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Abstract
We provide a numerical validation method of blow-up solutions for finite dimensional
vector fields admitting asymptotic quasi-homogeneity at infinity. Our methodology is
based on quasi-homogeneous compactifications containing quasi-parabolic-type and
directional-type compactifications. Divergent solutions including blow-up solutions
then correspond to global trajectories of associated vector fields with appropriate
time-variable transformation tending to equilibria on invariant manifolds representing
infinity.We combine standardmethodology of rigorous numerical integration of differ-
ential equations with Lyapunov function validations around equilibria corresponding
to divergent directions, which yields rigorous upper and lower bounds of blow-up time
as well as rigorous profile enclosures of blow-up solutions.
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1 Introduction

Our concern in this paper is blow-up solutions of the following initial value problem
of an autonomous system of ordinary differential equations (ODEs) in Rn :

dy(t)

dt
= f (y(t)), y(0) = y0, (1.1)

where t ∈ [0, T ) with 0 < T ≤ ∞, f : Rn → R
n is a C1 function and y0 ∈ R

n . We
shall call a solution {y(t)} of the initial value problem (1.1) a blow-up solution if

tmax := sup
{
t̄ | a solution y ∈ C1([0, t̄)) of (1.1)] exists

}
< ∞.

The maximal existence time tmax is then called the blow-up time of (1.1). Blow-up
solutions can be seen in many dynamical systems generated by (partial) differential
equations like nonlinear heat equations orKeller–Segel systems. These are categorized
as the presence of finite-time singularity in dynamical systems, and many researchers
have broadly studied these phenomena from mathematical, physical, numerical view-
points and so on (e.g. [9,12,18,23] from theoretical viewpoints and e.g. [1–4,24] from
numerical viewpoints). Fundamental questions for blow-up problem are whether or
not a solution blows up and, if does, when, where, and how it blows up. In general
blow-up phenomena depend on initial data. Rigorous concrete detection of fundamen-
tal information of blow-up solutions as functions of initial data remains a nontrivial
problem.

Recently, authors and their collaborators have provided a numerical validation
procedure based on interval and affine arithmetics for calculating rigorous blow-up
profiles and their blow-up time [21]. The approach is based on compactification of
phase space; embedding the original phase space into a compact manifold M , pos-
sibly with boundary. In this methodology, the infinity on the original phase space
can correspond to a point on E ≡ ∂M or a specified point on M called a point at
infinity. Combining a compactification with an appropriate time-scale transforma-
tion, called time-variable desingularization, suitable for given vector field, divergent
solutions including blow-up solutions are characterized as global trajectories of the
transformed vector field on M tending to a point, such as an equilibrium x∗, on E .
Finally, the Lyapunov function validation ([17]) around x∗ ∈ E is applied to deriva-
tion of a re-parameterization of trajectories so that we can validate rigorous lower and
upper bounds of blow-up time tmax with numerical validations. In this methodology,
(i) rigorous numerical integration of ODEs, (ii) eigenvalue validations, and (iii) poly-
nomial estimates essentially realize numerical validations of blow-up solutions with
their blow-up time. A remarkable point of the above methodology is that, unlike the
approximation methodmentioned above, the final numerical validation results contain
mathematically rigorous information of solutions. Therefore the methodology rigor-
ously detect the nature of blow-up solutions. However, applicability of the proposed
methodology there is restricted to vector fields which are asymptotically homogeneous
at infinity, since applied compactifications are assumed to respect homogeneous scal-
ings. In other words, verifications of blow-ups for differential equations possessing,
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say quasi-homogeneous scaling laws such as h(u, v) := u2 − v may return meaning-
less information.1 If we apply such a numerical validation methodology to a broad
class of differential equations, we have to choose appropriate compactifications which
appropriately extracts information of dynamics at infinity.

Inspired by the above work, the first author has discussed blow-up solutions for
differential equations which are asymptotically quasi-homogeneous at infinity from
the viewpoint of dynamical systems [16]. There a new quasi-homogeneous compact-
ification called quasi-Poincaré compactification is defined as a quasi-homogeneous
analogue of well-known Poincaré compactifications and as a global compactification
alternative of well-known local compactifications which shall be called directional
compactifications (e.g., [7] with a terminology Poincaré-Lyapunov disks). By using
the same essence as previous works about blow-up solutions [8,21], several blow-up
solutions for asymptotically quasi-homogeneous vector fields can be characterized
by trajectories on stable manifolds of “hyperbolic invariant sets” on the boundary E
of a manifold M . Moreover, such blow-up solutions characterize their blow-up rates
from the growth rate of original vector fields. The same characterizations also make
sense for dynamical systems with directional compactifications. A series of studies
involving characterization of blow-up solutions in [16] contain blow-up results in the
previous work [8], and the applications to numerical validations of blow-up solutions
for systems of asymptotically quasi-homogeneous differential equations are expected.

Our present aim is to provide numerical validation methodology of blow-up solu-
tions for systems of differential equations with asymptotic quasi-homogeneity at
infinity. It turns out that fundamental features of a good class of quasi-homogeneous
compactifications enable us to apply the same methodology as [21] to the present
blow-up validations. Note that there is another direction for characterizing blow-up
solutions with computer assistance [5], where the detection of blow-up behavior is
reduced to the existence of bounded time-periodic solutions with an appropriate trans-
formation. There the problem is reduced to the zero-finding one for an appropriate
equation in functional analytic setting, while our present approach is based on inte-
gration of initial value problems for a certain general class of autonomous ODEs as
well as topological arguments using Lyapunov functions (e.g. [17]).

The rest of this paper is organized as follows. In Sect. 2, we provide tools for
our treatments of blow-up solutions. First we review a class of vector fields called
asymptotically quasi-homogeneous vector fields discussed in [16], and define an
admissible class of compactifications with given quasi-homogeneous type.We see that
our admissible class admits the sameasymptotic properties at infinity as quasi-Poincaré
compactifications introduced in [16]. As a nontrivial example, we also introduce a
concrete compactification which is admissible in our sense, called a quasi-parabolic
compactification. This compactification is a quasi-homogeneous analogue of (homo-
geneous) parabolic compactifications [8,21]. Directional compactifications, which are
defined only in subsets of the whole space, are also reviewed. In Sect. 3, we study
vector fields and dynamics on compactified manifolds. Under our admissible com-
pactifications, we have a good correspondence of dynamical systems between on
original phase spaces and on compactified manifolds. Moreover, as in the case of

1 The function has a scaling law h(ru, r2v) = r2h(u, v) holds for all r ∈ R.

123



608 K. Matsue, A. Takayasu

quasi-Poincaré compactifications, we can define desingularized vector fields on com-
pactified manifolds so that dynamics at infinity makes sense. Here we have a new
essential result that, for C1 vector field f in the original problem, the desingular-
ized vector field g with quasi-parabolic compactifications becomes C1 including the
boundary of compactified manifolds corresponding to the infinity. This property is
very crucial because the desingularized vector field g with quasi-Poincaré compacti-
fications is not always C1 even if f is sufficiently smooth. Details are shown in [16].
The feature of quasi-parabolic compactifications enables us to study stability analy-
sis for dynamical systems without any obstructions of regularity of vector fields. In
Sect. 4, we provide criteria for validating blow-up solutions and numerical validation
procedure for blow-up solutions with their blow-up time. Our criteria consists of not
only pure mathematical arguments but also numerical validation implementations for
blow-up solutions. Our arguments indicate that blow-up solutions correspond to tra-
jectories on stable manifolds of asymptotically stable equilibria on E , which can be
validated by standard techniques of dynamical systems with computer assistance. We
review a fundamental tool called Lyapunov function, which validates level surfaces
around equilibria and is essential to estimate explicit enclosures of blow-up time.
We conclude Sect. 4 by providing concrete validation steps for blow-up solutions.
Finally, we demonstrate several numerical validation examples of blow-up solutions
in Sect. 5 to show applicability of our methodology to blow-up solutions with various
morphology.

2 Compactifications

In this section, we introduce several compactifications of phase spaces which are
appropriate for studying dynamics at infinity. There are mainly two types of com-
pactifications that are defined on the whole phase space Rn or just on subsets of Rn .
The main aim of this section is to introduce a general, globally defined, compactifi-
cations of quasi-homogeneous type, while locally defined ones are well known and
well applied to various systems for studying complete dynamics through dynamics at
infinity (e.g. [7,14]).

As an example of such appropriate ones, we introduce the quasi-parabolic com-
pactification. This compactification is an alternative of admissible, homogeneous ones
discussed in e.g., [8,10], and of quasi-Poincaré compactifications derived in [16]. Our
present compactification is based on an appropriate scaling of vector-valued functions
at infinity and quasi-homogeneous desingularization of singularities in dynamical
systems (e.g., [6]). Moreover, it overcomes the lack of smoothness of (transformed)
vector fields at infinity, which is mentioned later. Firstly, we briefly review quasi-
homogeneous vector fields discussed in [16]. Secondly, we introduce a class of
compactifications called (admissible global) quasi-homogeneous compactifications
which are defined on the whole phase space. Thirdly, we define the quasi-parabolic
compactification. Finally, we review a well-known quasi-homogeneous (local) com-
pactification which shall be called directional compactification. Once we know that
divergent solutions has an identical sign for some component, the latter type of com-
pactifications make our blow-up problem much simpler than globally defined ones.
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2.1 Quasi-homogeneous vector fields

First of all, we review a class of vector fields in our present discussions.

Definition 2.1 (Quasi-homogeneous vector fields, e.g., [6]) Let f : R
n → R be a

smooth function. Let α1, . . . , αn, k ≥ 1 be natural numbers. We say that f is a quasi-
homogeneous function of type (α1, . . . , αn) and order k if

f (rα1x1, . . . , r
αn xn) = rk f (x1, . . . , xn), ∀x ∈ R

n, r ∈ R.

Next, let X = ∑n
j=1 f j (x)

∂
∂x j

be a smooth vector field on R
n . We say that X , or

simply f = ( f1, . . . , fn) is a quasi-homogeneous vector field of type (α1, . . . , αn) and
order k+1 if each component f j is a quasi-homogeneous function of type (α1, . . . , αn)

and order k + α j .

For applications to general vector fields, in particular for dynamics near infinity,
we define the following notion.

Definition 2.2 (Asymptotically quasi-homogeneous vector fields at infinity, [16]) Let
f = ( f1, . . . , fn) : Rn → R

n be a smooth function.We say that X =∑n
j=1 f j (x)

∂
∂x j

,
or simply f is an asymptotically quasi-homogeneous vector field of type (α1, . . . , αn)

and order k + 1 at infinity if

lim
r→+∞ r−(k+α j )

{
f j (r

α1x1, . . . , r
αn xn) − rk+α j ( fα,k) j (x1, . . . , xn)

}
= 0

holds uniformly for (x1, . . . , xn) ∈ Sn−1 for some quasi-homogeneous vector field
fα,k = (( fα,k)1, . . . , ( fα,k)n) of type (α1, . . . , αn) and order k + 1.

The asymptotic quasi-homogeneity at infinity plays a key role in consideration of
(polynomial) vector fields at infinity, which is shown later. Throughout successive
sections, consider the (autonomous) polynomial vector field

y′ = f (y), (2.1)

where f : Rn → R
n be a smooth function. We further assume that f is an asymp-

totically quasi-homogeneous vector field of type α = (α1, . . . , αn) and order k + 1
at infinity. The next step is to determine an appropriate transform of the phase space
so that we can consider dynamics at infinity in an appropriate sense. One approach
for realizing appropriate transformation of the vector field is based on the choice of
appropriate compactifications with the type associated with that for f .

2.2 Admissible global quasi-homogeneous compactifications

Here we define a class of globally defined compactifications.
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Definition 2.3 (Admissible global quasi-homogeneous compactification) Fix natural
numbers α1, . . . , αn . Let β1, . . . , βn be natural numbers2 such that

α1β1 = α2β2 = . . . = αnβn ≡ c ∈ N. (2.2)

Define a functional p(y) as

p(y) :=
(
y2β11 + y2β22 + · · · + y2βnn

)1/2c
.

Define the mapping T : Rn → R
n as

T (y) = x, xi := yi
κ(y)αi

,

where κ = κ(y) is a C1 positive function. We say that T is an (admissible) global
quasi-homogeneous compactification (of type α) if all the following conditions hold:

(A0) κ(y) = q ◦ p(y) for some positive, smooth function q = q(R) defined on
R ≥ 0 which is strictly increasing in R > 0, and κ(y) > p(y) holds for all
y ∈ R

n ,
(A1) For any sequence {yn}n≥1 ⊂ R

n with p(yn) → ∞ as n → ∞,
limn→∞ {p(yn)/κ(yn)} = 1 holds,

(A2) ∇κ(y) = ((∇κ(y))1, . . . , (∇κ(y))n) satisfies

(∇κ(y))i ∼ 1

αi

y2βi−1
i

p(y)2c−1 as p(y) → ∞.

(A3) Letting yα = (α1y1, . . . , αn yn)T for y ∈ R
n , we have 〈yα,∇κ〉 < κ(y) holds

for any y ∈ R
n .

In the present argument, the notation f (x) ∼ g(x)means that there exists a constant
K > 1 such that K−1g(x) < f (x) < Kg(x) for large x .

The admissibility conditions (A0) ∼ (A3) come from fundamental properties of
quasi-Poincaré compactifications T = TqP introduced in [16], which is defined by

κ(y) = (
1 + p(y)2c

)1/2c
. This definition is also expressed as κ(y) = q ◦ p(y) with

q(R) = (1 + R2c
)1/2c

. From (2.2), it immediately holds that p(y)2c = κ(y)2c p(x)2c

and hence p(x) → 1 holds as p(y) → ∞, which follows from the requirement (A1).
By the condition (A0), T maps Rn into

D := {x ∈ R
n | p(x) < 1}.

In particular, the following proposition holds.

2 The simplest choice of the natural number c is the least common multiple of α1, . . . , αn . Once we
choose such c, we can determine the n-tuples of natural numbers β1, . . . , βn uniquely. The choice of
natural numbers in (2.2) is essential to desingularize vector fields at infinity, as shown below.

123



Numerical validation of blow-up solutions with… 611

Proposition 2.4 The admissible global quasi-homogeneous compactification T is a
bijection from R

n onto D = {x ∈ R
n | p(x) < 1}.

Proof See Appendix C.1.3 ��
Remark 2.5 The present definition of compactifications is relatively too restrictive to
well-known definitions of homogeneous type compactifications due to the requirement
κ(y) = q ◦ p(y) in (A0), which will be categorized as radial-type (cf. [8]). Although
this restriction can be ultimately removed, we make this assumption for the following
reasons. One is the technical simplicity for arguments below. On the other hand,
in many applications, only radial-type (global) compactifications are used, which is
the second reason for making the present assumption. If one needs non-radial-type
compactifications in future problems, the generalization should be introduced.

Remark 2.6 For given C > 0, admissible global quasi-homogeneous compactifica-
tions onto the set DC ≡ {x ∈ R

n | p(x) < C} can be also considered, in which case
our requirements in Definition 2.3 are replaced by the following:

(A0)C κ(y) = qC ◦ p(y) for some positive, smooth function qC = qC (R) defined on
R ≥ 0 which is strictly increasing in R > 0, and κ(y) > C−1 p(y) holds for
all y ∈ R

n ,
(A1)C For any sequence {yn}n≥1 ⊂ R

n with p(yn) → ∞ as n → ∞,
limn→∞ {p(yn)/κ(yn)} = C holds,

(A2)C ∇κ(y) = ((∇κ(y))1, . . . , (∇κ(y))n) satisfies

(∇κ(y))i ∼ 1

Cαi

y2βi−1
i

p(y)2c−1 as p(y) → ∞.

(A3)C Letting yα = (α1y1, . . . , αn yn)T for y ∈ R
n , we have 〈yα,∇κ〉 < κ(y) holds

for any y ∈ R
n .

For example, in case of the quasi-Poincaré compactification, the corresponding func-
tional κ is replaced by κ(y) = (1 + (C−1 p(y))2c

)1/2c
.

The infinity in the original coordinate then corresponds to a point on the boundary

E = {x ∈ R
n | p(x) = 1}.

Definition 2.7 (cf. [16]). We call the boundary E the horizon.

The horizon determines directions where solution trajectories diverge.

Definition 2.8 We say that a solution orbit y(t) of (2.1) with the maximal existence
time (a, b), possibly a = −∞ and b = +∞, tends to infinity in the direction x∗ ∈ E
(associated with T ) (as t → a + 0 or b − 0) if

p(y(t)) → ∞,

(
y1

κ(y)α1
, . . . ,

yn
κ(y)αn

)
→ x∗ as t → a + 0 or b − 0.

3 It should be noted that the condition (A2) is not used in the proof. (A2) needs the characterization of
desingularized vector fields, which is stated in Lemma 3.2. See the proof of the lemma for details.
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Note that the above argument is completely parallel to arguments of bijectivity of the
quasi-Poincaré compactification [16]. Four properties (A0) ∼ (A3) in Definition 2.3
will play central roles in the theoryof,which shall be called,global quasi-homogeneous
compactifications and associated dynamics. Indeed, in the case of homogeneous com-
pactifications, namely α1 = · · · = αn = β1 = · · · = βn = 1, these conditions
describe admissibility of compactifications [8], which play central roles in dynamics
at infinity. The Poincaré compactification; namely the quasi-Poincaré compactification
of type (1, . . . , 1), is the prototype of other admissible homogeneous compactifications
such as parabolic ones (e.g., [8,21]), and hence properties (A0) ∼ (A3) which quasi-
Poincaré compactifications possess will be appropriate to define an “admissible”class
of global quasi-homogeneous compactifications.

2.3 Quasi-parabolic compactification

Here we introduce an example of global quasi-homogeneous compactifications other
than quasi-Poincaré ones, which is an analogue of parabolic compactifications dis-
cussed in [8,21].

Let the type α = (α1, . . . , αn) ∈ Z
n
>0 fixed. Let {βi }ni=1 and c be a collection of

natural numbers satisfying (2.2). For any x ∈ D, define y ∈ R
n by

S(x) = y, y j = x j
(1 − p(x)2c)α j

, j = 1, . . . , n.

Let κ̃α(x) := (1 − p(x)2c)−1, which satisfies κ̃α(x) ≥ 1 for all x ∈ D. Moreover,
y �= 0 implies κ̃α(x) > 1. We also have

p(y)2c = κ̃α(x)2c p(x)2c = κ̃α(x)2c
(
1 − 1

κ̃α(x)

)
. (2.3)

This equality indicates that p(y) = p(S(x)) < κ̃α(x) holds for all x ∈ D.

Lemma 2.9 Let F(κ; R) := κ2c − κ2c−1 − R2c for R ≥ 0. Then, for any R ≥ 0,
there is a unique κ = q(R) satisfying q(0) = 1 such that F(q(R); R) ≡ 0. Moreover,
q(R) > 1 holds for all R > 0 and q(R) is smooth with respect to R ≥ 0.

Proof Observe that F(1; 0) = 0, F(1; R) = −R2c < 0 as long as R > 0. Moreover,

∂F

∂κ
(κ; R) = 2cκ2c−1 − (2c − 1)κ2c−2 > 2cκ2c−2(κ − 1) ≥ 0 (if κ ≥ 1), (2.4)

which shows that F(·; R) is strictly increasing in {κ ≥ 1}. Therefore the Implicit
Function Theorem (IFT) shows that there is a small neighborhood4 U of 0 in R and
the uniquely determined function κ = q(R) such that q(0) = 1 and that, for any
R ∈ U , F(q(R); R) ≡ 0 holds. Smoothness property is trivial since F(κ; R) is
just a polynomial of κ . Since c is a positive integer, the positivity in (2.4) holds for
sufficiently small U . Here consider the following two cases.

4 Since R is included in F as R2c , the present argument makes sense for R ∈ R.
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Case 1: 0 ≤ R < 1. If U is chosen sufficiently small, this is the case for R ∈ U .

If a constant cR ≥ 1 is chosen sufficiently large, we have

F(cR; R) = c2cR − c(2c−1)
R − R2c > c2cR − c(2c−1)

R − 1 > 0.

Case 2: R ≥ 1.

Also in this case, choosing a positive constant cR sufficiently large we have

F
(
cR R

2c/(2c−1); R
)

= c2cR R4c2/(2c−1) − (c2c−1
R + 1)R2c ≥ {c2cR − (c2c−1

R + 1)}R2c

and c2cR − (c2c−1
R + 1) > 0, which implies F

(
cR R2c/(2c−1); R) > 0.

In both cases, the Intermediate Theorem can be applied to the existence of a function
q̃ = q̃(R) satisfying F(q̃(R); R) = 0 for each R. Since F(1; R) = −R2c < 0 for
any R �= 0 and F(κ; R) is increasing for κ ≥ 1, then q̃(R) has to be greater than
1. Thus the inequality (2.4), and hence IFT is applied to show that q̃(R) is uniquely
determined and is locally smooth for any R > 0. On the other hand, q̃(R) = q(R)

holds for R ∈ U , and hence we conclude that q̃(R) = q(R) holds for all R ≥ 0. ��
Now we have κ̃α(x) satisfies F(κ̃α(x); p(y)) = 0. By the uniqueness of κ(y) =

q(R) with respect to R = p(y), for any y ∈ R
n \ {0}, κ(y) ≡ κ(S(x)) := κ̃α(x) is

well defined. We are then ready to introduce the new compactification mapping.

Definition 2.10 (Quasi-parabolic compactification) Let the type α = (α1, . . . , αn) ∈
Z
n
>0 fixed. Let {βi }ni=1 and c be a collection of natural numbers satisfying (2.2). Define

Tpara : Rn → D as

Tpara(y) := x, xi = yi
κ(y)αi

,

where κ = κ(y) = κ̃α(x) is the unique zero of F(κ; p(y)) = 0 given in Lemma 2.9.
We say Tpara the quasi-parabolic compactification (with type α).

Theorem 2.11 Let the type α = (α1, . . . , αn) ∈ Z
n
>0 fixed. Let {βi }ni=1 and c be a

collection of natural numbers satisfying (2.2). Then the quasi-parabolic compactifica-
tion Tpara is an admissible global quasi-homogeneous compactification. In particular,
T−1
para = S.

Proof By construction in the proof of Lemma 2.9, κ(y) indeed has the form κ(y) =
q(p(y)) satisfying F(κ(y); p(y)) ≡ 0. For κ ≥ max{1, p(y)}, we have

κ(y)2c − p(y)2c = κ(y)2c−1 > 0.

Since p = p(y) is smooth, then κ = κ(y) can be regarded as the composition of
smooth functions R = p(y) and q = q(R). In particular, κ = κ(y) is C1 with respect
to y.Moreover, differentiating the identity F(q(R); R) = q(R)2c−q(R)2c−1−R2c ≡
0 with respect to R, we obtain

2cq(R)2c−1 dq

dR
− (2c − 1)q(R)2c−2 dq

dR
= 2cR2c−1,
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namely,
dq

dR
= 2cR2c−1

2cq(R)2c−1 − (2c − 1)q(R)2c−2 .

The denominator of the right-hand side is positive for q = q(R) ≥ 1 and hence the
above expression makes sense. This expression shows that q is strictly increasing for
R > 0. As a consequence, κ = κ(y) satisfies (A0).

From (2.3), we have p(y) → ∞ as p(x) → 1 and vice versa. Moreover, from the
identity p(y)2c = κ(y)2c p(x)2c, we have p(y)/κ(y) → 1 as p(x) → 1, equivalently
p(y) → ∞, which shows (A1).

Differentiating κ(y) = q(p(y)) ≡ q(R) with respect to y, we have

(∇yκ(y)) j = dq

dR

∂ p

∂ y j
= 2cp2c−1

2cq(R)2c−1 − (2c − 1)q(R)2c−2 · 1

2c
q(R)1−2c · 2β j y

2β j−1
j

= 2β j y
2β j−1
j

2cq(R)2c−1 − (2c − 1)q(R)2c−2 = 2β j y
2β j−1
j

2cκ(y)2c−1
(
1 − 2c−1

2c κ(y)−1
) .

By (A1), we have R/q(R) → 1 as R → ∞, equivalently p(y)/κ(y) → 1 as p(y) →
∞, and hence

(∇yκ(y)) j ∼ 2β j y
2β j−1
j

2cp(y)2c−1 = y
2β j−1
j

α j p(y)2c−1 as p(y) → ∞,

which shows (A2).
Next, check (A3). We have

〈yα, ∇yκ〉 =
n∑
j=1

α j y j
2β j y

2β j−1
j

2cκ(y)2c−1
(
1 − 2c−1

2c κ(y)−1
) = 2cp(y)2c

2cκ(y)2c−1
(
1 − 2c−1

2c κ(y)−1
)

and it is sufficient to show κ(y)
{
2cκ(y)2c−1

(
1 − 2c−1

2c κ(y)−1
)}

> 2cp(y)2c for our
statement. Let

G(y) := κ(y)

{
2cκ(y)2c−1

(
1 − 2c − 1

2c
κ(y)−1

)}
− 2cp(y)2c.

Then

G(y) = 2cκ(y)2c−(2c−1)κ(y)2c−1−2cp(y)2c > 2c{κ(y)2c−κ(y)2c−1−p(y)2c} = 0

and we obtain (A3).
As a consequence, Tpara is an admissible global quasi-homogeneous compactifica-

tion. In particular, Tpara : Rn → D is a surjective C1-diffeomorphism by Proposition
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2.4. Observe that

S ◦ Tpara(y) = S

(
y1

κ(y)α1
, . . . ,

yn
κ(y)αn

)

=
(

y1
κ(y)α1(1 − p̃2c)α1

, . . . ,
yn

κ(y)αn (1 − p̃2c)αn

)

= (y1, . . . , yn) ≡ y,

where

p̃2c = p(y)2c

κ(y)2c
= p(x)2c and (1 − p̃2c)−1 = κ̃α(x) ≡ κ(y). (2.5)

Similarly,

Tpara ◦ S(x) = Tpara

(
x1

(1 − p(x)2c)α1
, . . . ,

xn
(1 − p(x)2c)αn

)

=
(

x1
(1 − p(x)2c)α1κ(y)α1

, . . . ,
xn

(1 − p(x)2c)αnκ(y)αn

)

= (x1, . . . , xn) ≡ x,

which follows from the identity (2.5). Consequently, S = T−1
para holds and the proof

is completed. ��
Remark 2.12 The name quasi-“parabolic” in Tpara comes from the homogeneous
parabolic-type compactification; namely, Tpara with (α1, . . . , αn) = (1, . . . , 1) and
c = 1. In the homogeneous case, Tpara is the composite of the mapping from R

n

to a parabolic hypersurface {x21 + · · · + x2n = xn+1} ⊂ R
n+1 and the projection

(x1, . . . , xn, xn+1) �→ (x1, . . . , xn). In the homogeneous case α = (1, . . . , 1) and

c = 1, κ = κ(y) is explicitly given as κ(y) = 1
2

(
1 +

√
1 + 4

∑n
i=1 y

2
i

)
, which is

also calculated from F(κ; y) = 0. See [8,21] for details. Illustrations of parabolic and
quasi-parabolic compactifications in two-dimensional situations are shown in Fig. 1.

The origin of parabolic-type compactifications comes from realization of approx-
imations of unbounded functions discussed in [10]. Parabolic compactification (of
homogeneous type, namely of type α = (1, . . . , 1)) is turned out to be a good
tool for approximations of unbounded functions by rational functions, like Weier-
strass’ approximations of continuous functions on closed intervals. One of the main
features for realizing such approximations is that parabolic compactification maps
rational functions to rational ones, which is not the case of Poincaré-type ones.
The quasi-parabolic compactification is a nontrivial example of admissible global
quasi-homogeneous compactifications. The biggest difference from quasi-Poincaré
compactification is that the functional κ̃α(x) does not contain any radicals. This prop-
erty unconditionally guarantees the C1 smoothness of the desingularized vector field
of good f on D. In particular, the stability analysis at infinity is available without
particular restrictions to f . Details are discussed in Sect. 3.
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Fig. 1 Parabolic and quasi-parabolic compactifications with type (2, 1) for R2 Surfaces drawn here are a
H = {(y1, y2, ζ ) | y21 + y22 = ζ } (parabolic compactification), and b Hα = {(y1, y2, ζ ) | y21 + y42 = ζ }
(quasi-parabolic compactification with type (2, 1)). In both figures, the original phase space corresponds
to R

2 × {0} ⊂ R
2+1 in the extended space. In the case of a, the type α is chosen to be (1, 1). The point

P(M) show the intersection point between (0, 0, 1) and the given point M ∈ R
2 onH andHα respectively,

through the curve Cα(y) = {((1 − ζ )α1 y1, (1 − ζ )α2 y2, ζ )}. Note that the curve Cα is just a straight line
in the case of homogeneous compactification α = (1, 1). The projections of P(M) onto the original phase
space; (x, 0), are the images of (quasi-)parabolic compactifications, respectively. These observations can
be easily generalized to Rn

2.4 Directional compactifications

There are several other compactifications reflecting (asymptotic) quasi-homogeneity
of vector fields at infinity. For example, the transform y = (y1, . . . , yn) �→ Td(y) =
(s, x̂) ≡ (s, x̂1, . . . , x̂i−1, x̂i+1, . . . , x̂n) given by

y j = x̂ j
sα j

( j �= i), yi = ± 1

sαi
(2.6)

is a kind of compactifications,5 which corresponds the infinity to the subspace {s =
0} ≡ E . We shall call such a compactification a directional compactification with
the type α = (α1, . . . , αn), according to [16]. The set E = {s = 0} is called the
horizon. This compactification is geometrically characterized as a local coordinate of
quasi-Poincaré hemisphere of type α:

Hα :=
{

(y1, . . . , yn, s) ∈ R
n+1 | 1

(1 + p(y)2c)

n∑
i=1

y2βii + s2c = 1

}
,

at (x1, . . . , xn, s) = (0, . . . , 0, xi = ±1, 0, . . . , 0, 0). See [16] for details. Note that,
unlike admissible global quasi-homogeneous compactifications in Definition 2.3, the
coordinate representation (2.6) only makes sense in {±yi > 0}, in which sense direc-
tional compactifications are local ones. In particular,wheneverwe consider trajectories
whose yi -component can change the sign, we have to take care of transformations

5 Although Td is not a compactification in the topological sense, we shall use this terminology for Td from
its geometric interpretation shown below.
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among coordinate neighborhoods, which is quite tough for numerical integration of
differential equations. Nevertheless, this compactification is still a very powerful tool
if we consider solutions near infinity whose yi -component is known a priori to have
identical sign.

3 Dynamics at infinity through compactifications

In this section, we calculate the vector field (2.1) through quasi-homogeneous
compactifications. The main idea is twofold. First, we apply quasi-homogeneous
compactifications associated with the type of f . Direct calculations then yield a trans-
formed vector field, where the rate of divergence or decay at infinity is completely
mapped into those on the horizon. We apply time-scale transformation determined by
compactifications and the order k + 1 of f as the second step. Then we obtain vector
fields which are continuous including the horizon, as already mentioned in [16] in
several cases. In particular, we can consider dynamics at infinity through such trans-
formed vector fields, which shall be called desingularized vector fields. Moreover,
in case of quasi-parabolic compactifications and typical directional compactifications
we mention here, the resulting desingularized vector fields are as smooth as f on
the horizon. Therefore dynamics at infinity including stability analysis of equilibria or
general invariant sets can be studied in the similar way to standard theory of dynamical
systems.

3.1 Desingularized vector field with admissible global quasi-homogeneous
compactifications

Regard κ in the definition of T as a function of y. Integers {βi }ni=1 and c in the definition
of T are assumed to satisfy (2.2). Differentiating x = T (y) with respect to t , we have

x ′
i =

( yi
καi

)′ = y′
i

καi
− αi yiκαi−1

κ2αi
κ ′

= y′
i

καi
− αi yi

καi+1 〈∇κ, y′〉

= fi (y)

καi
− αi yi

καi+1 〈∇κ, f (y)〉.

Namely,

x ′ = Aα

(
fi (y) − κ−1〈 f ,∇κ〉yα

)
, (3.1)

where

Aα = diag(κ−α1, . . . , κ−αn ), yα = (α1y1, . . . , αn yn)
T .

We have the one-to-one correspondence of bounded equilibria, which helps us with
detecting dynamics at infinity.
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Proposition 3.1 An admissible global quasi-homogeneous compactification T maps
bounded equilibria of (2.1) in Rn into equilibria of (3.1) in D, and vice versa.

Proof See Appendix C.2. ��
Next we discuss the dynamics at infinity. Denoting

f̃ j (x1, . . . , xn) := κ−(k+α j ) f j (κ
α1x1, . . . , κ

αn xn), j = 1, . . . , n, (3.2)

we have

x ′
i = κk+αi f̃i (x)

καi
− αiκ

αi xi
καi+1

n∑
j=1

(∇κ) jκ
k+α j f̃ j (x)

= κk f̃i (x) − αi xi

n∑
j=1

(∇κ) jκ
k+α j−1 f̃ j (x). (3.3)

Since κ → ∞ as p(x) → 1, then the vector field has singularities at infinity, while
f̃ j (x) themselves are continuous onD because of the asymptotic quasi-homogeneity of
f . Nevertheless, admissibility of compactifications yields the following observation.

Lemma 3.2 The right-hand side of (3.3) is O(κk) as κ → ∞. In other words, the
order with respect to κ is independent of i .

Proof See Appendix C.3. ��
Lemma 3.2 leads to introduce the following transformation of time variable.

Definition 3.3 (Time-variable desingularization). Define the new time variable τ

depending on y by
dτ = κ(y(t))kdt (3.4)

namely,

t − t0 =
∫ τ

τ0

dτ

κ(y(τ ))k
,

where τ0 and t0 denote the correspondence of initial times, and y(τ ) is the solution
trajectory y(t) under the new time variable τ . We shall call (3.4) the time-variable
desingularization of (3.3) of order k + 1.

ẋi ≡ dxi
dτ

= f̃i (x) − αi xi

n∑
j=1

(∇κ) jκ
α j−1 f̃ j (x) ≡ gi (x). (3.5)

Summarizing the above observation, we have the extension of dynamics at infinity.

Proposition 3.4 (Extension of dynamics at infinity). Let τ be the new time variable
given by (3.4). Then the dynamics (2.1) can be extended to the infinity in the sense that
the vector field g is continuous on D.
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Proof The component-wise desingularized vector field (3.5) is obviously continuous
on D since this consists of product and sum of continuous functions xi ’s and f̃i ’s on
D. ��
Example 3.5 (Extension of vector fields via quasi-parabolic compactifications). In the
case of quasi-parabolic compactification (Definition 2.10), ∇κ is given by

(∇yκ(y)) j = 2β j y
2β j−1
j

2cκ(y)2c−1
(
1 − 2c−1

2c κ(y)−1
)

= κ(y)2c−α j x
2β j−1
j

α jκ(y)2c−1
(
1 − 2c−1

2c κ(y)−1
) = x

2β j−1
j

α jκ(y)α j−1
(
1 − 2c−1

2c κ(y)−1
) .

We can see that g in (3.5) can be extended to be C0 on E = D.

Proposition 3.4 shows that the “dynamics and invariant sets at infinity” make sense.
For example, “equilibria at infinity” defined below are well-defined.

Definition 3.6 (Equilibria at infinity). We say that the vector field (2.1) has an equi-
librium at infinity in the direction x∗ if x∗ is an equilibrium of (3.5) on ∂D.

Now divergent solutions are described in terms of trajectories asymptotic to equi-
libria on the horizon for desingularized vector fields.

Theorem 3.7 (Divergent solutions and asymptotic behavior). Let y(t) be a solution
of (2.1) with the interval of maximal existence time (a, b), possibly a = −∞ and
b = +∞. Assume that y tends to infinity in the direction x∗ as t → b − 0 or
t → a + 0. Then x∗ is an equilibrium of (3.5) on E .
Proof See Appendix C.4. ��

This theorem shows that divergent solutions in the direction x∗ correspond to
trajectories of (3.5) on the stable manifold Ws(x∗)6 of the equilibrium x∗. This cor-
respondence opens the door to applications of various results in dynamical systems
to divergent solutions. Several useful properties of dynamics at infinity are shown in
Theorem 3.15 in [16], which are also valid for general admissible compactifications
through the same arguments.

3.2 Desingularized vector field with quasi-parabolic compactifications

In the case of quasi-parabolic compactifications, there is an alternative time-variable
desingularization given below. Inwhat follows, let κpara(y) be the functional κ = κ(y)
given in Definition 2.10.

6 The stable set Ws (p) of a point p is characterized as {x = x(0) | d(x(τ ), p) → 0 as τ → ∞} with a
metric d on the phase space. If p is an equilibrium, the (center-)stable manifold theorem indicates that the
set Ws (p) is, at least locally, has a smooth manifold structure, which is called a (local) stable manifold of
p.
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Definition 3.8 (Time-variable desingularization for quasi-parabolic compactifica-
tions). Let y(t) be a solution of (2.1) with an asymptotically quasi-homogeneous
vector field f of type α and order k + 1. Let also x = Tpara(y) be the image of y
via the quasi-parabolic compactification of type α. Define the new time variable τ

depending on y = y(t) by

dτpara = κpara(y)
k
(
1 − 2c − 1

2c
κpara(y)

−1
)−1

dt

= (1 − p(x)2c)−k
(
1 − 2c − 1

2c
(1 − p(x)2c)

)−1

dt . (3.6)

We shall call (3.6) the quasi-parabolic time-variable desingularization of (3.3).

The resulting desingularized vector field is given as follows:

dxi
dτpara

=
(
1 − 2c − 1

2c
(1 − p(x)2c)

)
f̃i (x) − αi xi

n∑
j=1

x
2β j−1
j

α j
f̃ j (x) ≡ gpara,i (x).

(3.7)
In the case of quasi-Poincaré compactifications, the desingularized vector field g

associated with the vector field f is not always C1 even if f is sufficiently smooth
because of the presence of radicals in κ . SeeRemark 4.2 in [16] for details. On the other
hand, in the case of quasi-parabolic compactifications, if f is smooth, the correspond-
ing desingularized vector field gpara can be always smooth on D with the alternative
time-variable desingularization. This big difference is one of the reasonswhywe intro-
duce an alternative quasi-homogeneous compactifications, which is mentioned again
in Sect. 4.

Proposition 3.9 Let f be an asymptotically quasi-homogeneous, C1 vector field f of
type α and order k + 1. Let x = Tpara(y) be a new variable through quasi-parabolic
compactification. Then the vector field gpara given in (3.7), associated with (3.3) and
τpara-timescale given in (3.6), is C1 on D.

Proof See Appendix C.5. ��

3.3 Desingularized vector field with directional compactifications

The desingularized vector field associated with f is also considered with directional
compactifications like (2.6). For simplicity, set i = n in (2.6). Let

f̂ j (s, x̂1, . . . , x̂n−1) := sk+α j f j (s
−α1 x̂1, . . . , s

−αn−1 x̂n−1, s
−αn ), j = 1, . . . , n.

(3.8)
By the similar desingularization process to (3.2), we obtain the desingularized vector
field for directional compactifications whose details are shown in [16].
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Definition 3.10 (Time-variable desingularization: directional compactification ver-
sion). Define the new time variable τd by

dτd = s(t)−kdt (3.9)

equivalently,

t − t0 =
∫ τ

τ0

s(τd)
kdτd ,

where τ0 and t0 denote the correspondence of initial times, and s(τd) is the solution
trajectory s(t) under the parameter τ . We shall call (3.9) the time-variable desingu-
larization of order k + 1.

The desingularized vector field in τd -time scale is

⎛
⎜⎜⎜⎜⎝

ds
dτd
dx1
dτd
...

dxn−1
dτd

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

−s 0 . . . 0
0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

⎞
⎟⎟⎟⎠ B

⎛
⎜⎜⎜⎝

f̂1
f̂2
...

f̂n

⎞
⎟⎟⎟⎠ ≡ gd(s, x̂1, . . . , x̂n−1), (3.10)

where B is the inverse7 of the matrix
⎛
⎜⎜⎜⎜⎜⎝

α1 x̂1 1 0 . . . 0
α2 x̂2 0 1 . . . 0

...
...

...
. . .

...

αn−1 x̂n−1 0 0 . . . 1
αn 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠

.

Equilibria at infinity under directional compactifications are then characterized
as equilibria for (3.10) on the horizon E = {s = 0}. Note that gd is smooth on
{s ≥ 0} × R

n−1 if f is smooth.

Remark 3.11 In [16], the topological equivalence among desingularized vector fields
with quasi-Poincaré compactifications and with directional compactifications includ-
ing the horizon is discussed. In other words, dynamics of desingularized vector
fields around the horizon is topologically identical among these compactifications.
An essence of such a result is the admissibility in the sense of Definition 2.3 for the
equivalence,which indicates that the equivalence result is also valid for quasi-parabolic
compactifications.

4 Blow-up criterion and numerical validation procedure

Theorem 3.7 indicates that divergent solutions are described as trajectories on stable
manifolds of equilibria on the horizon E for (3.5). On the other hand, Theorem 3.7

7 The existence of B immediately follows by cyclic permutations and the fact that αn > 0.
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itself does not distinguish blow-up solutions from divergent solutions. Under addi-
tional assumptions to equilibria on E , we can characterize blow-up solutions from
the viewpoint of dynamical systems. In this section, we firstly review a criterion of
blow-ups discussed in [16]. Then we provide a methodology for explicit estimates
of maximal existence time tmax. Finally, we give an algorithm for validating blow-up
solutions with computer assistance.

4.1 Blow-up criterion

Firstly we review an abstract result of blow-up criterion via quasi-homogeneous-type
compactifications. For a squared matrix A, Spec(A) denotes the set of eigenvalues of
A.

Proposition 4.1 (Stationary blow-up, [16]). Assume that (2.1) has an equilibrium at
infinity in the direction x∗. Suppose that the desingularized vector field g in (3.5) is
C1 onD, and that x∗ is hyperbolic for (3.5); namely all elements in Spec(Dg(x∗)) are
away from the imaginary axis. Then the solution y(t) of (2.1) whose image x = T (y)
is on Ws(x∗) in the desingularized vector field (3.5) satisfies tmax < ∞; namely, y(t)
is a blow-up solution. Moreover,

p(y(t)) ∼ C(tmax − t)−1/k as t → tmax,

where k + 1 is the order of asymptotically quasi-homogeneous vector field f . Finally,
if the i-th component (x∗)i of x∗ is not zero, then we also have

yi (t) ∼ C(tmax − t)−αi /k as t → tmax.

In the above original version of blow-up criterion stated as above, the C1-
smoothness of the desingularized vector field g in (3.5) is assumed, because such a
smoothness is nontrivial for quasi-Poincaré compactifications even if f is sufficiently
smooth, as mentioned in Sect. 3.2. On the other hand, Proposition 3.9 shows that
stability analysis of equilibria at infinity alwaysmakes sensewith quasi-parabolic com-
pactifications, because in which case the desingularized vector field gpara is always
C1 on D if f is C1. Needless to say, the above proposition does not provide infor-
mation of concrete blow-up time tmax depending on initial data. In the successive
subsections, we provide a validation procedure of blow-up solutions with estimates of
explicit blow-up time.

4.2 Lyapunov functions around asymptotically stable equilibria

Our main tool for validating blow-up time is Lyapunov function, which describes
the monotonous behavior of trajectories in terms of its value. As the general setting,
consider the vector field

dx

dt
= f (x), f : Rn → R

n : smooth. (4.1)
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For x ∈ R
n , Df (x) denotes the Jacobian matrix of f at x .

Proposition 4.2 (Lyapunov function for stable equilibria, [17]). Let x∗ be an equi-
librium for (4.1) in a compact star-shaped set N ⊂ R

n . Assume that there is a real
symmetric matrix Y such that the matrix

A(x) := Df (x)T Y + Y D f (x) (4.2)

is strictly negative definite for all x ∈ N . Then the functional L : Rn → R given by

L(x) := (x − x∗)T Y (x − x∗) (4.3)

is a Lyapunov function on N such that dL/dt vanishes at x∗. In particular, x∗ is the
unique equilibrium in N . If further the matrix Y is chosen to be positive definite, then
the equilibrium x∗ is asymptotically stable.

We shall call the compact set N satisfying the assumption in Proposition 4.2 a
Lyapunov domain of x∗.

Remark 4.3 (The present choice of L(x)). Roughly speaking, the matrix Y contains
information of sign of the real part of each Spec(Df (x)) and a matrix represent-
ing change of coordinates. In the present case, we only treat asymptotically stable
equilibria, which indicates that signs of Reλ for any λ ∈ Spec(Df (x)) should be iden-
tically negative. Before validating an equilibrium x∗, it should be usually computed
in a numerical (i.e., non-rigorous computation) sense with associated eigenvalues for
finding candidates of validating equilibrium.

When we numerically compute eigenvalues of a Jacobian matrix, say Df (x), we
also compute eigenvectors to construct the eigenmatrix X , which represents change of
coordinates to an orthogonal one. In [17], the matrix Y in (4.3) is typically defined as
Y = Re(X−H X−1), where X−H := (X−1)H and ∗H denotes the Hermitian transpose
of the object (vectors ormatrices). Note that, inwhich case, the equilibrium x∗ is shown
to be asymptotically stable in N . However, there are cases that an eigenvalue has
multiplicity larger than 1, in which cases the validation is failed because the computed
eigenmatrix X typically becomes singular. Indeed, our example below contains such
a case.

Oneway to avoid such difficulty is to use the real Schur decomposition of thematrix
Df (x) instead of eigenpair computations. See Appendix A about a quick review of
Schur decompositions of matrices. Let Q be a matrix such that QT D f (x)Q is a real
upper triangle matrix for some point x . Then we can check the sign of Reλ for all
λ ∈ Spec(Df (x)). We then choose the matrix Q as a change of coordinates instead of
the eigenmatrix X . In such a case, the corresponding matrix Y is Y = Re(Q−H Q−1).
When we use the real Schur decomposition, Q is an orthogonal real matrix. Then we
take Y = I : the identity matrix, which shows that our Lyapunov function L becomes
L(x) = ‖x − x∗‖2. This fact also shows that x∗ is asymptotically stable in N .

There can be another choice of L(x) other than (4.3). The present choice of L(x)
shows an example for validating rigorous enclosure of blow-up solutions and their
blow-up time, and the other type of Lyapunov functions can be applied provided we
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can calculate the explicit upper bound of tmax − tN , an example of which is shown
below.

Once we have validated a Lyapunov function L as well as the Lyapunov domain Ñ
of an asymptotically stable equilibrium x∗, we can easily characterize global trajectory
asymptotic to x∗. For a positive number ε > 0, assume that N := {x ∈ R

n | L(x) ≤
ε} ⊂ Ñ . Let {x(t)}t∈[0,tN ] be a trajectory of vector field (4.1) for some tN > 0 and
assume that x(tN ) ∈ int N . Then the trajectory x(t) behaves so that it strictly decreases
L . Since N = {x ∈ R

n | L(x) ≤ ε}, then the trajectory can be continued until it tend
to a point on {L = 0}, in which case x = x∗. Therefore the trajectory {x(t)}t∈[0,tN ]
is extended to the global trajectory {x(t)}t∈[0,∞) satisfying x(t) → x∗ as t → ∞, as
desired.

4.3 Estimate of explicit blow-up time with computer assistance

Here we provide an explicit estimate methodology of blow-up time. The basic idea is
Lyapunov tracing discussed in [17,21]; namely, computation of the maximal existence
time

tmax =
∫ ∞

0

dτ

κ(T−1(x(τ )))k
, or td,max =

∫ ∞

0
s(τ )kdτd ,

of trajectory {y(t) = T−1(x(t))} in terms of Lyapunov functions around an equi-
librium x∗ on the horizon E . Theorem 4.1 shows that blow-up solutions correspond
to trajectories on stable manifolds of hyperbolic equilibria on E . According to this
fact and preceding methodology in [21], we validate asymptotic behavior of blow-up
solutions by the following steps. An admissible global quasi-homogeneous compact-
ification T : Rn → D and time-variable desingularization are assumed to be given in
advance.

1. Validate an equilibrium x∗ ∈ E .
2. Validate a Lyapunov function of the form (4.3) around x∗ as well as its Lyapunov

domain Ñ .

Now we are ready to validate blow-up time with computer assistance. Let T be an
admissible global quasi-homogeneous compactification with type α. Assume that the
desingularized vector field (3.5) isC1 onD, which is always the case when T = Tpara

and f is C1. Let x∗ ∈ E be an equilibrium on the horizon for (3.5). Explicit estimates
of maximal existence time tmax actually depend on the choice of compactifications T
and time-variable desingularizations. In what follows we fix T as the quasi-parabolic
compactification Tpara (associated with type α) and quasi-parabolic time-variable
desingularization (3.6).

Assume that we have computed the global trajectory {x(τpara)}τpara∈[0,∞) for (3.7)

such that x(τpara) ∈ N = {x ∈ D | L(x) ≤ ε} ⊂ Ñ for all τpara ∈ [τpara,N ,∞) and
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some ε > 0, where τpara,N > 0 and Ñ is a Lyapunov domain of an asymptotically
stable equilibrium x∗ ∈ E .8 The maximal existence time of x(τ ) in t-timescale is then

tpara,max = tpara,N +
∫ ∞

τpara,N

(
1 − 2c − 1

2c
κpara(y)

−1
)

dτpara

κpara(T−1(x(τpara)))k

= tpara,N +
∫ ∞

τpara,N

(
1 − 2c − 1

2c
(1 − p(x(τ ))2c)

)
(1 − p(x(τ ))2c)kdτpara,

where

tpara,N =
∫ τpara,N

0

(
1 − 2c − 1

2c
(1 − p(x(τ ))2c)

)
(1 − p(x(τ ))2c)kdτpara . (4.4)

Then compute an upper bound of tmax by

0 < tpara,max − tpara,N ≤ 1

cÑ c1

∫ L(x(τpara,N ))

0

Cn,α,N (L)k

L
dL

≤ 1

cÑ c1

∫ ε

0

Cn,α,N (L)k

L
dL ≡ Cn,α,k,N (ε), (4.5)

where L = L(x) is the value of validated Lyapunov function at x ∈ N , c1 and cÑ are
constants involving eigenvalues of Y and A(x) whose details are shown in [21]. This
inequality comes from the property of Lyapunov function following the definition:

dL

dτpara
(x(τpara))τpara=0 ≤ −c1cÑ L(x(0)),

which is strictly negative as long as x(0) �= x∗. See [21] for the detail. A function
Cn,α,N (L) depends on the value L of Lyapunov function satisfying

∣∣∣1 − p(x)2c
∣∣∣ ≤ Cn,α,N (L) for x ∈ Ñ .

Concrete estimates of the function Cn,α,N (L) we have used in practical validations
are derived in Appendix B. Since L(x(τpara,N )) ≤ ε, the rightmost side of (4.5)
is an integral on a compact interval. If we can estimate the right-hand side of (4.5)
being finite, we obtain a finite upper bound of tpara,max, which shows that the tra-
jectory {y(t)}t∈[0,tmax) = {T−1

para(x(τpara))}τpara∈[0,∞) is a blow-up solution of the
original initial value problem (2.1) with blow-up time tpara,max ∈ [tpara,N , tpara,N +
Cn,α,k,N (ε)].

The similar estimate is also derived for directional compactifications. In such a case
with the same setting as above, the maximal existence time tmax is computed as

td,max =
∫ ∞

0
s(τd)

kdτd = td,N +
∫ ∞

τd,N

s(τd)
kdτd ,

8 In this case, the set N is contained in the stable manifold Ws (x∗) of x∗.
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where td,N = ∫ τd,N
0 s(τd)kdτd . Assume that the trajectory {(s(τd), x̂(τd))}τd∈[0,τd,N ]

enters inside intN := {L(s, x̂) < ε} ⊂ Ñ , where Ñ is a Lyapunov domain of
(0, x̂∗) ∈ E . Then we have

∫ ∞

τd,N

s(τd)
kdτd ≤

∫ ∞

τd,N

(|s|2 + ‖x̂ − x̂∗‖2)kdτd

≤
∫ ∞

τd,N

{
c1L(s(τd), x̂(τd))

}k/2
dτd

≤ −
∫ 0

L(s(τd,N ),x̂(τd,N ))

{c1L}k/2 dL

c̃N c1L

= ck/2−1
1

c̃N

∫ L(s(τd,N ),x̂(τd,N ))

0
L

k
2−1dL

≤ ck/2−1
1

c̃N

[
2Lk/2

]ε
0

= 2ck/2−1
1

c̃N
εk/2 ≡ Cn,k,N (ε). (4.6)

The rightmost quantity gives an upper bound of tmax = td,max. More precisely, the
blow-up time td,max is a value in [td,N , td,N + Cn,k,N (ε)].

4.4 Validation procedure of blow-up solutions

Nowwe have obtained an estimate of explicit blow-up time. Theorem3.7 indicates that
blow-up solutions correspond to trajectories on stable manifolds of (hyperbolic) equi-
libria at infinity, which can be validated by standard numerical validation techniques
of dynamical systems (e.g., [13]).

Our algorithm for validating blow-up solutions is the following, which is essentially
same as that in the preceding work [21].

Algorithm 1 (Validation of blow-up solutions with quasi-parabolic compactifica-
tions).Let f : Rn → R

n be an asymptotically quasi-homogeneous, smooth vector field
of type α = (α1, . . . , αn) and order k+1. Choose natural numbers β1, . . . , βn, c ∈ N

so that (2.2) holds. Let Tpara : Rn → D be a quasi-parabolic compactification and
dx

dτpara
= gpara(x) be the associated desingularized vector field with time-variable

desingularization (3.6).

1. Validate an equilibrium at infinity x∗; namely, a zero of gpara on E = ∂D.
2. Construct a compact, star-shaped set Ñ ⊂ D containing x∗ so that the negative

definiteness of (4.2) on Ñ with a positive definite, real symmetric matrix Y is
validated as large as possible. If we cannot find such a set Ñ , return failed.

3. Let L(x) = (x − x∗)T Y (x − x∗) be the validated Lyapunov function on Ñ . Set
ε > 0 as the maximal value so that N := {x ∈ R

n | L(x) ≤ ε} ⊂ Ñ . Integrate
the ODE (dx/dτpara) = gpara(x) with initial data x0 ∈ D until τ = τN so that
x(τN ) ∈ intN . If we cannot find such x(τN ), return failed.

4. Compute Cn,α,k,N (ε). Simultaneously, compute tN following (4.4). If Cn,α,k,N (ε)

can be validated to be finite, return succeeded.
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The similar algorithm with directional compactifications is derived as follows.

Algorithm 2 (Validation of blow-up solutions with directional compactifications). Let
f : Rn → R

n be an asymptotically quasi-homogeneous, smooth vector field of type
α = (α1, . . . , αn) and order k + 1. Let Td : U → {s > 0} × R

n−1 be a directional
compactification determined by (2.6) and d(s,x̂)

dτd
= gd(s, x̂) be the associated desin-

gularized vector field with time-variable desingularization (3.4), where U is a domain
of definition of Td chosen so that it is compatible with Td .

1. Validate an equilibrium at infinity (0, x̂∗); namely, a zero of gd on E = {s = 0}.
2. Construct a compact, star-shaped set Ñ ⊂ {s ≥ 0} × R

n−1 containing (0, x̂∗) so
that the negative definiteness of (4.2) on Ñ with a positive definite, real symmetric
matrix Y is validated as large as possible. If we cannot find such a set Ñ , return
failed.

3. Let L(s, x̂) = ((s, x̂) − (0, x̂∗))T Y ((s, x) − (0, x̂∗)) be the validated Lyapunov
function on Ñ . Set ε > 0 as the maximal value so that N := {(s, x̂) ∈ {s ≥
0}×R

n−1 | L(s, x̂) ≤ ε} ⊂ Ñ . Integrate the ODE (d(s, x̂)/dτd) = gd(s, x̂) with
initial data (s0, x̂0) ∈ {s > 0}×R

n−1 until τd = τd,N so that (s(τd,N ), x̂(τd,N )) ∈
intN. If we cannot find such (s(τd,N ), x̂(τd,N )), return failed.

4. ComputeCn,k,N (ε). Simultaneously, compute td,N = ∫ τd,N
0 s(τd)kdτd . IfCn,k,N (ε)

can be validated to be finite, return succeeded.

Under the successful operations of Algorithm 1 or 2, we have the following results,
which show the validation of blow-up solutions. The proofs immediately follow from
properties of compactifications and Lyapunov functions.

Theorem 4.4 (Validation of blow-up solutions with quasi-parabolic compactifica-
tions) Let y0 ∈ R

n. Assume that Algorithm 1 returns succeeded with x0 =
Tpara(y0). Then the solution {y(t) = T−1

para(x(t))} of (2.1) with y(0) = y0 such
that

{x(τpara) | τpara ∈ [0,∞), x(τpara) → x∗ as τpara → ∞}
via a time-variable desingularization (3.6) and an asymptotically stable equilibrium
x∗ ∈ E is a blow-up solution with the blow-up time tpara,max ∈ [τpara,N , τpara,N +
Cn,α,k,N (ε)].
Theorem 4.5 (Validation of blow-up solutionswith directional compactifications).Let
y0 ∈ R

n. Assume that Algorithm 2 returns succeededwith (s0, x̂0) = Td(y0). Then
the solution {y(t) = T−1

d (s(t), x̂(t))} of (2.1) with y(0) = y0 such that

{(s(τd), x̂(τd)) | τd ∈ [0,∞), s(τd) → 0, x̂(τd) → x̂∗ as τd → ∞}

via a time-variable desingularization (3.9) and an asymptotically stable equilibrium
(0, x̂∗) ∈ E is a blow-up solution with the blow-up time tmax = td,max ∈ [τd,N , τd,N +
Cn,k,N (ε)].

Finally we remark that our validations do not contain those of hyperbolicity for
equilibria on E . Indeed, we only verify negative definiteness of the symmetrization of
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628 K. Matsue, A. Takayasu

Df (x) or an associated matrix in (4.2). In particular, our validation does not directly
provide rigorous blow-up rates of blow-up solutions mentioned in Proposition 4.1.
Nevertheless, Proposition 4.1 provides a guideline for focusing on our targeting objects
for validations, and Lyapunov function validations yield the asymptotic stability of
equilibria and rigorous estimates of blow-up time, as mentioned.

5 Validation examples

In this section, we demonstrate our procedure with several test problems. We have
three validation examples, which aim at demonstrating the following, respectively:

• Section 5.1 shows an application of quasi-parabolic compactifications for quasi-
homogeneous vector fields. In particular, sign-changing profiles are validated.
Using the above compactification, we do not need to care about sign-changing
nature for computing blow-up profiles.

• Section 5.2 shows an application of quasi-parabolic compactifications for asymp-
totically quasi-homogeneous vector fields. As mentioned in Proposition 3.9,
quasi-parabolic compactifications and the associated time-scale desingulariza-
tions map the original smooth vector field into the desingularized one with the
same smoothness, which is not the case of Poincaré-type compactifications (cf.
[16,21]).

• Section 5.3 shows the effectiveness of directional compactifications for blow-up
profiles, provided we have a priori knowledge that some components have an
identical sign.

All computations were carried out on macOS Sierra (ver. 10.12.5), Intel(R) Xeon(R)
CPU E5-1680 v2 @ 3.00 GHz using the kv library [13] ver. 0.4.41 to rigorously
compute the trajectories of ODEs.

5.1 Example 1

The first example is the following two-dimensional ODE:

{
u′ = u2 − v,

v′ = 1
3u

3.
(5.1)

This vector field is the special case of (5.3) discussed in the next example. It imme-
diately holds that the vector field (5.1) is quasi-homogeneous of type (1, 2) and order
2. The numerical study of complete dynamics including infinity is shown in [16].
Our purpose here is to validate a blow-up solution observed there. We introduce the
quasi-parabolic compactification of type (1, 2) given by

u = x1
1 − p(x)4

, v = x2
(1 − p(x)4)2

, p(x)4 = x41 + x22 .
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Then the corresponding desingularized vector field (3.7) is given by the following:

{
ẋ1 = (x21 − x2)F(x) − x1G(x)

ẋ2 = 1
3 x

3
1F(x) − 2x2G(x)

, ˙ = d

dτpara
, (5.2)

where

F(x) = 1

4

{
1 + 3(1 − p(x)4)

}
, G(x) = x31(x

2
1 − x2) + 1

6
x31 x2.

We are then ready to validate blow-up solutions, following Algorithm 1. In the similar
way to [16], it turns out that the system (5.2) admits exactly four equilibria at infinity,
one of which is a sink,9 the other one of which is a source10 and the rest of two are
saddles.11 Here we compute the sink on the horizon satisfying

x∗ ∈
(
[0.98913699589497727, 0.98913699589497773]
[0.20675855700518036, 0.2067585570051809]

)
,

where [·, ·] denotes a real interval. In the next step, we validate a Lyapunov function
as well as its Lyapunov domain including N = {x ∈ D | L(x) ≤ ε} around the sink
and a solution trajectory x(τ ) which enters N in a finite time τN . The initial data are
given by (x1(0), x2(0)) = (−0.1, 0.0001) and (−0.1,−0.1). Table 1 shows validated
results of blow-up solutions for (5.1). See also Fig. 2.

Validated results in this example show the efficiency of quasi-parabolic com-
pactifications for validating sign-changing solutions, compared with directional
compactifications. As indicated in [16] and Fig. 2, validated trajectories can change
the sign. Numerical computations as well as rigorous validations of trajectories with
directional compactifications require the assumption that (at least) one of components
never change the sign and that, even if it is the case, one knows such a component
in advance. If we deal with sign-changing trajectories, coordinate-change transforma-
tions have to be incorporated into the whole computations, which are not easy tasks
for numerical integration of differential equations. On the other hand, there is no such
worry with quasi-parabolic compactifications because they provide globally defined
charts on embedding manifolds. Trajectories can be therefore validated without any
assumptions about their signs.

Remark 5.1 Even for non-rigorous computations of divergent solutions of ODEs,
treatment of coordinate transform among directional compactifications with differ-
ent directions is not a trivial task, which can cause lengthy and inefficient arguments,
and accumulation of numerical errors. On the other hand, quasi-Poincaré ([16]) and
quasi-parabolic compactifications define one global charts including the horizon, and
hence they can work effectively for computing divergent solutions for general systems
as the first step. Even if the targeting divergent and blow-up solutions turn out to have

9 An equilibrium p with Spec(Dgpara(p)) ⊂ {λ ∈ C | Reλ < 0}.
10 An equilibrium p with Spec(Dgpara(p)) ⊂ {λ ∈ C | Reλ > 0}
11 Hyperbolic equilibria which are not neither sinks nor sources.
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Fig. 2 A blow-up trajectory for (5.1) A blow-up trajectory with the initial data (u(0), v(0)) = T−1
para(x),

(x1(0), x2(0)) = (−0.1, 0.0001) are drawn. Horizontal axis is the original time variable t , and vertical axis
is the value of variables u and v. a The u-component of the blow-up trajectory. b the u-component of the
blow-up trajectory in a vicinity of u = 0. c The v-component of the blow-up trajectory. d The v-component
of the blow-up trajectory in a vicinity of v = 0

an identical sign in a certain direction during time evolution, it is still worth applying
quasi-Poincaré and quasi-parabolic compactifications to detecting the direction where
the sign is identical during evolution.

5.2 Example 2

The second example is the following two-dimensional ODE:

{
u′ = u2 − v − su − c1,

v′ = 1
3u

3 − u − sv − c2,
(5.3)

where (c1, c2) = (c1L , c2L) or (c1R, c2R) are constants with

{
c1L = u2L − vL − suL ,

c2L = 1
3u

3
L − uL − svL ,

{
c1R = u2R − suR − vR,

c2R = 1
3u

3
R − uR − svR .
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The system (5.3) iswell-known as the travelingwave equation derived from theKeyfitz-
Kranser model [15], which is the following initial value problem of the system of
conservation laws:

⎧⎪⎨
⎪⎩

∂u

∂t
+ ∂

∂x
(u2 − v) = 0,

∂v

∂t
+ ∂

∂x

(
1

3
u3 − u

)
= 0,

(u(x, 0), v(x, 0)) =
{

(uL , vL) x < 0,

(uR, vR) x > 0.
(5.4)

In particular, our attentions are restricted to solutions of the form

u(x, t) = ũ(ξ), v(x, t) = ṽ(ξ), ξ = x − st (5.5)

satisfying the following boundary condition:

lim
ξ→−∞

(
ũ(ξ)

ṽ(ξ)

)
=
(
uL
vL

)
, lim

ξ→+∞

(
ũ(ξ)

ṽ(ξ)

)
=
(
uR

vR

)
. (5.6)

The governing system with the ansatz (5.5)-(5.6) derives the system (5.3).

Remark 5.2 The system (5.1) in the previous example actually extracts the quasi-
homogeneous part of (5.3). Solutions (5.5) of (5.3) satisfying (5.6) correspond to shock
waves with speed s for the Riemann (initial value) problem (5.4) satisfying viscosity
profile criterion. The boundary condition (5.6) is known as the Rankine-Hugoniot
condition which weak solutions of (5.4) admitting discontinuity must be satisfied. On
the other hand, it is well-known that the Riemann problem (5.4) admits shock wave
solutions with Dirac-delta singularities called singular shock waves. Such solutions
satisfy only a part of (5.6); called Rankine-Hugoniot deficit, and such structure cor-
responds to the presence of blow-up solutions for (5.3) with (c1, c2) = (c1L , c2L) or
(c1R, c2R), which inspires our considerations herein. See e.g., [15,20] for details about
(5.4).

It immediately holds that, as in the previous example, the vector field (5.3) turns out
to be asymptotically quasi-homogeneous at infinity with type α = (1, 2) and order 2.
The desingularized vector field with quasi-parabolic compactifications is calculated
as follows. Introduce the quasi-parabolic compactification of type (1, 2) given by

u = x1
1 − p(x)4

, v = x2
(1 − p(x)4)2

, p(x)4 = x41 + x22

and nonlinear functions f̃1(x), f̃2(x) by

f̃1(x) := x21 − x2 − sκ−1x1 − κ−2c1, f̃2(x) := 1

3
x31 − κ−2x1 − sκ−1x2 − c2κ

−3,
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Table 2 Validated results for (5.3): numerical validations prove x(τpara,N ) ∈ int N and (4.5) yields the
inclusion of the blow-up time tpara,max

(x1(0), x2(0)) ε τpara,N tpara,max Exec. time

(−0.1,−0.8) 0.00011049230488192128 11.55312519434721 0.94469739415956034239514010626 0.86 s

where κ−1 = κ(x)−1 = (1 − p(x)4)1/4, the desingularized vector field associated
with (5.3) becomes

{
ẋ1 = (x21 − x2 − sκ−1x1 − κ−2c1)F(x) − x1G̃(x)

ẋ2 = ( 13 x31 − κ−2x1 − sκ−1x2 − c2κ−3
)
F(x) − 2x2G̃(x)

, ˙ = d

dτpara
,

where

F(x) = 1

4

{
1 + 3(1 − p(x)4)

}
,

G̃(x) = x31(x
2
1 − x2 − sκ−1x1 − κ−2c1) + 1

2
x2

(
1

3
x31 − κ−2x1 − sκ−1x2 − c2κ

−3
)

.

In the present validation, we applied (c1, c2) = (c1L , c2L) as well as the speed param-
eter s are set as

uL = [1.46777062491], vL = [0.238709208571], s ∈ 0.44819467507505512461,

c1L ∈ 1.257794420461445135, c2L ∈ −0.520727975341759856075

following the Rankine-Hugoniot relation (e.g., [15]), where [a] denotes the point
interval consisting of a value a, and subscript and superscript numbers denote lower
and upper bounds of the interval, respectively. We then compute an equilibrium on the
horizon which satisfy

x∗ ∈
(
[0.98913699589497727, 0.98913699589497773]
[0.20675855700518036, 0.2067585570051809]

)
.

Finally, validate blow-up solutions in the same way as the previous example. Our
validation result is listed in Table 2.

Validated results in this example show the efficiency of quasi-parabolic compacti-
fications for asymptotically quasi-homogeneous vector fields at infinity. As indicated
in [16], quasi-Poincaré compactifications; namely, the case κ(y) = κPoin(y) =
(1 + p(y)2c)1/2c, require calculations of radicals because of the presence of κ−1

Poin
in desingularized vector fields. Such terms cause the lack of smoothness of desin-
gularized vector fields on the horizon, which indicates that the stability analysis of
equilibria there in terms of Jacobian matrices makes no sense. In particular, blow-up
arguments cannot be developed within the present argument. Details of this point are
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discussed in Remark 4.2 in [16]. On the other hand, quasi-parabolic compactifica-
tions guarantees the smoothness of desingularized vector fields derived from original
ones under their smoothness, including the horizon, by Proposition 3.9. This property
can reflect a good correspondence between rational functions through parabolic-
type compactifications [10]. Blow-up arguments including numerical validations with
quasi-parabolic compactifications can be therefore applied to vector fields which are
not quasi-homogeneous but asymptotically quasi-homogeneous, since quasi-parabolic
compactifications keep the smoothness of vector fields between the original one and
the desingularized one.

5.3 Example 3

The final example is a finite dimensional approximation of the following system of
partial differential equations:

⎧⎪⎪⎨
⎪⎪⎩

ut = r1−d
(
rd−1 (ur − uvr )

)
r , r ∈ (0, L), t > 0,

vt = r1−d
(
rd−1vr

)
r − v + u r ∈ (0, L), t > 0,

ur = vr = 0, r = 0, L, t > 0,
u(r , 0) = u0(r), v(r , 0) = v0(r), r ∈ (0, L)

(5.7)

for some L > 0, which is the well-known Keller–Segel model on the d-dimensional
ball with homogeneous Neumann boundary condition and radially symmetric anzatz:

⎧⎪⎪⎨
⎪⎪⎩

ut = �u − ∇ · (u∇v), x ∈ �, t > 0,
vt = �v − v + u, x ∈ �, t > 0,
∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂�, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ �,

(5.8)

where � = {x ∈ R
d | |x | < L}.

Zhou and Saito [24] has proposed a finite volume discretization scheme so that
blow-up solutions for (5.7) of the parabolic-elliptic (namely, vt = 0) type can be
computed.

Remark 5.3 It is known that solutions of the Keller–Segel system (5.8) with positive
initial data u0(x) > 0, v0(x) > 0 must be positive. Moreover, the system (5.8)
possesses an L1-conservation law for u; namely

∫
�
u(x, t)dx = ∫

�
u0(x)dx holds

for all t ≥ 0. However, L1-conservative discretization schemes for (5.8) are known to
possess no numerical blow-up solutions typically. The choice of the present scheme
aims at computations of blow-up behavior for Keller–Segel type system. It is reported
in [24] that the corresponding scheme provide the positivity of solutions if the spatial
grid size h and the temporal grid size τ are sufficiently small and numerical solutions
are far from blow-up profile, while the positivity breaks down as solutions approach
to blow-up.
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We consider a parabolic-parabolic alternative of the discretization defined below:

du1
dt

= r1−d
1

h

(
rd−1
1+ 1

2

u2 − u1
h

)
− r1−d

1

h

(
rd−1
1+ 1

2

v2 − v1

h
u1

)

du2
dt

= r1−d
2

h

(
rd−1
2+ 1

2

u3 − u2
h

− rd−1
2− 1

2

u2 − u1
h

)

− r1−d
2

h

(
rd−1
2+ 1

2

v3 − v2

h
u2 − rd−1

2− 1
2

v2 − v1

h
u1

)

...

dui
dt

= r1−d
i

h

(
rd−1
i+ 1

2

ui+1 − ui
h

− rd−1
i− 1

2

ui − ui−1

h

)

− r1−d
i

h

(
rd−1
i+ 1

2

vi+1 − vi

h
ui − rd−1

i− 1
2

vi − vi−1

h
ui−1

)

...

duN

dt
= r1−d

N

h

(
−rd−1

N− 1
2

uN − uN−1

h

)
− r1−d

N

h

(
−rd−1

N− 1
2

vN − vN−1

h
uN

)
,

and

dv1

dt
= r1−d

1

h

(
rd−1
1+ 1

2

v2 − v1

h

)
− v1 + u1

dv2

dt
= r1−d

2

h

(
rd−1
2+ 1

2

v3 − v2

h
− rd−1

2− 1
2

v2 − v1

h

)
− v2 + u2

...

dvi

dt
= r1−d

i

h

(
rd−1
i+ 1

2

vi+1 − vi

h
− rd−1

i− 1
2

vi − vi−1

h

)
− vi + ui

...

dvN

dt
= r1−d

N

h

(
−rd−1

N− 1
2

vN − vN−1

h

)
− vN + uN .

We name the system (FvKS). The corresponding spatial discretization is based on the
scheme stated in [24]. The precise setting (FvKS) is as follows: letting N ∈ N and
h = L/N , the mesh of the interval (0, L) ⊂ R is defined by

0 = r 1
2

< r1+ 1
2

< · · · < rN−1+ 1
2

< rN+ 1
2

= L,

where ri+ 1
2

= ih (i = 0, 1, . . . , N ). In this example, we set L = 1. Here,
(ri+ 1

2
, ri+1+ 1

2
) (i = 0, 1, . . . , N−1) is called the control volumewith its control point
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ri+1 = (i+ 1
2 )h. The semi-discretization of the space variable yields the approximation

satisfying ui (t) � u(ri , t) and vi (t) � v(ri , t) (i = 1, 2, . . . , N , t > 0).

Remark 5.4 Webriefly gather several facts about blow-up behavior in theKeller–Segel
systems of the parabolic-parabolic type (5.8). In [12], radially symmetric blow-up
solutions for (5.7) with d ≥ 2 are constructed constitutively. In [19], the Keller–Segel
system with d = 1 is proved to admit no blow-up solutions. In [23], criteria for blow-
ups of radial-symmetric solutions for (5.7) with d ≥ 3 are provided. In [18], radially
symmetric blow-up solutions for (5.7) with d = 2 is proved to be of so-called type
II; namely, asymptotics near blow-up is not determined only by nonlinearity of vector
fields. See references therein and others for more details.

It should be noted that, in the present argument, we cannot discuss that how accurate
our present arguments describe the true nature of the Keller–Segel system (5.7). Even
if N can be chosen as large as possible, which looks close to the original Keller–
Segel system, our problem is considered just as an independent finite-dimensional
ODE system because there are non-trivial gaps between the present system and (5.7),
such as the choice of scaling or breaking of positivity. Compare Lemma 5.5 with
Sect. 5.3.3. Moreover, as seen in our validated results (Fig. 3 below), the blow-up
profiles does not possess positivity, which reflect the property of the schemementioned
in Remark 5.3 and roughness of the grid size which we have succeeded in validations.
If a numerical scheme which possess positivity even near blow-up is proposed and if
numerical validations are succeeded for sufficiently large N , the validated solutions
can approximate the true nature of blow-up profiles for the Keller–Segel system in
some sense.

First we observe that (FvKS) is asymptotically quasi-homogeneous in the following
sense.

Lemma 5.5 The system (FvKS) is an asymptotically quasi-homogeneous vector field
at infinity of the following type and order 2:

α = (2 . . . , 2︸ ︷︷ ︸
N

, 1 . . . , 1︸ ︷︷ ︸
N

).

In other words, (FvKS) is asymptotically quasi-homogeneous under the scaling ui �→
s2ui and vi �→ svi for i = 1, . . . , N.

Following Lemma 5.5, we consider two types of quasi-homogeneous compactifi-
cations. One is the directional compactification of type α:

u1 = 1

s2
, ui = x̂i

s2
(i = 2, . . . , N ), v j = ŷ j

s
( j = 1, . . . , N ), (5.9)

and the other is the quasi-parabolic compactification of type α:

y j = x j
(1 − p(x)4)α j

( j = 1, . . . , 2N ), p(x)4 =
N∑
j=1

ũ2j + ṽ4j , κ−1
para = 1− p(x)4,

(5.10)
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where x = (x1, . . . , x2N ) ≡ (ũ1, . . . , ũN , ṽ1, . . . , ṽN ).

5.3.1 Directional compactification

Direct computations yield the following transformation of vector fields:

u′
1 = −2s−3s′

= r1−d
1

h

(
rd−1
1+ 1

2
s−2 x̂2 − 1

h

)
− r1−d

1

h

(
rd−1
1+ 1

2
s−3 ŷ2 − ŷ1

h

)
,

namely,

s′ = −r1−d
1

2h2
rd−1
1+ 1

2

{
s(x̂2 − 1) − (ŷ2 − ŷ1)

}
.

Similarly,

u′
2 = −2s−3 x̂2s

′ + s−2 x̂ ′
2

= r1−d
2

h
s−2

(
rd−1
2+ 1

2

x̂3 − x̂2
h

− rd−1
2− 1

2

x̂2 − 1

h

)

− r1−d
2

h
s−3

(
rd−1
2+ 1

2

ŷ3 − ŷ2
h

x̂2 − rd−1
2− 1

2

ŷ2 − ŷ1
h

)
,

to obtain

x̂ ′
2 = 2s−1 x̂2s

′ + s2u′
2

= 2s−1 x̂2

[
−r1−d

1

2h2
rd−1
1+ 1

2

{
s(x̂2 − 1) − (ŷ2 − ŷ1)

}]

+ r1−d
2

h

(
rd−1
2+ 1

2

x̂3 − x̂2
h

− rd−1
2− 1

2

x̂2 − 1

h

)

− r1−d
2

h
s−1

(
rd−1
2+ 1

2

ŷ3 − ŷ2
h

x̂2 − rd−1
2− 1

2

ŷ2 − ŷ1
h

)

= −s−1 x̂2

[
r1−d
1

h2
rd−1
1+ 1

2

{
s(x̂2 − 1) − (ŷ2 − ŷ1)

}
]

+ r1−d
2

h2

[
rd−1
2+ 1

2

{
(x̂3 − x̂2) − s−1(ŷ3 − ŷ2)x̂2

}− rd−1
2− 1

2

{
(x̂2 − 1) − s−1(ŷ2 − ŷ1)

}]
.

For ui with i = 3, . . . , N − 1,

u′
i = −2s−3 x̂i s

′ + s−2 x̂ ′
i

= r1−d
i

h
s−2

(
rd−1
i+ 1

2

x̂i+1 − x̂i
h

− rd−1
i− 1

2

x̂i − x̂i−1

h

)
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− r1−d
i

h
s−3

(
rd−1
i+ 1

2

ŷi+1 − ŷi
h

x̂i − rd−1
i− 1

2

ŷi − ŷi−1

h
x̂i−1

)
,

to obtain

x̂ ′
i = −2s−1 x̂i s

′ + s2u′
i

= −s−1 x̂i

[
r1−d
1

h2
rd−1
1+ 1

2

{
s(x̂2 − 1) − (ŷ2 − ŷ1)

}]

+ r1−d
i

h2

[
rd−1
i+ 1

2

{
(x̂i+1 − x̂i ) − s−1(ŷi+1 − ŷi )x̂i

}

−rd−1
i− 1

2

{
(x̂i − x̂i−1) − s−1(ŷi − ŷi−1)x̂i−1

}]
.

Finally,

u′
N = −2s−3 x̂N s

′ + s−2 x̂ ′
N

= r1−d
N

h
s−2

(
−rd−1

N− 1
2

x̂N − x̂N−1

h

)
− r1−d

N

h
s−2

(
−rd−1

N− 1
2

ŷN − ŷN−1

h
x̂N

)

to obtain

x̂ ′
N = −2s−1 x̂N s

′ + s2u′
N

= −s−1 x̂N

[
r1−d
1

h2
rd−1
1+ 1

2

{
s(x̂2 − 1) − (ŷ2 − ŷ1)

}]

− r1−d
N

h2
rd−1
N− 1

2

{
(x̂N − x̂N−1) − s−1(ŷN − ŷN−1)x̂N

}
.

Next compute ŷ′
i .

v′
1 = −s−2 ŷ1s

′ + s−1 ŷ′
1 = r1−d

1

h
s−1

(
rd−1
1+ 1

2

ŷ2 − ŷ1
h

)
− s−1 ŷ1 + s−2

to obtain

ŷ′
1 = s−1 ŷ1s

′ + sv′
1

= −s−1 ŷ1

[
r1−d
1

2h2
rd−1
1+ 1

2

{
s(x̂2 − 1) − (ŷ2 − ŷ1)

}]+ r1−d
1

h2
rd−1
1+ 1

2
(ŷ2 − ŷ1) − ŷ1 + s−1.

Similarly,

v′
i = −s−2 ŷi s

′ + s−1 ŷ′
i
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= r1−d
i

h2
s−1

(
rd−1
i+ 1

2
(ŷi+1 − ŷi ) − rd−1

i− 1
2
(ŷi − ŷi−1)

)
− s−1 ŷi + s−2 x̂i

to obtain

ŷ′
i = s−1 ŷi s

′ + sv′
i

= −s−1 ŷi

[
r1−d
1

2h2
rd−1
1+ 1

2

{
s(x̂2 − 1) − (ŷ2 − ŷ1)

}]

+ r1−d
i

h2

(
rd−1
i+ 1

2
(ŷi+1 − ŷi ) − rd−1

i− 1
2
(ŷi − ŷi−1)

)
− ŷi + s−1 x̂i , i = 2, . . . , N − 1,

and

v′
N = −s−2 ŷN s

′ + s−1 ŷ′
N

= r1−d
N

h2
s−1

(
−rd−1

N− 1
2
(ŷN − ŷN−1)

)
− s−1 ŷN + s−2 x̂N

to obtain

ŷ′
N = s−1 ŷN s

′ + sv′
N

= −s−1 ŷN

[
r1−d
1

2h2
rd−1
1+ 1

2

{
s(x̂2 − 1) − (ŷ2 − ŷ1)

}]

+ r1−d
N

h2
rd−1
N− 1

2

(−(ŷN − ŷN−1)
)− ŷN + s−1 x̂N .

Introducing the time-variable desingularization

dτd

dt
= s−1,

we have the following result.

Lemma 5.6 The desingularized vector field of (FvKS) with respect to the directional
compactification (5.9) is the following system:

ṡ = −s
r1−d
1

2h2
rd−1
1+ 1

2

{
s(x̂2 − 1) − (ŷ2 − ŷ1)

}
,

˙̂x2 = −x̂2

[
r1−d
1

h2
rd−1
1+ 1

2

{
s(x̂2 − 1) − (ŷ2 − ŷ1)

}]

+ r1−d
2

h2

[
rd−1
2+ 1

2

{
s(x̂3 − x̂2) − (ŷ3 − ŷ2)x̂2

}− rd−1
2− 1

2

{
s(x̂2 − 1) − (ŷ2 − ŷ1)

}]
,
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˙̂xi = −x̂i

[
r1−d
1

h2
rd−1
1+ 1

2

{
s(x̂2 − 1) − (ŷ2 − ŷ1)

}]

+ r1−d
i

h2

[
rd−1
i+ 1

2

{
s(x̂i+1 − x̂i ) − (ŷi+1 − ŷi )x̂i

}

−rd−1
i− 1

2

{
s(x̂i − x̂i−1) − (ŷi − ŷi−1)x̂i−1

}]
,

(i = 3, . . . , N − 1)

˙̂xN = −x̂N

[
r1−d
1

h2
rd−1
1+ 1

2

{
s(x̂2 − 1) − (ŷ2 − ŷ1)

}]

− r1−d
N

h2
rd−1
N− 1

2

{
s(x̂N − x̂N−1) − (ŷN − ŷN−1)x̂N−1

]
,

˙̂y1 = −ŷ1

[
r1−d
1

2h2
rd−1
1+ 1

2

{
s(x̂2 − 1) − (ŷ2 − ŷ1)

}]+ s
r1−d
1

h2
rd−1
1+ 1

2
(ŷ2 − ŷ1) − s ŷ1 + 1,

˙̂yi = −ŷi

[
r1−d
1

2h2
rd−1
1+ 1

2

{
s(x̂2 − 1) − (ŷ2 − ŷ1)

}
]

+ s
r1−d
i

h2

(
rd−1
i+ 1

2
(ŷi+1 − ŷi ) − rd−1

i− 1
2
(ŷi − ŷi−1)

)

− s ŷi + x̂i , (i = 2, . . . , N − 1)

˙̂yN = −ŷN

[
r1−d
1

2h2
rd−1
1+ 1

2

{
s(x̂2 − 1) − (ŷ2 − ŷ1)

}]+ s
r1−d
N

h2
rd−1
N− 1

2

(−(ŷN − ŷN−1)
)

− s ŷN + x̂N .

Our concerning blow-up solution is a trajectory of the desingularized vector field
asymptotic to an equilibrium on the horizon {s = 0}. The initial data is given by

ui (0) = 100(1 + cos(πri )), vi (0) = 0 (i = 1, 2, . . . , N ). (5.11)

Then, we derive

s(0) = 1√
u1(0)

, x̂i (0) = ui (0)

u1(0)
(i = 2, 3, . . . , N ), ŷ j (0) = v j (0)√

u1(0)
( j = 1, 2, . . . , N ).

FollowingAlgorithm 2,we validate global trajectories for the vector field in Lemma
5.6 asymptotic to E = {s = 0} with various (d, N ). Validated equilibria are near

s = 0, x̂1 = −0.036653902557231, x̂2 = −8.275562067652 × 10−5,

x̂ j = 0 ( j ≥ 3),

ŷ1 = 0.04910809766161, ŷ2 = 0.001800003426459655, ŷ j = 0 ( j ≥ 3), etc.
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Fig. 3 A blow-up trajectory for (FvKS) with (d, N ) = (3, 11). A blow-up trajectory with the initial data
(5.11) are drawn. a The (t, r , u)-plot of the blow-up trajectory. b The (r , u)-plot of the blow-up trajectory
near t = tmax ≈ 0.04. a The (t, r , v)-plot of the blow-up trajectory. b The (r , v)-plot of the blow-up
trajectory near t = tmax ≈ 0.04

Validated results are collected in Table 3, which correspond to rigorous enclosures of
a trajectory illustrated in Fig. 3.

Remark 5.7 The statement “Failed” in Table 3 comes from the failure of Step 2 in
Algorithm 2. That is, the matrix A(·) could not be validated to be negative definite,
although corresponding equilibria admit only eigenvalues with negative real parts
(at least in the numerical sense). This might be caused by the change of eigenvalue
distributions of matrices Df (·) via their symmetrizations. As long as we have tried,
validations have been failed (d, N ) = (4, 13), (4, 14) by the same reason. As for
the case (d, N ) = (4, 15), we have failed computation of eigenvalues even in the
non-rigorous sense.

On the other hand, several eigenvalues of Df (·) at equilibria are actually accu-
mulated in the numerical sense, which implies that the computed eigenvectors may
be linearly dependent. In such a case, we cannot apply the eigenmatrix diagonaliz-
ing the Jacobian matrix to determining the matrix Y in Proposition 4.2. Instead, we
apply the Schur decomposition of the Jacobian matrix to checking eigenvalues, and
to determining Y ; Y = I , as indicated in Remark 4.3.
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The similar cases occur for the system (FvKS) with quasi-parabolic compactifica-
tions.

5.3.2 Quasi-parabolic compactification

Let
f̃ j (x1, . . . , x2N ) := κ

−(1+α j )
para f̃ j (κ

2x1, . . . , κ
2xN , κxN+1, . . . , κx2N ).

Then we have

f̃1 = r1−d
1

h

(
rd−1
1+ 1

2

ũ2 − ũ1
h

)
κ−1
para − r1−d

1

h

(
rd−1
1+ 1

2

ṽ2 − ṽ1

h
ũ1

)
,

f̃ j = r1−d
j

h

(
rd−1
j+ 1

2

ũ j+1 − ũ j

h
− rd−1

j− 1
2

ũ j − ũ j−1

h

)
κ−1
para

− r1−d
j

h

(
rd−1
j+ 1

2

ṽ j+1 − ṽ j

h
ũ j − rd−1

j− 1
2

ṽ j − ṽ j−1

h
ũ j−1

)
,

( j = 2, . . . , N − 1)

f̃N = r1−d
N

h

(
−rd−1

N− 1
2

ũN − ũN−1

h

)
κ−1
para − r1−d

N

h

(
−rd−1

N− 1
2

ṽN − ṽN−1

h
ũN

)
,

and

f̃N+1 = r1−d
1

h

(
rd−1
1+ 1

2

ṽ2 − ṽ1

h

)
κ−1
para − ṽ1κ

−1
para + ũ1,

f̃N+ j = r1−d
j

h

(
rd−1
j+ 1

2

ṽ j+1 − ṽ j

h
− rd−1

j− 1
2

ṽ j − ṽ j−1

h

)
κ−1
para − ṽ jκ

−1 + ũ j ,

( j = 2, . . . , N − 1)

f̃2N = r1−d
N

h

(
−rd−1

N− 1
2

ṽN − ṽN−1

h

)
κ−1
para − ṽNκ−1

para + ũN .

Recall that the desingularized vector field associatedwith the vector field y′ = f (y)
on R

2N with quasi-parabolic compactification of type α is (3.7). The sum G(x) :=
∑2N

j=1
x
2β j−1

j
α j

f̃ j (x) is necessary to be computed. Now we have

N∑
j=1

x
2β j−1
j

α j
f̃ j (x) =

N∑
j=1

ũ j

2
f̃ j (x)

= 1

2h2

N−1∑
j=1

rd−1
j+ 1

2
{−r1−d

j+1 ũ j+1 + r1−d
j ũ j }

· {κ−1
para(ũ j+1 − ũ j ) − (ṽ j+1 − ṽ j )ũ j },
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2N∑
j=N+1

x
2β j−1
j

α j
f̃ j (x) =

N∑
j=1

ṽ3j f̃N+ j (x)

= κ−1
para

h2

N−1∑
j=1

rd−1
j+ 1

2
{−r1−d

j+1 ṽ3j+1 + r1−d
j ṽ3j }(ṽ j+1 − ṽ j )

− κ−1
para

N∑
j=1

ṽ4j +
N∑
j=1

ṽ3j ũ j .

Therefore we have

G(x) = 1

2h2

N−1∑
j=1

rd−1
j+ 1

2
{−r1−d

j+1 ũ j+1 + r1−d
j ũ j } · {κ−1

para(ũ j+1 − ũ j ) − (ṽ j+1 − ṽ j )ũ j }

+ κ−1
para

h2

N−1∑
j=1

rd−1
j+ 1

2
{−r1−d

j+1 ṽ3j+1 + r1−d
j ṽ3j }(ṽ j+1 − ṽ j ) − κ−1

para

N∑
j=1

ṽ4j +
N∑
j=1

ṽ3j ũ j .

(5.12)

Summarizing these arguments, we have the concrete form of the desingularized
vector field:

Lemma 5.8 The desingularized vector field for (FvKS) with the quasi-parabolic com-
pactification of type α is the following:

dũi
dτpara

= 1

4

⎛
⎝1 + 3

N∑
j=1

(ũ2j + ṽ4j )

⎞
⎠ f̃i (x) − 2ũiG(x), i = 1, . . . , N ,

d ṽi

dτpara
= 1

4

⎛
⎝1 + 3

N∑
j=1

(ũ2j + ṽ4j )

⎞
⎠ f̃N+i (x) − ṽi G(x), i = 1, . . . , N ,

where x = (x1, . . . , x2N ) ≡ (ũ1, . . . , ũN , ṽ1, . . . , ṽN ) and G(x) is given in (5.12).

Our concerning blow-up solution is a trajectory of the desingularized vector field
asymptotic to an equilibrium on the horizon {p(x) = 1}, which generally depends on
(d, N ), while it corresponds to a point validated in Sect. 5.3.1. Following Algorithm 1,
we validate global trajectories for the vector field in Lemma 5.8 asymptotic to E = ∂D.
The initial data are set as (5.11) with application of Tpara . As for computations of κ(y),
we have applied the Krawczyk method (e.g., [22]) to F(κ; y) = κ4 −κ3 − p(y)4 = 0
appeared in Lemma 2.9. Final validated results are collected in Table 4.
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5.3.3 Final remark: scalings for (FvKS)

The scaling derived in Lemma 5.5 does not actually reflect the scaling in the original
Keller–Segel system (5.8). Indeed, the following simpler system

⎧⎪⎪⎨
⎪⎪⎩

ut = �u − ∇ · (u∇v), x ∈ �, t > 0,
vt = �v + u, x ∈ �, t > 0,
∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂�, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ �,

(5.13)

namely in the absence of the term “−v′′ in the second equation, possesses the following
scaling invariance:

uλ(x, t) := λ2u(λx, λ2t), vλ(x, t) := v(λx, λ2t), λ > 0. (5.14)

In particular, the value of v is not scaled, which is different from the type derived
in Lemma 5.5. We can consider another scaling to (FvKS) regarding the grid size
parameter h as an independent variable. Actually, we have the following scaling law
for (FvKS), which will reflect the scaling (5.14).

Lemma 5.9 Regard h as an independent variable with trivial time evolution dh/dt =
0. Then the system (FvKS) is asymptotically quasi-homogeneous of the following type
and order 3:

α =
⎛
⎝2 . . . , 2︸ ︷︷ ︸

N

, 0 . . . , 0︸ ︷︷ ︸
N

,−1

⎞
⎠

with natural extension of type for nonpositive integers. In other words, (FvKS) is
asymptotically quasi-homogeneous under the scaling ui �→ s2ui , vi �→ vi for i =
1, . . . , N and h �→ s−1h.

The authors have tried computing trajectories asymptotic to the horizon (for
directional compactifications) with the above scaling, but they could find no such
trajectories. Indeed, the temporal-spatial scaling (5.14) transforms blow-up solutions
for (5.13) to bounded solutions. Correspondingly, divergent solutions of the corre-
sponding discretized system can tend to points away from the horizon, and hence
compactification approach is not effective in this case. Instead, the scaling h �→ s−1h
has a potential to link a rescaling algorithm for numerics of partial differential equa-
tions (e.g. [2]).

Conclusion

In the present paper, we have derived a numerical validation procedure of blow-
up solutions for vector fields with asymptotic quasi-homogeneity at infinity. Our
proposing numerical validation methodology is essentially the same as the previous
study by authors and their collaborators [21] except the mathematical formulation of

123



Numerical validation of blow-up solutions with… 647

compactifications as well as time-variable desingularizations. We have applied quasi-
homogeneous compactifications, in particular quasi-parabolic and directional ones,
to describing the infinity so that the desingularized vector field for asymptotically
quasi-homogeneous ones can appropriately describe dynamics at infinity.

We have also introduced a new quasi-homogeneous compactification called quasi-
parabolic one, which is an alternative of the quasi-Poincaré compactification [16]. This
compactification determines a global chart unlike directional compactifications, and
overcomes the lack of smoothness of desingularized vector fields at infinitywhich arise
in cases of Poincaré-type compactifications. The former property enables us to validate
blow-up solutions through sign-changing trajectories (Sect. 5.1), and the latter enables
us to apply our validation procedure to asymptotically quasi-homogeneous vector
fields (Sects. 5.2 and 5.3). Effectiveness of directional compactifications towards val-
idation of blow-up solutions possessing a component with identical sign during time
evolutions is demonstrated. Quasi-homogeneous compactifications such as directional
and admissible quasi-homogeneous ones will open the door to numerical validations
of blow-up solutions for various (asymptotically) polynomial vector fields including
finite dimensional approximations of systems of partial differential equations.

Acknowledgements KM was partially supported by Program for Promoting the reform of national uni-
versities (Kyushu University), Ministry of Education, Culture, Sports, Science and Technology (MEXT),
Japan, World Premier International Research Center Initiative (WPI), MEXT, Japan, and JSPS Grant-in-
Aid for Young Scientists (B) (No. 17K14235). AT was partially supported by JSPS Grant-in-Aid for Young
Scientists (B) (No. 15K17596).

A Schur decompositions

In this section we review Schur decompositions of squared matrices.

Proposition A.1 (Schur decomposition, e.g., [11]). Let A ∈ Mn(C): complex n × n
matrix. Then there exists a unitary matrix Q ∈ U (n) such that

QH AQ = T ≡ D + N ,

where QH is the Hermitian transpose of Q, D = diag(λ1, . . . , λn) and N ∈ Mn(C)

is strictly upper triangular. Furthermore, Q can be chosen so that the eigenvalues λi
appear in any order along the diagonal. We shall call T a Schur normal form of A.

When we treat all computations in real floating number or interval arithmetic, the
real version of Schur decompositions can be applied.

Proposition A.2 (Real Schur decomposition, e.g., [11]). Let A ∈ Mn(R): real n × n
matrix. Then there exists an orthogonal matrix Q ∈ O(n) such that

QT AQ = T ≡

⎛
⎜⎜⎜⎝

R11 R12 . . . R1m
0 R22 . . . R2m
...

...
. . .

...

0 0 . . . Rmm

⎞
⎟⎟⎟⎠ ,
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where each Rii is either a 1×1 or a 2×2matrix having complex conjugate eigenvalues.
We shall call T a real Schur normal form of A.

Amerit of Schur decompositions is that we can apply it to arbitrary squarematrices.
In particular, change of coordinates via Schur decompositions can be realizednomatter
what the multiplicities of any eigenvalues are.

B concrete calculations of anupper boundof tmax withquasi-parabolic
compactifications

In this section, we consider the rigorous validation of the maximal existence time

tpara,max =
∫ ∞

0
κpara(y)

−k
(
1 − 2c − 1

2c
κpara(y)

−1
)
dτpara

of solution trajectories with quasi-parabolic compactifications and computer assis-
tance. First of all, we compute the following integral representing the time of
integration of computed trajectory for desingularized vector fields in t-timescale in
advance:

tpara,N =
∫ τpara,N

0

(
1 − p(x(τpara))

2c)k
(
1 − 2c − 1

2c

(
1 − p(x(τpara))

2c)
)
dτpara .

As mentioned in Sect. 4.3, the estimate of |1 − p(x)2c| is essential to computation of
an upper bound Cn,α,N (L). At first, we derive the estimate with the type α = (1, 2)
and c = 2 as an example. Let x∗ = (x∗

1 , x
∗
2 ) ∈ E and assume that a Lyapunov function

L(x) is validated in a vicinity of x∗. Then

x41 + x22 =(x1 − x∗
1 + x∗

1 )
4 + (x2 − x∗

2 + x∗
2 )

2

=(x1 − x∗
1 )4 + 4(x1 − x∗

1 )
3x∗

1 + 6(x1 − x∗
1 )

2(x∗
1 )

2 + 4(x1 − x∗
1 )(x∗

1 )
3 + (x∗

1 )
4

+ (x2 − x∗
2 )

2 + 2(x2 − x∗
2 )x

∗
2 + (x∗

2 )
2.

Now p(x∗) = 1 holds since x∗ ∈ E . Thus we have

∣∣1 − p(x)2c
∣∣ =
∣∣∣(x1 − x∗

1 )
4 + 4(x1 − x∗

1 )3x∗
1 + 6(x1 − x∗

1 )
2(x∗

1 )
2 + 4(x1 − x∗

1 )(x
∗
1 )

3

+ (x2 − x∗
2 )2 + 2(x2 − x∗

2 )x∗
2

∣∣∣

=
∣∣∣∣
[
4(x∗

1 )
3 2x∗

2

] [ x1 − x∗
1

x2 − x∗
2

]
+ [6(x∗

1 )
2 1
] [ (x1 − x∗

1 )
2

(x2 − x∗
2 )

2

]
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+ [4x∗
1 0
] [ (x1 − x∗

1 )
3

(x2 − x∗
2 )

3

]
+ [1 0]

[
(x1 − x∗

1 )
4

(x2 − x∗
2 )

4

]∣∣∣∣

≤
∥∥∥∥
[
4(x∗

1 )
3

2x∗
2

]∥∥∥∥ ‖x − x∗‖

+ max
{
6(x∗

1 )
2, 1
} ‖x − x∗‖2 + ∣∣4x∗

1

∣∣ ‖x − x∗‖3 + ‖x − x∗‖4 .

By ‖x − x∗‖ ≤ (c1L)1/2 followed by the value of Lyapunov function L(x), we obtain

∣∣∣1 − p(x)2c
∣∣∣ ≤

{
16(x∗

1 )
6 + 4(x∗

2 )
2
}1/2

(c1L)1/2

+ max
{
6(x∗

1 )
2, 1
}
c1L + ∣∣4x∗

1

∣∣ (c1L)3/2 + (c1L)2

=: Cn,α,N (L).

Finally we obtain an upper bound of tpara,max as follows:

tpara,max = tpara,N +
∫ ∞

τpara,N

(
1 − p(x(τpara))

2c
)k

(
1 − 2c − 1

2c

(
1 − p(x(τpara))

2c
))

dτpara

= tpara,N +
∫ ∞

τpara,N

(
1 − p(x(τpara))

2c
)k

(
1

2c
+ 2c − 1

2c
p(x(τpara))

2c
)
dτpara

≤ tpara,N +
∫ ∞

τpara,N

∣∣∣1 − p(x(τpara))
2c
∣∣∣
k
dτpara

≤ tpara,N + 1

cÑ c1

∫ L(x(τpara,N ))

0

Cn,α,N (L)k

L
dL,

where we have used the estimate dL
dτpara

≤ −cÑ c1L along the trajectory {x(τpara)},
which follows from the inequality ofLyapunov functions. Thepositive constants cÑ , c1
are shown in [21].

Next we show an estimate of |1 − p(x)2c| with compactifications of general type
α = (α1, . . . , αn). As in the previous case, let x∗ = (x∗

1 , . . . , x
∗
n ) ∈ E and assume

that a Lyapunov function L(x) is validated in a vicinity of x∗. Then

∣∣∣1 − p(x)2c
∣∣∣ =

∣∣∣∣∣1 −
n∑

i=1

x2βii

∣∣∣∣∣

=
∣∣∣∣∣

n∑
i=1

(
x∗
i

)2βi −
n∑

i=1

(
xi − x∗

i + x∗
i

)2βi
∣∣∣∣∣
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=
∣∣∣∣∣∣

n∑
i=1

2βi∑
j=1

(
2βi

j

) (
xi − x∗

i

) j (
x∗
i

)2βi− j

∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

max{2βi }∑
j=1

vTj

⎡
⎢⎢⎢⎣

(x1 − x∗
1 )

j

(x2 − x∗
2 )

j

...

(xn − x∗
n )

j

⎤
⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣
,

where v j ∈ R
n is the vector given by

(
v j
)
i =

{(2βi
j

) (
x∗
i

)2βi− j
( j ≤ 2βi ),

0 ( j > 2βi ).

Thus we have

∣∣∣1 − p(x)2c
∣∣∣ =

∣∣∣∣∣∣∣∣∣

max{2βi }∑
j=1

vTj

⎡
⎢⎢⎢⎣

(x1 − x∗
1 )

j

(x2 − x∗
2 )

j

...

(xn − x∗
n )

j

⎤
⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣

≤ ‖v1‖‖x − x∗‖ +
max{2βi }∑

j=2

‖v j‖∞‖x − x∗‖ j

≤ ‖v1‖ (c1L)1/2 +
max{2βi }∑

j=2

‖v j‖∞ (c1L) j/2 =: Cn,α,N (L),

where we have used ‖x − x∗‖ ≤ (c1L)1/2.
If k = 1, which is the case shown in Sect. 5.3, then an upper bound estimate of tmax

is realized as follows, for example:

tpara,max ≤ tpara,N + 1

cÑ c1

∫ L(x(τpara,N ))

0

Cn,α,N (L)

L
dL

= tpara,N + 1

cÑ

∫ L(x(τpara,N ))

0

⎧⎨
⎩‖v1‖ (c1L)−1/2 +

max{2βi }∑
j=2

‖v j‖∞ (c1L) j/2−1

⎫⎬
⎭ dL

= tpara,N + 1

cÑ

⎧⎨
⎩2‖v1‖c

−1/2
1 L(x(τpara,N ))1/2 +

max{2βi }∑
j=2

2

j
‖v j‖∞c j/2−1

1 L(x(τpara,N )) j/2

⎫⎬
⎭ .

123



Numerical validation of blow-up solutions with… 651

C Proofs of statements

C.1 Proof of Proposition 2.4

Nowcompute the Jacobianmatrix of T for verifying its bijectivity.Direct computations
yield

∂xi
∂ y j

= κ−αi

(
δi j − κ−1αi yi

∂κ

∂ y j

)

with the matrix form

J =
(

∂xi
∂ y j

)

i, j=1,...,n
= Aα

(
In − κ−1yα(∇κ)T

)
,

Aα = diag(κ−α1, . . . , κ−αn ), yα = (α1y1, . . . , αn yn)
T .

We following arguments in [8], for any (column) vectors y, z ∈ R
n , to have

(In + β yzT )(In + δyzT ) = In + (β + δ)yzT + βδyzT yzT

= In + (β + δ + βδ〈z, y〉)yzT ,

so In + δyzT = (In + β yzT )−1 if δ = −β/(1 + β〈z, y〉).
In this case, we choose β = −κ−1, y = yα, z = ∇κ and have

(
∂ y j
∂xi

)
=
(

∂xi
∂ y j

)−1

=
(
In − 1

κ − 〈yα,∇κ〉 yα(∇κ)T
)
A−1

α

By (A3) we have κ > 〈yα,∇κ〉, which indicates that the transformation T as well as
T−1 are well-defined and C1 locally bijective including y = 0. On the other hand, the
map T maps any one-dimensional curve y = (rα1v1, . . . , rαnvn), 0 ≤ r < ∞, with
some fixed direction v ∈ R

n , into itself (cf. [16]). For continuous mappings from R

to R, local bijectivity implies global bijectivity. Consequently, (A3) guarantees also
the global bijectivity of T into T (Rn) ⊂ D. Finally we prove that T is onto. First let
y ∈ R

n \ {0}. Then the correspondence

ι : yi �→ yi
p(y)αi

mapsRn \{0} onto the set {p(y) = 1}. If p(y) = 1 then κ(y) attains a constant κ1 > 1
from (A0). From κ(y)2c p(x)2c = p(y)2c, we know that the compactification T maps
the set {p(y) = 1} onto the set {x ∈ D | p(x) = 1/κ1}. In particular, the set Rn \ {0}
is mapped onto {x ∈ D | p(x) = 1/κ1} via the map T ◦ ι. Therefore the surjectivity
of T is reduced to that on the ray Cy = {(rα1 y1, . . . , rαn yn) | 0 ≤ r < ∞} for each
(y1, . . . yn) ∈ R

n with p(y) = 1. By definition T (Cy) is

T (Cy) =
{
(x1, . . . , xn) =

(
rα1

q(r)α1
y1, . . . ,

rαn

q(r)αn
yn

)
| 0 ≤ r < ∞

}
.
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Fromκ(y)2c p(x)2c = p(y)2c,wehave p(x) = r/q(r)onT (Cy). From(A0) and (A1),
for any value cx ∈ (0, 1), we can choose the value r ∈ (0, 1) so that r/q(r) = cx .
Correspondingly we can define y from x on T (Cy). Obviously, T (0) = 0 and hence
T : Rn → D is onto and the proof is completed.

Note that the condition (A2) is not actually used in the present argument.

C.2 Proof of Lemma 3.1

Suppose that y∗ is an equilibrium of (2.1), i.e., f (y∗) = 0. Then the right-hand side
of (3.1) obviously vanishes at the corresponding x∗.

Conversely, suppose that the right-hand side of (3.1) vanishes at a point x ∈
D, p(x) < 1: namely,

f (κx) − κ(y)−1〈∇κ, f (κx)〉yα = 0.

Multiplying ∇κ , we have

〈∇κ, f (κx)〉
(
1 − κ(y)−1〈∇κ, yα〉

)
= 0.

Due to (A3), we have |κ(y)−1〈∇κ, yα〉| < 1 and hence 〈∇κ, f (κx)〉 = 0. Thus we
have f (y) = f (κx) = 0 by the assumption.

C.3 Proof of Lemma 3.2

By admissibility (A1)-(A2), we have

(∇κ(y))i ∼ 1

αi

y2βi−1
i

κ(y)2c−1 = 1

αi

καi (2βi−1)x2βi−1
i

κ2c−1 = 1

αi

x2βi−1
i

καi−1 as p(y) → ∞,

where we used the condition α jβ j ≡ c for all j from (2.2). Therefore the vector field
(3.3) near infinity becomes

x ′
i ∼ κk f̃i (x) − αi xi

n∑
j=1

1

α j

x
2β j−1
j

κα j−1 κk+α j−1 f̃ j (x)

= κk

⎧⎨
⎩ f̃i (x) − αi xi

n∑
j=1

x
2β j−1
j

α j
f̃ j (x)

⎫⎬
⎭ as κ → ∞. (C.1)

Since f̃i is O(1) as κ → ∞, then right-hand side of (C.1) is O(κk) as κ → ∞.
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C.4 Proof of Theorem 3.7

The property b = sup{t | y(t) is a solution of (2.1)} corresponds to the property that

sup{τ | x(τ ) = T (y(t)) is a solution of (3.5) in the time variable τ } = ∞.

Indeed, if not, then τ → τ0 < ∞ and limτ→τ0−0 x(τ ) = x∗ as t → b − 0. The
condition x(τ ) = x∗ is the regular initial condition of (3.5). The vector field (3.5)
with the new initial point x(τ ) = x∗ thus has a locally unique solution x(τ ) in a
neighborhood of τ0, which contradicts the maximality of b. Therefore we know that
τ → +∞ as t → b − 0. Since limτ→∞ x(τ ) = x∗, then x∗ is an equilibrium of (3.5)
on ∂D. The similar arguments show that t → a + 0 corresponds to τ → −∞ and
that the same consequence holds true.

C.5 Proof of Proposition 3.9

Each f̃ j (x) given by (3.2) with κ = κpara is C1 on D, since all terms of f̃ j are
multiples of powers of (1 − p(x)2c) and smooth asymptotically quasi-homogeneous
terms in f j (y). Consequently, we know that the right-hand side of (3.7) is C1 on D.
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