ j )
2 < ∞

}
.

In particular, Ḣ2(Ω) = H1
0 (Ω) ∩ H2(Ω), Ḣ1(Ω) = H1

0 (Ω) and Ḣ0(Ω) = L2(Ω).
For γ ∈ [0, 2] we also denote by Ḣ−γ (Ω) the dual space of Ḣγ (Ω). Then the norm
of Ḣ−γ (Ω) satisfies

‖v‖Ḣ−γ (Ω) = ‖A(t)−
γ
2 v‖L2(Ω) ∀ v ∈ Ḣ−γ (Ω), ∀ t ∈ [0, T ].

In this section, we prove the following regularity results.

Theorem 1 (Homogeneous problem) If a(x, t) satisfies (3.1)-(3.2), u0 ∈ Ḣ2γ (Ω)

with γ ∈ [0, 1] and f ≡ 0, then for all t ∈ (0, T ] and k = 0, . . . , K, the solution
u(t) to problem (1.1) satisfies

∥
∥
∥
dk

dtk
(tku(t))

∥
∥
∥
Ḣ2β(Ω)

≤ ct−(β−γ )α‖u0‖Ḣ2γ (Ω), ∀β ∈ [γ, 1].

Theorem 2 (Inhomogeneous problem) If a(x, t) satisfies (3.1)-(3.2), u0 ≡ 0, then for
all t ∈ (0, T ] and k = 0, . . . , K, the solution u(t) to problem (1.1) satisfies for any
β ∈ [0, 1)

∥
∥
∥
dk

dtk
(tku(t))

∥
∥
∥
Ḣ2β(Ω)

≤ c
k−1∑

j=0

t (1−β)α+ j‖ f ( j)(0)‖L2(Ω)

+ ctk
∫ t

0
(t − s)(1−β)α−1‖ f (k)(s)‖L2(Ω)ds,

and similarly for β = 1,

∥
∥
∥
dk

dtk
(tku(t))

∥
∥
∥
Ḣ2(Ω)

≤ c
k∑

j=0

t j‖ f ( j)(0)‖L2(Ω) + ctk
∫ t

0
‖ f (k+1)(s)‖L2(Ω)ds.

Remark 1 These regularity results are identical with that for subdiffusion with a time-
independent elliptic operator [33, Theorems 2.1–2.2], [15, Theorem 2.1]. All the
constants in Theorems 1 and 2 may grow with k and blow up as K → ∞, but stay
bounded for any finite K . Further, these constants are uniformly bounded as α → 1−,
similar to the prior estimates in [18, Remark 2.1].
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Theorem 2 implies the following estimate for smooth initial data.

Corollary 1 If a(x, t) satisfies (3.1)-(3.2), u0 ∈ Ḣ2(Ω) and f ≡ 0, then for w(t) =
u(t) − u0, for all t ∈ (0, T ] and k = 0, . . . , K, there holds

∥
∥
∥
dk

dtk
(tkw(t))

∥
∥
∥
Ḣ2β(Ω)

≤ ct (1−β)α‖u0‖Ḣ2(Ω), ∀β ∈ [0, 1].

Proof The function w(t) satisfies ∂α
t w(t) + A(t)w(t) = −A(t)u0 with w(0) = 0.

Then the assertion follows directly from Theorem 2. ��
The rest of this section is devoted to the proof of Theorems 1 and 2.

3.1 Preliminaries

First, we recall some preliminary results [17] on the solution representation and
smoothing properties of solution operators for subdiffusion with a time-independent
coefficient, i.e.,

∂α
t u(t) + A∗u(t) = g(t), ∀t ∈ (0, T ], with u(0) = u0, (3.3)

where A∗ = A(t∗), for some fixed t∗ ∈ [0, T ] independent of t ∈ (0, T ]. By means
of Laplace transform, the solution u of (3.3) can be represented by (cf. [15, Sect. 2]
and [17, Sect. 2])

u(t) = F∗(t)u0 +
∫ t

0
E∗(t − s)g(s)ds, (3.4)

where the operators F∗(t) and E∗(t) are respectively defined by

F∗(t) := 1

2π i

∫

Γθ,δ

ezt zα−1(zα + A∗)−1 dz, (3.5)

E∗(t) := 1

2π i

∫

Γθ,δ

ezt (zα + A∗)−1 dz, (3.6)

with the contour Γθ,δ (oriented with an increasing imaginary part):

Γθ,δ = {z ∈ C : |z| = δ, | arg z| ≤ θ} ∪ {z ∈ C : z = ρe±iθ , ρ ≥ δ}. (3.7)

Throughout, we choose a fixed angle θ ∈ (π
2 , π) so that

zα ∈ Σαθ for z ∈ Σθ := {z ∈ C\{0} : |arg(z)| ≤ θ}.

From the definitions (3.5) and (3.6), we deduce

A∗E∗(t) = (I − F∗(t))′, (3.8)
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which follows by straightforward computation

(I − F∗(t))′ = − 1

2π i

∫

Γθ,δ

ezt zα(zα + A∗)−1 dz

= − 1

2π i

∫

Γθ,δ

ezt (I − A∗(zα + A∗)−1) dz = A∗E∗(t).

The next lemma summarizes the smoothing properties of F∗(t) and E∗(t), where
‖ · ‖ denotes the operator norm from L2(Ω) to L2(Ω).

Lemma 1 For any integer k = 0, 1, . . . , the operators F∗ and E∗ defined in (3.5)–(3.6)
satisfy for any t ∈ (0, T ]

(i) t−α‖A−1∗ (I − F∗(t))‖ + t1−α‖A−1∗ F ′∗(t)‖ ≤ c;
(ii) tk+1−α‖E (k)∗ (t)‖ + tk+1‖A∗E (k)∗ (t)‖ + tk+1+α‖A2∗E (k)∗ (t)‖ ≤ c;
(iii) tk‖F (k)∗ (t)‖ + tk+α‖A∗F (k)∗ (t)‖ ≤ c.

Proof The assertions for k = 0, 1 were already given in [18, Lemma 2.2]. The proof
for k > 1 is similar. For example, in part (i), by (3.8) and choosing δ = t−1 in the
contour Γθ,δ and letting ẑ = t z:

‖A−1∗ F ′∗(t)‖ = ‖E∗(t)‖ ≤ 1

2π

∫

Γθ,δ

e�(z)t‖(zα + A∗)−1‖ |dz|

≤ ctα−1 1

2π

∫

Γθ,1

e�(ẑ)|ẑ|−α|dẑ|

≤ ctα−1 1

2π

∫

Γθ,1

ecos(θ)|ẑ|(1 + |ẑ|−1)|dẑ| ≤ ctα−1,

and in part (iii) with k = 0, ‖F∗(t)‖ can be bounded by

‖F∗(t)‖ ≤ 1

2π

∫

Γθ,δ

e�(z)t |z|α−1‖(zα + A∗)−1‖ |dz|

≤ 1

2π

∫

Γθ,δ

e�(z)t |z|−1dz| ≤ c.

The proof of (3.8) gives A∗E∗(t) = − 1
2π i

∫

Γθ,δ
ezt zα(zα + A∗)−1dz, and since

‖A∗(zα + A∗)−1‖ ≤ c, we deduce

‖A2∗E∗(t)‖ ≤ 1

2π

∫

Γθ,δ

e�(z)t |z|α|dz| ≤ ct−1−α.

All other estimates can be proved similarly and the details are omitted. Note that all
the constants c remain bounded as α → 1−. ��
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The following perturbation estimate [18, Corollary 3.1] will be used extensively. In
particular, it implies that ‖A(s)−1A(t)‖ ≤ c for any s, t ∈ [0, T ], and by interpolation
also, ‖A(s)−β A(t)β‖ ≤ c for any β ∈ (0, 1).

Lemma 2 Under conditions (3.1)–(3.2), for any β ∈ [0, 1], there holds

‖(I − A(t)−1A(s))v‖Ḣ2β(Ω) ≤ c|t − s|‖v‖Ḣ2β(Ω), ∀v ∈ Ḣ2β(Ω). (3.9)

The following regularity results for problem (1.1) were proved in [18] (also see
[7,21] for related results under different assumptions).

Theorem 3 Under conditions (3.1)–(3.2), the solution u(t) of problem (1.1) satisfies
the following estimates:

(i) If u0 ∈ Ḣ2γ (Ω), with some γ ∈ [0, 1], and f = 0, then

‖u(t)‖H2(Ω) ≤ ct−(1−γ )α‖u0‖Ḣ2γ (Ω) and ‖u′(t)‖L2(Ω) ≤ ctγα−1‖u0‖Ḣ2γ (Ω).

(ii) If u0 = 0, f ∈ C([0, T ]; L2(Ω)) and
∫ t
0 (t − s)α−1‖ f ′(s)‖L2(Ω) ds < ∞, then

‖u′(t)‖L2(Ω) ≤ ctα−1‖ f (0)‖L2(Ω) + c
∫ t

0
(t − s)α−1‖ f ′(s)‖L2(Ω) ds.

Theorem 3 is a special case of Theorems 1 and 2corresponding to (k, β) = (0, 1)
and (k, β) = (1, 0), respectively. These results were used in [18] to prove first-order
convergence of backward Euler CQ. But they are insufficient to prove second-order
convergence of the corrected BDF2–CQ scheme (2.5), which requires the regularity
results in Theorems 1 and 2 for k = 2. Below, we prove Theorems 1 and 2 for a general
nonnegative integer k.

3.2 Proof of Theorems 1 and 2

The overall proof strategy is to employ a perturbation argument [17,18] and then to
properly resolve the singularity. Specifically, for any fixed t∗ ∈ (0, T ], we rewrite
problem (1.1) into

{
∂α
t u(t) + A∗u(t) = (A∗ − A(t))u(t) + f (t), ∀t ∈ (0, T ],

u(0) = u0.
(3.10)

By (3.4), the solution u(t) of (3.10) is given by

u(t) = F∗(t)u0 +
∫ t

0
E∗(t − s)( f (s) + (A∗ − A(s))u(s))ds. (3.11)

The objective is to estimate the kth temporal derivative u(k)(t) := dk

dtk
u(t) in

Ḣ2β(Ω) for β ∈ [0, 1] using (3.11). However, direct differentiation of u(t) in (3.11)
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with respect to t leads to strong singularity that precludes the use of Gronwall’s
inequality in Lemma 10, in order to handle the perturbation term. To overcome
the difficulty, we instead estimate ‖(tk+1u(t))(k)‖Ḣ2β(Ω) using the expansion of

tk+1 = [(t − s) + s]k+1 in the the following expression:

tk+1u(t) = tk+1F∗(t)u0 + tk+1
∫ t

0
E∗(t − s) f (s)ds

+
k+1∑

m=0

(
m

k + 1

) ∫ t

0
(t − s)mE∗(t − s)(A∗ − A(s))sk+1−mu(s)ds,

(3.12)

where (
m

k + 1
) denotes binomial coefficients. One crucial part in the proof is to bound

kth-order derivatives of the summands in (3.12).
Now we can give the proof of Theorem 1.

Proof When k = 0, setting f = 0 and t = t∗ in (3.11) yields

Aβ∗u(t∗) = Aβ∗ F∗(t∗)u0 +
∫ t∗

0
Aβ∗ E∗(t∗ − s)(A∗ − A(s))u(s)ds,

where β ∈ [γ, 1]. By Lemmas 1 and 2,

‖Aβ∗u(t∗)‖L2(Ω) ≤ ‖Aβ−γ∗ F∗(t∗)Aγ∗ u0‖L2(Ω)

+
∫ t∗

0
‖A∗E∗(t∗ − s)‖‖Aβ∗ (I − A−1∗ A(s))u(s)‖L2(Ω)ds

≤ ct−(β−γ )α∗ ‖Aγ∗ u0‖L2(Ω) + c
∫ t∗

0
(t∗ − s)‖A∗E∗(t∗ − s)‖‖Aβ∗u(s)‖L2(Ω)ds

≤ ct−(β−γ )α∗ ‖u0‖Ḣ2γ (Ω) + c
∫ t∗

0
‖Aβ∗u(s)‖L2(Ω)ds.

This and Gronwall’s inequality in Lemma 10 with μ = (β − γ )α yield

‖Aβ∗u(t∗)‖L2(Ω) ≤ c(1 − (β − γ )α)−1t−(β−γ )α∗ ‖u0‖Ḣ2γ (Ω).

In particular, we have ‖A
β+γ
2∗ u(t∗)‖L2(Ω) ≤ ct

− β−γ
2 α

∗ ‖u0‖Ḣ2γ (Ω), with c being
bounded as α → 1−. This estimate and Lemmas 1(ii) and 2then imply

‖Aβ∗ u(t∗)‖L2(Ω) ≤ ‖Aβ−γ∗ F∗(t∗)Aγ∗ u0‖L2(Ω)

+
∫ t∗

0
‖A

β−γ
2∗ A∗E∗(t∗ − s)‖‖A

β+γ
2∗ (I − A−1∗ A(s))u(s)‖L2(Ω)ds

≤ ct−(β−γ )α∗ ‖Aγ∗ u0‖L2(Ω) + c
∫ t∗

0
(t∗ − s)‖A

β−γ
2∗ A∗E∗(t∗ − s)‖‖A

β+γ
2∗ u(s)‖L2(Ω)ds
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≤ c
(
t−(β−γ )α∗ +

∫ t∗

0
(t∗ − s)−

β−γ
2 αs−

β−γ
2 αds

)
‖u0‖Ḣ2γ (Ω) ≤ ct−(β−γ )α∗ ‖u0‖Ḣ2γ (Ω).

Equivalently, we have

‖Aβ∗ t∗u(t∗)‖L2(Ω) ≤ ct1−(β−γ )α∗ ‖u0‖Ḣ2γ (Ω),

where c is bounded as α → 1−. This proves the assertion for k = 0.
Next we prove the case 1 ≤ k ≤ K using mathematical induction. Suppose that

the assertion holds up to k − 1 < K , and we prove it for k ≤ K . Indeed, by Lemma 3
below,

∥
∥
∥A

β∗
dk

dtk

∫ t

0
(t − s)mE∗(t − s)(A∗ − A(s))sk+1−mu(s)ds|t=t∗

∥
∥
∥
L2(Ω)

≤ ct−(β−γ )α+1∗ ‖u0‖Ḣ2γ (Ω) + c
∫ t∗

0
‖Aβ∗ (sk+1u(s))(k)‖L2(Ω)ds,

where m = 0, 1, . . . , k + 1. Meanwhile, the estimates in Lemma 1 imply

∥
∥Aβ∗

(
tk+1F∗(t)u0

)(k)∥∥
L2(Ω)

≤ ct−(β−γ )α+1‖u0‖Ḣ2γ (Ω).

By applying Aβ∗ dk

dtk
to (3.12) and using the last two estimates, we obtain

∥
∥Aβ∗ (tk+1u(t))(k)|t=t∗

∥
∥
L2(Ω)

≤ ct−(β−γ )α+1∗ ‖u0‖Ḣ2γ (Ω)

+ c
∫ t∗

0
‖Aβ∗ (sk+1u(s))(k)‖L2(Ω)ds.

Last, applying the standard Gronwall’s inequality, we complete the induction step and
also the proof of the theorem. ��

In the proof of Theorem 1, we have used the following result.

Lemma 3 Under the conditions of Theorem 1, for m = 0, . . . , k + 1, there holds

∥
∥
∥A

β∗
dk

dtk

∫ t

0
(t − s)mE∗(t − s)(A∗ − A(s))sk+1−mu(s)ds|t=t∗

∥
∥
∥
L2(Ω)

≤ ct−(β−γ )α+1∗ ‖u0‖Ḣ2γ (Ω)
+ c

∫ t∗

0

∥
∥
∥A

β∗ (sk+1u(s))(k)
∥
∥
∥
L2(Ω)

ds.

Proof Denote the integral on the left hand side by Im(t), and let vm = tmu(t) and
Wm(t) = tm E∗(t). Direct computation using product rule and changing variables
gives that for any 0 ≤ m ≤ k, there holds

I(k)m (t) = dk−m

dtk−m

∫ t

0
W (m)

m (t − s)(A∗ − A(s))vk−m+1(s)ds
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= dk−m

dtk−m

∫ t

0
W (m)

m (s)(A∗ − A(t − s))vk−m+1(t − s)ds

=
∫ t

0
W (m)

m (s)
dk−m

dtk−m

(
(A∗ − A(t − s))vk−m+1(t − s)

)
ds

=
k−m∑

�=0

(
�

k − m

) ∫ t

0
W (m)

m (s)(A∗ − A(t − s))(k−m−�)v
(�)
k−m+1(t − s)ds

︸ ︷︷ ︸
Im,�(t)

.

Next we bound the integrand

Ĩm,�(s) := W (m)
m (A∗ − A(t∗ − s))(k−m−�)v

(�)
k−m+1(t∗ − s)

of the integral Im,�(t∗). We shall distinguish between β ∈ [γ, 1) and β = 1. First we
analyze the case β ∈ [γ, 1). When � < k, by Lemmas 1(ii) and 2 and the induction
hypothesis, we bound the integrand Ĩm,�(s) by

‖Aβ∗̃ Im,�(s)‖L2(Ω)

≤ ‖Aβ∗W (m)
m (s)‖‖(A∗ − A(t∗ − s))(k−m−�)v

(�)
k−m+1(t∗ − s)‖L2(Ω)

≤
⎧
⎨

⎩

cs(1−β)α−1s‖A∗v(k−m)
k−m+1(t∗ − s)‖L2(Ω), � = k − m,

cs(1−β)α−1‖A∗v(�)
k−m+1(t∗ − s)

∥
∥
∥
L2(Ω)

, � < k − m,

≤
{

cs(1−β)α(t∗ − s)1−(1−γ )α‖Aγ∗ u0‖L2(Ω), � = k − m,

cs(1−β)α−1(t∗ − s)k−m−�+1−(1−γ )α‖Aγ∗ u0‖L2(Ω), � < k − m.

Similarly for the case � = k (and thus m = 0), there holds

‖Aβ∗̃ I0,k(s)‖L2(Ω) ≤ ‖A∗E∗(s)‖‖Aβ∗ (I − A−1∗ A(t∗ − s))v(k)
k+1‖L2(Ω)

≤ c‖Aβ∗v
(k)
k+1(t∗ − s)‖L2(Ω).

Thus, for 0 ≤ m ≤ k and � = k − m, upon integrating from 0 to t∗, we obtain

‖Aβ∗ I(k)m (t∗)‖L2(Ω) ≤ ct2+(γ−β)α∗ ‖Aγ∗ u0‖L2(Ω) + c
∫ t∗

0
‖Aβ∗v

(k)
k+1(s)‖L2(Ω)ds,

and similarly for 0 ≤ m ≤ k and � < k − m,

‖Aβ∗ I(k)m (t∗)‖L2(Ω) ≤ c((1 − β)α)−1t1+(γ−β)α∗ ‖Aγ∗ u0‖L2(Ω)

+ c
∫ t∗

0
‖Aβ∗v

(k)
k+1(s)‖L2(Ω)ds.
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Meanwhile, for m = k + 1, we have

Aβ∗ I(k)k+1(t∗) =
∫ t∗

0
Aβ+1−γ∗ W (k)

k+1(t∗ − s)Aγ∗ (I − A−1∗ A(s))u(s)ds,

and consequently, by Lemmas 1(ii) and 2 and the induction hypothesis,

‖Aβ∗ I(k)k+1(t∗)‖L2(Ω)

≤
∫ t∗

0
‖Aβ+1−γ∗ W (k)

k+1(t∗ − s)‖‖Aγ∗ (I − A−1∗ A(s))u(s)‖L2(Ω)ds

≤ c
∫ t∗

0
(t∗ − s)1−(β−γ )α‖Aγ∗ u(s)‖L2(Ω)ds ≤ ct2+(γ−β)α∗ ‖Aγ∗ u0‖L2(Ω).

In the case 0 ≤ m ≤ k and � < k − m, the preceding estimates require β ∈ [0, 1).
When 0 ≤ m ≤ k, � < k − m and β = 1, we apply the identity (3.8) and rewrite
A∗Im,�(t∗) as

A∗Im,�(t∗) =
∫ t∗

0
(sm(I − F∗(s))′)(m)(A∗ − A(t∗ − s))(k−m−�)v

(�)
k−m+1(t∗ − s)ds.

Then integration by parts and product rule yield

A∗Im,�(t∗) = −
∫ t∗

0
D(s)(A∗ − A(t∗ − s))(k−m−�+1)v

(�)
k−m+1(t∗ − s)ds

−
∫ t∗

0
D(s)(A∗ − A(t∗ − s))(k−m−�)v

(�+1)
k−m+1(t∗ − s)ds

− D(0)(A∗ − A(t∗ − s))(k−m−�)|s=0v
(�)
k−m+1(t∗), (3.13)

with

D(s) =
{

I − F∗(s), m = 0,

(sm(I − F∗(s))′)(m−1), m > 0.

By Lemma 1(iii), ‖D(s)‖ ≤ c, and thus the preceding argument with Lemmas 1 and
2 and the induction hypothesis allows bounding the integrand A∗ Ĩm,�(s) of (3.13) by

‖A∗̃Im,�(s)‖L2(Ω) ≤ c(t∗ − s)k−�−(1−γ )α‖u0‖Ḣ2γ (Ω)

+
{

c‖A∗v(k)
k+1(t∗ − s)‖L2(Ω), � = k − 1,

c(t∗ − s)k−1−�−(1−γ )α‖u0‖Ḣ2γ (Ω), � < k − 1,

where for � = k − 1, we have m = 0 and hence D(0) = 0.
Combining the last estimates and then integrating from 0 to t∗ in s, we obtain the

desired assertion of Lemma 3. All the estimates are based on Lemmas 1 and 2, and
thus the constants c in Lemma 3 is bounded as α → 1−. ��
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The proof of Theorem 2 is similar to that of Theorem 1. The lengthy and technical
proof is deferred to Appendix B.

4 Error analysis

In this section, we present error estimates for the scheme (2.5). To this end, letw(t) =
u(t) − u(0), which satisfies the equation

{
∂α
t w(t) + A(0)w(t) = g(t), ∀t > 0,

w(0) = 0.
(4.1)

with
g(t) := (A(0) − A(t))w(t) − A(t)u0 + f (t).

Then the error en := un − u(tn) of the numerical solution un is given by

en = wn − w(tn), with wn = un − u0. (4.2)

We also introduce an intermediate solution wn defined by

{
∂̄α
τ w1 + A(0)w1 = g(t1) + 1

2g(t0),

∂̄α
τ wn + A(0)wn = g(tn), n = 2, 3, . . . , N .

(4.3)

which is the numerical approximation of (4.1) with the source g(t). Using wn , we
further decompose the error en into

en = (wn − wn) + (wn − w(tn)) =: �n + ϑn,

where ϑn is the error due to time discretization of problem (4.1) with a “time-
independent” operator A(0), and �n is the error between two numerical solutions
due to the perturbation of the source term.

It suffices to estimate the two terms �n and ϑn . The analysis for ϑn will employ
the following nonstandard error estimates.

Lemma 4 Let u(t) be the solution of problem (3.3) with u0 ≡ 0 and un, with u0 = 0,
defined by

{
∂̄α
τ u

1 + A(t∗)u1 = g(t1) + 1
2g(0),

∂̄α
τ u

n + A(t∗)un = g(tn), n = 2, . . . , N .

Then the following statements hold.
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(i) If β, γ ∈ [0, 1) and β + γ < 1, then

‖u(tn) − un‖Ḣ2β(Ω) ≤ cτ 2
(
t (1−β)α−2
n ‖g(0)‖L2(Ω) + t (1−β)α−1

n ‖g′(0)‖L2(Ω)

+
∫ tn

0
(tn+1 − s)(1−β−γ )α−1‖g′′(s)‖Ḣ−2γ (Ω) ds

)
.

(ii) If β = 1, then

‖u(tn) − un‖Ḣ2(Ω) ≤ cτ 2
(
t−2
n ‖g(0)‖L2(Ω) + t−1

n ‖g′‖C([0,τ ];L2(Ω))

+
∫ tn

τ

(tn+1 − s)−1‖g′′(s)‖L2(Ω)ds
)
.

Lemma 4 can be proved using discrete Laplace transform (generating function
technique) similarly as the error estimation for CQ–BDFk [16]. This type of error
estimation yields an error bound directly from a contour integral, while the constant
produced from a contour integral is bounded as α → 1−. We will use Lemma 4 and
a perturbation argument to bound ϑn and �n , respectively, and derive error estimates
for numerical solutions.

For the convenience of error analysis, we further split w(t) into w(t) = w0(t) +
w1(t), where w0(t) and w1(t) are respectively solutions of

∂α
t w0(t) + A(0)w0(t) = (A(0) − A(t))w(t), with w0(0) = 0, (4.4)

∂α
t w1(t) + A(0)w1(t) = −A(t)u0 + f (t), with w1(0) = 0. (4.5)

Correspondingly, we split wn into wn = wn
0 + wn

1, defined by w0
0 = 0,

∂̄α
τ wn

0 + A(0)wn
0 = (A(0) − A(tn))w(tn), n = 1, 2, 3, . . . , N , (4.6)

and w0
1 = 0 and

{
∂̄α
τ w1

1 + A(0)w1
1 = −A(t1)u0 − 1

2 A(0)u0 + f (t1) + 1
2 f (t0),

∂̄α
τ wn

1 + A(0)wn
1 = −A(tn)u0 + f (tn), n = 2, 3, . . . , N ,

(4.7)

The functions wn
0 and wn

1 approximate w0(tn) and w1(tn), respectively.

4.1 Error analysis for the homogeneous problem

Now we analyze the scheme (2.5) for the homogeneous problem with f ≡ 0. First,
we bound the function g(t) = (A(0) − A(t))w(t) in equation (4.4).

Lemma 5 Let Assumptions (3.1)–(3.2) hold. For the function g(t) = (A(0) −
A(t))w(t), the following statements hold when f ≡ 0.

(i) u0 ∈ Ḣ2(Ω) and β ∈ [0, 1], then ‖g′(0)‖L2(Ω) + t1−αβ‖g′′(t)‖Ḣ−2β(Ω) ≤
c‖u0‖Ḣ2(Ω).
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(ii) u0 ∈ L2(Ω), then ‖g′(t)‖Ḣ−2(Ω) + t‖g′′(t)‖Ḣ−2(Ω) ≤ c‖u0‖L2(Ω).

Proof By Theorem 1 and triangle inequality, ‖w(t)‖Ḣ2(Ω) ≤ ‖u(t)‖Ḣ2(Ω) +
‖u0‖Ḣ2(Ω) ≤ c‖u0‖Ḣ2(Ω). Thus, by Lemma 2,

‖g′(t)‖L2(Ω) ≤ ‖(A(0) − A(t))w′(t)‖L2(Ω) + ‖A′(t)w(t)‖L2(Ω)

≤ ct‖u′(t)‖Ḣ2(Ω) + c‖w(t)‖Ḣ2(Ω) ≤ c‖u0‖Ḣ2(Ω),

Thus, ‖g′(0)‖L2(Ω) ≤ c‖u0‖Ḣ2(Ω). Since g′′(t) = (A(0) − A(t))w′′(t) −
2A′(t)w′(t)−A′′(t)w(t), it follows fromCorollary 1 andTheorem1 that forβ ∈ [0, 1]

‖g′′(t)‖Ḣ−2β(Ω) = ‖(A(0) − A(t))w′′(t) − 2A′(t)w′(t) − A′′(t)w(t)‖Ḣ−2β(Ω)

≤ ct‖w′′(t)‖Ḣ2−2β(Ω) + c‖w′(t)‖Ḣ2−2β(Ω) + c‖w(t)‖Ḣ2−2β (Ω)

≤ ctαβ−1‖u0‖Ḣ2(Ω).

Similarly, when u0 ∈ L2(Ω), repeating the preceding argument shows (ii). ��
The next lemma bounds ϑn = wn − w(tn).

Lemma 6 Let conditions (3.1)-(3.2) hold, and w be the solution to problem (4.1) with
f ≡ 0. Let ϑn := wn − w(tn). Then there hold

‖ϑn‖Ḣ2β(Ω) ≤ cτ 2tα(1−β)−2
n ‖u0‖Ḣ2(Ω), ∀β ∈ [0, 1/2),

‖ϑn‖L2(Ω) ≤ cτ 2t−2
n �n‖u0‖L2(Ω), with �n = log(1 + tn/τ).

Proof Using the decompositions w(t) = w0(t) + w1(t) and wn = wn
0 + wn

1 defined
in (4.4)-(4.5) and (4.6)-(4.7), respectively, we have

‖ϑn‖Ḣ2β(Ω) ≤ ‖wn
0 − w0(tn)‖Ḣ2β(Ω) + ‖wn

1 − w1(tn)‖Ḣ2β(Ω). (4.8)

We discuss the cases u0 ∈ Ḣ2(Ω) and u0 ∈ L2(Ω), separately.

Case (i): u0 ∈ Ḣ2(Ω). Lemma 4(i) with g(t) = A(t)u0, for β ∈ [0, 1/2), implies

‖wn
1 − w1(tn)‖Ḣ2β(Ω) ≤ cτ 2t (1−β)α−2

n ‖u0‖Ḣ2(Ω). (4.9)

For g(t) = (A(0) − A(t))w(t) and any β ∈ [0, 1/2), Lemmas 4(i) and 5imply

‖wn
0 − w0(tn)‖Ḣ2β(Ω)

≤ cτ 2t (1−β)α−1
n ‖g′(0)‖L2(Ω)

+ cτ 2
∫ tn

0
(tn+1 − s)(1−2β)α−1‖g′′(s)‖Ḣ−2β(Ω) ds

≤ cτ 2
(
t (1−β)α−1
n +

∫ tn

0
(tn+1 − s)(1−2β)α−1sαβ−1ds

)
‖u0‖Ḣ2(Ω)
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≤ cτ 2tα(1−β)−1
n ‖u0‖Ḣ2(Ω).

This and (4.9) yield the desired estimate for u0 ∈ Ḣ2(Ω).

Case (ii): u0 ∈ L2(Ω). By Lemma 4 (ii), we have

‖wn
1 − w1(tn)‖L2(Ω) ≤ cτ 2t−2

n �n‖u0‖L2(Ω).

Meanwhile, by Lemmas 4 (ii) and 5, we have

‖wn
0 − w0(tn)‖L2(Ω)

≤ cτ 2
(
t−1
n ‖g′‖C([0,τ ];Ḣ−2(Ω)) +

∫ tn

τ

(tn+1 − s)−1‖g′′(s)‖Ḣ−2(Ω) ds
)

≤ cτ 2
(
t−1
n +

∫ tn

τ

(tn+1 − s)−1s−1ds
)
‖u0‖L2(Ω) ≤ cτ 2t−1

n �n‖u0‖L2(Ω).

These two estimates give the second assertion, completing the proof. ��
We need a temporally semidiscrete solution operator En

τ,m defined by

En
τ,m = 1

2π i

∫

Γ τ
θ,δ

eznτ (δτ (e
−zτ )α + A(tm))−1 dz, (4.10)

with the contour Γ τ
θ,δ given by

Γ τ
θ,δ := {z ∈ Γθ,δ : |�(z)| ≤ π/τ }, (4.11)

oriented with an increasing imaginary part. The following smoothing property of the
operator En

τ,m holds (by the argument of [18, Lemma 4.3]): for any β ∈ [0, 1]

‖A(tm)βEn
τ,m‖ ≤ c(tn + τ)(1−β)α−1, n = 0, 1, . . . , N . (4.12)

We have the following L2(Ω) stability for �n .

Lemma 7 Let conditions (3.1)-(3.2) be fulfilled, and u the solution to problem (1.1)
with f ≡ 0. Let �n = wn − wn. Then with �n = log(1 + tn/τ), there holds

‖�m‖L2(Ω) ≤ cτ
m∑

k=1

‖�k‖L2(Ω) +
{
cτ 2tα−1

m ‖u0‖Ḣ2(Ω), if u0 ∈ Ḣ2(Ω),

cτ 2t−1
m �2m‖u0‖L2(Ω), if u0 ∈ L2(Ω).

Proof It follows from (2.5) and (4.3) that �n satisfies �0 = 0 and

∂̄α
τ �n + A(tm)�n = ∂̄α

τ (wn − wn) + A(tm)(wn − wn)

= (A(tm) − A(tn))w
n − (A(tm) − A(0))wn − (A(0) − A(tn))w(tn)

= (A(tm) − A(tn))�
n − (A(tn) − A(0))ϑn, n = 1, 2, . . . , N .
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Using the operator En
τ,m in (4.10), �m is represented by

�m = τ

m∑

k=1

Em−k
τ,m

[
(A(tm) − A(tk))�

k − (A(tk) − A(0))ϑk].

Consequently, by triangle inequality,

‖�m‖L2(Ω) ≤ τ

m∑

k=1

‖Em−k
τ,m (A(tm) − A(tk))�

k‖L2(Ω)

+ τ

m∑

k=1

‖Em−k
τ,m (A(tk) − A(0))ϑk‖L2(Ω) := I + II.

For the term I, by (4.12) with β = 1 and Lemma 2, we have

‖A(tm)Em−k
τ,m ‖‖(I − A(tm)−1A(tk))�

k‖L2(Ω) ≤ ct−1
m−k+1tm−k‖�k‖L2(Ω),

and thus

I ≤ cτ
m∑

k=1

‖�k‖L2(Ω). (4.13)

For the term II, we discuss the cases u0 ∈ Ḣ2(Ω) and u0 ∈ L2(Ω) separately.
Case (i): u0 ∈ Ḣ2(Ω). The estimate (4.12) with β = 3

4 , Lemmas 2 and 6with β = 1
4

imply that IIm,k = ‖Em−k
τ,m (A(tk) − A(0))ϑk‖L2(Ω) is bounded by

IIm,k ≤ ct
α
4 −1
m−k+1tk‖ϑk‖

Ḣ
1
2 (Ω)

≤ cτ 2t
α
4 −1
m−k+1t

3α
4 −1

k ‖u0‖Ḣ2(Ω)

and further, since τ
∑m

k=1 t
α
4 −1
m−k+1t

3α
4 −1

k ≤ ctα−1
m , there holds

II ≤ τ

m∑

k=1

IIm,k ≤ cτ 2tα−1
m ‖u0‖Ḣ2(Ω).

Case (ii): u0 ∈ L2(Ω). By (4.12) and Lemmas 6 and 2,

IIm,k ≤ ‖Em−k
τ,m A(tm)‖‖A(tm)−1A(0)‖‖(I − A(0)−1A(tk))ϑ

k‖L2(Ω)

≤ ct−1
m−k+1tk‖ϑk‖L2(Ω) ≤ cτ 2�mt

−1
m−k+1t

−1
k ‖u0‖L2(Ω).

This and the inequality τ
∑m

k=1 t
−1
m−k+1t

−1
k ≤ ct−1

m �m yield

II ≤ cτ 2t−1
m �2m‖u0‖L2(Ω).
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In either case, combining the bounds on I and II gives the desired assertion. ��
Now we can derive error estimates for the homogeneous problem.

Theorem 4 Let u and un be the solutions to problems (1.1) and (2.5) with f ≡ 0,
respectively. Then with �n = log(1 + tn/τ), there holds

‖u(tn) − un‖L2(Ω) ≤
{
cτ 2tα−2

n ‖u0‖Ḣ2(Ω), if u0 ∈ Ḣ2(Ω),

cτ 2t−2
n �2n‖u0‖L2(Ω), if u0 ∈ L2(Ω).

Proof It follows directly from Lemma 7 that

‖�m‖L2(Ω) ≤ cτ
m∑

k=1

‖�k‖L2(Ω) +
{
cτ 2tα−1

m ‖u0‖Ḣ2(Ω), if u0 ∈ Ḣ2(Ω),

cτ 2t−1
m �2m‖u0‖L2(Ω), if u0 ∈ L2(Ω).

Thus, by the discrete Gronwall’s inequality from Lemma 11 (with μ = 1 − α) and
Lemma 12,

‖�m‖L2(Ω) ≤
{
cτ 2tα−1

m ‖u0‖Ḣ2(Ω), if u0 ∈ Ḣ2(Ω),

cτ 2t−1
m �2m‖u0‖L2(Ω), if u0 ∈ L2(Ω).

This, Lemma 6 and the triangle inequality complete the proof. The preceding estimates
are based on Lemma 7 and Lemmas 11–12. In particular, applying Lemma 11 to the
case u0 ∈ Ḣ2(Ω) yields a constant c depending on 1/α. Therefore, the constants c in
Theorem 4 is bounded as α → 1−. ��
Remark 2 The error estimate for u0 ∈ Ḣ2(Ω) in Theorem 4 is identical with that for
the case of a time-independent elliptic operator, and that for nonsmooth initial data is
also nearly identical, up to the factor �2n [14]. The �n factor is also present for backward
Euler convolution quadrature [18] for subdiffusion, and backward Euler method [26]
and general single-step and multi-step methods [34] for standard parabolic problems
with a time-dependent coefficient.

4.2 Error analysis for the inhomogeneous problem

Now we analyze the scheme (2.5) for u0 ≡ 0. We need the following inequality.

Lemma 8 For any β ∈ (0, 1/2) and s ∈ [0, tm], the following inequality holds

τ

m∑

k=1

tβα−1
m−k+1(tk+1 − s)(1−2β)α−1χ[0,tk ](s) ≤ c(tm − s)(1−β)α−1.

Proof We denote the left-hand side by I(s). For any s ∈ [ti−1, ti ), i ≤ m,

I(s) = τ

m∑

k=i

tβα−1
m−k+1(tk+1 − s)(1−2β)α−1
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≤ τ

m∑

k=i

tβα−1
m−k+1t

(1−2β)α−1
k+1−i ≤ ct (1−β)α−1

m−i+1 ≤ c(tm − s)(1−β)α−1.

This completes the proof of the lemma. ��
The next result gives a bound on g(t) = (A(0) − A(t))w(t) when u0 ≡ 0.

Lemma 9 Let g(t) = (A(0) − A(t))w(t) (with u0 ≡ 0). Then there holds

‖g′(0)‖L2(Ω) ≤ c‖ f (0)‖L2(Ω), (4.14)

and further, for any β ∈ (0, 1/2)

τ

m∑

k=1

tβα−1
m−k+1tk

∫ tk

0
(tk − s)(1−2β)α−1‖g′′(s)‖Ḣ−2β(Ω)

≤ ctα−1
m ‖ f (0)‖L2(Ω) + tαm‖ f ′(0)‖L2(Ω) + tm

∫ tm

0
(tm − s)α−1‖ f ′′(s)‖L2(Ω)ds

(4.15)

Proof It follows from Lemma 2 that

‖g′(t)‖L2(Ω) ≤ ‖(A(0) − A(t))w′(t)‖L2(Ω) + ‖A′(t)w(t)‖L2(Ω)

≤ ct‖u′(t)‖Ḣ2(Ω) + c‖u(t)‖Ḣ2(Ω).

Then by Theorem 2, ‖g′(0)‖L2(Ω) ≤ c‖ f (0)‖L2(Ω), showing the estimate (4.14).
Next, by Lemma 8, the left hand side (LHS) of (4.15) is bounded by

LHS ≤ tm

∫ tm

0

(

τ

m∑

k=1

tβα−1
m−k+1(tk − s)(1−2β)α−1χ[0,tk ](s)

)

‖g′′(s)‖H−2β(Ω)ds

≤ ctm

∫ tm

0
(tm − s)(1−β)α−1‖g′′(s)‖H−2β(Ω)ds.

Since g′′(t) = (A(0) − A(t)u′′(t) − 2A′(t)u′(t) − A′′(t)u(t), Theorem 2 implies

‖g′′(t)‖H−2β(Ω) ≤ ct‖u′′(t)‖H2−2β(Ω) + c‖u′(t)‖H2−2β(Ω) + c‖u(t)‖H2−2β (Ω)

≤ ctβα−1‖ f (0)‖L2(Ω) + ctβα‖ f ′(0)‖L2(Ω)

+ ct
∫ t

0
(t − s)βα−1‖ f ′′(s)‖L2(Ω) ds.

Combining the last two estimates yields the desired assertion. ��
Now we can derive error estimates for the inhomogeneous problem.
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Theorem 5 Let u and un be the solutions to (1.1) and (2.5) with u0 = 0 and f ∈
C1([0, T ]; L2(Ω)) and

∫ t
0 (t − s)α−1‖ f ′′(s)‖L2(Ω)ds < ∞, respectively. Then under

conditions (3.1)–(3.2), there holds

‖u(tn) − un‖L2(Ω) ≤ cτ 2
(
tα−2
n ‖ f (0)‖L2(Ω) + tα−1

n ‖ f ′(0)‖L2(Ω)

+
∫ tn

0
(tn − s)α−1‖ f ′′(s)‖L2(Ω)ds

)
.

Proof The overall proof strategy is similar to Theorem 4. First, we bound ϑn :=
wn − w(tn). By Lemma 4(i), for any β ∈ [0, 1/2), there holds

‖wn
1 − w1(tn)‖H2β(Ω) ≤ cτ 2R(tn).

with R(tn) defined by

R(tn) = t (1−β)α−2
n ‖ f (0)‖L2(Ω) + t (1−β)α−1

n ‖ f ′(0)‖L2(Ω)

+
∫ tn

0
(tn+1 − s)(1−β)α−1‖ f ′′(s)‖L2(Ω) ds.

Meanwhile, for any β ∈ [0, 1/2), by Lemma 4(i) and (4.14), with g(t) = (A(0) −
A(t))u(t),

‖wn
0 − w0(tn)‖Ḣ2β(Ω)

≤ cτ 2
(
t (1−β)α−1
n ‖ f (0)‖L2(Ω) +

∫ tn

0
(tn+1 − s)(1−2β)α−1‖g′′(s)‖Ḣ−2β(Ω)ds

)
.

Thus, by the splitting (4.8) and triangle inequality, for any β ∈ [0, 1/2),

‖ϑn‖Ḣ2β(Ω) ≤cτ 2R(tn) + cτ 2
∫ tn

0
(tn+1 − s)(1−2β)α−1‖g′′(s)‖Ḣ−2β(Ω)ds.

Next we bound �n := wn −wn , by repeating the argument for Lemma 7. The term
I can be bounded as (4.13). Further, by (4.12) and Lemma 2, for any β ∈ (0, 1/2),

II ≤ τ

m∑

k=1

‖Em−k
τ,m (A(tk) − A(0))ϑk‖L2(Ω) ≤ c

m∑

k=1

tβα−1
m−k+1tk‖ϑk‖Ḣ2β(Ω).

Then the preceding bound on ϑn implies

II ≤ cτ 3
m∑

k=1

tβα−1
m−k+1tk

(
R(tk) +

∫ tk

0
(tk+1 − s)(1−2β)α−1‖g′′(s)‖Ḣ−2β(Ω)

)
.
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This and (4.15) imply

‖�m‖L2(Ω) ≤ cτ
m∑

k=1

‖�k‖L2(Ω) + cτ 2
(
tα−1
m ‖ f (0)‖L2(Ω) + tαm‖ f ′(0)‖L2(Ω)

+ tm

∫ tn

0
(tn − s)α−1‖ f ′′(s)‖L2(Ω)ds

)
.

Thus, by the discrete Gronwall’s inequality from Lemma 11 with μ = 1 − α,

‖�m‖L2(Ω) ≤ cτ 2
(
tα−1
m ‖ f (0)‖L2(Ω) + tαm‖ f ′(0)‖L2(Ω)

+ tm

∫ tn

0
(tn − s)α−1‖ f ′′(s)‖L2(Ω)ds

)
,

where the constant c depends on α as O(α−1). This and the bound on ϑn with β = 0
complete the proof. ��
Remark 3 The error estimate in Theorem 5 is identical with that for the subdiffusion
model with a time-independent diffusion coefficient [14].

Remark 4 In the proof of Theorems 4 and 5, (discrete) Gronwall’s inequality was
employed a few times to bound �m . This leads to a dependence on α as 1/α, which
is nevertheless uniformly bounded on α for α → 1−. Further, the constants in the
bounds on ϑ are also bounded. Thus, the constants in Theorems 4 and 5 are bounded
as the fractional order α → 1−. We refer to [4] for an in-depth discussion and many
further references on the important issue of α-robustness.

5 Numerical results and discussions

Nowwe present numerical results to illustrate the convergence behavior of the scheme
(2.5). To this end, we consider the domain Ω = (0, 1) and the subdiffusion model
(1.1) with a time-dependent diffusion operator A(t) = −(2 + cos(t))Δ. We consider
the following three examples:

(a) u0(x) = x−1/4 ∈ H1/4−ε(Ω) with ε ∈ (0, 1/4) and f ≡ 0.
(b) u0(x) = 0 and f = et (1 + χ(0, 12 )(x)).

(c) u0(x) = 0 and f = t0.5x(1 − x).

To discretize the problem, we divide the domain Ω into M subintervals of equal
length h = 1/M . The numerical solutions are computed by the standardGalerkin FEM
(with P1 element) in space, and BDF2-CQ in time. Since the spatial convergence was
already studied in [18], we only study the temporal convergence below. To this end,
we fix a small spatial mesh size h = 1/1000 so that the spatial discretization error is
negligible, and compute the L2(Ω) error:

e(tN ) = ‖uN
h − uh(tN )‖L2(Ω).
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Table 1 Temporal errors e for Example (a), uncorrected BDF2-CQ (2.4) with τ = 1/N

tN α\N 10 20 40 80 160 320 Rate

1 0.25 2.96e-4 1.49e-4 7.45e-5 3.73e-5 1.86e-5 9.32e-6 1.00

0.50 4.12e-4 2.12e-4 1.07e-4 5.37e-5 2.69e-5 1.35e-5 1.00

0.75 3.00e-4 1.62e-4 8.34e-5 4.22e-5 2.12e-5 1.06e-5 1.00

10−3 0.25 1.16e-3 5.80e-4 2.89e-4 1.45e-4 7.23e-5 3.62e-5 1.00

0.50 5.49e-3 2.70e-3 1.34e-3 6.59e-4 3.34e-4 1.67e-4 1.00

0.75 5.18e-3 2.54e-3 1.26e-3 6.28e-4 3.13e-4 1.57e-4 1.00

Table 2 Temporal errors e for Example (a), corrected BDF2-CQ (2.5) with τ = 1/N

tN α\N 10 20 40 80 160 320 Rate

1 0.25 4.20e-5 9.77e-6 2.36e-6 5.79e-7 1.44e-7 3.57e-8 2.01

0.50 8.82e-5 2.04e-5 4.91e-6 1.20e-6 2.98e-7 7.41e-8 2.01

0.75 1.01e-4 2.34e-5 5.60e-6 1.37e-6 3.38e-7 8.41e-8 2.01

10−3 0.25 1.50e-4 3.49e-5 8.44e-6 2.07e-6 5.14e-7 1.28e-7 2.01

0.50 4.77e-4 1.13e-4 2.74e-5 6.77e-6 1.68e-6 4.19e-7 2.00

0.75 3.68e-4 8.67e-5 2.11e-5 5.21e-6 1.29e-6 3.22e-7 2.00

Since the exact semidiscrete solution uh(t) is unavailable, we compute the reference
solutions on a finer temporal mesh with a time stepsize τ = 1/5000.

The numerical results for the homogeneous case (a) by the schemes (2.4) and (2.5)
are presented in Tables 1 and 2, respectively. It is clearly observed that the vanilla
BDF2-CQ scheme (2.4) can only achieve a first-order convergence, whereas the cor-
rected scheme (2.5) achieves the desired second-order convergence. The convergence
is fairly robust with respect to the fractional order α, despite the low regularity of the
initial data u0. Further, the error is larger when the time tN gets closer to zero, which
agrees well with the regularity theory in that the second-order temporal derivative of
the solution has strong singularity at t = 0, cf. Theorem 1.

The numerical results for Examples (b) and (c) are presented in Tables 3, 4, 5,
where the source term f is smooth and nonsmooth in time, respectively. Note that for
Example (c), the corrected and uncorrected schemes are identical, since f (0) ≡ 0.
The observations from Example (a) remain valid for the inhomogeneous problems:
the correction at the first step in the scheme (2.5) can restore the desired second-order
convergence, whereas the vanilla BDF2–CQ scheme (2.4) can only give a first-order
convergence, and the convergence rate does not depend on the fractional order α.

The second-order convergence of the scheme (2.5) in Theorem 5 requires suitable
temporal regularity of the source f , i.e.,

∫ t
0 (t − s)α−1‖ f ′′(s)‖L2(Ω)ds < ∞, in the

absence of which, the convergence rate suffers from a loss. This is clearly observed
from the numerical results in Table 5 for Example (c), where the source term f does not
satisfy the condition. Actually, by means of interpolation, the theoretical convergence
rate is O(τ 3/2). The corrected scheme (2.5) can achieve a convergence rate O(τ 3/2),
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Table 3 Temporal errors e for Example (b), uncorrected BDF2-CQ (2.4) with τ = 1/N

tN α\N 10 20 40 80 160 320 Rate

1 0.25 2.22e-5 1.15e-5 5.81e-6 2.92e-6 1.46e-6 7.33e-7 1.00

0.50 3.09e-5 1.64e-5 8.35e-6 4.21e-6 2.11e-6 1.06e-6 1.00

0.75 2.36e-5 1.28e-5 6.57e-6 3.32e-6 1.67e-6 8.36e-6 1.00

10−3 0.25 9.12e-5 4.56e-5 2.28e-5 1.14e-5 5.70e-6 2.85e-6 1.00

0.50 4.32e-4 2.12e-4 1.05e-4 5.26e-5 2.62e-5 1.31e-5 1.00

0.75 3.54e-4 1.74e-4 8.61e-5 4.28e-5 2.14e-5 1.07e-5 1.00

Table 4 Temporal errors e for Example (b), corrected BDF2-CQ (2.5) with τ = 1/N

tN α\N 10 20 40 80 160 320 Rate

1 0.25 4.46e-6 1.04e-6 2.51e-7 6.16e-8 1.53e-8 3.80e-9 2.01

0.50 8.51e-6 1.96e-6 4.70e-7 1.15e-7 2.85e-8 7.09e-9 2.01

0.75 8.13e-6 1.85e-6 4.40e-7 1.07e-7 2.64e-8 6.56e-9 2.01

10−3 0.25 1.18e-5 2.75e-6 6.64e-7 1.63e-7 4.05e-8 1.01e-8 2.01

0.50 3.70e-5 8.75e-6 2.13e-6 5.26e-7 1.31e-7 3.26e-8 2.00

0.75 5.66e-6 1.38e-6 3.42e-7 8.52e-8 2.12e-8 5.30e-9 2.00

Table 5 Temporal errors e for Example (c), corrected BDF2-CQ (2.5) with τ = 1/N

tN α\N 50 100 200 400 800 1600 Rate

1 0.25 2.31e-8 8.65e-9 3.18e-9 1.15e-9 4.11e-10 1.44e-10 1.52

0.50 2.77e-8 1.11e-8 4.24e-9 1.58e-9 5.73e-10 2.02e-10 1.50

0.75 6.59e-9 4.94e-9 2.40e-9 1.01e-9 3.93e-10 1.45e-10 1.44

10−3 0.25 3.65e-9 1.27e-9 4.41e-10 1.54e-10 5.37e-11 1.84e-11 1.54

0.50 1.72e-8 5.92e-9 2.05e-9 7.15e-10 2.48e-10 8.51e-11 1.55

0.75 1.24e-8 4.37e-9 1.55e-9 5.45e-10 1.91e-10 6.59e-11 1.54

which agrees well with the theoretical one and is faster than the first-order convergence
as exhibited by the scheme (2.4). These numerical results show clearly the robustness
and efficiency of the corrected scheme (2.5).

Acknowledgements The authors are grateful to two anonymous referees for their constructive comments
which have led to an improvement in the quality of the paper.

A Gronwall’s inequalities

In this appendix, we collect several useful Gronwall’s inequalities. The following
generalized Gronwall’s inequality is useful [12, Exercise 4, p. 190].
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Lemma 10 Let the function ϕ(t) ≥ 0 be continuous for 0 < t ≤ T . If

ϕ(t) ≤ at−μ + b
∫ t

0
(t − s)β−1ϕ(s)ds, 0 < t ≤ T ,

for some constants a, b ≥ 0, 0 ≤ μ, β < 1, then there is a constant c = c(b, T , β)

such that
ϕ(t) ≤ ac

1 − μ
t−μ, 0 < t ≤ T .

The next result is a discrete analogue of Lemma 10 [8, Lemma 7.1].

Lemma 11 Let ϕn ≥ 0 for 0 ≤ tn ≤ T . If

ϕn ≤ at−μ
n + bτ

n∑

j=1

ϕ j , 0 < tn ≤ T ,

for some constants a, b ≥ 0, and bτ < 1/2, 0 ≤ μ < 1, then there is constant
c = c(b, T ) such that

ϕn ≤ ac

1 − μ
t−μ
n , 0 < tn ≤ T .

Proof This lemma is a special case of [8, Lemma 7.1], but without explicit depen-
dence on α. We give a short proof for completeness following [37, p. 258]. Let
σ n = τ

∑n
j=1 ϕn , and φn = at−μ

n . Then

τ−1(σ n − σ n−1) ≤ φn + bσ n,

i.e., σ n ≤ (1 − bτ)−1σ n−1 + (1 − bτ)−1τφn . Consequently, since the time interval
is finite,

σ n ≤ τ

n∑

j=1

(1 − bτ) j−n−1φ j ≤ e2bT τ

n∑

j=1

φ j ≤ ae2bT

1 − μ
t1−μ
n ,

since (1 − x)−1 ≤ e2x for x ∈ [0, 1/2]. This directly shows the desired assertion. ��
The next result is a variant of Lemma 11 with log factors [37, p. 258].

Lemma 12 Let ϕn ≥ 0 for 0 ≤ tn ≤ T . With �n = log(1 + tn/τ), if

ϕn ≤ at−1
n �

p
n + bτ

n∑

j=1

ϕ j , 0 < tn ≤ T ,

for some constants a, b ≥ 0 and p > 0, then there is constant c = c(b, T ) such that

ϕn ≤ cat−1
n �

p
n , 0 < tn ≤ T .
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B Proof of Theorem 2

In this part, we prove Theorem 2, by considering (tku(t))(k), instead of (tk+1u(t))(k)

for the proof of Theorem 1. We begin with a bound on dk

dtk
(tk

∫ t
0 E(t − s; t∗) f (s)ds),

which follows from straightforward but lengthy computation.

Lemma 13 Let k ≥ 1. Then for any β ∈ [0, 1), there holds
∥
∥
∥A

β∗
dk

dtk

(
tk

∫ t

0
E∗(t − s) f (s)ds

)
|t=t∗

∥
∥
∥
L2(Ω)

≤ c
k−1∑

m=0

t (1−β)α+m∗ ‖ f (m)(0)‖L2(Ω) + ctk∗
∫ t∗

0
(t∗ − s)(1−β)α−1‖ f (k)(s)‖L2(Ω)ds,

and further,

∥
∥
∥A∗

dk

dtk

(
tk

∫ t

0
E∗(t − s) f (s)ds

)
|t=t∗

∥
∥
∥
L2(Ω)

≤ c
k∑

m=0

tm∗ ‖ f (m)(0)‖L2(Ω) + ctk∗
∫ t∗

0
‖ f (k+1)(s)‖L2(Ω)ds.

Proof Let I(t) = dk

dtk
(tk

∫ t
0 E∗(t − s) f (s)ds). It follows from the elementary identity

dm

dtm

∫ t

0
E∗(s) f (t − s)ds =

m−1∑

�=0

E (�)∗ (t) f (m−1−�)(0) +
∫ t

0
E∗(s) f (m)(t − s)ds

and direct computation that

I(t) =
k∑

m=0

(
m
k

)2

tm
( m−1∑

�=0

E (�)∗ (t) f (m−1−�)(0) +
∫ t

0
E∗(s) f (m)(t − s)ds

)
.

Consequently, by Lemma 1, for β ∈ [0, 1),

‖Aβ∗ I(t∗)‖L2(Ω) ≤ c
k∑

m=0

tm∗
m−1∑

�=0

∥
∥
∥A

β∗ E (�)∗ (t∗)
∥
∥
∥‖ f (m−1−�)(0)‖L2(Ω)

+ c
k∑

m=0

tm∗
∫ t∗

0
‖Aβ∗ E∗(s)‖‖ f (m)(t∗ − s)‖L2(Ω)ds

≤ c
k∑

m=0

tm∗
m−1∑

�=0

t (1−β)α−1−�∗ ‖ f (m−1−�)(0)‖L2(Ω)
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+ c
k∑

m=0

tm∗
∫ t∗

0
s(1−β)α−1‖ f (m)(t∗ − s)‖L2(Ω)ds

≤ c
k−1∑

m=0

t (1−β)α+m∗ ‖ f (m)(0)‖L2(Ω)

+ c
k∑

m=0

tm∗
∫ t∗

0
s(1−β)α−1‖ f (m)(t∗ − s)‖L2(Ω)ds.

Next we simplify the second summation. The following elementary identity: for m <

k,

f (m)(s) =
k−m−1∑

j=0

f (m+ j)(0)
s j

j ! + 1

(k − m)!
∫ s

0
(s − ξ)k−m−1 f (k)(ξ)dξ, (B.1)

and the semigroup property of the Riemann-Liouville fractional integral operator
imply

∫ t∗

0
(t∗ − s)(1−β)α−1‖ f (m)(s)‖L2(Ω)ds ≤

∫ t∗

0
(t∗ − s)(1−β)α−1

×
( k−m−1∑

j=0

‖ f (m+ j)(0)‖L2(Ω)

s j

j ! + 1

(k − m)!
∫ s

0
(s − ξ)k−m−1‖ f (k)(ξ)‖L2(Ω)dξ

)
ds

≤ c
k−m−1∑

j=0

t(1−β)α+ j∗ ‖ f (m+ j)(0)‖L2(Ω)

+ ctk−m∗
∫ t∗

0
(t∗ − s)(1−β)α−1‖ f (k)(s)‖L2(Ω)ds.

Combining these estimates gives the desired assertion for β ∈ [0, 1). For β = 1, by
the identity (3.8) and integration by parts (and the identity I − F∗(0) = 0),

A∗
∫ t∗

0
E∗(s) f (m)(t∗ − s)ds =

∫ t∗

0
(I − F∗(s))′ f (m)(t∗ − s)ds

= (I − F∗(t∗)) f (m)(0)

+
∫ t∗

0
(I − F∗(s)) f (m+1)(t∗ − s)ds,

and thus

‖A∗I(t∗)|t=t∗‖L2(Ω) ≤ c
k∑

m=0

tm∗
( m−1∑

�=0

∥
∥
∥A∗E (�)∗ (t∗)

∥
∥
∥‖ f (m−1−�)(0)‖L2(Ω)

+‖ f (m)(0)‖ +
∫ t∗

0
‖ f (m+1)(s)‖L2(Ω)ds

)
.
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Then repeating the preceding argument completes the proof. ��
Now we can present the proof of Theorem 2.

Proof Similar to Theorem 1, the proof is based onmathematical induction. Let vk(t) =
tku(t) and Wk(t) = tk E∗(t). For k = 0, by the representation (3.11), we have

Aβ∗u(t∗) =
∫ t∗

0
Aβ∗ E∗(t∗ − s) f (s)ds +

∫ t∗

0
Aβ∗ E∗(t∗ − s)(A∗ − A(s))u(s)ds.

Then for β ∈ [0, 1), by Lemma 1(ii) and 2 there holds

‖Aβ∗u(t∗)‖L2(Ω) ≤
∫ t∗

0
‖Aβ∗ E∗(t∗ − s)‖‖ f (s)‖L2(Ω)ds

+
∫ t∗

0
‖A∗E∗(t∗ − s)‖‖Aβ∗ (I − A−1∗ A(s))u(s)‖L2(Ω)ds

≤ c
∫ t∗

0
(t∗ − s)(1−β)α−1‖ f (s)‖L2(Ω)ds + c

∫ t∗

0
‖Aβ∗u(s)‖L2(Ω)ds.

The case β = 1 follows similarly from the identity (3.8) and integration by parts:

‖A∗u(t∗)‖L2(Ω) ≤ c‖ f (0)‖L2(Ω) + c
∫ t∗

0
‖ f ′(s)‖L2(Ω)ds + c

∫ t∗

0
‖A∗u(s)‖L2(Ω)ds.

Then standard Gronwall’s inequality gives the assertion for the case k = 0. Now
suppose the assertion holds up to k − 1 < K , and we prove it for k ≤ K . Now note
that

v
(k)
k (t) = dk

dtk

(
tk

∫ t

0
E∗(t − s) f (s)ds

)

+
k∑

m=0

(
k
m

)
dk

dtk

∫ t

0
Wm(t − s)(A∗ − A(s))vk−m(s)ds.

This, Lemmas 13 and 14and triangle inequality give

‖Aβ∗ v
(k)
k (t)|t=t∗‖L2(Ω) ≤ c

∫ t∗

0
‖Aβ∗ v

(k)
k (s)‖L2(Ω)ds

+

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c
k−1∑

m=0

t(1−β)α+m∗ ‖ f (m)(0)‖L2(Ω) + ctk∗
∫ t∗

0
(t∗ − s)(1−β)α−1‖ f (k)(s)‖L2(Ω)ds, β ∈ [0, 1),

c
k∑

m=0

tm∗ ‖ f (m)(0)‖L2(Ω) + ctk∗
∫ t∗

0
‖ f (k+1)(s)‖L2(Ω)ds, β = 1.

This and the standard Gronwall’s inequality complete the induction step. ��
The following result is needed in the proof of Theorem 2.
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Lemma 14 Under the conditions in Theorem 2, for any β ∈ [0, 1] and m = 0, . . . , k,
there holds

∥
∥
∥A

β∗
dk

dtk

∫ t

0
(t − s)k−mE∗(t − s)(A∗ − A(s))smu(s)ds|t=t∗

∥
∥
∥
L2(Ω)

≤ c0

∫ t∗

0
‖Aβ∗ (sku(s))(k)‖L2(Ω)ds

+

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c
k−1∑

m=0

t(1−β)α+m∗ ‖ f (m)(0)‖L2(Ω) + ctk∗
∫ t∗

0
(t∗ − s)(1−β)α−1‖ f (k)(s)‖L2(Ω)ds, β ∈ [0, 1),

c
k∑

m=0

tm∗ ‖ f (m)(0)‖L2(Ω) + ctk∗
∫ t∗

0
‖ f (k+1)(s)‖L2(Ω)ds, β = 1.

Proof Let vk = tku(t) and Wk(t) = tk E∗(t). By the induction hypothesis and (B.1),
for � < m, we have

‖A∗v(�)
m (s)‖L2(Ω) ≤ csm−�

( �∑

j=0

s j‖ f ( j)(0)‖L2(Ω) + s�

∫ s

0
‖ f (�+1)(ξ)‖L2(Ω)dξ

)

≤ csm−�
( k−1∑

j=0

s j‖ f ( j)(0)‖L2(Ω) + sk−1
∫ s

0
‖ f (k)(ξ)‖L2(Ω)dξ

)
.

(B.2)

We denote the term in the bracket by T(s; f , k). Now similar to the proof of Lemma 3,
let Im(t) be the integral on the left hand side. Then in view of the identity

I(k)m (t) =
k−m∑

�=0

(
�

k − m

) ∫ t

0
W (m)

m (A∗ − A(t∗ − s))(k−m−�)v
(�)
k−m(s)ds

︸ ︷︷ ︸
Im,�(t)

,

it suffices to bound the integrand Ĩm,�(s) of the integral Im,�(t∗), � = 0, 1, . . . , k −m.
Below we discuss the cases β ∈ [0, 1) and β = 1 separately, due to the difference in
singularity, as in the proof of Lemma 3.
Case (i): β ∈ [0, 1). For the case � < k, Lemmas 1(ii) and 2lead to

‖Aβ∗̃ Im,�(s)‖L2(Ω) ≤ ‖Aβ∗W (m)
m ‖‖(A∗ − A(t∗ − s))(k−m−�)v

(�)
k−m(t∗ − s)‖L2(Ω)

≤
{
cs(1−β)α−1s‖A∗v(k−m)

k−m (t∗ − s)‖L2(Ω), � = k − m,

cs(1−β)α−1‖A∗v(�)
k−m(t∗ − s)‖L2(Ω), � < k − m,

≤
{

cs(1−β)αT(t∗ − s; f , k), � = k − m,

cs(1−β)α−1(t∗ − s)k−m−�T(t∗ − s; f , k), � < k − m,
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where the last step is due to (B.2). Note that for � < k, the derivation requires β ∈
[0, 1). Similarly, for the case � = k (and thus m = 0),

‖Aβ∗̃ I0,k(s)‖L2(Ω) ≤ c‖Aβ∗v
(k)
k (t∗ − s)‖L2(Ω). (B.3)

Case (ii): β = 1. Note that for � < k, the derivation in case (i) requires β ∈ [0, 1).
When � < k and β = 1, using the identity (3.13) and Lemma 1 and repeating the
argument of Lemma 3, we obtain

‖A∗̃Im,�(s)‖L2(Ω) ≤
{

c(t∗ − s)k−m−�−1T(t∗ − s; f , k), � < k − 1,

cT(t∗ − s; f , k) + c‖A∗v(k)
k (t∗ − s)‖L2(Ω), � = k − 1,

Combining the preceding estimates, integrating from 0 to t∗ in s and then applying
standard Gronwall’s inequality complete the proof. ��
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